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Abstract

Our paper relies on stock price reactions to colour words, in order to provide new

dictionaries of positive and negative words in a finance context. We extend the machine

learning algorithm of Taddy (2013), adding a cross-validation layer to avoid over-fitting.

In head-to-head comparisons, our dictionaries outperform the standard bag-of-words ap-

proach (Loughran and McDonald, 2011) when predicting stock price movements out-of-
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the sentiment dictionaries in the literature. The breadth of our dictionaries and their ability

to disambiguate words using bigrams both help to colour finance discourse better.
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1 Introduction

Since Tetlock (2007), the literature in Finance and Accounting studying different types of tex-
tual data has flourished.1 The current state of the art to measure sentiment is to use a “bag-of-
words” approach, counting words in dictionaries that are specialized to Finance and Accounting
jargon, namely those developed by Loughran and McDonald (2011) (LM dictionaries). This ap-
proach has been criticized as potentially having low power in comparison to more sophisticated
machine learning techniques (Gentzkow, Kelly, and Taddy, 2019). Our paper contributes to this
debate by constructing new dictionaries using techniques from the natural language processing
literature (NLP) in Computer Science, explicitly comparing their composition and predictive
power relative to the LM dictionaries.

In essence, we ask the question of whether a dictionary constructed using stock price reactions
as the “supervisor” can compete with humans codifying what are positive and negative words.2

We validate both dictionaries measuring their ability to predict stock returns around earnings
announcements.3 The machine learning (ML) algorithm performs significantly better in out-
of-sample tests than approaches based on the LM dictionaries. Our main contribution to the
literature is to show how the ML algorithm achieves such improvements, providing new tools
to measure soft information in financial and accounting disclosures.

Our paper focuses on the transcripts from the conference call(s) associated with a firm’s earn-
ings release (“earnings call”), arguably the most important regularly scheduled event in a firm’s
calendar. Frankel, Johnson, and Skinner (1999) argue these live calls have significantly more
new information than other regularly scheduled events, like the filing of the annual 10-K state-
ments.

We use the multinomial inverse regression model (MNIR) of Taddy (2013), a standard machine
learning technique from the Computer Science literature, to build our new dictionaries. The
main output from this algorithm is a set of loadings on n-grams that characterize their sentiment
(both positive and negative).4 Our positive/negative n-gram dictionaries, which we refer to

1See Loughran and McDonald (2016, 2020) for recent surveys.
2We will stick to the label “humans versus machines” following the narrative in Loughran and McDonald

(2020), even while our interpretation is “humans versus stock prices”. As most social scientists, we will loosely
use the terms supervised/unsupervised and machine learning (Israel, Kelly, and Moskowitz, 2020). We use the
term “sentiment” as in Tetlock (2007) and Taddy (2013), but we could have used the term “soft-information” or
other synonyms: we are simply trying to measure the content, positive or negative, of a given piece of text.

3We will use the verb predict, and its declinations, in a purely statistical sense. All our regressions involve
contemporaneous returns, i.e. we measure returns from the closing price prior to the event, to the closing price
after the event.

4An n-gram is a contiguous sequence of n words from a given sample of text. The text “colour finance words”
has three unigrams, two bigrams (“colour finance” and “finance words”) and one trigram.
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as ML dictionaries, include those n-grams associated with positive/negative loadings from the
MNIR model. While we focus on the MNIR algorithm in Taddy (2013), the sufficient reduction
ideas behind other machine learning algorithms in the literature are likely to produce similar (or
better) results.5

One of our goals is to develop a new set of dictionaries that can measure sentiment over gen-
eral English discourse dealing with business matters, based on stock price reactions to earnings
calls. We take the output of our MNIR estimates and reduce its dimensionality by requiring
sufficient stability across samples (across time/industry). Our final calibration yields a set of a
few hundred unigrams and bigrams, which we consider one of the main outputs of our research
agenda.6 These “plain money English” dictionaries perform excellent relative to the LM dic-
tionaries using samples of earnings calls, 10-K releases, and WSJ articles, the three corpora we
study in our paper.7

When working with unigrams, we show the ML algorithm uncovers new words that have pre-
dictive power, but it also allows us to refine the LM word lists. For example, we find that the
term issue(s) is very negative whereas momentum is very positive (neither included in the LM
dictionaries). The ML algorithm does not consider against to be a negative term, or confident to
be positive (both included in the LM dictionaries). We emphasize that the set of new words we
produce is small (less than 100 terms), and that the ML algorithm excludes the majority of LM
words (only 18/30 of the LM positive/negative words overlap with the ML dictionaries).

We also show the role that bigrams perform when summarizing text, as they help to disam-
biguate positive and negative words. To use some salient examples, we will be making a differ-
ence between solid demand and soft demand; between best quarter and best estimate. The ML
algorithm labels bigrams that include leverage as extremely positive, which are unlikely to be
classified by human coders as positive or negative.

To quantify the improvements brought by our approach, we note that a baseline specification of
the stock price reaction to the earnings call event with controls has an R2 of 1.7%, which the
LM dictionaries (no overlap with ML) raise to 2.1%. Using the ML dictionaries (no overlap
with LM) has an R2 of 4.6%, whereas using bigrams it is 4.5%. In the univariate specifications,
the overlap LM/ML dictionary has the largest R2, at 5.4%, despite having the smallest number
of terms. The multi-variate specifications all point to the ML dictionaries as the main drivers

5Rabinovich and Blei (2014) and Kelly, Manela, and Moreira (2018) improve and extend the original Taddy
(2013) algorithm.

6The code and data that accompanies our paper allows researchers both to customize and change our calibra-
tions. See Section 4.5.

7We use the term “plain” in the spirit of the “Plain English initiative” of the SEC. Our goal is to capture
language that is general enough that it can be applied in different contexts/documents.
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of stock returns, since the LM terms have no marginal statistical significance, loading with the
wrong sign in several specifications.

We study the external validity of the new dictionaries, and existing ones, across 10-K releases
and WSJ articles. We ask whether the ML dictionaries constructed using the earnings calls cor-
pus can predict price reactions to 10-K filings and WSJ article publication. We find that the ML
dictionaries generated using earnings calls are much more informative than the LM dictionaries
in the context of 10-K releases. While the 10-K release is not a particularly important event,
with most of the information disclosed during the earnings call that precedes it, the ML dictio-
naries load with the right sign in all specifications, whereas the LM dictionaries do not. Using
WSJ articles as our corpus, we also find strong external validation for the ML dictionaries,
although in this case the LM dictionaries still have some marginal predictability, albeit lower.
Both the unigrams and the bigrams in the “plain money English” dictionaries have significantly
more coverage and colour, relative to the LM dictionaries, across such distinct corpora.

Loughran and McDonald (2020) defend dictionaries developed by individual researchers select-
ing words, against algorithm based dictionaries, “humans versus machines.” They write: “There
is a hesitancy for researchers to define a word list because of this subjectivity. For this approach
to be effective, the process must be transparent and the resulting lists should be reasonably ex-
haustive.” We share both data, dictionaries and code from our research project, so the reader
can reproduce every single word our algorithm picks. And the ML words are significantly more
frequent than the LM words.

