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1 Introduction

The canonical contracting problem involves an effort choice by a privately informed agent,

and a principal who sets compensation as a function of output. But, in many real-world

circumstances, the principal does much more than setting wages. For example, in a capital

budget setting, the principal also decides on the capital allocation to be given to the manager.

In a venture capital setting, the venture capitalist actively contributes to the enterprise by

providing his/her expertise in the form of effort and capital.

The literature has extended the canonical model to allow for an “active” principal. Exam-

ples of the types of actions the principal may take include: a capital allocation rule (Bernardo,

Cai, and Luo, 2001), transfer-pricing decisions among divisions (Besanko and Sibley, 1991),

control of the set of projects the agent has access to (Hirshleifer and Suh, 1992; Sung, 1995),

task assignment decisions (Holmstrom and Milgrom, 1991), setting part of the firm’s strategy

(Dow and Raposo, 2002), design of the compensation measure (Feltham and Xie, 1994), au-

diting and capital allocation (Harris and Raviv, 1996), and/or a productive effort choice that

complements the actions of the agent.

This paper builds a contracting model that nests the above settings. Our main goal is to

understand the precise interplay of moral hazard and asymmetric information when principals

can play such an active role. Our theoretical model considers a standard agency problem where

the agent possesses some private information about his ability or about the profitability of the

division he controls. The principal can influence the agent’s effort choice by the compensation

package she offers to the agent, and by other actions she may take that indirectly impact the

agency relationship.

Our main result is to show that, under fairly general conditions, asymmetric information

makes wages and other actions substitutes. The principal can influence the agent’s information

elicitation decision by offering more contingent pay, or instead offering more capital. Under the

optimal contracts, the principal will use both, making capital and incentives substitutes. This

is driven by the fact that informational rents are increasing both in capital and incentives.

The model’s main prediction, a negative relationship between investment and incentives, is

consistent with the empirical evidence from internal capital markets provided in Wulf (2002).

Our general setup is then specialized to three different models in Sections 4–6. The first

model, presented in Section 4, follows Bernardo, Cai, and Luo (2001), who present a theory

where capital and incentives have a hierarchical structure: good managers get both contingent

compensation and capital, average managers only get capital, and bad managers get neither.

We show their results depend on the specific functional form they assume for output. When

the informational advantage possessed by the agent is concentrated in the marginal value of

investment, our model predicts a reversal of their ordering: top types get both contingent
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compensation and capital, but average managers only get contingent compensation (without

new capital). The substitutability created by private information can make incentives and

capital budgets be non-monotonically related. This paper solves analytically for a set of special

cases, and it gives conditions under which different comparative statics will prevail, thereby

generating a rich set of empirical implications.

The multi-project/task feature of most real-world incentive problems has sprung substantial

recent interest (Holmstrom and Milgrom, 1991). The second model, discussed in Section 5, adds

to this literature by analyzing the effects of private information in the project/task assignment

decision. Action restrictions are shown to be optimal in a third-best world in a (weak) generic

sense, even for cases in which the second-best solution does not involve any restrictions on

the agent’s action set. Therefore private information considerations bring new trade-offs to

the optimality of such action restrictions, complementing the results shown in Holmstrom and

Milgrom (1991). Moreover, the distortion in the optimal contingent compensation from the

second-best to the third-best solution1 is not necessarily downwards, as in the case where the

principal is inactive: the optimal contracts can actually be more aggressive in the presence of

private information than in the case of symmetrically informed parties.

While our model is cast within the standard one principal/one agent contracting problem,

our results can shed some light as to the debate of diversification in the empirical literature.

In particular, since our model implies task/project restrictions under the optimal contracts, it

yields predictions with respect to value reactions to spinoffs and diversifying mergers.2 Fur-

thermore, the model predicts higher contingent compensation for managers with less scope

of action, thus providing new empirical predictions (for related empirical evidence see Wulf,

2007). The paper also develops a new set of empirical predictions with respect to action scope

(number of tasks assigned to managers) and the underlying contracting variables. When the

noise in measurable output is large, the principal will optimally allow the agents to tackle as

many tasks as possible; whereas when the noise is small, action restrictions will generally be

optimal.

Section 6 includes a further extension in which the risk of the projects is increasing in the

investment amount, adding a risk-return tradeoff to the model. Our model gives conditions

under which we may observe a positive relation between compensation and risk, contrary to

most of the principal agent literature. The driving force is the monotonicity properties that,

under some conditions, tie compensation with investment. Thus our paper may shed some

1As usual in the literature, I will refer to the case where the action taken by the agent is unobservable but
there is no private information as the second-best world, and the case where there is also adverse selection as
the third-best world.

2The diversification discount literature (Lang and Stulz, 1994; Berger and Ofek, 1995; Campa and Kedia,
2002; Fauver, Houston, and Naranjo, 2004) is related, see Martin and Sayrak (2003) for a survey. More relevant
for our theoretical results are cross-sectional studies (McNeil and Moore, 2005).
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light on the empirical evidence on the relationship between equity compensation and risk.3

There is a large literature in finance, started with the seminal Leland and Pyle (1977)

paper, which analyzes the effects of asymmetric information in financial contracting settings.

The analysis in this paper follows the tradition in the capital budgeting literature started with

Harris, Kriebel, and Raviv (1982) and Antle and Eppen (1985).4 The model in Section 4 is

formally very close to that in Bernardo, Cai, and Luo (2001), who also jointly model optimal

capital budgeting and compensation under private information and moral hazard, but allowing

for more general relationships between information, investment, effort and output.5

This paper also contributes to the moral hazard literature where there is an investment

decision on top of an effort elicitation problem,6 by studying the effects of asymmetric in-

formation on the optimal contracts and capital budgeting decisions. Also closely related is

the literature that discusses deviations from the standard NPV rule due to contracting im-

perfections (e.g. Berkovitch and Israel, 2004). The optimal capital budgeting schemes in the

paper depart from naive NPV rules due to the distortions that arise both due to asymmetric

information and moral hazard considerations.

The analysis of the task allocation decisions in Section 5 is closely related to that of Holm-

strom and Milgrom (1991), who ignored in their analysis private information considerations.

Other recent papers that study the potential optimality of action restrictions are Szalay (2002)

and Carrillo (2002). Szalay (2002) looks at the optimality of (ex-post) task allocation decisions

from the point of view of motivating effort decisions ex-ante. Carrillo (2002) studies a model

driven by career concerns of the managers, and the task assignment decisions play the role of

screening devices. In contrast, this paper’s driving forces are the trade-off between production

inefficiencies and informational rents considerations.

The rest of the paper is organized as follows. Section 2 presents the model and solves for the

optimal contracts and actions in the case with symmetric information. Section 3 characterizes

the set of implementable mechanisms and reduces the principal’s problem to a simple pointwise

maximization. Further results are contained in Sections 4 and 5, where the previous results

are specialized to the two settings described above. Section 6 considers other extensions of the

3See, for example, Aggarwal and Samwick (1999), Jin (2002), Coles, Daniel, and Naveen (2006), Cheng,
Hong, and Scheinkman (2013).

