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Abstract

This paper presents an algorithm for pricing American options using Monte Carlo simu-

lation. The method is based on using a parametric representation of the exercise boundary.

It is shown that, as long as this parametric representation subsumes all relevant stopping-

times, error bounds can be constructed using two different estimates, one which is biased

low and one which is biased high. Both are consistent and asymptotically unbiased estima-

tors of the true option value. Results for high-dimensional American options confirm the

viability of the numerical procedure. The convergence results of the paper shed light into

the biases present in other algorithms proposed in the literature.

JEL classification: C15, C63, G13.

Keywords: Monte Carlo simulation, American options, multiple state variables.
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1 Introduction

The issue of pricing American securities has received a tremendous amount of attention in

the last 25 years, ever since the Black-Scholes model was introduced in 1973. Most of the

derivative securities traded are American style securities, so the need for a method that

can generalize Black-Scholes analysis to allow for early exercise opportunities has been the

subject of hundreds of research projects. The developments in the theoretical front have

succeeded in characterizing the price of the American assets in the same way as European

securities (see Duffie (1992), Karatzas (1988)). The main difficulty when dealing with

American securities is numerical. Cox, Ross, and Rubinstein (1979) show how to use a

binomial tree to deal with the early exercise feature of standard options written on a stock

that follows a log-normal process. Their algorithm is a special case of what are known

as “lattice methods.”1 These methods base the approximation on an appropiately chosen

finite state Markov chain which converges in distribution to the continuous-time process of

interest. The approximation to the optimal control is built by working backwards through

the lattice formed by the state variables. These methods have the drawback that computing

time grows exponentially in the number of state variables.

The focus of this paper is in the use of Monte Carlo methods to price American op-

tions. When the dimensionality of the problem is roughly higher than three, simulation has

proved to be a successful technique in the derivatives pricing literature, as well as a method

of solution to partial differential equations using the Feynman trick.2 Simulation methods,

introduced by Boyle (1979) into the option pricing literature, have become increasingly

popular for pricing complex derivative securities (see Geweke (1996) for an overview of
1See Kushner and Dupuis (1992) for a complete treatment of the use of lattice methods to solve general

optimal control problems. He (1990) presents convergence results for European derivatives that depend on n

underlying assets under the assumption of complete markets. Amin and Khanna (1994) extend He’s results to

the case of American assets.
2The use of Monte Carlo methods for pricing derivative securities is crucial not only for high-dimensional

options. Consider the case of barrier or lookback options. Standard contracts specify that the maximum value

of the underlying asset, which influences the payoff of these derivative securities, should be calculated at the

end of each day. Therefore, continuous time analytical approximations (see Gao, Huang, and Subrahmanyam

(1998)) are bound to have substantial biases, since the distributional properties of the maximum of Brownian

motion over an interval [0, T ] are very different than those over a finite set of points T (see Nahum (1999)

for a thoroughout discussion of these biases). Since lattice methods can not handle well the discontinuities of

maximum values of the underlying assets, it seems like Monte Carlo methods are the best suited candidate for

the pricing of this type of options.
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Monte Carlo methods in Economics). Their main advantage is that computational require-

ments grow linearly with the number of state variables: these algorithms are the most

popular way to approximate high dimensional probability measures. For some time, it was

argued that the Monte Carlo algorithm could not be extended to price American options

due to its “forward nature.” In the last few years we have seen that this is not the case.

Starting with Bossaerts (1989), different authors have modified the Monte-Carlo algo-

rithm for European options to deal with the early exercise feature of American securities:

see Boyle, Broadie, and Glasserman (1997) for a survey of the different methods; Fu et

al. (1999) for a numerical study of the relative advantages of the different algorithms; and

Pedersen (1999) for a comparative analysis of the competing approaches for the case of

swaptions, a specially difficult American option pricing problem. Broadie and Glasserman

(1997a, 1997b) propose two algorithms that derive the optimal exercise strategy recursively

(see also Boyle, Kolkiewicz, and Tan (2000)). In these papers the authors suggest using

two different estimators, one with a high-bias and one with a low-bias in finite samples,

thereby producing a bias-free method for pricing American options. Carriere (1996), and

Longstaff and Schwartz (2001) solve the problem estimating the continuation value of the

American option through regression techniques.3 The papers by Tilley (1993), Barraquand

and Martineau (1995), and Raymar and Zwecher (1997) incorporate different aspects of the

usual backwards induction algorithm by stratifying the state space and finding the optimal

exercise decision in each of the subsets of the state variables.

This research project studies in detail and refines a “parametric approach”4 to the

American option pricing problem using simulation (Bossaerts (1989), Li and Zhang (1996),

Grant, Vora, and Weeks (1996)). In essence, these algorithms start by representing the

early decision rule by a finite number of parameters, and then find the American option

price by maximizing, over the parameter space, an approximation to the price of the security

(where the approximation is obtained using Monte-Carlo methods). This produces both

an estimate of the optimal exercise decision and of the American option price.

An important observation is that, as long as the parameterization of the early exercise

decision is complete,5 the estimates of the American option price generated using the above

algorithm will be biased high in finite samples (Theorem 1). I introduce a new estimator
3See also Tsitsiklis and Roy (2001).
4For an application of this method to swaptions see Andersen (1999) and Pedersen (1999). For an algorithm

close in spirit to the one in this paper see also Ibanez and Zapatero (1999).
5The precise requirement is that all relevant stopping times are considered with the parametric representation

of the exercise strategy, see section 2.2.
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which is also shown to be consistent and has a low-bias in finite samples (Theorem 2).

Putting these two theorems together generates a bias-free range for the American option

price. This result has the same flavor as the results in Broadie and Glasserman (1997a,

1997b), who use completely different numerical schemes. Therefore this paper gives the

precise conditions under which a bias-free algorithm can be constructed using “parametric”

simulation techniques, pointing out that there may exist significant biases in the prices

reported in the literature.

The numerical method presented in the paper consists of two parts: (1) an optimization

stage, in which the optimal early exercise decision is estimated; and (2) and valuation stage,

in which the actual option price is calculated. In the optimization stage, the algorithm

searches for the optimal early exercise rule among a large space of candidate strategies for

exercising the option before maturity, fixing a set of simulated paths. This generates a first

estimate of the price of the American option. In the valuation stage, I calculate the value

of the derivative using a standard Monte Carlo algorithm with a new set of random paths,

using as the exercise strategy the one estimated in the previous step. If the same random

paths are used in (1) and (2), the resulting estimated price will have a high bias. Otherwise

it will be biased low. This simple characterization of the biases seems to be common to all

algorithms proposed in the literature.