The literature on textual analysis in Finance started by studying news media (Tetlock, 2007),
mostly due to data availability and computing constraints existing at the time. Much interest
has also been paid to annual statements: from analyzing sentiment (Loughran and McDonald,
2011), to industry (Hoberg and Phillips, 2016) and geographical classifications (Garcı́a and
Norli, 2012). Over the last decade a myriad of other sources of text has appeared, from the
minutes of FOMC meetings (Hansen, McMahon, and Prat, 2018) to Internet message boards
(Antweiler and Frank, 2004; Das and Chen, 2007) and Bloomberg news feeds (Fedyk, 2020),
among others. We focus on the transcripts of earnings calls (Matsumoto, Pronk, and Roelofsen,
2011; Larcker and Zakolyukina, 2012; Bochkay, Chychyla, and Nanda, 2019; Fedyk, 2021),
mostly for the high signal-to-noise ratio they provide, which is critical for machine learning
applications.

Our paper contributes to the literature measuring sentiment, creating new dictionaries of both
unigrams and bigrams using machine learning techniques applied to earnings calls. The Harvard-
IV dictionaries used by Tetlock (2007) were the norm for a long time in the social sciences.
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Loughran and McDonald (2011) refined these dictionaries for accounting and finance doc-
uments, using annual statements (10-Ks).8 Muslu, Radhakrishnan, Subramanyam, and Lim
(2015) study forward-looking statements in 10-K filings, Cookson and Niessner (2020) cre-
ate lists of words to describe investment styles, Baker, Bloom, and Davis (2016) do a similar
exercise trying to measure political uncertainty, and many LDA papers also use some type of
dictionary to give content to topics.9

Our research follows the supervised approach advocated by Kogan, Levin, Routledge, Sagi,
and Smith (2009), and Manela and Moreira (2017), but instead of focusing on volatility,10

we study first moments (sentiment). Jegadeesh and Wu (2013)’s analysis is similar in spirit,
picking words using stock price reactions, but focusing on the Loughran and McDonald (2011)
dictionaries, rather than allowing the data to pick n-grams from a larger set. Ke, Kelly, and
Xiu (2019) use machine learning techniques in the context of corpora from the Dow Jones
Newswires and the Wall Street Journal, focusing on predicting future returns.11 Cong, Liang,
and Zhang (2020) use word embeddings in the context of Wall Street Journal frontpages to
predict low-frequency macroeconomic variables. Meursault, Liang, Routledge, and Scanlon
(2021) study earnings calls using machine learning techniques, focusing on the post earnings
announcement drift. In contrast, our main contribution is to use the contemporaneous price
reactions to generate a new set of sentiment dictionaries, opening the “black-box” that is often
associated with ML techniques (Loughran and McDonald, 2020).

The rest of the paper is structured as follows. In Section 2 we discuss our data, and how
we construct the dictionaries that form the core of the empirical exercise. In Section 3 we
present our main results, where we compare the performance of the different dictionaries in
the context of the stock price reactions to earnings calls, 10-K releases and the publication of
WSJ articles. Section 4 studies dictionary breadth, the LM words in more detail, and discusses
the disambiguation that our bigram representation achieves. The Appendix includes further
details.

8The literature that uses the LM dictionaries spans many corpora, including 10-K statements (Feldman, Govin-
daraj, Livnat, and Segal, 2010), newspaper articles (Garcı́a, 2013), IPO prospectuses (Hanley and Hoberg, 2012),
press releases (Solomon, 2012), earnings calls (Chen, Nagar, and Schoenfeld, 2018), and more (Loughran and
McDonald, 2016).

9The literature on LDA methods in financial economics has exploded in the last few years. For some examples
see Hoberg and Phillips (2016), Hansen, McMahon, and Prat (2018), Bybee, Kelly, Manela, and Xiu (2019).

10In a similar vein, Glasserman and Mamaysky (2019) use 4-grams to measure “news unusualness” and predict
volatility in the context of the banking sector during the 2008 financial crisis.

11We note that the overlap of positive/negative words in our dictionaries versus the top-100 words they present in
their paper is 12%, namely 2/50 of their positive words are part of the ML dictionaries, and 10/50 of their negative
words. Loughran and McDonald (2020) discuss the Ke, Kelly, and Xiu (2019) dictionaries at some length.
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2 Measuring sentiment

In this section we first discuss the financial text corpora that we study in our paper, as well as
different NLP techniques we implement to clean and organize our datasets. We then discuss the
particular machine learning algorithm that we will use for the rest of the paper, and introduce
our method for constructing new dictionaries. We end the section by describing our empirical
approach.

2.1 Data

We study three different types of textual corpora that have been the focus of previous studies:
earnings calls (Frankel, Johnson, and Skinner, 1999), 10-K statements (Loughran and McDon-
ald, 2011), and WSJ journal articles (Goldman, Gupta, and Israelsen, 2022). We note that these
three corpora are clearly related: 10-K statements are typically released shortly after the earn-
ings calls, and WSJ articles are often associated with such public disclosures. At the same time,
they are quite different types of text: both in terms of their content (spoken language scripted
with Q&A in the case of earnings calls; written language, with much legal jargon in the case of
10-K; to jounalist-style writing in the case of the WSJ), and their size (a few thousand words
for earnings calls, a few hundred for each WSJ article, and very large for annual statements).
See Table 1 for an overview of the corpus we study.

The dataset on quarterly earnings calls is constructed by merging two datasets. Our first data
source are transcripts of earnings calls gathered from Seeking Alpha between 2006 and 2020.
The second is the earnings calls transcripts as provided by Wall Street Horizons, which covers
the period 2009–2020. The intersection of these two datasets over the overlapping period 2009–
2020 is virtually the same as their union over the same time period, with identical word counts:
we use both simply to have a longer time series.

We impose several data filters and data requirements, following Loughran and McDonald (2011)
closely. We require that the firm hosting the conference call can be matched to CRSP and Com-
pustat12 and that regression variables are available (see the Appendix for details). We also
require firms to have at least 60 days with available trading volume and return in the year before
and after the call date. We limit the sample to firms listed on NYSE, Nasdaq, and AMEX, that
are reported on CRSP as ordinary common equity firms (share code 10 and 11), and that have
a share price of more than $3 on the day before the call. Lastly, we exclude calls that have
transcripts with less than 100 words. These selection criteria yield a sample of 85,530 events,
associated with 3,229 unique firms.

12Matching is based on a combination of ticker and quarterly earnings release date (Compustat item RDQ).
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We study the full text of the 10-K statements, as provided in Bill McDonald’s webpage.13 Our
focus will be in predicting the stock market reaction over the four days around the release of the
10-K, mimicking our previous analysis using earnings calls and that in Loughran and McDonald
(2011).