4For some recent work in this area see Milbourn and Thakor (1996), Bernardo, Cai, and Luo (2001), Stoughton
and Zechner (2003), Bernardo, Cai, and Luo (2004), Sung (2005) and Almazan, Chen, and Titman (2012). The
literature on capital budgeting with other types of frictions is also large — see Harris and Raviv (1996), Harris
and Raviv (1998), Core and Qian (2002), Goldman (2002) and the references therein.

5See DeMarzo and Duffie (1997), Chemmanur and Fulghieri (1997), DeMarzo (2005), and He (2005) for some
recent work in the signalling literature in which the informed party can signal her quality through multiple
actions, very close in spirit to the main contribution of this paper. Daniel and Titman (1995) surveys prior
literature related to this class of models in finance, including an analysis with multiple actions. Our main
contribution to the theoretical mechanism design literature (i.e., Laffont and Tirole, 1986) is the consideration
of multiple screening instruments (see Matthews and Moore, 1987, for the first effort along this dimension).

6See Hirshleifer and Suh (1992), Hermalin (1993), and Sung (1995).
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basic model. All proofs are relegated to the appendix.

2 The model and benchmark solutions

In this section I describe the model and relate it to those in the literature. The solutions when

there is not adverse selection nor moral hazard (first-best world) and when there is not adverse

selection (second-best world) are then discussed.

2.1 Elements of the model

Output is driven by both the agent’s and principal’s actions, and is also dependent on the

private information of the agent. I assume that the principal is risk-neutral. She accrues

benefits B(e, a, θ) from the interaction with the agent and their productive actions, where

e ∈ E ⊂ Rn is an action taken by the agent, and a ∈ A ⊂ Rm is an action conducted by the

principal. The action a has a personal cost for the principal of ĉ(a). The agent has CARA

preferences with risk-aversion parameter R, and incurs an additively separable cost given by

c(e, θ). Define C(e, a, θ) ≡ c(e, θ) + ĉ(a).

The variable θ indexes the agent’s type, privately known by the agent. For simplicity in

the exposition I assume that there is a continuum of types with total mass normalized to one,

namely I assume that θ ∈ [θ, θ̄] ≡ Θ, and that the principal knows that in the population θ

is distributed according to the distribution function F (θ) with associated density f(θ). The

inverse of the hazard rate H(θ) ≡ (1− F (θ))/f(θ) is assumed to be bounded and monotonic.

There is a contractible signal given by

Y = µ(e, a, θ) + σε; (1)

with ε ∼ N(0, 1). The principal and the agent can only use linear functions of Y as contracts,

which I will denote by w ≡ α+ βY .7 The agent’s certainty equivalent utility can be expressed

as

U(e, a, α, β, θ) = α+ βµ(e, a, θ)− R

2
β2σ2 − c(e, θ). (2)

The principal’s utility can analogously be written as

V (e, a, α, β, θ) = B(e, a, θ)− α− βµ(e, a, θ)− ĉ(a). (3)

7If the agent were risk-neutral the restriction to linear contracts would be without loss of generality by
standard arguments (see Laffont and Tirole, 1986). This restriction to linear contracts has been shown to be
without loss of generality in a dynamic version of this model in Holmstrom and Milgrom (1987) in the pure
moral hazard case. Sung (2005) shows that introducing private information does not destroy the optimality
of linear contracts in this type of continuous-time setting. The only result that depends on risk-aversion is
Corollary 4 in Section 5.
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A natural case to consider is when the contractible signal is a noisy version of output, i.e.

µ(e, a, θ) = B(e, a, θ). In this case, the contracting variable Y is simply a noisy version of the

benefits received by the principal from the agency relationship, gross of costs.

The following assumptions8 will be referred to as “standard assumptions:”

• The variable θ orders the types unambiguously by their efficiency. In particular I assume

Cθ ≤ 0 and Cθe ≤ 0,9 i.e. higher values of θ are associated with lower cost and lower

marginal cost for the agent’s effort choice.

• The function µ(·) is assumed to satisfy µθ ≥ 0, i.e. higher values of θ are associated with

higher values of the signal. Moreover, µeθ ≥ 0, i.e. agents with higher values of θ have a

higher marginal value of effort.

• The marginal value of the principal’s action is increasing in θ, i.e. µaθ ≥ 0.

These assumptions are neither more restrictive nor much more general than those made in

the literature: they are the standard Spence-Mirrlees single-crossing property when the signal

and cost functions are modeled (separately) to be dependent on θ. In particular, we assume

that θ sorts agents by “quality,” so that Cθ ≤ 0 and µθ ≥ 0, and the marginal effects also are

sorted by θ, Ceθ ≤ 0 and µeθ ≥ 0. We further assume that agent’s types affects the marginal

impact of the principal’s action on the signal, namely µaθ ≥ 0. In particular, the principal’s

action has a bigger impact on the signal for higher values of the agent’s private signal θ. Section

6 discusses how generalizations of these assumptions could be addressed. For now it is just

worth noticing that since the main results of the paper are statements regarding weak generic

properties of the model,10 these “standard assumptions” are not necessary for the results.

By the revelation principle (e.g. Myerson, 1979) the principal can restrict attention to a

direct mechanism of the form {α(θ), β(θ), a(θ)}, where α is the fixed wage offered, β the bonus

coefficient, and a the action that the principal controls. The optimal menu of contracts solves

max
{α,β,a}

∫ θ̄

θ
(−α(x)− β(x)µ(e(x), a(x), x) +B(e(x), a(x), x)− c(a(x))) f(x)dx (4)

such that

U(e(θ), a(θ), α(θ), β(θ), θ) ≥ ū, ∀θ ∈ Θ; (5)

U(e(θ, θ), a(θ), α(θ), β(θ), θ) ≥ U(e(θ, θ̂), a(θ̂), α(θ̂), β(θ̂), θ), ∀θ, θ̂ ∈ Θ; (6)

e(θ, θ̂) ∈ arg max
e

U(e, a(θ̂), α(θ̂), β(θ̂), θ), ∀θ, θ̂ ∈ Θ. (7)

8I use the notation fx(·) to denote the derivative of the function f with respect to x. For functions of one
single real variable I will also use the notation f ′(x). For notational simplicity I omit the arguments of the
functions when there is no room for ambiguity.

9Note that Ceθ is a vector, so Ceθ < 0 means that ∂2C
∂θ∂ei

< 0 for i = 1, . . . , n.
10A property is said to hold in a weakly generic sense if there is an open set of the model’s parameters such

that this property holds.
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The constraint (5) is the standard individual rationality constraint. It is assumed that

the reservation utility of the agent is ū, independent of the agent’s type. Constraint (6) is the

incentive-compatibility constraint, which states that the agent is better off announcing his true

signal and receiving the allocation {α(θ), β(θ), a(θ)} than announcing a different type θ̂ when

his true type is θ. Lastly, equation (7) requires the effort choice for the agent to maximize his

expected utility.

