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Abstract

This paper studies a standard screening problem where the principal’s allocation rule
is multi-dimensional, and the agent’s private information is a one-dimensional continuous
variable. Under standard assumptions, that guarantee monotonicity of the allocation rule in
one-dimensional mechanisms, it is shown that the optimal allocation will be non-monotonic
in a (weakly) generic sense once the principal can use all screening variables. The paper
further gives conditions on the model’s parameters that guarantee that non-monotonic
allocation rules will be optimal.
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1 Introduction

This paper studies a screening problem when the asymmetric information faced by the principal

can be described by a one-dimensional variable, but allocation rules may be multi-dimensional.

It is well known, since at least Matthews and Moore (1987), that in a multi-dimensional

context it is possible for some element of the allocation vector to be non-monotonic under the

optimal schedule. In particular, the authors presented a three-type example, in the context

of a monopolist screening through warranties and quality, in which the optimal allocation

was a non-monotone function of the private information of the agent, and offered a set of

necessary conditions for non-monotonic optimal contracts.1 The purpose of this paper is to

extend this weak genericity result2 to the standard setup with quasi-linear preferences, and

find a set of simple conditions under which the optimal mechanism will exhibit the type of

non-monotonicity properties first discussed by Matthews and Moore (1987). It is shown that

either (1) a total surplus function with negative cross-partial derivatives, or (2) a marginal

utility (with respect to information) for the agent with positive cross-partial derivatives, can

generate optimal non-monotone allocation rules.

2 The model

Consider a relationship between two parties, who negotiate over the exchange of an allocation,

characterized by the vector x ∈ Rn, and a payment t ∈ R. One of the parties, the agent,

has private information regarding one of the variables that affect the gains from trade. This

private information is assumed to be measured by the parameter θ ∈ [θ, θ̄]. The principal’s

beliefs about θ are described by the density function g(θ), which has associated distribution

function G(θ). The inverse of the hazard rate will be denoted by µ(θ) ≡ (1−G(θ))/g(θ), and

assumed to be bounded.

Both the principal and the agent have quasi-linear preferences. The agent’s utility function

is denoted by u(x, θ) + t, and the principal’s utility function is given by v(x, θ)− t. It will be

assumed that uθ ≥ 0, so θ orders the willingness to trade by the agent. By the revelation prin-

ciple we can restrict attention to direct mechanisms {x(θ), t(θ)} that induce truthful revelation

by the agent. It is assumed that the principal has all the bargaining power in the negotiations,

i.e. that she makes a take-it-or-leave-it offer to the agent. The agent’s reservation utility is
1See Theorem 3 and Example 1 in Matthews and Moore (1987). Another example of this non-monotonicity

result, in a similar spirit to that in Matthews and Moore (1987), is provided in van Egteren (1996).
2A property is said to hold in a weakly generic sense if it holds for an open set of the parameter values of

the model.
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denoted by ū.

The problem that the principal faces is

max
{x(θ),t(θ)}

∫ θ̄

θ
(v(x(θ), θ)− t(θ)) g(θ)dθ, (1)

such that

u(x(θ), θ) + t(θ) ≥ ū, ∀θ ∈ [θ, θ̄]; (2)

u(x(θ), θ) + t(θ) ≥ u(x(θ̂), θ) + t(θ̂), ∀θ, θ̂ ∈ [θ, θ̄]. (3)

The principal maximizes her expected utility subject to the participation constraint for the

agent, equation (2), and the incentive compatibility constraint (3), which requires that the

agent reveals his type truthfully in the direct revelation mechanism.

Define the total surplus from trade as S(x, θ) ≡ v(x, θ) + u(x, θ). The following assump-

tions, which will be referred to as “standard assumptions,” will be made throughout the paper:3

(1) single-crossing property: uθxi
≥ 0, for i = 1, . . . , n; (2) monotone-hazard rate condition,

µ′(θ) < 0; (3) monotonicity conditions: Sxiθ ≥ 0, and uθθxi
≤ 0, for i = 1, . . . , n; (4) differen-

tiability: x(θ) and t(θ) are continuous and differentiable. The single-crossing property and the

monotone-hazard rate condition are standard in the literature. As discussed below the “mono-

tonicity conditions” are not necessary for the main results: they simply guarantee that, when

the principal has only one variable xi for screening, the optimal mechanism satisfies dxi/dθ > 0

for all θ ∈ [θ, θ̄], i.e. the monotonicity constraint does not bind.4 The differentiability condi-

tions are made for simplicity, since the focus of the paper is on monotonicity properties of the

optimal solutions, and such properties are easier to express in terms of derivatives.