The dataset contains all annual reports (10-K) filed in the period 1996–2018 that can be matched
to the CRSP database. We follow the sample selection in Loughran and McDonald (2011)
considering stocks listed on the NYSE, Amex, or NASDAQ. We limit to all filings with available
regression variables (size, book-to-market, share turnover, pre-filing period three factor alpha,
filing period excess return, and Nasdaq dummy). We exclude firms with a stock price on the
day before the call of $3 or less, and require the firm to have at least 60 days of trading in the
year before and after the filing date. We exclude filings with less than 2,000 words. Lastly, we
include only filings with 180 days between them and only one 10-K filing per year and firm.
The final sample includes a total of 76,922 observations.

We collect Wall Street Journal (WSJ) articles using Factiva, following the protocols in Gold-
man, Gupta, and Israelsen (2022).14 We manually download all articles tagged in Factiva as
associated with a given firm, starting with the list of firms ranked by frequency in the Raven-
pack database, for the time period 2000–2021. We limit our analysis to articles that mention at
most seven entities, and that have a minimum of twenty words (after applying the NLP cleaning
procedure detailed in the Appendix). Our manual collection results in a set of 144,383 unique
articles associated with 189 unique firms. Since we use daily stock returns in our analysis, we
merge all news associated with the same firm in a given day, and construct sentiment scores on
this aggregated text. Our final dataset has 87,198 unique firm days.

Our paper will focus on the corpus from earnings calls, namely the transcripts from the call
between the firm’s management and analysts/investors, in order to construct the new ML dic-
tionaries. The main reason for focusing on this corpus is that the signal-to-noise ratio of the
earnings calls is significantly stronger than most other corporate events, i.e. relative to the re-
lease of the actual 10-K statements (Loughran and McDonald, 2011), which are typically filed
after the earnings calls.15 The essence of our approach relies on using stock price reactions
to label n-grams as positive or negative: the machine learning algorithm is supervised by mar-

13See https://sraf.nd.edu/data/stage-one-10-x-parse-data/. An earlier version of the paper stud-
ied only the management discussion and analysis (MD&A) section of the 10-K statement, which has been the
focus of much of the literature (see for example Hoberg and Lewis, 2017, for a recent contribution), with similar
results to those reported in this draft. Loughran and McDonald (2011) use both the full 10-K statement, and also
the MD&A section.

14We thank Ryan Israelsen for sharing the details on the manual procedure that allows for downloading the WSJ
articles from Factiva.

15See Li and Ramesh (2009).
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ket reactions while trained. Having a strong signal-to-noise ratio in our empirical exercise is
therefore critical.

To support our choice of earnings calls, we follow Griffin (2003) and compute the absolute
excess return for each day around the three different events, normalized by its mean and standard
deviation (computed in the period of −60 to −2 day around the earnings call date). Figure 1
plots the averages for the 10 days before and after the event for earnings calls (blue circles),
10-K releases (red crosses), and WSJ article publications (green triangles). We note that the
average absolute value, under normality, should be around

√
2/π ≈ 0.8 (dashed line).

Figure 1 shows that earnings calls are associated with significantly more volatile stock prices
than both 10-K statements releases and the publication of WSJ articles. The average absolute
excess returns on the earnings call event date is around 2.2 on the day of the event, and 1.8 the
day after, both more than twice as large as the unconditional mean (0.8). We remark that the
result on the day after the event is driven by the fact that many earnings calls are held in the
afternoon, and we are measuring returns using closing prices. This also motivates our choice of
a four day window around the earnings event to be inclusive regarding its associated stock price
reaction.16

Figure 1 shows that there are stock price reactions associated with the 10-K release event, as
well as the publication of articles in the WSJ, but the effect is much more muted. The effect, as
in the case of the earnings call, lasts into the next day, with smaller magnitudes.17 The smaller
reaction to 10-K releases should not be surprising, as the earnings calls often happen a week
before the formal submission/acceptance of the 10-K statement by the SEC. Similarly, coverage
in the WSJ will typically lag the press releases of the earnings calls, and/or cover less important
events (i.e. press releases associated with 8-K statements, industry news). This evidence argues
that earnings calls are a better event for performing the type of supervised learning algorithm
we implement in our paper.

2.2 Robust multinomial inverse regression

In this section we describe our main textual analysis tool, the multinomial inverse regression
(MNIR) model of Taddy (2013), as well as the extension we use to avoid over-fitting, which we
refer to as “robust MNIR.”

Our textual corpus is a set of n documents, i.e. the transcript from an earnings call Tj. We

16Our results are identical with shorter windows.
17We note that when the 10-K is released on the same day or the day before the earnings call, which occurs in

less than 20% of cases, the average absolute excess return is significantly higher than when 10-K is released two
or more days after the earnings call.
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want to associate such text with the stock market reaction to the event, which we will denote
by R j. While the representation of Tj can be kept fairly abstract, for our purposes it will be
a document-term-matrix (dtm) where we keep count of what terms (tokens), out of a set of
p total n-grams, appear in each of the documents in the corpus of interest. We choose the
most frequent p n-grams in the whole corpora to construct our dtm, using p = 214 = 16,384
(16K) in our baseline specifications for unigrams, and p = 216 = 65,536 (65K) in our baseline
specifications for bigrams. We discuss reducing/enlarging the dtm in Section 4.1.

The above dtm representation is a standard NLP approach to summarizing text, where the un-
derlying document is represented by a sparse matrix. We note that there is some loss of gen-
erality, as we do not keep track of the sequence of words in the document. At the same time,
using bigrams we are keeping some context, which will prove crucial when disambiguating
words.

The MNIR model has a Bayesian flavor, belonging to a class of algorithms close to topic models
(such as LDA).18 The MNIR uses the conditional distribution of text given sentiment to obtain
low-dimensional scores that summarize the information relevant for the stock return reaction.
This is actually at the heart of many of these algorithms, where the Bayesian structure allows
for considering both R j|Tj and Tj|R j. The MNIR algorithm uses a lasso-style penalty on the
first set of inverse regressions to construct a sufficient statistic Z j, which can then be used for
out-of-sample prediction.

The inverse regression of interest is stock returns onto word counts, which within a Bayesian
framework with a given set of priors generates a set of posteriors on the influence of tokens
(n-grams) on stock prices. It is important to note that in contrast to other methods, such as in
Meursault, Liang, Routledge, and Scanlon (2021), we do not need to discretize our outcome
variable, stock returns, as the MNIR model allows for continuous variables.

The MNIR model involves regressions of stock price reactions on individual n-gram counts,
so it is related in spirit to the algorithm in Jegadeesh and Wu (2013), with two important dif-
ferences: (i) the MNIR’s inverse regressions are not joint regressions, which breaks the curse
of dimensionality in typical machine learning fashion,19 (ii) the lasso (L 1) penalty and the
MNIR’s Bayesian structure yield different fits/estimates of the sentiment of n-grams.

For our purposes, the main output from the MNIR that we will explore is the loadings on each of

18The discussion in Gentzkow, Kelly, and Taddy (2019), in particular Section 3.2, links the MNIR to topic
models (see also the discussion in Rabinovich and Blei, 2014; Roberts, Stewart, Tingley, Airoldi, et al., 2013).