The Holmstrom and Milgrom (1987) setting is obtained when θ has a degenerate distribu-

tion (i.e. there is no private information), n = 1 and A = ∅. For n arbitrary and A = {Ii}ni=1,

with Ii denoting the indicator variable taking on the value 1 if task i is assigned to the agent,

a special case of the model discussed in Holmstrom and Milgrom (1991) is recovered.11 Special

cases of n = m = 1 are discussed in Besanko and Sibley (1991), and Bernardo, Cai, and Luo

(2001), who consider settings where on top of the standard contractual agreement the principal

is active, i.e. takes an action that affects some of the parameters in the agency model (transfer

pricing policy in Besanko and Sibley (1991) and capital allocation in Bernardo, Cai, and Luo

(2001)). The two novelties with respect to this literature are the simultaneous consideration

of multi-task agency problems with private information when the principal can also influence

the agency relationship in a fairly flexible setting.

The model just described is quite general. Nevertheless, some simplifying assumptions have

been made, mostly for clarity in the exposition: σ2 is assumed to be independent of e, a and θ;

c(·) and ĉ(·) only depend on the respective effort levels of the agent and the principal, and the

private information of the agent affects only the mean value of output and the cost function

of the agent. Section 6 discusses the effects of these assumptions on the paper’s results.

2.2 First-best and second-best benchmarks

In a first best world, where both e and θ were observable, the principal’s problem is reduced

to the maximization of her payoff (4), such that the participation (5) is satisfied. The contract

would stipulate paying the agent a fixed wage, since imposing risk on the agent is suboptimal.

The optimal actions would be given by

max
e,a

ΦFB(e, a, θ) ≡ B(e, a, θ)− C(e, a, θ).

When effort e is unobservable, but θ is common knowledge, the principal maximizes (4)

such that (5) is satisfied, and the agent’s action solves (7). This reduces to the model studied by

Holmstrom and Milgrom (1991), who showed the first-order approach is valid in this context.

11Holmstrom and Milgrom (1991) deal with the more general case where the principal has k contractible
signals, whereas I limit attention to contracting environments with one signal.
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Using (7) the optimal action for the agent is given by

βµe(e, a, θ) = ce(e, θ). (8)

This first-order condition defines the function e(β, a, θ), which maps an arbitrary menu/signal

pair to the effort chosen by the agent. I will also use the notation e(θ, θ̂) introduced in (7) as

referring to e(β(θ̂), a(θ̂), θ). Note the notation e(θ, θ̂) emphasizes the possibility that the agent

can lie about the true type, and change his effort in consequence. Using (8) one can eliminate

the effort choice from the principal’s problem and maximize over β the second-best surplus

max
β,a

ΦSB(β, a, θ) ≡ B(e(β, a, θ), a, θ)− C(e(β, a, θ), a, θ)− R

2
σ2β2, (9)

to find the optimal contract.

The above equation captures the standard features of the classic moral hazard problem: the

principal discounts the value of the actions e and a by the risk they impose on the risk-averse

agent.

3 Implementability and optimal contracts

In this section the main results needed to characterize the optimal mechanism are discussed.

The method of solution to the problem is standard: we use the first-order approach12 to express

the optimal effort level as a function of the contract, thereby reducing the problem to one in

which there is no agency relationship and the principal has to design a mechanism to induce a

particular allocation rule. It turns out that under the assumptions of CARA preferences, linear

contracts and Gaussian returns the setting reduces to one with quasi-linear preferences. The

model is thus reduced to a multi-dimensional allocation rules mechanism design problem with

a one-dimensional information variable.13 This section extends the results in the literature to

the agency model introduced above.

3.1 Implementability

The existence of private information conditions the set of allocations, combinations of contracts

and actions, that the principal can achieve. A mechanism {α(θ), β(θ), a(θ)} is said to be

implementable if it satisfies (6). The next proposition gives necessary and sufficient conditions

12It is worth noticing that under the restriction to linear contracts the first-order approach to moral-hazard
problems is always valid, i.e. the second-order conditions are immediately satisfied.

13For a survey of the growing multi-dimensional mechanism design literature see Rochet and Stole (2000).
Garćıa (2005) gives the set of necessary and sufficient conditions for implementability in the type of model
considered here in the case without an agency relationship.
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for implementability in this model.14

Proposition 1. The following two conditions are sufficient for a differentiable mechanism

{α(θ), β(θ), a(θ)} to be implementable:

(
µ− βRσ2

) dβ
dθ

+ βµa
da

dθ
+
dα

dθ
= 0, for all θ ∈ Θ; (10)

[
µθ + (βµθe − cθe)

de

dβ

]
dβ

dθ
+

[
βµθa + (βµθe − cθe)

de

da

]
da

dθ
≥ 0, for all θ, θ̂ ∈ Θ. (11)

where e(β, a, θ) is defined by (8). Equation (10) and (11) holding for θ̂ = θ constitute necessary

conditions for implementability. �

The proof of the previous proposition starts by solving for the effort choice as a function of

the mechanism, and thereby eliminate the agency relationship from the problem. By inspection

it becomes clear that u is quasi-linear, and therefore we can apply standard techniques to

characterize the implementability of the mechanisms (Fudenberg and Tirole, 1991). Equation

(10) is the first-order condition to the agent’s information revelation problem. Condition (11)

is equivalent to the second-order condition to this problem, which explains why we need the

condition holding for all θ, θ̂ ∈ Θ.

Proposition 1 gives a precise statement about the set of mechanisms that the principal can

achieve. Equation (10) will be used next to calculate the informational rents the agent gets

under any feasible mechanism. Condition (11) puts a further constraint on the mechanisms

that the principal can use: this is what the literature usually refers to as the “monotonicity

constraint.” In standard models this constraint yields the property that β and e must be

increasing in the agent’s announced type. As it will become clear in the next examples, equation

(11) imposes a restriction in the sign of the derivative of the elements of the allocation rule

(β and a), but this constraint is not as strict as in standard models. Once the principal’s

action has a non-trivial effect on output the set of mechanisms that are implementable grows

substantially: for example note that it could even be feasible to have a decreasing β(θ) function,

since (11) does not rule it out.

The following examples consider some special cases to gain some further intuition into the

restrictions that private information imposes on the set of contract/action pairs the principal

can implement.