In the actual implementation of the method, an approximation to the exercise boundary

is required in many cases of interest (in this paper I used a full parameterization only

for one-dimensional problems). This causes a low-bias in the estimates, which has the

same flavor as the one caused by the bucketing of Barraquand and Martineau (1995), and

the approximation used in the estimation of the continuation value function in Longstaff

and Schwartz (2001).6 The convergence results suggest that the bias in these simulation

methods can be decomposed into: (a) an approximation bias, which causes the estimated

prices to be lower than the true value; (b) a Monte Carlo bias, which depends on whether

the same paths are used on the optimization run and the evaluation stage. Figure 1 presents

a graphical display of the biases of the estimators proposed in this paper.

The numerical section of the paper shows that even very parsimonious representations

of the early exercise strategy will generate substantial high-biases. In section 3, I price

three types of American options: standard options, maximum options on two stocks, and
6Of course, if we do not have an exact parametric representation of the early exercise rule, then the high-bias

estimator may not have a high-bias. Namely, if we search over a restricted set of all possible exercise strategies

the bias will be of unknown sign. If we insist on knowing the bias of the estimated prices, then we will want to

rely on the low-bias estimator when it is not possible to represent the possible stopping times parametrically.
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maximum options on five stocks; with different numbers of early exercise dates (ranging

from 3 to 50 dates). In all cases I restrict the parametric representation of the relevant

stopping times to have at most four parameters. This is (extremely) suboptimal, but the

purpose is to illustrate the presence of substantial high biases even when we are far away

from considering all possible exercise rules. It is shown that the approximation bias is less

than 0.50% of the option value for all cases considered.

As long as the approximation bias is small, high biases are likely to be present, or could

be generated, in existing techniques (e.g. with the methods in Barraquand and Martineau

(1995), Raymar and Zwecher (1997), Longstaff and Schwartz (2001), Ibanez and Zapatero

(1999)). Given the results of this paper and the sample sizes typical in previous studies,

these biases could be up to 5% of the option value (a much larger fraction of the early

exercise premium). This observation brings forward a criterion for comparison of existing

algorithms in the literature: the size of this approximation bias. The numerical results

present evidence that the approximation bias for the algorithm in this paper is negligible.

The methodology of this paper requires the existence of a parametric representation of

the relevant stopping times. This may be counterfactual in some cases, since we may not

have a good understanding what the early exercise rule should depend on. In some cases7 it

is possible to use properties of the payoff function (e.g. monotonicity) to obtain information

about how to represent the exercise strategy. An alternative is to let the exercise rules be

dependent on some abstract state variables.8 Although the convergence properties for this

case are unknown, the implementation of parametric Monte Carlo for the case of swaptions

(e.g. Andersen (1999)) seems to provide practical support for this type of approach.

Section 2 presents the algorithm and the convergence results. Section 3 considers several

numerical examples. Readers less interested in the technical details may want to start with

the illustrative example in section 2.1 and skip sections 2.2 and 2.3.
7In all the examples considered in this paper it is known what the exercise rule should depend on (i.e. how

to partition the state space). Other important cases for which this partitioning is easily obtained are several

types of exotic options (barrier, lookback, Asian). For standard options in multi-dimensional problems it also

seems feasible to partition the relevant state space in a tractable manner (see Ibanez and Zapatero (1999) for a

model with stochastic interest rates).
8This is the approach that Longstaff and Schwartz (2001) use when arguing the flexibility and generality of

their method.
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2 A parametric Monte Carlo method for American op-

tions

2.1 An illustrative example

Table 1 presents a ficticious example taken from Longstaff and Schwartz (2001). The goal

is to price an American put with a strike price of 1.1 and three different early exercise dates.

The initial stock price is 1, and the discount factor per period is 0.9718. Longstaff and

Schwartz (2001) generate 8 different random stock price paths in order to apply Monte-

Carlo to price this put option. Figure 2 plots the stock price paths.

The main idea of the algorithm presented in the paper is to represent the early exercise

strategy by a finite number of parameters. In this particular case the early exercise strategy

can be represented by a set of stock price levels θt such that if the stock price at date t is

below θt, then the put is exercised at that date (t = 0, 1, 2, 3), and otherwise it is held for

one more period.

Table 1 shows how to calculate the value of the put following a given early exercise

policy: exercise at t = j if the stock price is below θj , where θ0 = 0.95, θ1 = 0.95, θ2 = 1,

θ3 = 1.1. The value of the put under this early exercise strategy is 0.0551. Under this

strategy, early exercise at date 1 occurs for four of the stock price paths. There is no early

exercise at date 2.

Note that the above exercise strategy is far from optimal. If one uses the values θ1 = 0.75

and θ2 = 0.8 in the above example, the value of the put (for the same 8 paths) would be

0.1118. Early exercise at date 2 occurs only for one of the paths. The pricing algorithm

in the paper calls for searching over all possible exercise strategies until one finds the one

that yields the highest value for the American put. It is straightforward to check that the

strategy with θ0 = 0.95, θ1 = 0.75, θ2 = 0.8 and θ3 = 1.1 is an optimal early exercise

strategy: no other would achieve a higher value for the put given the 8 stock price paths

considered. It is also worth noticing that this strategy is not unique: since the value function

has discountinuities as θi is changed, many other exercise strategies would maximize the

option value.

The above exercise gives us a first estimator of the value of the option. As shown

in Theorem 1, this estimator has a high-bias. The implementation of the method would

be complete by generating a new set of random paths, and using the exercise strategy

θ1 = 0.75 and θ2 = 0.8 in order to evaluate the value of the American option for this new

set of simulated trayectories. As shown in Theorem 2, the new estimated option price will
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have a low bias.

2.2 The American option pricing problem

Let Xt ∈ Rn be a Markov process with initial state X0, defined at times t = 0, · · · , T . I will

assume that this set of random variables contains all information that is payoff relevant

for the derivative security under consideration. There are T + 1 dates in this economy:

T = {0, . . . , T}. The filtration F = {Ft} represents the information available to investors

at each date. There exists a riskless security that yields a constant rate of return of r per

unit of time9.

An American security is defined by a payoff function h(Xt, t) : Rn × T → R and a

expiration date T 10. The American option pricing problem is to find

V0 = max
τ∈T (0)

E

[
e−rτh(Xτ , τ)

]
;

where T (t) denotes the set of stopping times11 taking values in {t, t + 1, . . . , T}; and the

expectation is taken with respect to the unique equivalent martingale measure Q defined

using the riskless security as the numeraire.12

In order to characterize the optimal exercise decision, it is customary to introduce the

Snell envelope of the discounted payoff

Wt = max
τ∈T (t)

E

[
e−r(τ−t)h(Xτ , τ)|Ft

]
.