19The joint estimation advocated in Jegadeesh and Wu (2013) would be unfeasible with the number of n-grams
that we consider, which is larger than the number of observations (earnings calls, 10K statements, WSJ articles).
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the p n-grams that the algorithm generates.20 These loadings are roughly evenly distributed into
positive/neutral/negative in our baseline specifications. Thus, the MNIR algorithm allows us to
classify the n-grams into two dictionaries: one consisting of n-grams with positive loadings,
one consisting of those that have negative loadings.

We note that when generating these dictionaries we are ignoring the size of the coefficients
in the estimated MNIR model. We construct the positive/negative dictionaries in order to be
able to compare the machine learning algorithm on the same terms as the standard bag-of-
words approach, at the cost of penalizing the machine learning performance by ignoring the
information embedded in the size of the estimated coefficients. One can consider this step
an extra dimension reduction step in our algorithm, with a similar flavor to a lasso penalty,
simplifying the final sentiment representation.

The choice of the MNIR algorithm, versus others in the literature, is motivated by its perfor-
mance. Section 5.1 in Taddy (2013) shows that (1) MNIR is very robust to changes in parameter
specifications, (2) compared to other leading textual analysis methods MNIR provides higher
quality predictions with lower run-times.21 We conjecture that using more modern methods
will only widen the “machines versus humans” divide we document using the MNIR algo-
rithm.

As most machine learning methods, the MNIR will overfit, i.e. pick too many terms that happen
to be correlated with returns on the given training sample chosen. In order to mitigate its ten-
dency for overfitting, we consider an extra convolution layer, which we label “robust MNIR.” In
particular, starting with a training sample with m observations, we will fit the MNIR to k differ-
ent subsamples of size q. We will use q = 5,000 and k = 500 in our baseline specifications. We
choose each of the k samples randomly, bootstrapping without replacement from the m events in
the training sample.22 For each different MNIR fit, we assign a positive/neutral/negative score
(1/0/−1) for each of the p n-grams in our dtm. We can then ask about how many times a given
n-gram has positive/neutral/negative loadings, and look for consistency across the samples to
avoid overfitting.

The basic idea of this extra step is to penalize n-grams that are rare, but spuriously correlated

20We highlight that our results are not sensitive to the choices of lasso penalties and set of priors that need to be
specified for the estimation of the MNIR model. A higher lasso penalty will reduce the size of our dictionaries, as
more n-grams end up with zero loadings, but our predictability results are robust to different parameterizations.

21Section 5.1 in Taddy (2013) studies speeches from the 109th US congress and we8there restaurant reviews.
MNIR is compared to text-specific LDA (both supervised and standard topic models), lasso penalized linear and
binary regression, first-direction PLS, and support vector machines.

22A previous version of the paper performed this robustness step using 5x5 subsets across time and Fama-French
industries. The results are very similar to those reported in this draft. Using randomization yields more subsamples,
which makes the ranking of n-grams easier.
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with stock returns in the training sample. Each bootstrapped sample has a different mix of in-
dustries, time periods and firms, so requiring consistency across a large set of subsamples gets
at the goal of measuring “plain money English.” Requiring consistency across multiple subsam-
ples in the training set we avoid overfitting. In our baseline specifications, the top 20 n-grams
consistently appear 99%+ of the time as positive/negative across the k different bootstrapped
samples.

To summarize the “robust MNIR” algorithm, we will fit the MNIR model to k = 500 different
subsets of our training sample. This will generate a different sentiment score for each of the
p n-grams: the difference of the times they are scored as positive minus negative (as a per-
centage), which we will denote by D+. For notational simplicity, we define D− = −D+, the
difference of negative and positive scores in the 500 cross-validation subsets. Our final set of
ML positive (negative) dictionaries will consist of those n-grams whose D+ (D−) score above
a given cutoff. We set the cutoff for unigrams at 80%, and that for bigrams at 45%. As we will
see in our empirical results, these are quite stringent criteria, which will result in only a handful
of n-grams. This is at the heart of our robust MNIR algorithm: avoid misclassifications by re-
quiring consistency across the bulk of the training sample. We will label the final dictionaries,
constructed using the above algorithm as ML “plain money English” dictionaries, or simply ML
dictionaries.

2.3 Creating sentiment scores

The standard approach to measure sentiment in the Finance literature is to start with a “bag-of-
words”, a collection of tokens that are labelled positive/negative by researchers. For example,
Tetlock (2007) uses the Harvard-IV dictionaries, which were developed by psychologists, and
consist of 1,637 positive words and 2,005 negative words. The dictionaries from Loughran and
McDonald (2011) are a refinement of the Harvard-IV dictionaries, and include 347 positive and
2,345 negative terms.23

Once these bag-of-words are decided upon, a sentiment score is assigned using either the sum
of the term frequencies of the members of each dictionary (normalized by the size of the docu-
ment), or some variation that accounts for the incidence of a term across the corpus (i.e., using
tf-idf scores). We will implement our main analysis using term frequency weights throughout
the paper.24

23We use the version of the Loughran and McDonald (2011) dictionaries as shared by the authors in their
webpage as of 2022.

24An earlier draft showed tf-idf adjustments favor the ML algorithm versus LM, but they introduce slight chal-
lenges to the empirical exercise. In particular, we note that by construction, word counts are skewed to the right,
since they are censored at zero on the left. The idf adjustment makes this skewness more pronounced.
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We represent a document j as a sparse vector tf j = [tf1 j, . . . , tfp j] of term frequencies for each
of p tokens in a vocabulary V . The term token is used to denote n-grams, consecutive combi-
nations of n words. This is a standard approach in the NLP literature: summarize a document
by the counts of tokens used in it as a dtm, where the rows represent the documents, and the
columns represent the terms in a given dictionary. As discussed previously, the vocabulary V

will consist of the p most frequent n-grams (16K for unigrams, and 65K for bigrams).

A (positive/negative) dictionary is a subset of n-grams from the p n-grams in a given dtm, Di,
i.e. a subset of the vocabulary V . We can represent this as matrix Di of the same row dimension
as the dtm under consideration, with each column referring to each of the terms included in the
dictionary.

We will define the sentiment for a given document j, and a dictionary of m words (positive/neg-
ative), as

S j = ∑
i∈Di

(
tfi j

N j

)
, (1)

where N j is the total number of words in document j, and the index i runs through the words in
the given dictionary Di.

In the case of unigrams our approach mimics that in the standard bag-of-words (Loughran and
McDonald, 2011), in the sense that we start with a set of potential tokens, and we will assign
to each of them a positive/neutral/negative sentiment score. Thus, we can directly compare our
dictionaries to those in the literature. But our approach is broader in scope, as allowing for
bigrams we can capture more nuanced aspects of the English language. We note that we do not
impose term frequency limits on the corpus when computing LM scores, only when training the
ML algorithm (where we use the dtms described above).

This construction of a sentiment score can use a dictionary of combinations of n-grams instead
of just words, to the extent that we have a dtm in the right n-gram space, and a method that labels
the different n-grams. Starting with a dictionary of an arbitrary size, the output from the MNIR
algorithm allows us to create such a classification: those n-grams that get positive/negative
loadings in the estimation of the sufficient reduction statistic of the MNIR model.