14The above characterization of the set of feasible mechanisms will be sufficient for the capital budgeting
application of Section 4, but the restriction to differentiable mechanisms is with loss of generality. In the general
case, which is necessary to consider in the analysis of Section 5, the above conditions should be substituted
for statements holding for almost all θ ∈ Θ, i.e. at all those points where the mechanism is differentiable. The
reader interested in the technical details is referred to Rochet (1985) and Stole (1997). The precise conditions
boil down to requiring that the indirect utility of the agent, U(θ) ≡ U(e(θ), a(θ), α(θ), β(θ), θ) is non-decreasing
and convex in θ.
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Example 1. Consider the case where µ is independent of θ, i.e. when private information only

affects the costly effort function of the agent (his efficiency or ability). If e ∈ R, then (11)

becomes

−Cθe
de

dθ̂
≥ 0;

where de
dθ̂

= de
dβ

dβ
dθ + de

da
da
dθ .15 Since Cθe ≤ 0 the above equation immediately implies that de

dθ̂
≥ 0,

i.e. implementability requires that the effort function must be monotonically increasing in the

agent’s announced type. Note that this does not imply that β is increasing in the announced

type: if de/da > 0 and da/dθ are sufficiently large the implementability condition is satisfied

for any function β. On the other hand, when e(β, a, θ) is independent of a, implementability

does imply that β must be a monotone function of θ.

It is interesting to note that in the general case where e ∈ Rn for n ≥ 2 the implementability

constraint does not require each element of the vector e to be increasing in θ̂, but rather

∑
i

wi(θ)
dei

dθ̂
≥ 0;

where wi ≡ Cθei/
∑n

j=1Cθej . Finally note that while it is true that dei/dθ̂ ≥ 0 for all i is

sufficient for implementability, it is not necessary, i.e. restricting attention to models where the

parameters are such that dei/dθ̂ ≥ 0 for all i is not without loss of generality.16 �

Example 2. Consider the case where C is independent of θ and µθe = 0. This corresponds to

the case where the agent’s marginal value of effort is not affected by the private information

that he possesses. Equation (11) becomes

µθ
dβ

dθ
+ βµθa

da

dθ
≥ 0.

If a ∈ R the above reduces to w1(·)β′(θ) + w2(·)a′(θ) ≥ 0 for appropriate functions wi(·).
When the marginal value of the principal’s action is independent of the agent’s private infor-

mation, µθa = 0, the equation reduces to the restriction dβ
dθ ≥ 0 (since µθ ≥ 0), i.e. the optimal

bonus coefficient must be monotonically increasing. But note that this is the only restriction

that yields a one-to-one connection between implementability and monotonicity of β: in the

general case if µθa > 0 is sufficiently large and da/dθ > 0 implementability is again guaranteed

for any function β. �

15Using the notation introduced before this is equivalent to de/dθ̂ ≡ de(θ,θ̂)

dθ̂
|θ̂=θ.

16The papers Besanko and Sibley (1991) and Bernardo, Cai, and Luo (2001) guarantee that the incentive-
compatibility condition holds by analyzing model specifications in which this condition holds.
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3.2 Optimal contracts

With the implementability issue resolved, we turn now to characterizing the optimal mecha-

nism. The next proposition reduces the principal’s problem to a simple pointwise maximization.

Proposition 2. The principal’s problem reduces to the maximization of

max
β,a

∫ θ̄

θ
Φ(β(x), a(x), x)f(x)dx (12)

where

Φ(β, a, θ) ≡ B(e, a, θ)− C(e, a, θ)− R

2
β2σ2 −H(θ) (βµθ(e, a, θ)− cθ(e, θ)) (13)

and e = e(β, a, θ) is given by (8), such that the constraint (11) holds. �

The principal’s problem boils down to the maximization of the “virtual surplus” function

Φ = ΦSB − H(θ) (βµθ(e, a, θ)− cθ(e, θ)). The last term in (12) measures the cost for the

principal due to the informational rents earned by the agent: all distortions from the second-

best solution are generated by this term.

The third-best objective function (12) is affected due to the severity of the informational

asymmetry, captured by H(θ), as well as the sensitivity of the signal and agent’s costs function

to that information. Consider the case where both e and a are one-dimensional. We argue

that when the action choices by the principal and agent are complements, namely de/da >

0,17 asymmetric information makes incentives, measured by β, and the principal’s actions, a,

substitutes for the principal. Ignoring third-order derivatives, we have that18

d2Φ

dadβ
=
d2ΦSB

dadβ
−H(θ)

[
µθa + µθe

de

da

]
. (14)

The last term in (14) is unambiguously negative: asymmetric information considerations make

incentives and other complementary actions into potential substitutes. Rather intuitively,

raising the incentives for agents increases their informational rents, which, on the margin,

makes the principal’s action more costly as well.

Although Proposition 2 has significantly simplified the the problem, the constraint (11) is

still potentially binding. One could further develop the model explicitly taking into account this

constraint (e.g. using the ironing procedure of Mussa and Rosen, 1978). The standard approach

17A sufficient condition for this is that µea > 0, C is convex in e, and µ is concave in e, as can be verified
from total differentiating (8).

18Equation (14) includes, in general, two other terms multiplying the H function: (i) βde/dβ[µθea+µθeede/da];
(ii) −de/dβ[Cθea + Cθeede/da]. Since it seems hard to gain much insight from the second-order derivatives of
the functions µθ and Cθ we chose to ignore them in our discussion.
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in the literature is to ignore this constraint, and then check that it is not violated. Since the

main results to be discussed in later sections are statements of (weak) generic existence of

certain properties, we do not gain in generality by ignoring the cases where (11) could bind.19

One could find conditions for the two applications presented in the next section under which

we could safely ignore this constraint. Along these lines it is important to note that in all

examples to be discussed later in the paper these second-order conditions are verified to hold

at the optimal solutions.

4 Optimal capital budgeting schemes

In this section we consider a variation of the model in Bernardo, Cai, and Luo (2001), which is

characterized by the one-dimensional nature of the agent’s and principal’s action, i.e. the case

where e ∈ R and a ∈ R, and by further structure on the functions B, µ and C. To keep the

discussion concrete, and for comparison with Bernardo, Cai, and Luo (2001). We will refer to

the action a as the capital budget, or investment decision, set by the principal for the agent’s

division. It should be noted that very similar results could be generated interpreting a as effort

by the principal that contributes to the profitability of the project, a description that would

be better suited in a venture capital context.

We assume that the output function takes on a simple linear-quadratic form

B(e, a, θ) = γ(θ)e+ δ(θ)a+ η(θ)ea; (15)

and that this output is contractible, µ = B in the previous notation. We further assume

that the private information does not affect the costly effort of the agent, i.e. c(e, θ) = c(e),

and, for simplicity, that both the cost of effort and the investment are quadratic functions, i.e.

c(e) = 1
2e

2 and c(a) = 1
2a

2.