The optimal stopping time is given by (see Duffie (1992)): τ∗ = min{t : Wt ≤ h(Xt, t)};

i.e. the option should be kept alive while the value of holding it, Wt, is higher than the

value of immediate exercise, h(Xt, t); otherwise it is optimal to exercise early. The possible

stopping times can be described without loss of generality to be of the form τ = inf{t :

Xt ∈ Et}, where Et ⊂ Rn is a subset that defines the values of the state variables for which
9It is straightforward to generalize the algorithm to allow for stochastic interest rates.

10Some derivative securities pay some dividend process during their life. It is straightforward to extend the

method to deal with this more general case.
11A stopping time is a random variable τ : Ω → T ∪ {∞} such that for any t the event {ω : τ(ω) ≤ t} is

measurable with respect to Ft.
12This is equivalent to assuming that the American option that we price is redundant given the set of traded

assets. This is the standard approach in most of the asset pricing literature that deals with derivatives. The

algorithm introduced in this paper could easily be adapted to finding upper and lower bounds on the derivative

asset in an incomplete markets economy, under the assumption that the new asset does not influence the prices

of existing securities.
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early exercise occurs at date t. Let E∗t denote the set of state variables for which it is

optimal to exercise at date t.

The Markovian assumption allows us to write Wt = g(Xt, t) for some function g(·).

Therefore the optimal early exercise region is given by

E∗t = {x ∈ Rn : g(x, t) ≤ h(x, t)}. (1)

The difficulty lies in the fact that we rarely know the exact functional form of the

function g(·).13 The method introduced in this paper is based on observing that these sets

have simple structures in most cases of interest. I will make the following assumption in

order to prove the convergence of the estimators.

Assumption 1 The sets Et can be written as Et(θ), where θ ∈ Θ are the parameters that

represent the exercise decision, and Θ ⊂ RK is a compact set. This parameterization can be

constructed by setting g(x, t) = G(x, t; θ) for some known function G(·). The set of points

{x : G(x, t; θ) = h(x, t)} has P-measure zero for all θ ∈ Θ.

The main issue is whether we can represent the sets Et(θ) by a finite dimensional set

Θ.14 The next example shows that this is possible for the case of an ordinary call option

on a stock that follows a log-normal process. The following examples illustrate how it is

possible to represent these sets approximately for other important cases.

Example 1 (Ordinary options) Consider the standard Black-Scholes model, in which

the price of the underlying asset follows a log-normal distribution. A call option has payoff

function h(St, t) = (St−K)+. With a finite set of T+1 exercise opportunities, it is sufficient

to have the parameter space to be of dimension T + 1 to have a perfect representation of

the possible stopping times (see Kim (1990)). To see this, note that the function g(St) in

this particular case is increasing in St, so if equation (1) is satisfied for some St = θt, then

it will be satisfied for all St > θt. The early exercise boundary can therefore we described

without loss of generality by the T + 1-tuple (θ0, . . . , θT ), which gives for each date the
13The only exception may be Bermudan standard options, for which Geske and Johnson (1984) give analytical

formulas based on the cumulative distributions of Gaussian random variables.
14The rest of assumptions are to assure that the exercise boundary is well behaved, namely that the probability

that Xt is in the boundary of the sets Et(θ) is zero. If Xt were a discrete random variable, all the results in the

paper would follow through, since Θ could be taken to be a set with a finite number of elements. This would

assure uniform convergence of the estimator VB(θ) to V (θ), which is all we need in view of Theorem 4.1.1 of

Amemiya (1985).
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lowest value of the stock price for which it is optimal to exercise. This example shows that

the above assumption is not as restrictive as it may seem. �

Example 2 (Asian options) The payoff function for a standard Asian call option is

h(Xt, t) = (S̄t −K)+, where S̄t is the average stock price at date t (where averaging starts

at some date t0 < t). The exercise decision depends on the two state variables Xt = (St, S̄t).

The early exercise region is described by equation (1), i.e. {x : g(x, t) ≤ (x2 −K)+}. In a

Black-Scholes world, the function g(x, t) is increasing in x, so the exercise region at date t,

a subset of R2, can be described by a function f : R×T → R, which gives for each value of

St, the values of S̄t = f(St, t) for which it is optimal to exercise the option. We can think

of approximating the functions f(x, t), by some appropiate F (x, t; θ), where F belongs to a

particular space of well-behaved functions (say cubic splines or Hermite polynomials). �

Example 3 (Maximum options) An option on the maximum of two stocks has payoff

function h(St, t) = max(max(S1
t , S

2
t )−K, 0). To describe the optimal early exercise region

at date t we can break R2 into three different sets: one for which holding the option is opti-

mal, the other two containing the values of the stock prices for which early exercise at time

t is the decision rule. Broadie and Detemple (1997) Broadie and Detemple (1997) discuss

these sets at length. We can use this characterization of the optimal stopping times in order

to use the algorithm of this paper. Namely, we can introduce two functions, f1(x, t; θ) and

f2(x, t; θ), that divide R2 × T in the sets that define different exercise decisions. �

Define

τ(θ) = inf{t : Xt ∈ Et(θ)};

V (θ) = E

[
e−rτ(θ)h(Xτ(θ), τ(θ))

]
;

where τ(θ) is the stopping time rule for the parameters θ, and V (θ) is the value of the option

under the exercise policy dictated by θ. Denote by θ0 the value that satisfies V (θ0) = V0,

i.e. the parameter that represents the optimal exercise policy. I will make the following

assumptions.

Assumption 2 The function V (θ) : Θ → R achieves a unique maximum at θ0 and is

continuous and bounded.

Assumption 3 The American option under consideration satisfies h(Xτ(θ), τ(θ)) < Y

a.s., for some random variable Y with E [Y ] <∞ which does not depend on θ.

The continuity of the value function with respect to the parameters θ seems to be a

mild condition that can easily be checked for each specific application. The last assumption
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is purely technical. This condition is met for all the options mentioned above, since the

underlying asset price provides a bound on the option’s payoff, and it is an integrable

random variable.

2.3 Convergence and bias of Monte Carlo estimates

The rationale of the Monte Carlo method is simple. If we simulate the underlying econ-

omy by choosing, following the law P, B elements from Ω, then, by the Law of Large

Numbers, the average of the option values should be close to their expectation. Let

e−rτ(θ)h(Xi
τ(θ), τ(θ)) be the discounted payoff of the option for a particular realization

of the stochastic process Xt, and stopping time τ(θ). Define

VB(θ) =
1
B

B∑
i=1

e−rτ(θ)h(Xi
τ(θ), τ(θ))

to be the sum of the discounted payoffs of the American option for B simulations of the

underlying uncertainty of the economy following the exercise strategy dictated by θ.

If the option were European, so there is no dependence on θ in the above expression,

the estimator would be a consistent and unbiased estimate of the true option price. In the

case of American options, the algorithm must also find an estimate for the optimal early

exercise rule. The way in which we obtain the parameters that characterize the optimal

stopping times may in principle introduce biases in the estimated asset prices.