To summarize, in what follows we will compute sentiment scores for each document in our
corpus using the standard LM approach, and using the ML dictionaries as well. Since the
latter can be constructed using unigrams or bigrams, we will have different sets of dictionaries
developed by the machine learning algorithm. When dealing with unigrams, we will separate
those terms that are included in both the LM and ML lists, and add those that are uniquely in the
LM and ML lists separately. This allows us to determine the marginal contribution of each of
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the dictionaries in predicting stock price movements. In particular, we will look at the impact of
the terms the ML algorithm agrees with the human classifications (LM), and what the marginal
contributions of new terms may be.

2.4 Empirical design

Our main empirical approach is to study regressions of the form

R jt = βS jt + γX jt + ε jt , (2)

where t is the date of the event (earnings call, 10K release, WSJ publication); R jt is the firm’s
buy-and-hold stock return minus the CRSP value-weighted buy-and-hold market index return
over the 4-day event window (from close at t −1 to close at t +2), expressed as a percent; S jt is
one (or more) of our measures of sentiment, and X jt are controls. We winsorize the sentiment
variables, the controls, and returns at their 1/99% percentiles.

The main coefficient(s) of interest are measured by β . Throughout our analysis we normalize
the sentiment scores S jt to have unit variance, so the β coefficients can be interpreted as the
marginal response of stock returns to a one standard deviation change in sentiment. We will use
the magnitude and statistical significance of the coefficients as one of our comparison metrics,
together with goodness-of-fit measures (adjusted R2).

The specification in (2) is a standard event study with an unbalanced panel. We note that there is
some clustering in the time dimension, which Loughran and McDonald (2011) deal with using
Fama and MacBeth (1973) regressions. For simplicity, and since it is also standard practice
for this type of empirical study, we keep the event-study structure and add both time (quarter-
year) and industry fixed effects (FF49).25 These controls complement the inclusion of hard
data, in particular the standardized unexpected earnings (SUE), as well as lagged stock market
returns, firm size, the book-to-market ratio, share turnover and a NASDAQ dummy (following
Loughran and McDonald, 2011). We report standard errors clustered on FF49 industries and
fiscal quarters. See the Appendix for details on the controls across our different corpora.

Since the dictionaries discussed in Section 2.2 are constructed in sample, we need to use stan-
dard cross-validation techniques for out-of-sample (OOS) verification. For simplicity, we use
as a training sample all the events prior to a fixed date, and as the out-of-sample dataset all
events after. Our algorithm first constructs the ML dictionaries using the training sample, and

25In a previous draft we implemented Fama-MacBeth regressions to complement our panel approach. Our results
were qualitatively similar and quantitatively stronger. We note that earnings calls are more evenly distributed across
the year than 10-K releases, which makes the benefits of Fama-MacBeth more muted.
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then creates the sentiment metrics and estimate the model in equation (2) on the sample that we
did not use for training. We remark that the particular sampling mechanism is not critical for
our results. We could sample particular time periods, or do 80/20 training/validation, and our
qualitative and quantitative results are very similar.

3 Returns and text

Using the dictionaries from the machine learning algorithm described in Section 2, with 2006–
2015 as the training sample, we study in Section 3.1 whether such classification has bite for
predicting stock price reactions out-of-sample (2016–2020). In particular, we compare the per-
formance of the machine learning algorithm to that from the standard bag-of-words approach
(Loughran and McDonald, 2011). In Section 3.2, we take the dictionaries constructed from
the earnings calls, using the full sample (2006–2020), and see if they have external validity,
i.e. whether they can predict stock price reactions to annual statements (10-K) filings and/or the
publication of articles regarding a firm in the Wall Street Journal.

3.1 Human versus machine dictionaries

In this section we present horserace regressions between sentiment metrics constructed using
the machine learning algorithm, and those constructed using the dictionaries from Loughran
and McDonald (2011). Our empirical approach is rather simple: we compare the predictability
in specifications as in (2) when the sentiment variable is constructed using different dictionar-
ies.

We start by comparing the dictionaries generated by the ML algorithm developed in Section
2, fitted using the earnings calls corpus from 2006–2015, to the standard LM dictionaries. We
choose the n-grams using the robust MNIR steps from Section 2.2, setting the criteria for inclu-
sion at 80% for unigrams, and 45% for bigrams. We discuss these thresholds at more length in
Section 4.1.26

We then build the dictionaries and sentiment scores as outlined in Section 2.4. Our goal in this
section is to compare the out-of-sample performance, using the earnings calls from 2016–2020,
of the different LM and ML dictionaries. We note that there is going to be some overlap between
the ML and LM dictionaries, to the extent that the ML algorithm picks words that are part of the
LM dictionaries. In order to compare the two dictionaries on equal footing, we will create three

26The results are not sensitive to these choices. The higher the threshold the smaller the potential overfit from
the ML algorithm, at the cost of fewer signals. But the empirical results, both in terms of overall fit and economic
significance, are very stable for other thresholds.
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separate sentiment scores: one using LM words that do not overlap with the ML dictionaries,
one using ML words that do not overlap with the LM dictionaries, and a last one that consists
of the words that overlap across the LM and ML dictionaries.

In the first column in Table 2, we report the results using LM unigrams that do not overlap with
the unigrams generated by the ML algorithm.27 We find that both the positive and negative
LM dictionaries significantly predict the stock market reactions. The statistical significance is
strong, and the economic magnitudes are large: a one-standard deviation change to the positive
(negative) sentiment score translates into a 0.41% increase (−0.50% decrease) in the stock
price reaction. The R2 of the regression increases from 1.7%, in a specification without any of
the textual variables, up to 2.1% when including the two textual LM measures. We highlight
how the LM dictionaries do fairly well in the earnings calls corpus, both the negative and the
positive word lists, despite the original Loughran and McDonald (2011) paper developed them
in the context of 10-K statements.

The second column in Table 2 repeats the exercise for the ML unigrams that do not overlap
with the LM dictionaries. We see that the predictability is significantly stronger, with (absolute)
t-stats above 7, and an adjusted R2 at 4.6%, twice as high as with the LM words. The marginal
effects are also stronger: a one standard deviation change in the positive (negative) sentiment
scores results in increases (decreases) in the stock price reaction amounting to 0.98% (−1.37%),
roughly 2.5 times bigger reactions that in column one.

The third column in Table 2 reports the estimates using the unigrams that overlap between the
LM and ML dictionaries. The overall fit of the regression goes up, with (absolute) t-stats over 9,
and an R2 of 5.4%. The economic magnitudes of the coefficients are also larger: a one standard
deviation change in the positive (negative) sentiment scores results in increases (decreases)
in the stock price reaction amounting to 1.25% (−1.56%). While the LM words in general
have some predictive power (column one), those that are also chosen by the ML algorithm are
significantly stronger.

The fourth column in Table 2 considers ML bigrams. We see that the economic magnitude
of the coefficients are rather large: a one standard deviation change in the positive (negative)
sentiment scores result in increases (decreases) in the stock price reaction of 1.38% (−1.36%).
The statistical significance is also stronger, with (absolute) t-stats over 8, and an overall R2 of
4.5%. All these metrics are higher than using the LM words, with only the LM/ML overlap
unigrams having roughly equal economic/statistical significance.