The specification in (15), albeit stylized, captures other potentially important aspects of

the agency relationship not considered in Bernardo, Cai, and Luo (2001), which has γ(θ) = 0,

δ(θ) = δ0 + δθθ, η(θ) = η0 and R = 0. In their work the agent is privately informed about the

marginal value of the investment decision, independently of the effort choice. The importance

of this element of the private information is measured by δθ. Equation (15) allows for the

private information of the agent to impact its own marginal productivity of effort, through

γ′(θ), and the interaction of the marginal value of investment that depends on the effort

choice, measured by η′(θ). As it will become clear in the following discussion, the nature of

the private information of the agent has important implications for the design of the optimal

contracts: it is very different to be informed about the pure marginal value of investment than

19If anything analyzing a smaller set of the potential models makes the genericity statements harder to obtain.
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about the pure marginal value of effort or about the interaction of the marginal values of effort

and investment.

It is straightforward to see, using the results from the previous section, that the principal’s

problem, absent private information considerations, is given by

max
β,a

ΦSB ≡ (γ + ηa)2

(
β − 1

2
β2

)
+ δa− 1

2
a2 − Rσ2β2

2
.

The first term in the second-best surplus function ΦSB captures the benefits stemming from

the agent’s action choice e, via the incentives created by the linear contract’s slope parameter

β. The second and third terms capture the investment NPV and the risk-aversion adjustment,

the latter being the main force in pure agency models.

The optimal menu (β, a) absent private information is characterized by the first-order

conditions

β =
1

1 +
Rσ2

(γ + aη)2

; (16)

a = δ + 2η

(
β − 1

2
β2

)
(γ + ηa). (17)

Rather intuitively the first-order conditions show β is distorted away from 1 due to risk-

sharing considerations (the standard moral hazard problem tradeoff), where the distortion

depends both on risk-aversion and volatility, the term Rσ2, as well as on the marginal value of

effort, captured by (γ + aη)2. The optimal capital allocation rule (17) is equal to his marginal

production, comprised of the pure value of investment δ, plus the term stemming from the

interaction between effort and capital (measured by η).

When the agents are privately informed, the principal solves (12), which in the setup in

this section reduces to

Φ = ΦSB −Hβ
[
aδ′ + β(γ + aη)(γ′ + aη′)

]
. (18)

The distortions from the second-best outcome stem from the two new terms in (18). The

first thing to note is that private information considerations add costs to the principal’s ob-

jective function both through the elements of private information on the value of investment,

measured by δ (and η), as well as through the effort components of output, measured by γ

(and η). Moreover, there is a non-trivial interaction between capital allocation rule a and the

incentives β: private information considerations make investment and incentives substitutes for

the principal. As incentives are raised, the information cost of investment also goes up, which

12



pushes optimal investment down. In general the principal can cut informational rents both by

distorting the capital allocation rule, or by lowering incentives. Under the optimal contracts

the principal weights these new considerations against the standard efficiency/risk-sharing

(moral-hazard) trade-off captured by the maximization the second-best surplus function ΦSB.

The next Proposition characterizes the optimal menu of contracts and capital allocation

rules in the case where the principal faces privately informed agents.20

Proposition 3. The optimal mechanism when the non-negativity constraints do not bind, is

characterized by

a = δ + 2η

(
β − 1

2
β2

)
(γ + aη)−Hβ

[
δ′ + βη(γ′ + aη′) + βη′(γ + aη)

]
; (19)

β =

1− Haδ′

(γ + aη)2

1 +
Rσ2

(γ + aη)2
+

2H(γ′ + aη′)

(γ + aη)

. (20)

A sufficient condition for the optimality of the above solutions is that η is sufficiently small,

and δ′ is small relative to γ and/or γ′. �

The above first-order conditions cature the relevant distortions in the optimal contracts

due to asymmetric information. The first thing to note, simply comparing expressions (16)

and (20), is that, fixing the capital allocation rule a, the incentives created for the agent are

lower in the asymmetric information case. Rather intuitively the principal lowers the incen-

tives to cut down the informational rents earned by agents under the equilibrium contracts.

Similarly, fixing β, the capital allocation rule goes down, due to the informational cost term

Hβδ′. The interaction between investment and effort, and in particular their respective in-

formational costs, introduce new implications on the relationship between incentives and the

private information of managers. In particular, the substitability among investment and incen-

tives introduced by private information can create new comparative statics on the relationship

between capital allocation and incentives.

A list of the comparative static results of the model in full generality would require a

significant number of caveats. We settle on illustrating some of the more interesting features

of the model not discussed previously in the literature via a set of corollaries.

Corollary 1. When η(θ) = 0, i.e. there is no interaction in the value function between

investment and effort, the optimal investment function and contigent compensation are given

20It is worth noticing that in the general case it is not possible to obtain analytical solutions. Moreover, the
sufficient conditions given in the proposition are far from necessary: the interested reader is urged to consult
the proof of the proposition to see the precise necessary conditions for optimality.
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by

a =
δ

1− q
− Hδ′γ2

γ(γ + 2Hγ′)−H2(δ′)2
; (21)

β =

1− Haδ′

γ2

1 +
Rσ2

γ2
+

2Hγ′

γ

; (22)

where q(θ) = H2(δ′)2

γ(γ+2Hγ′) . �

The corollary shows that the introduction of private information creates a link between

compensation and investment which was not present in a second-best world. Absent asym-

metric information considerations, the optimal contracts under the corollary’s conditions are

characterized by a = δ and β = 1/(1 + Rσ2/γ2). When there are no production interactions,

private information makes capital and effort (or incentives) substitutes in the principal’s opti-

mization problem. This generates novel comparative statics. For example, for γ′ small the sign

of dβ/dθ is given by the sign of −aH ′−a′H. Therefore as long as the sensitivity of investment

a′ and/or the hazard rate is large we can see that the optimal contracts will exhibit dβ/dθ < 0.

Corollary 2. When γ(θ) = 0 and δ′(θ) = 0, i.e. asymmetric information only affects the in-

teraction term of the investment decision with the agent’s effort choice, the optimal investment

function and contigent compensation in the case of a risk-neutral manager, R = 0, are given

by

a =
δ

1− p
; β =

η

(η + 2Hη′)
;

where p(θ) = η3 (η+4Hη′)
(η+2Hη′)2 . �

Corollary 2 considers the case where capital and effort are complementary in the output

function, but the private information possessed by the agents is with respect to the marginal

value of investment with respect to effort, η′ > 0, rather than the case considered in Bernardo,

Cai, and Luo (2001), where the agent was privately informed about the marginal value of

the investment decision irrespective of effort, δ′ > 0. Some algebra verifies that under the

conditions of Corollary 2 incentives are positively related to private information, β′(θ) ≥ 0,

but that there exists parameter values such that a′(θ) < 0 for some θ. In essence, if the

private information affects the complementarities between effort and capital, then the optimal

contracts will exhibit a negative relationship between the investment allocated to the manager

and his incentives. Since investment and effort are complementary in the firm’s production

function, this substitutability arises due to the existence of asymmetric information.