The optimal exercise rule for the simulated data, θ̂B , is defined as

V̂B ≡ VB(θ̂B) = max
θ∈Θ

VB(θ); (2)

where it is understood that if θ̂B is not unique, we would pick any one value. Note that

VB(θ) is a discontinuous function. Nevertheless the optimization problem of (2) is well

defined.15 The optimum value will belong to a set of points which converge to the true

population value. The next theorem gives some properties of the estimator V̂B .1617

15The reader may have noted that the setup of the optimization problem above is very similar to that of

M -estimators. The simulated data can be taken to be the observations, and the early exercise rule to be the

parameters to be estimated. The convergence result is subsumed by the results in simulation-based optimization

(e.g. Dupacova and Wets (1988), King and Rockafellar (1993) and Shapiro (1993)). The proof is nevertheless

of interest for its simplicity (compared to these references), which makes use of the added structure of the

American option pricing problem outlined in the previous section.
16All proofs are contained in the Appendix.
17Broadie and Glasserman (1997a, 1997b) have proved convergence of the estimated option prices to the

true asset value under fairly general conditions on the American option pricing problem under second-moment
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Theorem 1 The estimator V̂B converges almost surely and in L1 to V (θ0). In particular,

the estimator V̂B is a consistent and asymptotically unbiased estimate of V (θ0). For finite

B, V̂B is biased high. The estimate of the early exercise region, θ̂B, converges almost surely

to the true population value θ0.

The intuition for the bias in the above result is simple: for finite B the estimated

option price will pick a parameter (θ̂B) such that the estimate of the option value, VB(θ̂B),

is higher than with any other parameter value, even the true optimal exercise decision,

VB(θ0). Since E [VB(θ0)] = V (θ0), the estimate V̂B will have a high bias in finite samples.

The existence of this bias suggests the introduction of an alternative estimator to be

able to find probabilistic bounds on the true option price. An obvious candidate can

be constructed by using the estimated exercise rule θ̂B on a new set of simulated data

consisting of b paths. Define:

v̂bB =
1
b

b∑
j=1

e−rτ(θ̂B)h
(
Xj

τ(θ̂B)
, τ(θ̂B)

)
(3)

where the simulated data Xj
t are independent of that used to estimate θ̂B . It is natural,

although by no means necessary, to consider the case where the number of paths used to

estimate θ̂B is equal to those used to estimate v̂bB . I will use the abbreviated notation v̂B

when this is the case.

The next theorem shows that v̂B is a consistent estimate of the true option price, that

it is asymptotically unbiased, and that for finite B this estimate is biased low.

Theorem 2 The estimator v̂bB converges in probability and in L1 to V (θ0). For finite B,

the estimator v̂bB is biased low.

The nature of the biases is very different. V̂B has a high bias caused by the fact that the

true measure induced by Xt is being misrepresented when a finite number of simulations

are used and the optimization routine takes advantage of this. The bias in v̂bB is not driven

by the misrepresentation of the measure, but rather by the distributional properties of

θ̂B . The results in the numerical section suggest that the distribution of the estimates of

the early exercise parameters is usually tight with respect to its effect on the price of the

derivative. As it will be shown in the numerical section, these biases are also very different

assumptions. Bossaerts (1989) and Longstaff and Schwartz (2001) prove convergence of their algorithms relying

heavily on the one-dimensional nature of their problem. I provide a simple convergence proof for both estimators

using the sample analog of the American option price. It should be noted that the conditions for convergence

in this paper are the weakest in the literature, since only finite first moments are assumed.
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in magnitude: the size of the bias of the low estimator is smaller than that of the high

estimator.18

In the numerical results we will report the following confidence bin:19

[
v̂bB − zα/2s(v̂bB), V̂B + zα/2s(V̂B)

]
; (4)

where zα is the 1−α quantile of the standard normal distribution, and s(V̂B) and s(v̂bB) are

the standard deviations of V̂B and v̂bB . This error bound heuristically comes by appealing to

the Central Limit Theorem.20 Also by standard asymptotic arguments it is to be expected

that
√
B
(
θ̂B − θ0

)
∼ N

[
0, V −1

θθ′ VθV
>
θ V

−1
θθ′

]
where Vθθ′ denotes the matrix of second derivatives, and Vθ the vector of first derivatives.

The variance-covariance matrix in the above expression can be estimated: (i) using sample

analogs of each quantity (which under appropiate conditions on second moments and dif-

ferentiability of V (·) will be consistent) or (ii) by using the sample properties of θ̂B (when

the algorithm is runned multiple times).

Another interesting observation is that these first and second derivatives may be very

different depending on the parameters of the option. Consider the case of an out-of-the-

money option (for which its current exercise value is zero). It is likely that it would

be difficult to get a low variance for the θ̂ with this type of option, since very few of the

simulated paths will lead to early exercise, so the option price is relatively insensitive to the

parameters of the exercise boundary. The algorithm would improve if we use an estimate

for θ obtained through an option that is in-the-money, which we can do simply by altering

the initial value of the stock (by noting that the optimal boundary does not depend on the

initial state). The variance of θ will be smaller, which will result in a lower expected bias

for v̂bB . As a matter of fact, this line of argument leads to a criterion of optimality for the

initial value of the state variables in the simulation: those which minimize the variance of

the estimates of the early exercise decision. I present some numerical evidence in the next
18A similar result has also been reported in Raymar and Zwecher (1997), that note that their 3-stage estimator

is “better behaved” than their 2-stage estimator.
19See Fishman (1996) for different methods to assess the errors of Monte Carlo simulations.
20I do not present a proof of this result, since the focus of the paper is in studying the biases of the algorithm.

The setup is not identical to those of standard estimators (see Amemiya (1985)), since VB(θ) is not a continuous

function of the parameters. Nevertheless, the assumptions on the continuity of V (θ) and its derivatives, together

with a finite second moment on h(Xτ , τ) for all τ seem to be sufficient to guarantee asymptotic normality of

V̂B , v̂B and θ̂B . See any of the references in footnote 15.
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section that follows this idea. A rigorous analysis of this “variance-reduction” technique21

is an interesting topic for future research.

2.4 Numerical algorithm

The following steps give a formal outline of the algorithm:

1. Parameterize the exercise boundary, using a finite number of parameters θ ∈ Θ. Fix

some initial values for these parameters, say θ0.

2. Generate B paths of Xt. Let Xj
t denote the realized path of the simulation j at time

t.

3. Evaluate an approximation to the value of the option, VB(θ(i)), using the stopping

time τ(θ(i)) and the simulated paths of Xt. Namely:

(a) For each t = 0, . . . , T define τj = min{t : Xj
t ∈ Et(θ(i))}. Note that τj = t if the

exercise rule that θ represents calls for early exercise at time t for the realization

of the path {Xj
t }.