While the above univariate regressions are quite persuasive regarding the performance of the

27In Table 10 in the Appendix we include the results including all control variables.
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ML algorithm relative to the LM dictionaries, one cannot make further conclusions without a
multi-variate analysis, included in columns five and six in Table 2. In column five we restrict
attention to ML unigrams, whereas in column six we study ML bigrams, controlling in both
cases for the sentiment scores from the LM dictionaries. Focusing on column five, we find
that the LM dictionaries load with the wrong sign when estimated jointly with the other senti-
ment scores: the LM positive has a negative coefficient, and LM negative has a positive (and
statistically significant) coefficient.28 On the other hand, both the ML positive and negative
word lists have economically large coefficients (0.78 and −0.94) and associated t-stats (8.7 and
−9.8). These are comparable to the overlap scores (LM & ML), which have slightly higher
coefficients (0.90 and −1.32), and similar statistical significance (t-stats around 9).

The evidence from column five suggests that the ML dictionaries perform significantly better,
with only the LM words that are validated by the ML algorithm having explanatory power.
Furthermore, the LM words that do not overlap with ML seem to be associated with stock
returns with the wrong sign, once we control for sentiment using the ML dictionaries. We
also note that the joint regression in column five yields an R2 of 6.5%, higher than all previous
individual regression specifications.

The last column in Table 2 looks at the performance of the bigram dictionaries, estimated jointly
with the LM word lists. We again find that the LM terms without overlap do not load in a
significant way, with the LM negative again carrying the wrong sign. The joint LM & ML
dictionaries have similar economic and statistical significance to previous specifications, both
highly statistically significant. The bigram sentiment scores have similar performance as well,
with the positive (negative) bigrams moving stock prices by 1.06% (−0.79%).

To summarize, in this section we have conducted an empirical exercise that starts with an arbi-
trary dtm (in a given n-gram space). We show how training using the early half of our sample,
2006–2015, allows us to construct strong predictors of price movements during our out-of-
sample period 2016–2020. Our results show how the robust MNIR algorithm generates sen-
timent dictionaries that have much stronger contemporaneous correlations with stock returns,
relative to the LM dictionaries. We turn next to see how each dictionary performs using other
corpora, namely 10-K statements and WSJ articles.

3.2 External validity

Loughran and McDonald (2011) focus their dictionary construction using the corpus of 10-K
statements, the annual reports filed by publicly traded firms in the EDGAR system. In contrast,

28We note that this is driven by the inclusion of the LM & ML positive/negative scores, not by the ML scores,
i.e. we find the same results when omitting the ML positive/negative variables.
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our analysis has focused on the corpus from earnings calls. In this section, we study to what
extent the ML dictionaries generated using the robust MNIR algorithm can compete with the
LM dictionaries using other corpora, in particular the 10-K statement releases, as well as WSJ
articles, the two databases discussed in Section 2.1.

We start by comparing the dictionaries generated by the ML algorithm developed in Section
2, fitted using the earnings calls corpus on the full sample (2006–2020), to the standard LM
dictionaries. We choose the n-grams using the robust MNIR steps from Section 2.2, setting the
criteria for inclusion as in Section 3.1. We then build sentiment scores using the new corpora
(10-K statements or WSJ articles). Our empirical approach mimics the one from Section 3.1,
we simply compare the external validity of the LM and ML dictionaries when applied to a
different corpus. We note that while these two new corpora are quite related to the earnings
calls corpus that we use to develop the ML dictionaries, the language used in verbal discourse
(earnings calls) is certainly different than that used for regulatory filings (10-K) and journalists
prose (WSJ). We also note that the stock price reaction to the 10-K releases and WSJ article
publication is much more muted than the one to earnings calls (see Figure 1).

When using the full sample, the LM dictionaries and the ML dictionaries overlap on 18 (30)
positive (negative) words. We emphasize how small these word lists are relative to the standard
sentiment dictionaries. There are another 329 (2,315) positive (negative) LM words that do not
overlap with the words picked by the ML algorithm. The unique positive (negative) unigrams
stemming from the ML algorithm add up to 57 (64) tokens, also a significantly smaller number
than the LM dictionaries. The ML positive (negative) bigrams amount to 381 (344) different
terms (also a small set relative to the LM dictionaries).

In Table 3, we present the results using different dictionaries on the 10-K corpus, essentially
replicating Table 2 with the 10-K corpus. The first column shows the (unique) LM sentiment
scores are barely associated with the stock price reactions during the release of 10-K state-
ments.29 The (unique) LM positive dictionary score loads with a negative sign, and the (unique)
LM negative dictionary score has a small economic impact, which is marginally statistically sig-
nificant (a one standard deviation change in sentiment moves returns by 6 basis points, with a
t-stat of −1.9). The (unique) ML positive unigrams have a 11 basis points impact on returns
(t-stat 5.1), whereas we cannot reject the null that the ML negative unigrams are not related to
returns. The joint LM & ML dictionaries, on the other hand, both load with the right signs, with
absolute t-stats above 2. The ML bigram dictionaries have the strongest economic and statisti-

29This is sample period specific (Frankel, Jennings, and Lee, 2021). We can reproduce the results in LM to three
significant figures using the sample period in their paper. The stock price reaction to 10-K releases has dropped
significantly over the last decade, perhaps because earnings calls have gained in dissemination and visibility. See
Li and Ramesh (2009) for similar estimates.
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cal impact, as shown in column four: a one standard deviation change in the positive (negative)
sentiment score is associated with a 15 (−16) basis points return change (t-stats of 3.8 and −2.6
respectively).

When estimating jointly all the unigram dictionaries, presented in column five of Table 3, we
see a similar pattern to the one in the univariate analysis. The (unique) LM negative dictionary
loses all its predictive power, and the (unique) LM positive still loads with the wrong sign. On
the other hand, the (unique) ML positive words have a 13 basis points impact (per one standard
deviation change), with a t-stat of 4.9. The overlap dictionaries point estimates, and statistical
significance, are similar to those estimated in the univariate specification, having impact of 5
basis points on the positive domain, and −21 basis points on the negative domain. Finally,
column six confirms the results with bigrams are the strongest, very similar to those in the
univariate specifications.

One could have conjectured that the reason the ML dictionaries outperform the LM dictionaries
in our analysis in Section 3.1 is due to the fact that the LM were developed for 10-K statements,
not for earnings calls. On the other hand, we have shown that the LM dictionaries predictability
for earnings calls is quite strong (see Table 2), and that their predictability on 10-K statements
is rather weak, relative to the ML word lists. While the 10-K statement releases are not a
particularly powerful event study, we still find that the ML dictionaries capture more colour than
the words in the LM dictionaries. Even when working with the corpus from 10-K statements,
the origin of the LM word lists, the evidence in Table 3 shows that the ML algorithm can capture
some sentiment that is not measured by existing bag-of-word approaches.