3 Implementable mechanisms

The following proposition gives a set of necessary and sufficient conditions for implementability

of a given mechanism. The proof follows closely similar characterizations in the literature.5

Proposition 1. The following two conditions are sufficient for a mechanism {x(θ), t(θ)} to
3The standard notation fx(·) (or f ′(x) if x ∈ R1) will be used for the derivative of a function f(·) with

respect to x. For notational ease the arguments of the functions will be omitted where there is no room for
ambiguity.

4If these conditions are not met then bunching may occur, i.e. the optimal allocations may have dxi/dθ = 0
for a subset of the types of the agent (see the discussions in Mussa and Rosen (1978), Guesnerie and Laffont
(1984) or Maskin and Riley (1984)).

5All proofs are relegated to the Appendix.
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be implementable:

ux(x(θ), θ)>
dx

dθ
(θ) +

dt

dθ
(θ) = 0; ∀θ ∈ Θ; (4)

uxθ(x(θ̂), θ)>
dx

dθ
(θ̂) ≥ 0; ∀θ̂, θ ∈ Θ. (5)

A necessary condition for implementability is that (4) holds, and

uxθ(x(θ), θ)>
dx

dθ
(θ) ≥ 0; ∀θ ∈ Θ. (6)

If u(x, θ) is linear in θ, conditions (4) and (6) are necessary and sufficient for imple-

mentability.

The necessary conditions are well known.6 The above proposition is not as sharp as the

standard characterization of implementable mechanisms, since (5) is a two-dimensional con-

straint: in order to get sufficiency it is necessary to check a two-dimensional constraint. The

literature only points out to dxi/dθ ≥ 0 as a sufficient condition for implementability: together

with the assumption of the single-crossing property for each xi this makes (5) hold for all

θ̂, θ ∈ Θ. Note that even though this monotonicity restriction on each xi yields sufficiency by

analyzing n one-dimensional constraints, it also unnecessarily rules out a large class of imple-

mentable mechanisms. The proposition further gives a condition under which we can reduce

(5) to a one-dimensional constraint, linearity of the utility function u(x, θ) in θ.7

Incentive compatibility does not impose monotonicity on each element of the allocation

rule x, but it does force the mechanism to satisfy a weighted monotonicity constraint. Di-

viding (6) by
∑n

i=1 uxjθ(x(θ, θ)) we have the following necessary and sufficient condition for

implementability in the linear case

n∑
i=1

wi(θ)x′i(θ) ≥ 0; (7)

where wi(θ) ≡ uxiθ/
∑

j uxjθ > 0 are the weights on each element on the allocation rule x. Few

general statements can be made about the implications of the incentive compatibility with

regards to the monotonicity of elements of the allocation vector. Incentive compatibility only

implies that at least one of the elements of the allocation rule will be non-decreasing.8 The

usual implication of monotonicity of the allocation vector from incentive compatibility only
6See Caillaud, Guesnerie, Rey, and Tirole (1988), Fudenberg and Tirole (1991), Guesnerie and Laffont (1984),

or Mirman and Sibley (1980).
7This linearity assumption also appears in the discussion of the “taxation principle” in Rochet (1987).
8In particular, for all θ, there exists i such that x′

i(θ) ≥ 0. Moreover, if for some i the mechanism is such
that x′

i(θ) < 0, then there exists j such that x′
j(θ) > 0.
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follows in the one-dimensional case: in general conclusions about monotonicity of the allocation

rule cannot be drawn without solving for the optimal mechanism.

4 Optimal mechanisms

The next proposition reduces the principal’s problem to that of maximizing a distorted surplus

function.

Proposition 2. The principal’s problem reduces to

max
x

∫ θ̄

θ
Φ(x, s)ds

where

Φ(x, θ) ≡ S(x, θ)− µ(θ)uθ(x, θ); (8)

such that the constraint (5) holds.

If the constraint (5) does not bind, the optimal allocation x satisfies

dx

dθ
= − [Sxx − µuθxx]−1 (

Sxθ − µ′uθx − µuθθx

)
. (9)

The optimal allocation rule x has an element with dxi/dθ < 0 in a weakly generic sense.

The result in the above proposition has a similar flavor to those in the literature: the

principal maximizes the “virtual surplus” function Φ(·), with µ(θ)uθ(x, θ) measuring infor-

mational costs. The main qualitative difference stems from the constraint (5), which in the

one-dimensional case implied monotonicity of the allocation rule, whereas this is not the case

in the multi-dimensional problem.