(b) Calculate

VB(θ(i)) =
1
B

B∑
j=1

e−rτjh(Xj
τj , τj).

4. Change the parameters of the exercise boundary and go back to the evaluation step.

Continue until the algorithm finds a maximum for the function VB(·).

5. Generate b paths of Xt, independent of those used to calculate θ̂B . Evaluate

v̂bB =
b∑
i=1

e−rτ(θ̂B)h
(
Xi
τ(θ̂B)

, τ(θ̂B)
)
.

All the optimization routines presented in this paper use a variant of the simplex method

(see Press, Teukolsky, Vetterling, and Flannery (1992)). This choice of optimization algo-

rithm responds to the discontinuity of the value function, together with the presence of

multiple local maxima.
21Note that this improvement to the algorithm is different from the standard variance-reduction techniques

which only concern themselves with the variance of the actual option price, not the early exercise strategy. The

main advantage of variance-reduction of the estimated stopping times is to reduce the bias of the option prices,

not their variance.
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3 Numerical results

In the following section I will consider pricing options for which the relevant underlying state

variables are log-normally distributed stock prices. The simulated paths were generated

using

St+1 = Ste
(r−δ−σ2/2)∆+σ

√
∆Zt+1

where Zt+1 is a standard normal random variable, ∆ is the time step used in the approx-

imation, r is the annual interest rate, δ is the dividend yield of the underlying asset, and

St denotes the stock price at date t.

3.1 Standard American options

In this section, ordinary call options with four different exercise dates (t = 0, T/3, 2T/3, T )

are studied. The payoff for an ordinary call is h(St, t) = max(St − K, 0). This type

of option is of particular interest, since it will be simple to find a representation of the

exercise regions using a small number of parameters. No approximation bias should be

present in our results. The exercise regions can be described by ET/3(θ) = [θ1,∞) and

E2T/3(θ) = [θ2,∞). The exercise region at maturity is ST ∈ [K,∞). The two parameters

θ = (θ1, θ2) represent all the relevant stopping times in the American option problem, i.e.

all the decisions that the option holder can make before maturity.

I use the following base case parameters, so the early exercise feature of the options

has some significance: r = 0.05, δ = 0.10, σ = 0.20. The option has time to maturity of 1

year, and a strike price of K = 100. These values are taken from Broadie and Glasserman

(1997a). The true value of the option in this case can be found by the formulas given in

Geske and Johnson (1984).

Table 2 presents the results of running a simple optimization for different starting values

for the stock price, with B = 40, 000.22 Computational time for each of the rows is on the

order of half a minute. The relative errors, defined as (v̂B − P )/P , are small compared

to the confidence bins (given by equation (4) with α = 0.05). The algorithm performs

better for options that are in-the-money, i.e. those for which the current exercisable value

is positive. This is due to the fact that the early exercise decision plays a bigger role when

the derivative is in-the-money. For an option with an initial stock value of S0 = 70, the

Monte Carlo method is going to have few paths that reach 110 range, which is where the
22For the option with S0 = 120 the continuation value was estimated as 18.90, with a confidence interval

[18.78, 18.98].
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optimal exercise boundary lies. This is going to result in a higher bias for VB , since the

measure is not well represented in the relevant range. Note that this also results in a high

variance for θ̂, which will further cause v̂B to have a larger low bias. Estimating θ̂ using an

initial value that makes the early exercise decision relevant (say S0 = 110) and then using

this estimate to price the option with S0 = 70 produced substantially better results.

The algorithm is easily generalized to a larger set of early exercise opportunities. First

note that the exercise regions can be shown to be of the form Et = [g(t),∞) for some

function g(t) (see Kim (1990)). I will use piecewise cubic Hermite polynomials (see Press,

Teukolsky, Vetterling, and Flannery (1992)) to approximate this exercise boundary g(·). In

order to have a parameterization of the boundary that is easy to interpret, I fix some points

{t0, . . . , tK}, and use as parameters the function values at those points, i. e. f(ti) = θi.

The boundary function g(t; θ) is defined to be the piecewise cubic Hermite polynomial that

interpolates through the points f(ti). After some experimentation, I settle on specifying

this type of Hermite polynomial with the points x = 0, 0.7T, T , where f(0) = θ1, f(0.7T ) =

θ2, and f(T ) = K.23 This seems to be a rich functional form for the exercise boundary in

this problem.24

I apply the algorithm to price an American call with K = 100, S = 110, T = 0.5,

r = 0.03, δ = 0.07, σ = 0.2.25 The true price can be calculated very accurately using

existing techniques (see Ju (1998)). Exercise is allowed at 40 different equally spaced

dates.

The method works well for standard American call options. Figure 3 presents the

estimated early exercise boundaries for two values of B. The variability of the estimated

boundaries is quite small for as few as 16000 simulations. In order to see the asymptotic

behavior of our estimates, figure 4 presents the variability of the option prices (V̂B and

v̂B) for different simulation values. With B = 16000 the confidence bounds have a size on

the order of 15 cents, and the bias is smaller than 4 cents for both estimators. The finite

sample bias of v̂B is almost negligible. Nevertheless, it is worth noticing that v̂B has a bias

that was not present in the previous application, since there is an extra low bias (on the

order of one cent for this particular option) in the estimator due to the approximation of
23It can be shown (Kim (1990)) that g(T ) = K when δ ≥ r.
24I experimented with more general functional forms for the early exercise frontier with similar results to

those reported in the paper.
25The choice of a short-term option poses the most difficulties for the algorithm under consideration, since the

early exercise boundary will be fairly non-linear. Simulations done by the author on long-term options (T = 3)

yield extremely good results by simply using a linear exercise boundary.
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the exercise boundary by the specific functional form that I use.26

3.2 Maximum options on 2 stocks

In this section I consider the pricing of an American call option on the maximum of 2 stocks.

This option yields the payoff h(Xt, t) = max(max(S1
t , S

2
t )−K, 0). This type of derivative

has become popular as a test of Monte Carlo methods in higher dimensions, since accurate

prices can be obtained in 2 dimensions, and the early exercise decision is non-trivial. Some

general properties of the optimal exercise regions were studied in Broadie and Detemple

(1997). Theoretically, the decision of whether to exercise at date t or not depends on the

values of the two stock prices at that date. Motivated by their qualitative charaterizations,

and taking advantage of the symmetry of the problem27 I choose the following parsimonious

representation of the sets that will determine the optimal stopping time:

τ = inf{t : max(max(S1
t , S

2
t )−K, 0) > θ1

t ; |S1
t − S2

t | > θ2
t }

Figure 6 plots these sets together with the density of the two stock prices at each date.