In Table 4 we repeat our main empirical exercise using WSJ articles as the event of interest.
The first four columns present the univariate estimates, as in Tables 2-3. The LM (unique)
dictionaries both load with similar economic magnitudes: 10 (−11) basis points impact (per
standard deviation change in sentiment) for the positive (negative) sentiment scores, with t-
stats above 7. We note the R2 is quite low in these specifications, at 0.7%. The (unique) ML
dictionaries, and the overlap dictionaries (LM & ML) perform much better, with R2 of 1% and
0.9% respectively, and economic magnitudes of 12 and 16 basis points in the positive domain,
and −21 and −19 in the negative domain. The ML bigrams also have larger point estimates
than the LM words, with marginal impacts of 14 basis points per standard deviation shock, both
in the positive and negative domain. While the LM dictionaries perform better on the WSJ
corpus than with the earnings calls and 10-K corpora, the ML word lists have a clear edge on
these univariate specifications on the WSJ corpora, with higher t-stats, economic magnitudes,
and overall statistical fit (R2), corroborating their external validity.
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In the joint estimations presented in columns five and six of Table 4, the univariate results seem
to be quite robust. When looking only at unigrams (column five), we find that all three unigram
lists (LM only, ML only, joint LM/ML) have some marginal explanatory power, with larger
economic and statistical magnitudes for the ML sentiment scores. On the positive side, we see
the effects are 8, 9 and 12 basis points (for LM, ML, LM&ML), whereas on the negative side
we have point estimates of −5, −17, and −16 basis points. The joint specification shown in
column six, which considers ML bigrams and LM unigrams, as in previous tables, replicates
the univariate results, with all three dictionaries having some marginal significance, with similar
magnitudes as in columns 1–4. The joint fits in columns 5–6 almost double the R2 of the
regression with only LM words.

One of the main differences between the earnings call and the WSJ corpora is their sizes, as
discussed in Section 2.1 (see Table 1): WSJ articles run a few hundred words, whereas earnings
calls are in the thousands (and 10-Ks even higher).30 While the LM dictionaries do seem to have
some marginal explanatory power in the WSJ corpus, the ML dictionaries, both using unigrams
and bigrams, bring further colour to journalists’ prose, with economic magnitudes 2–3 times
bigger, and higher statistical significance.

To summarize, the evidence in this section shows how the ML dictionaries constructed with the
earnings calls corpus following the robust MNIR model discussed in Section 2.2 have strong
external validity. Both the unigram dictionaries, which contain a handful of words relative to the
existing bag of words, and the bigram dictionaries have stronger contemporaneous correlations
with stock returns. In the rest of the paper we attempt to further compare the human dictionar-
ies (LM) versus those from the ML algorithm, and we will try to understand what drives the
performance improvements.

4 Colouring words

The results in Section 3 suggest that large dtms trained using stock price reactions can generate
great predictors out-of-sample. We dig into what drives our improvements in predictability
in this section. In Section 4.1 we look at the breadth of our dictionaries, changing the size
of the dtms we use. Section 4.2 compares the LM and ML dictionaries in detail. In Section
4.3 we study the disambiguation of unigrams that the ML algorithm creates when working
with bigrams, studying the role of negation in Section 4.4. In Section 4.5 we discuss the data
depository we provide to complement our paper, in particular the different dictionaries a reader

30The smaller number of words creates some econometric issues, as the mode of sentiment scores is close to
zero for the WSJ corpus, whereas it is much closer to a normally distributed random variable for earnings calls and
10-K statements.
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may want to use with our output.

4.1 Dictionary breadth

Our starting point is a summary of the text for each earnings call as a dtm with a given set of
tokens. In the analysis in Section 3 we use the top 16K (65K) unigrams (bigrams) by frequency.
A natural question to ask is to what extent these representations cover the whole corpus, and
what are the frequencies of n-grams that we are studying, relative to those in the standard
bag-of-words approach. We add the statistics on trigrams for completeness, and to document
some of the reasons bigrams seem to be as high-order as one should go for sentiment analysis
purposes.

The top panel of Figure 2 plots the percentage of the corpus that is covered by dtms with 2k

terms, for k = 9, . . . ,26. The red crosses correspond to the unigram representation: we see that
with as few as 4–8K unigrams we are reading virtually the entirety of the earnings calls corpus.
This is in contrast with the bigram coverage (in blue): even with 10K tokens the dtm only covers
about 28% of the corpus. One has to use dtms with more than 65K tokens to cover about 50%
of the corpus with bigrams. For trigrams, in green, the coverage with 10K terms is below 10%
of the corpus, and one needs to have dtms with over 500K tokens in order to cover more than
25% of the corpus.

The bottom panel of Figure 2 plots the rank-frequency distribution for uni/bi/trigrams. We note
how the unigram and bigram lines cross around the 4,000 mark, i.e. the 4,000th bigram by fre-
quency shows up in the earnings calls more frequently than the 4,000th unigram. For trigrams
that crossing point is around the 10,000th ranked token. Most importantly, while unigrams do
fall down significantly after the first few thousand words, bigrams and trigrams have signifi-
cantly thicker tails: the 50,000th bigram (by frequency) still has several hundred appearances in
the earnings calls corpus. With a set of events in the 60K range, the sentiment of such n-grams
is not easy to estimate, but the ML algorithm attempts to colour them.

The average number of unigrams per call is 3,145, with an average of 1,030 unique words. The
average number of bigrams is 2,785, with an average of 2,430 unique bigrams. For trigrams the
numbers are very similar to bigrams: the total number of trigrams per call are 2,455, whereas
the average number of unique trigrams is 2,376.31 There are about 2.4 times as many unique
bigrams than unigrams in a given call, but the number of unique trigrams is very similar to that
of bigrams at the earnings call level. This is true despite the fact that there are significantly

31Since we tokenize at the sentence level, there are fewer trigrams than bigrams, and fewer bigrams than uni-
grams (for every n word sentence, we have n−1 bigrams and n−2 trigrams).
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more unique trigrams (78m) than unique bigrams (15m) across the whole corpus.32

At the earnings call level, it seems like the document is well summarized using bigrams, without
needing to use trigrams. At the same time, the full bigram representation is significantly larger
than that of unigrams, by a factor of almost 100, despite all the cleaning/token removal we
perform. The fact that the number of trigrams (per call) is similar to bigrams also hints at staying
only with bigram dtms: the potential marginal gains do not outweigh their lack of coverage show
in the top Panel of Figure 2.33 This suggests our analysis is quite comprehensive, within the
standard bag-of-words approach.

The above discussion reveals some important aspects of the building blocks of our algorithm.
But it does not speak to the final breadth of the dictionaries that come out of the robust MNIR
algorithm. As in the analysis in Section 3, we group the unigrams as LM (only), ML (only),
and the joint LM/ML lists. In Table 5 we present such measures, reporting the total number
of n-grams in each dictionary, as well as the percentage of a corpus that is covered by a given
dictionary. We consider the three corpora analyzed in Section 3, where the ML dictionaries are
constructed using the full earnings calls corpus (2006–2020).