Assuming an interior solution, i.e. that the “monotonicity constraint” (5) is not binding,

the proposition also gives the sign of the derivative of the optimal allocation rule with respect

to the private information parameter θ. From this proposition it is straightforward to get

conditions for the optimal allocation x to be non-monotone in θ. Consider, for example, the

two-dimensional case. Condition (9) implies that, when u(x, θ) is linear in θ and (6) does not
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bind,9 dx1/dθ < 0 if and only if

−(Sx2x1 − µuθx1x2) > −(Sx2x2 − µuθx2x2)
(Sx1θ − µ′ux1θ − µuθθx1)
(Sx2θ − µ′uθx2 − µuθθx2)

. (10)

The right-hand side in equation (10) is positive under the “standard assumptions,” so in

order to have a decreasing x1 it is necessary to have µuθx1x2 − Sx1x2 > 0. It is worth noticing

that in the case where Sx1x2 = 0, which generates a monotonically increasing allocation in a

first-best world, the optimal allocation will be non-monotonic as long as uθx1x2 > 0 and either

this quantity or µ(θ) are large. In order to gain some intuition, note that the only motivation

for having a non-increasing allocation rule comes from informational rents considerations when

Sx1x2 = 0. A change in x1 has a direct informational cost, as in the one-dimensional model: if

we decrease x1 informational rents are cut. On the other hand, there is an indirect effect on

x2 due to a change in x1, which also affects informational rents. It is straightforward to check

that dx2/dx1 has the opposite sign of uθx1x2 , so when uθx1x2 is positive there is an indirect

informational cost associated with cutting x1. This in itself may be sufficient to generate a

decreasing allocation rule x1.

It is also worth noticing that if Sx1x2 < 0, it is possible for the optimal allocation to satisfy

dxi/dθ < 0 for all θ ∈ [θ, θ̄]. The intuition for the result is simple: if there are gains for

the principal from having an allocation that is decreasing, then this could be the outcome in

this multi-dimensional setting, since incentive compatibility does not rule out non-increasing

allocation rules. Note that this result holds while the single-crossing property is satisfied for

all elements of the allocation vector, which guarantees that the solution in the one-dimensional

case will be strictly increasing.

9It is important to note that the restriction to parameter values for which (5) does not bind does not hamper
the non-monotonicity results being discussed. When this constraint binds it is immediate from (5) that either:
(1) an element of the allocation vector is decreasing in θ, or (2) there is trivial screening (x′

i(θ) = 0 for all i).
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Appendix

Proof of Proposition 1. The agent’s optimization problem is clearly characterized by the

first-order condition (4). The second-order necessary condition is

dx

dθ

>
uxx

dx

dθ
+ ux

d2x

dθ2
+

d2t

dθ
≤ 0; ∀θ ∈ Θ. (11)

Since the first-order condition for the agent’s optimization problem holds as an identity for

all θ, we can total differentiate the expression with respect to θ, and using (11) we obtain the

necessary condition (6).

To see that the mechanism is globally incentive compatible under (4) and (5), suppose not.

Then there exists θ̂ such that U(θ̂, θ) > U(θ, θ), where U(θ̂, θ) ≡ u(x(θ̂), θ) + t(θ̂), so that∫ θ̂
θ

∂U
∂θ̂

(y, θ) > 0. If θ̂ > θ, then from (5) we have that

∂U

∂θ̂
(θ̂, θ) = ux(x(θ̂), θ)>

dx

dθ
(θ̂) +

dt

dθ
(θ̂) ≤ ux(x(θ̂), θ̂)>

dx

dθ
(θ̂) +

dt

dθ
(θ̂) =

∂U

∂θ̂
(θ̂, θ̂);

which implies that
∫ θ̂
θ

∂U
∂θ̂

(y, y)dy > 0; which contradicts (4). An identical argument follows

when θ̂ < θ, which shows that indeed (4) and (5) are sufficient for global incentive compatibility.

In order to see that (4) and (6) are necessary and sufficient in the linear case, note that

the linearity assumption makes uxθ(x(θ̂), θ) independent of θ, so (5) reduces to (6).

Proof of Proposition 2. Expression (8) follows by solving for the transfers as a function of

the allocation from (4) and then integrating by parts the principal’s objective function. The

first-order condition to the principal’s optimization problem is Sx(x, θ) − µ(θ)uxθ(x, θ) = 0.

Applying the implicit function theorem to the above expression yields (9). In order to proof

weak genericity, let us consider the two-dimensional case discussed in the text, and further

assume u(x, θ) is linear in θ. All we need to show is that there is an open set of parameter

values such that (10) holds, while the second-order conditions and the weighted monotonicity

constraint (6) are not violated. Note that the second-order conditions to the principal’s problem

are Sx1x1 − µuθx1x1 ≤ 0; Sx2x2 − µuθx2x2 ≤ 0; (Sx1x1 − µuθx1x1)(Sx2x2 − µuθx2x2) − (Sx1x2 −
µuθx1x2)

2 ≥ 0. Take |Sx1x2 −µuθx1x2 | large and at the same time raise Sx1x1 and uθx2 , in order

to assure that (6) does not bind and that the second order conditions are satisfied. One can

easily verify under such conditions dx1/dθ, as given in (10), is indeed negative.
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