The first parameter, θ1
t , measures how deep in the money the option should be in order

for early exercise to be optimal. The second parameter, θ2
t , measures the “push” from the

asset with a lower value to the maximum price. If the second asset is far away from the

maximum, it is more likely that early exercise is optimal. This simplification introduces a

low bias in the estimates.

I consider pricing this type of call option with base parameters K = 100, σ1 = σ2 = 0.20,

ρ = 0.3, r = 0.05, δ = 0.10, T = 1. I will start by considering Bermudan options, for which

there are 4 different early exercise opportunities, at t = 0, T/3, 2T/3, T (this is the same

case considered in Broadie and Glasserman (1997a)).

Figure 5 presents the results of running a number of different repetitions of the algorithm

for initial values S1
0 = S2

0 = 120. The bias for V̂B is substantial for small values of B. The

bias for the low estimator seems to be consistently within ten cents of the true option value.

In order to generate estimates for a different range of options, I will use estimates for

v̂bB obtained from a single run of V̂B . Using B = 100, 000 a value V̂B = 26.08 was obtained
26We are comparing our prices to those produced by a method that considers continuous exercise, which

makes the algorithm look worse than what it should: the right price to compare with would be that of an option

with a fixed finite number of early exercise opportunities (equal to the number of time steps in the simulation).
27Symmetry is only used for comparability with those results in the literature. In principle I could parameterize

these sets in a richer manner. The results that follow suggest that this may not be necessary in order to get

good approximations to the American option prices.

17



(the true value is 25.98), with a standard error of 0.051. The estimated parameters are

θ̂1
1 = 15.01, θ̂1

2 = 12.04, θ̂2
1 = 14.07 and θ̂2

2 = 9.03. The optimization algorithm took about

5 minutes to run.28 Figure 6 presents the estimated exercise regions as well as the density

function of the two stocks.

Table 3 presents the resulting option values, using v̂B , for different stock prices using

the estimated exercise regions of the previous simulation. Each of the rows in the table

took about 90 seconds to be calculated. There is a low bias in the estimates, so that some

of the confidence intervals do not contain the true option value. This bias is nevertheless

of small practical importance (no larger than 2 cents for any of the options), and could

be corrected by specifying a more general exercise region. Using 400,000 paths, the bias

present in both estimators was found to be less than one cent. The accuracy of the method

is overall surprisingly good, given the crude approximation of the exercise boundary that

I use.

3.3 Maximum options on 5 assets

I proceed to price the same type of maximum option, where the maximum is over the prices

of 5 different assets. For this type of option, in order to represent the early exercise strategy,

we would need to specify sets in R5, since the optimal decision at time t depends on the levels

of all five of the stock prices at that date. In order to find a parsimonious representation of

the possible stopping times, I reduce the problem dimensionality by considering only two

state variables in the early exercise decision: the maximum price at time t, S(1)
t , and the

second ordered statistic, S(2)
t . The stopping times that I consider are of the form

τ(θ) = inf
{
t ≥ 0 : max(S(1)

t −K, 0) > θ1
t ;S

(1)
t − S

(2)
t > θ2

t

}
The parameters have a similar interpretation as in the 2-dimensional case. θ1

t measures

the moneyness of the option. The immediate exercise value of the option needs to be

high enough for early exercise to be optimal. θ2
t measures the “push” by the second-order

statistic to the maximum. The higher the second order statistic is, the less likely it will be

to exercise the option early. There are other obvious ways to describe the early exercise

decision that merit attention. The third order statistic, or the average of the second and the

third order statistics, seem to be good candidates to be included as part of the description

of the stopping times.
28It should be noted that in these simulations I did not use any variance control techniques, which have proven

to be very successful for these types of problems. Computational time could be significantly reduced.
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I investigate the base case scenario considered in Broadie and Glasserman (1997b). All

assets have the same volatility, σ = 0.2, and dividend yield δ = 0.10. The correlation

among the assets is 0. The risk-free rate is r = 0.05, the time to maturity of the option

is T = 3, and the strike price is K = 100. I pick the starting values S1
0 = 130 and

S2
0 = · · · = S5

0 = 90. For these parameters the option is in-the-money, and the difference

between the first order and the second order statistic will be substantial throughout the

life of the security. Therefore, both types of early exercise parameters will have significant

effects on the early exercise decision for most of the generated paths. The estimated option

value is 30.749, with the early exercise parameters θ1
1 = 26.16, θ1

2 = 18.22, θ2
1 = 20.96,

θ2
2 = 13.04.

For this option Broadie and Glasserman (1997b) report option prices for the initial

values S1 = · · · = S5 = 90, 100, 110. Using the parameters from the previous optimization

run, I run the algorithm to calculate v̂bB with 100,000 paths. Each row of Table 4 took

less than 2 seconds.29 The low-biases found for in-the-money maximum options with this

parameter values were all less than 0.3% of the option value.

The algorithm can be easily extended to deal with an arbitrary number of early exercise

dates. Consider the following stopping times

τ(θ) = inf
{
t ≥ 0 : max(S(1)

t −K, 0) > f1(t, θ1);S(1)
t − S

(2)
t > f2(t, θ2)

}
.

The functions fi(t, θi) are a smooth time interpolation of the “moneyness” and “pull”

parameters of the previous example. As in the case of the standard American call, I use

piecewise cubic Hermite polynomials to do the time interpolation, specifying these polyno-

mials by the levels at t = 0, 0.7T, T , where fi(0, θi) = θi1, fi(0.7T, θi) = θi2, fi(T, θi) = 0.

The only reported prices for this type of option as those in Broadie and Glasserman

(1997b), who consider nine possible early exercise dates, and the same parameters as in the

previous example. Figure 7 presents the estimates for different values of B. The reported

biases are all below 1% of the option value. Note that this is a small number even as a

proportion of the American option premium reported in Broadie and Glasserman (1997b),

while we are using an extremely parsimonious set of stopping times.
29It should be noted that not only is the computational effort much smaller, but the results presented in their

paper make heavy use of variance reduction techniques, whereas in these examples I have implemented a brute

force simulation method.
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4 Conclusion

The numerical solution to the American option pricing problem concerns the weak conver-

gence of probability measures. When the number of state variables is large, a researcher

usually has no choice but to turn to Monte-Carlo methods. This paper suggests how to con-

struct estimates for the American option values by introducing two estimators, one biased

high and one biased low, showing that both are asymptotically unbiased. The numerical

results of presented in this paper, together with those in the literature, suggest that very

simple representations of the exercise regions can produce very accurate option prices. For

all the derivative assets that I have considered, the relevant sets can be expressed by a few

number of parameters: they are fairly flat regions.30 Moreover, the impact on the option

value of a slightly wrong representation of the exercise boundary is small. It should be

noted that this fact has been used in the development of several highly efficient numeri-

cal methods for the pricing of low-dimensional derivatives, by approximating the exercise

boundary by constants or exponential functions (Broadie and Detemple (1996), Ju (1998),

Gao, Huang, and Subrahmanyam (1998)).