The previous two corollaries have extended the model in Bernardo, Cai, and Luo (2001),

showing how certain simple properties of their model, such as monotonicity, may not generally
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hold. Corollaries 1 and 2 further provided conditions under which some properties will arise,

whereas others will not. Bernardo, Cai, and Luo (2001) further analyzed the possibility of the

non-negativity constraints on β and a binding at the optimal solution, a question we turn to

next. In particular, they showed that there is a strong hierarchy between capital and incentives:

an agent of type θ gets incentives for effort, i.e. β(θ) > 0, if and only if he is allocated some

capital, a(θ) > 0.

More formally, they show how one can partition the type interval into three disjoint regions:

for θ ∈ [θ, θ1] agents get neither contingent compesation nor capital allocated, for θ ∈ [θ1, θ2]

agents receive capital, but no incentives (their wage is non-contingent on output), and for

θ ∈ [θ2, θ̄] agents receive both incentives and capital. One can summarize the possibility of

binding non-negativity constraints by defining θa and θβ to be the breakpoints below which

these constraints bind. The result in Bernardo, Cai, and Luo (2001) can then be tightly

stated as θa < θβ. The next example shows the hierarchy between capital allocation decision

and incentives again depends on the particular way the informational asymmetry enters the

production function.

Corollary 3. Consider the case with no interactions between effort and investment, i.e. η = 0,

and where private information does not affect the value of effort, γ′(θ) = 0. Define θa as the

solution to δ′H = δ, and θβ as the solution to δ′H = γ2/δ, and assume such solutions exist and

are unique. If effort productivity γ is sufficiently low, then θβ < θa, whereas when investment

productivity δ is sufficiently large, then θa < θβ. �

The main result from Corollary 3 is to give conditions under which one gets a reversal in

the hierarchy of incentives versus capital, vis à vis Bernardo, Cai, and Luo (2001). Under

the conditions in the Proposition, effort does not directly affect the informational rents earned

by the agent under the principal’s mechanism. Whether it is optimal to eliminate investment

or effort first, as we move down the type space, depends solely on the curves δ(θ) and the

effort parameter γ. When investment productivity is particularly high, then it is optimal to

restrict incentives first. On the other hand, when effort is not very productive, it’s effect in

reducing informational rents is small, and it becomes optimal to restrict investment first. It is

worthwhile emphasizing how the proposition does not just produce a counterexample to the

results in Bernardo, Cai, and Luo (2001), but also provides predictions as to when a particular

pecking order (incentives versus capital) arises.

15



5 Optimal task allocation decisions

In this section we analyze an alternative set of actions for an active principal: the restriction

of the tasks to be performed by the agent.21 Holmstrom and Milgrom (1991) were the first to

point out that in a standard moral hazard model it could be optimal to restrict the number

of tasks that an agent performs. This section further studies how private information affects

their findings.

We will use the following version of the Holmstrom and Milgrom (1991) model. We assume

that final output is given by

B(e, a, θ) = e>(b0 + bθθ)

and the signal is of the form

µ(e, a, θ) = e>(µ0 + µθθ).

In a slight abuse of notation let µ(θ) ≡ µ0 + µθθ and b(θ) ≡ b0 + bθθ. The effort e is costly for

the agent, who incurs a loss in certainty equivalent terms of c(e) = 1
2e
>C(θ)e, for a symmetric

matrix C(θ) = C0 + Cθθ.

Both output and the tasks to be performed by the agent are contractible. Therefore a

mechanism now consists of a contract, characterized by a fixed wage α and a bonus coefficient β,

as well as a set of actions to be performed. Define Ii to be the indicator variable of whether task

i is assigned to the agent or not. Then a mechanism is given by {α(θ), β(θ), I1(θ), . . . , In(θ)}.
Define I to be the (n×n) diagonal matrix with elements Ii(θ). We will assume that there is no

associated cost with the actions (task assignment) taken by the principal in this case, although

this could be easily generalized. Moreover, we assume that the tasks are not exclusive, i.e. an

agent can be assigned an arbitrary number of tasks.

The following proposition specializes the previous results to this setting.

Proposition 4. At an interior solution, the optimal contract is characterized by

β(θ) =
`(I, θ)>b(θ)

Rσ2 + `(I, θ)> (µ(θ) + 2H(θ)(µθ +m(I, θ)))
. (23)

where `(I, θ) = (CI(θ))
−1µ(θ), and m(I, θ) = Cθ`(I, θ).

The optimal task assignments Ii(θ) are given by the solution to

max
Ii

(`(I, θ)>b(θ))2

Rσ2 + `(I, θ)> (µ(θ) + 2H(θ)(µθ +m(I, θ)))
(24)

Action restrictions, i.e. setting Ii(θ) = 0 for some i and some θ, are optimal for an open set

21One could equivalently interpret these tasks as “projects” that an agent would get assigned to.
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of parameter values, even when they are not optimal absent informational concerns. �

The general trade-offs present in the expressions in the proposition are familiar: on one hand

we have the agency costs due to the multi-dimensional moral hazard problem, now exacerbated

by the existence of private information. Comparing the optimal contingent compensation given

in equation (23) to the second-best solution,22 it is immediate that holding the set of tasks

constant in both problems private information lowers the bonus coefficient of the optimal

contract. This is the standard result in previous agency models. But note that this statement

depends crucially on the fact that the task assignments are the same in both the second- and

third-best worlds. The objective function for the optimal allocation of tasks given by (24) is

to be contrasted to that in a second-best world, setting H = 0 in (24). The term involving the

usual measure of informational costs H(θ) makes the optimal task assignments be potentially

different, which indirectly affects the optimal amount of contingent compensation.

Two general statements on the model are discussed next. The first highlights the role of

risk in the optimal task allocation problem. The second shows how the model can generate

distortions upwards in incentives, i.e. more powerful contracts for lower types.

Corollary 4. For large values of the risk-aversion of the agent R or of the noise in the

performance measure σ2 it becomes optimal to assign all tasks to all agents (Ii(θ) = 1 for all

θ ∈ Θ).

The intuition for this result lies on the fact that for large values of risk-aversion and

volatility the contingent compensation becomes small, since the agent is risk-averse. Now, as

can be grasped from equation (32), the informational rents considerations are of order o(β2),

whereas the benefits from production are o(β). Therefore, as β ↓ 0, it becomes optimal to

allow all agents to perform all tasks. Note that this result yields itself to simple empirical

tests, since it predicts that in environments with high uncertainty σ2 we should see agents

have more freedom in terms of the tasks assigned by the principal.

Corollary 5. The fixed wage, contingent compensation, and effort levels on a particular task

may be lower or higher in the presence of private information than the optimal contracts without

asymmetric information.