The method presented in the paper is obviously more general than its treatment in

optimal stopping time problems. Different optimal control problems can be treated in

the same way, and estimates for the optimal controls and value functions can be obtained

in a similar fashion (see Krusell and Smith (1996) and Smith (1991) for a Monte Carlo

algorithm in a standard stochastic dynamic programming problem in Macroeconomics).

If the controls influence the dynamic evolution of the state variables, one will need to

use a weak-approximation scheme to generate the state variables (see Kloeden and Platen

(1992)), which increases the computational requirements of the algorithm. Preliminary

work by the author on the standard optimal investment problem under uncertainty looks

very promising.
30The algorithm of this paper allows the researcher to investigate the magnitude of the approximation bias by

simply increasing the dimension of ΘK . It is difficult to think of an option for which more than 15-20 parameters

would not suffice for a “rich” representation of the exercise boundary. The optimization problem would not be

easy to solve (due to the discontinuity of the objective function), but if one looks at the numerical achievements

of the non-parametric Statistics literature, one should not see this issue as unsolvable.
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Appendix

Proof of Theorem 1.

Consider

V̂ ∗B = sup
θ∈Θ∗

1
B

B∑
i=1

e−rτ(θ)h(Xi
τ(θ), τ(θ))

where Θ∗ is a finite subset of Θ. For each θ, the function VB(θ) is the sum of i.i.d. random

variables. By the Strong Law of Large Numbers VB(θ) converges almost surely to V (θ),

for each θ ∈ Θ∗, and since Θ∗ is finite

lim
B→∞

V̂ ∗B = sup
θ∈Θ∗

V (θ).

This argument yields lim infB→∞ V̂B ≥ supθ∈Θ∗ V (θ); but since this is true for any

finite set Θ∗ we have

lim inf
B→∞

V̂B ≥ sup
θ∈Θ

V (θ) = V (θ0).

In order to get an upper bound, first considerH(X, θ) ≡ lim supθ′→θ e−rτ(θ′)h(Xτ(θ′), τ(θ′)).

The function H(X, ·) is upper semicontinuous (see exercise 49 in chapter 2 of Royden

(1988)). Upper semicontinuity is equivalent to H(X, θ) = infN HN (X, θ) for some collec-

tion of functions such that H1(X, θ) ≥ H2(X, θ) ≥ . . . and HN (X, ·) is continuous (see

Lemma 6-9 IV of Taylor (1965)).

I first show that the expectation of the limiting random variable H(X, θ) equals V (θ)

for all θ ∈ Θ. Fox a fixed realization {Xt}, the function e−rτ(θ′)h(Xτ(θ′), τ(θ′)) has a finite

number of discontinuities in θ, caused by the change in the early exercise decision. These

discontinuities occur at those points θ where Xt falls at the boundary of at least one of the

sets Et(θ). Therefore, for a fixed realization of {Xt}, H(θ, θ) 6= e−rτ(θ)h(Xτ(θ), τ(θ)) if and

only if Xt happens to fall on one of the boundary points of the sets Et(θ). Since this event

has probability zero it follows that E [H(X, θ)] = V (θ).

The random variable 1
B

∑B
i=1HN (Xi, ·) takes values on the separable Banach space

of continuous functions on Θ. By the Strong Law of Large Numbers on this space (see

Laha and Rohatgi (1979) Theorem 7.2.1), 1
B

∑B
i=1HN (Xi, ·) converges almost surely to

E [HN (X, ·)]. Hence supθ∈Θ
1
B

∑B
i=1HN (Xi, ·) converges almost surely to supθ∈Θ E [HN (X, θ)],

and

lim sup
B→∞

V̂B ≤ lim
B→∞

sup
θ∈Θ

1
B

B∑
i=1

HN (Xi, θ) = sup
θ∈Θ

E [HN (X, θ)] .

Now note that by assumption there exists an integrable random variable Y that is a
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bound on HN (X, θ),31 so E [HN (X, θ)] converges (as N → ∞) to E [H(X, θ)] pointwise.

Moreover, as functions of θ, the expectations E [H(X, θ)] and E [HN (X, θ)] are continuous.

By Dini’s Theorem (see Proposition 11 in chapter 9 of Royden (1988)) the convergence of

E [HN (X, θ)] to E [H(X, θ)] is uniform in θ. This fact, together with the above equation

gives

lim sup
B→∞

V̂B ≤ sup
θ∈Θ

E [H(X, θ)] = V (θ0).

In order to show convergence in the mean, note that

E

[
|V̂B − V (θ0)|

]
≤ E

[
1
B

B∑
i=1

Y i

]
+ V (θ0)

since we assumed the existence of random variables Yi that dominate e−rτ(θ)h(Xτ(θ), τ(θ))

for all θ. By the Strong Law of Large Numbers 1
B

∑B
i=1 Y

i converges almost surely and in

L1 to E [Y ]. Therefore the conditions of the generalized dominated convergence theorem

hold (see Proposition 18 from chapter 11 in Royden (1988)), and

lim
B→∞

E

[
|V̂B − V (θ0)|

]
= E

[
lim
B→∞

|V̂B − V (θ0)|
]

= 0,

i. e. V̂B converges to V (θ0) in L1.

Finally, we see that

E

[
V̂B

]
= E

[
sup
θ∈Θ

1
B

B∑
i=1

e−rτ(θ)h(Xi
τ(θ), τ(θ))

]

≥ E

[
1
B

B∑
i=1

e−rτ(θ0)h(Xi
τ(θ0), τ(θ0))

]
= V (θ0)

so that V̂B is biased high.

To complete the proof, suppose that θ̂B does not converges to θ0. Then, by the com-

pactness of Θ, there exists θ̃ 6= θ0, and a subsequence {Bk}, such that θ̂Bk converges to θ̃.

Note that

V̂Bk ≤
1
B

B∑
i=1

HN (Xi, θ̂Bk)

for all N .

The previous argument shows that the right-hand side of the above equation converges

almost surely to the function E [HN (X, θ)] evaluated at θ = θ̃. Letting N →∞ we get that

lim sup
k→∞

V̂Bk ≤ E [H(X, θ)]
∣∣
θ=θ̃ = V (θ̃) < V (θ0).

31To see this note that we can always replace HN by H∗N in the following way H∗N (X, θ) = min(HN (X, θ), Y ).

Since we have assumed that infN HN (X, θ) is dominated by some integrable random variable Y , the sequence

H∗N is bounded by Y .
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Since θ0 was assumed to achieve the unique maximum we have reached a contradiction,

so θ̂B converges almost surely to θ0. �

Proof of Theorem 2.

First note that

E

[∣∣v̂bB − V (θ0)
∣∣] ≤ E [∣∣∣v̂bB − V (θ̂B)

∣∣∣]+ E
[∣∣∣V (θ̂B)− V (θ0)

∣∣∣] .
¿From Theorem 1 the second term in the expression above goes to zero.

The Strong Law of Large Numbers implies that

lim
b→∞

E

[∣∣∣v̂bB − V (θ̂B)
∣∣∣ |θ̂B] = 0

for all values of θ̂B . Moreover, the above conditional expectation is bounded above by
1
b

∑b
i=1 Y

i + V (θ0), so by the generalized dominated convergence theorem

lim
B,b→∞

E

[∣∣∣v̂bB − V (θ̂B)
∣∣∣] = lim

B,b→∞
E

[
E

[∣∣∣v̂bB − V (θ̂B)
∣∣∣ |θ̂B]] = E

[
lim

B,b→∞
E

[∣∣∣v̂bB − V (θ̂B)
∣∣∣ |θ̂B]] = 0.

Convergence in probability follows from L1 convergence.

In order to see that the estimate is biased low, simply note that

E

[
v̂bB
]

= E

[
E

[
v̂bB |θ̂B

]]
= E

[
V (θ̂B)

]
≤ V (θ0)

since V (·) is assumed to achieve a unique maximum at θ0. �
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Stock price paths Exercise values

Path t=1 t=2 t=3 t=3 t=2 t=1 t=0

1 1.09 1.08 1.34 - 0.02 0.01 0.01

2 1.16 1.26 1.54 - - - -

3 1.22 1.07 1.03 0.07 0.03 - -

4 0.93 0.97 0.92 0.18 0.17 0.17 0.17

5 1.11 1.56 1.52 - - - -

6 0.76 0.77 0.90 0.20 0.19 0.19 0.18

7 0.92 0.84 1.01 0.09 0.09 0.08 0.08

8 0.88 1.22 1.34 - - - -

Table 1: Numerical example of the pricing algorithm for an American put with a strike of

K = 1.1, with 3 possible early exercise dates. The exercise value columns record the value

upon exercise following the early exercise strategy: exercise at t = j if the stock price is abouve

θj , where θ0 = 0.95, θ1 = 0.95, θ2 = 1, θ3 = 1.1. The value of the put under this strategy is

0.0551. The example is taken from Longstaff and Schwartz (2001).
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S0 V̂B s(V̂B) v̂B s(v̂B) Confidence bin Point True value Error

70 0.124 0.002 0.124 0.002 [0.121, 0.127] 0.124 0.121 2.49%

80 0.682 0.007 0.673 0.007 [0.661, 0.694] 0.677 0.670 1.80%

90 2.318 0.019 2.314 0.019 [2.283, 2.349] 2.316 2.303 0.66%

100 5.745 0.037 5.725 0.037 [5.664, 5.807] 5.735 5.731 0.25%

110 11.340 0.057 11.317 0.066 [11.209, 11.434] 11.329 11.341 -0.01%

120 20 - 20 - [20, 20] 20 20 0%

Table 2: American call option prices. Parameter values: r = 0.05, δ = 0.10, σ = 0.20, T = 1

year, K = 100.
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S v̂B σ(v̂B) Confidence bin True value Relative error

70 0.2361 0.0009 [0.2343, 0.2379] 0.237 0.37%

80 1.2582 0.0022 [1.2540, 1.2625] 1.259 0.06%

90 4.066 0.004 [4.0582, 4.0738] 4.077 0.27%

100 9.3647 0.0052 [9.3544, 9.3749] 9.361 0.04%

110 16.9206 0.007 [16.9069, 16.934] 16.924 0.02%

120 25.9614 0.007 [25.9477, 25.975] 25.980 0.07%

130 35.7506 0.0092 [35.7325, 35.768] 35.763 0.03%

Table 3: Maximum options on 2 stocks. Parameter values σ1 = σ2 = 0.20, ρ = 0.3, r = 0.05,

δ = 0.10, T = 1, K = 100. The value for S is the initial value of both assets (assumed to be

the same).
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S v̂B σ(v̂B) Confidence bin B&G point estimate Relative error

90 16.008 0.055 [15.900, 16.115] 16.006 0.01%

100 25.234 0.068 [25.101, 25.366] 25.284 0.20%

110 35.537 0.086 [35.367, 35.706] 35.695 0.44%

Table 4: Maximum options on five underlying assets. Parameter values: σ1 = · · · = σ5 = 0.20,

ρ = 0, r = 0.05, δ = 0.10, T = 1, K = 100.
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Figure 1: The straight lines represent the true option price and the asymptotic value to

which both estimators converge. The curves give an indication of the expected values of

both estimators. When the parametric representation subsumes all possible stopping times

“asymptotic bias” is zero and the two estimators converge to the true American option price.

When this is not the case the high-biases estimator converges to an option value that is lower

than the theoretical one, but it may still be biased high in finite samples. The low-biased

estimator always has an expected value less than the true American option price.
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Figure 2: The solid lines represent the eight stock price paths of the numerical example pre-

sented in table 1. The dotted lines are two possible exercise rules. The first exercise rule is the

one considered in table 1. The second is the optimal one (note that it is not unique).
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Figure 3: Graphs of estimated exercise boundaries for an American call option with parameters

σ = 0.20, r = 0.03, δ = 0.07, T = 0.5, S = 110, K = 100, N = 40. The top panel presents the

results for B = 1,000, and the lower panel for B = 16, 000.
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Figure 4: Boxplot of the estimates of the option values for the standard American call with

40 equally spaced exercise dates. Parameter values σ = 0.20, r = 0.03, δ = 0.07, T = 0.5,

S = 110, K = 100. From left to right, B = 1000, 2,000, 4,000, 8,000, 16,000. The solid line

marks the true value of the option (11.10). The top panel presents the estimates using V̂B,

while the bottom panel are the values of v̂B.
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Figure 5: Estimated option values for the 2 asset maximum option. Parameter values σ = 0.20,

r = 0.05, δ = 0.10, T = 1, S1
0 = S2

0 = 120, K = 100. The true option value is 25.98. ¿From

left to right, B = 2,000, 4,000, 8,000, 16,000, 32,000.
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Figure 6: The top panel presents the estimated exercise regions, as well as the density function

of the two stock prices at t = T/3. The bottom figure presents the results for t = 2T/3.
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Figure 7: Boxplots for the 5 asset American maximum option with 9 equally spaced early

exercise opportunities. The parameter values are set to σ = 0.20, r = 0.05, δ = 0.10, T = 3,

S1
0 = . . . S5

0 = 120, K = 100. From left to right, B = 2, 000, 4, 000, 8, 000, 16, 000. The solid

line represents the point estimate of Broadie and Glasserman (1997b).
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