This last result highlights a significant difference between the standard model, in which

private information always brings underproduction (lower levels of effort and contingent com-

pensation in our setting), and the model discussed in this section where the principal also

22In a second-best world the optimal incentives are given by:

β =
µ>C−1

I b

Rσ2 + µ>C−1
I µ

.
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controls the task assigned to the agents. The intuition of the standard model nevertheless

applies, albeit with a caveat: now underproduction does not imply that the agent will re-

ceive a lower contingent compensation contract, underproduction is actually reflected in the

potential optimality of action restrictions. When these occur, the phenomena described above

can arise: with less tasks under the agent’s command it may be optimal for the principal to

give him a more aggressive contract (see Example 3). Note that even though the standard

intuition applies, from an empirical perspective the standard comparative statics do not hold:

the compensation is (highly) non-monotone with respect to private information. To the extent

that task allocation decisions are hard to measure, this result shows that it would be possible

to have more general relationships in the data between compensation and quality driven by

private information considerations than previously considered.

We conclude this section with an illustrative example.

Example 3. Consider the case with Cθ = 0, so private information only affects the signal and

output. Assume the signal is uniformly distributed on [0, 1], and that

C0 =

(
2 0

0 2

)
; µ0 =

(
1

1

)
; µθ =

(
1

0.5

)
; b0 =

(
0.2

1

)
; bθ =

(
1

1

)
. (25)

It is straightforward to solve the model for the second best case and note that action restric-

tions are not optimal for the above parameter values for all θ ∈ Θ. In the presence of private

information, it is optimal to restrict the agent to one single action (task one) for sufficiently

low realizations of the signal. Note that this in turn implies that there is a discontinuity in

the contingent compensation function β(θ), as the principal switches the optimal mechanism

from allowing the agent to perform one task to allowing him to perform multiple tasks. One

can verify how the presence of this action restriction distorts the solution significantly, even to

the point of making the bonus coefficient in a third-best world higher than in a second best

world. Furthermore, the compensation function can be a non-monotone function of the private

information of the agent, as well as higher than in the contracting environment without private

information, two features that never arise in standard models. �

6 Incentives and risk and other extensions

The model introduced in the paper, and in particular the results stated in Section 3, can be

generalized in several directions, since the potential set of actions a principal may take on an

agency relationship is quite large. This section extends the model in Section 4 by allowing

the risk of output to depend on the investment decision, in particular allowing the capital

budgeting decision to affect both the return and the risk of the projects under management.
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We start with the model in Section 4 but, in order to keep the discussion as parsimonious

as possible, we assume that γ(θ) = 0. This assumption makes capital critical for effort to have

any value, but leaves open whether information is about the marginal value of effort, η′(θ) > 0,

as in Bernardo, Cai, and Luo (2001), or the private information possessed by the agent affects

the pure marginal value of investment, δ′(θ) > 0. Furthermore, we assume that µ = B (output

is contractible with noise).

The critical departure will be the assumption that σ2 = sa, for some s ∈ R+. The variable

s measures the impact of the investment decision on the risk of output. Note that this is a

very natural generalization, since it adds an element of risk/return trade-off to the investment

decision. It is important to note that due to risk-neutrality on the principal’s side, the only

channel via which this assumption distorts surplus is due to the risk that must be imposed in

the agent to generate effort.

The next Proposition characterizes the optimal contract under the above assumptions.

Proposition 5. At an interior optimum, the optimal menu satisfies:

a(θ) = δ + β
(
η −Hδ′ − 2Hβ2aηη′

)
− 1

2
β2 (η +Rs) , (26)

β(θ) =
η −Hδ′

η +Rs+ 2Hβaηη′
. (27)

There exists parameter values for which under the optimal contracts we have that β(θ) and the

volatility of output, σ = sa(θ), are positively related.

The proof of the Proposition follows the same logic as in Proposition 3: one can use the

first-order approach to the agent’s problem, and eventually obtain a “virtual surplus” function

that can be maximized pointwise. The left-hand side of (26) measures the marginal cost of the

principal’s investment, whereas the right-hand side measures the marginal benefit, where the

terms involving H(θ) capture the informational distortions. The intuition for the functional

form of (27) with respect to informational considerations, measured by H, is familiar from

Section 4: on the numerator is the usual term that makes incentives increase in the agent’s

type, on the denominator is the effect of the interaction with the principal’s choice variable a,

which tends to lower optimal incentives.

The Proposition further provides a set of parameter under which output risk, measured by

σ = sa(θ), is positively related to the incentives in the contract, β(θ). This offers yet another

theoretical explanation for the existence of a positive relationship between compensation and

risk (see Prendergast, 2002, and the reference cited there for alternative models that generate

this type of result). We note that the result is not true for all parameter values, as the optimal

contingent compensation in (27) may be non-monotonic in θ.
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Two technical aspects of the model studied in the paper deserve comment. Limited liability

constraints, in particular setting α(θ) ≥ 0, are potentially binding for θ in its upper range,

since the wage function is generically decreasing in its arguments.23 This aspect of the optimal

contracts, ignored throughout the paper, could be accounted for using standard techniques

(see Thomas, 2002) at the cost of analytical tractability. There would be further distortions

away from the first- and second-best solutions, but none of the main qualitative aspects of the

optimal contracts would be altered (see also the discussion in Bernardo, Cai, and Luo, 2001).

The single-crossing properties for both the output and cost functions could be generalized

without changing any of the results, as long as the agent’s effective preferences did satisfy the

single-crossing property (thereby small deviations from the model studied in the paper would

not change the optimal contracts).

7 Conclusion

The paper has generalized the standard principal-agent model to consider the effects on the

optimal contracts of potential actions by the principal that influence the agency relationship. In

particular the cases of assignment of a capital budget on top of the compensation scheme, and

allocating a set of tasks among the agents have been studied in detail. The paper shows that

the existence and nature of the private information plays a crucial role on the implications

from models driven by private information considerations, and several standard features of

the optimal contracts are altered once the principal can affect the agency relationship. For

example, the standard underproduction result, when measured by the incentives received by

the agent through the contracts, can disappear: an active principal may give higher incentives

to lower types, as long as she compensates higher types with her actions. The paper also links

the quality of measurable output with the number of tasks agents can get assigned under the

optimal contracts, predicting that more noisy contracting measures will be associated with

agents having more tasks at their disposal. The results illustrate the richness, in terms of

implications, that models with asymmetric information can generate, and opens the door for

more powerful empirical tests that can differentiate among them.

23The alternative limited liability constraint w(θ) ≥ 0 completely eliminates the attractiveness of the
CARA/Gaussian setting, since the only linear contracts that would be in the feasible set would be those with
a zero bonus coefficient.
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Appendix

Proof of Proposition 1.

The expected utility for the agent from an arbitrary element of the menu offered by the

principal (α, β, a) is given by

u(α, β, a, θ) ≡ α+ βµ(e(β, a, θ), a, θ)− R

2
β2σ2 − c(e(β, a, θ), θ), (28)

where for e = e(β, a, θ) is uniquely defined by (8).

The agent’s problem, in terms of his optimal revelation of type θ̂, or equivalent in terms of

his choice from the menu of contracts offered by the principal, is

max
θ̂

u(α(θ̂), β(θ̂), a(θ̂), θ). (29)

The first-order condition to (29) is

dα

dθ
+ µ

dβ

dθ
+ βµe

(
eβ
dβ

dθ
+ ea

da

dθ

)
+ βµa

da

dθ
− βRσ2dβ

dθ
− ce

(
eβ
dβ

dθ
+ ea

da

dθ

)
=

dα

dθ
+ µ

dβ

dθ
+ βµa

da

dθ
− βRσ2dβ

dθ
= 0,

where the last equality follows from equation (8), the first-order condition for the effort choice.

This shows equation (10) is necessary for implementability.

Equation (10) holds as an identity in θ, so we can total differentiate to find

uββ
d2β

dθ2
+ 2uβa

dβ

dθ

da

dθ
+ uβθ

dβ

dθ
+ uaa

d2a

dθ2
+ uaθ

da

dθ
+
d2α

dθ
= 0. (30)

The second-order condition to (29) is given by

uββ
d2β

dθ2
+ 2uβa

dβ

dθ

da

dθ
+ uaa

d2a

dθ2
+
d2α

dθ
≤ 0;

which, using (30), reduces to (11). This proofs that (11), evaluated at θ̂ = θ, is a necessary for

this second-order condition to be satisfied.

The same argument shows that (10), and (11) holding for all θ, θ̂ ∈ Θ are sufficient condi-

tions for implementability. This completes the proof. �
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Proof of Proposition 2.

Using the expressions in the proof of Proposition 1, we have that

uθ(α, β, a, θ) = βµθ + (βµe − ce)
de

dθ
− cθ = βµθ − cθ;

where the last equality follows from equation (8), the first-order condition for the effort choice.

Integrating over θ we then have that

u(α, β, a, θ) = ū+

∫ s

s
(β(x)µθ(e(x), a(x), x)− cθ(e(x), x)) dx.

Equating this to the expression (28) allows us to solve for the fixed payment in wages, α,

as a function of the other elements of the menus, i.e.

α = ū+

∫ s

s
(β(x)µθ(e(x), a(x), x)− cθ(e(x), x)) dx−βµ(e(β, a, θ), a, θ)+

R

2
β2σ2+c(e(β, a, θ), θ).

This expressions allows to eliminate the fixed wage component from the principal’s objective

function (4), so her problem reduces to

max
{β,a}

∫ θ̄

θ

(
B(e(x), a(x))− C(e(x), a(x), x)− R

2
σ2β(x)2 −

∫ x

θ
(β(u)µθ(e(u), a(u), u)− cθ(e(u), u)) du

)
f(x)dx.

Integrating by parts this last expression yields (12) in the Proposition. This completes the

proof. �

Proof of Proposition 3.

The principal is maximizing

max
β,a

Φ = ΦSB −Hβ
(
eγ′ + aδ′ + eaη′

)
(31)

where ΦSB is the surplus function when there is no asymmetric information, given by

ΦSB ≡ eγ + aδ + eaη − 1

2
a2 − 1

2
e2 − R

2
β2σ2.

The first-order condition for effort choice yields

e = β(γ + ηa).

Using this expression in (31), and differentiating with respect to β and a yields the two first-

order conditions. Some tedious manipulations show that these first-order conditions reduce to
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(19) and (20) in the Proposition.

Further differentiation yields that d2Φ/dβ2 < 0 and d2Φ/da2 < 0 as long as η is small

enough. Moreover, the sign of d2Φ/dβda is equal to that of γ(γ + 2Hγ′) − Hδ′, from which

the sufficient conditions in the Proposition follow. This completes the proof. �

Proof of Proposition 4.

Given a menu {α(θ), β(θ), I1(θ), . . . , In(θ)}, the agents optimal effort choice is given by the

solution to

α+ βe>µ(θ)− 1

2
e>C(θ)e− R

2
σ2β2

such that ei = 0 for those i such that Ii = 0, which can be expressed as

e = β(θ)CI(θ)
−1µ(θ).

The principal’s problem, using this action back into his objective function, is reduced to

max
β,I

β`>B(θ)− 1

2
β2
(
Rσ2 + `>C(θ)`+ 2H(θ)`>(µθ − Cθ`

)
(32)

where ` is defined in the statement of the proposition. The equations in the proposition follow

from the first-order conditions to the above optimization problem.

In order to proof the genericity statement, consider the case of two actions, n = 2. Let C

be diagonal. Then the optimal mechanism for n = 2 satisfies I1(θ) = 0 if and only if there

exists θ for which

(µ2b2/c22)2

Rσ2 + (µ2/c22)(µ2 + k2)
≥ (µ1b1/c11 + µ2b2/c22)2

Rσ2 + (µ1/c11)(µ1 + k1) + (µ2/c22)(µ2 + k2)
; (33)

with ki = 2H(µθi + µic
θ
ii/cii). We argue next that the above condition is met in a (weakly)

generic sense even when in a second-best world it is not optimal to restrict action 1.

Consider the case with Cθ = 0, so private information only affects the signal and output.

Further assume that C is the identity matrix and that output is measurable (i.e. µ = b). If

there are no informational considerations, then I1 = 0 is optimal as long as

(µ2b2µ1)2 ≥ (Rσ2 + µ2
2)((µ1b1)2 + 2µ1µ2b1b2).

Under our assumptions it is straightforward to check that this condition can never be met.

Thus, it is never optimal to restrict the actions taken by the agent if there are no informational

considerations.

Consider next the case where the agent is privately informed. It is straightforward to check
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that condition (33) reduces to

2H
(
µθ1µ1µ

4
2 − µθ2µ2(µ4

1 + 2µ2
1µ

2
2)
)
≥ µ2

2µ
2
1(µ2

2 + µ2
1) +Rσ2

(
µ4

1 + 2µ2
2µ

2
1

)
.

When informational rents are important, for large values of H(θ), and for values of the

parameters and θ such that µ1 ≈ µ2, the condition reduces to µθ1 ≥ 3µθ2, i.e. the informational

sensitivity of action 1 must be at least three times that of action 2 in order for action restrictions

to be optimal when both actions are approximately equally important in terms of output. This

condition delimits an open set of parameters for which (33) is satisfied, even when in a second-

best world action restrictions are not optimal. This completes the proof. �

Proof of Proposition 5.

Using a similar approach to the previous Propositions, the third-best objective function for

the principal is given by:

max
a,β

Φ = (ηa)2

(
β − 1

2
β2

)
− Rβ2sa

2
+ δa− 1

2
a2 −Hβ

(
aδ′ + 2βa2ηη′

)
.

The first-order conditions to the above program yield the expressions in the Proposition.

In order to prove the generic existence statement, consider the case where η = 1. In

this case we have that the optimal menu satisfies: β(θ) = (1 − Hδθ)/(1 + Rs) and a(θ) =

δ + 0.5(1 − Hδθ)
2/(1 + Rs). From this last expression we have that a′(theta) > 0, since

H ′(θ) ≤ 0 and δ′(θ) ≥ 0, and since β′(θ) > 0 this completes the proof. �
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