In the first Panel of Table 5 we look at the positive word lists. We see that the 329 LM positive
words amount to 1.9% of the earnings calls corpus, 0.7% of 10-Ks, and 1.3% in the WSJ. On
the other hand, we see that the 57 ML positive words cover roughly 3–4 times more: 8.4% in
the earnings calls, 4.1% in 10-Ks, and 3.2% in the WSJ. When looking at the list that overlaps,
a total of just 18 words, we see that they cover a non-trivial amount of the corpora, comprising
1.3% of the earnings calls, 0.2% of 10-Ks, and 0.4% in the WSJ. Finally, we see that the ML
positive bigrams are well represented in the earnings calls corpus (2.3%), with slightly lower
coverage in 10-Ks/WSJ (0.8% and 0.3%), as expected.

The coverage numbers for negative dictionaries, presented in the bottom panel of Table 5, paint a
similar picture. The 2,315 LM negative words cover slightly more of the 10-K and WSJ corpus
(2.7% and 3.2%), relative to the earnings calls (1.4%), and also relative to the LM positive
words. The 64 ML negative words are nonetheless more frequent on both earnings calls and
10-K statements (4.5% and 4.3%), and they have a similar coverage to the LM words in the
WSJ corpus (3.1%). The list of negative overlap words, 30 different unigrams, covers about
0.4–0.5% of the three corpora, a non-trivial number given the (small) size of the dictionary. The

32The number of unique unigrams is 186,994. It is worthwhile noticing these numbers are “large,” as standard
estimates of English native speakers dictionaries are around 20,000 words. This is mostly due to the nature of the
corpus, composed of transcriptions of the earnings calls which are going to have typos and often very specialized
language.

33A previous draft of the paper confirmed this: the fits using trigrams are significantly worse than those using
bigrams.
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ML negative bigrams are slightly less prevalent than the positive bigrams, but still cover 1.4%
of the earnings calls, and 0.7% (0.4%) of 10-Ks (WSJ).

The robust MNIR relies on repeated positive/negative signals across different validation sam-
ples. The 80% (45%) inclusion criteria for unigrams (bigrams) is quite stringent, picking a
small set of tokens that have consistency across different subsamples (industry/time). On the
unigram side, our results in Section 3 are driven by 75 positive words, and 94 negative words,
significantly less (in terms of counts) than those in standard sentiment dictionaries. The 80%
cutoff we use for the inclusion of unigrams corresponds roughly to the 99.5th percentile of the
D+ and D− scores, using a dtm of size 16K. The 45% cutoff we use for bigrams similarly
corresponds (roughly) to the 99.5th percentile of the D+ and D− scores, using a dtm of size
65K.

The evidence in Table 5 shows that not only are the ML words strong signals, they are also much
more common than the LM dictionaries, despite the fact that the unigram lists are significantly
smaller in size. Even the bigrams lists are fairly small in size, around 350 tokens for both
positive and negative, which generate about the same number of signals as the LM dictionaries
in the earnings calls corpus.

4.2 Comparing the LM and ML dictionaries

Our next exercise is to study more carefully the actual choices of positive and negative la-
bels coming from the machine learning algorithm, and how they compare to the LM dictionar-
ies.

In Table 6 we present the top 30 positive and negative words in the LM dictionaries by fre-
quency, together with their associated robust MNIR scores. We note that these 60 LM words
cover more than 65% of the total term frequencies of all LM words in the earnings calls cor-
pus.34 The table lists the token in consideration, its coverage over the whole corpus (Cov.,
measured in basis points), and the percentage of the 500 cross-validation samples for which the
unigram is labelled as positive (negative).

The ML algorithm broadly agrees with the LM classification. Of the 30 positive LM words
listed in the table, 12 are also classified as positive using the robust MNIR method: the top
three LM words by frequency are a leading example (good, strong, better). It is interesting to
see that most of the words associated with the verb improve get classified as positive both by

34This is not driven by differences in the earnings calls corpus and 10-K statements. Using 10-K statements, we
find that the top 50 LM positive words cover 80% of all the positive term frequencies, and the top 200 LM negative
words cover more than 80% of all the negative term frequencies.
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the LM and ML algorithms, with the exception of the infinite form improve itself: improvement,
improved, improving and improvements are positive according to the robust MNIR algorithm,
but improve is negative in 34% of the cross-validation samples (positive only in 11% of them).
Several other LM unigrams have relatively high ML scores (opportunity, progress), but many
others are not that positive at all (best, despite), and the term confident is actually included in
the ML negative dictionary.35 The ML and the LM dictionaries are labelling positive words
quite differently.

Similar agreements between LM and ML can be found in the negative domain for words such
as decline(d), loss or challenges(ing). There is some disagreement due to external validity,
i.e. question(s) is a very special word in earnings calls. But there are plenty of differences: break

is scored positively by the ML algorithm, and restructuring is a toss-up (31% positive and 30%
negative ML scores). Other words such as recall, against, and volatility are not particularly
negative according to the ML scores. Our approach captures colour of finance discourse that is
not measured by the standard bag-of-words approaches.

Table 7 considers the top ML words, ranked by frequency, essentially mimicking Table 6 but
focusing on the set of words chosen by the ML algorithm. The first thing to note is that the
frequency counts of the ML words are significantly higher, echoing the evidence from Table
5. There is not that much overlap of LM words in Table 7, relative to Table 6, as of the top
30 ML positive words only five (good, strong, better, improvement and pleased) are in the LM
dictionaries, with only three of the top ML 30 negative (decline, loss, and negative) being part
of the LM dictionaries.

The threshold of 80% that we use to classify words as positive (negative) is fairly stringent, it
includes only 75 positive and 94 negative words (Table 5). And the bulk of the signals, in terms
of term frequencies, are included in Table 7. While a discussion of each term is beyond the scope
of our paper, we highlight a few of the choices made by the robust MNIR algorithm.

The top positive word is think, not a term likely to be included by a human as particularly
positive or negative. Within the top five negative words, we find believe, which is semantically
quite related. Our research argues that these two relatively common words are being used in
different contexts. The bigrams believe important, continue believe, still believe all have high
term frequency counts, and are flagged as negative by the ML algorithm. On the other hand,
think continue, think kind, think really are both frequent and quite positive, according to the ML
algorithm.

35We note that the updated 2020 LM list excludes 17 terms, relative to the original version. Among these 17
terms we have great and benefit, both of which are part of the ML positive dictionaries, as shown in Table 7.
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On a similar spirit, we see the token increase(d) is labelled as positive by the ML algorithm,
while decrease is considered negative. While these seem like natural choices, ex-post, neither
is included in the LM dictionaries. Context is again important: the use of the verb increase
is associated with positive changes, while the verb decrease is hard to relate to any positive
event.

There are some natural words that seem positive in Table 7, even if a human may hesitate to con-
sider them unambiguously positive:36 growth, up, well, over, really, continue(d), increase(d),
lot, great, across. There are a fair number of accounting/finance related words in Table 7 (share,
cash, operating, margin, income, flow) hinting at the idea that managers may want to discuss
facts when things are going well.

On the negative side, we see the top negative word (by frequency) is not, which is a strange
choice by the ML algorithm, but with an unambiguously negative ML score (in 97% of the
cross-validation samples it is consider negative by the MNIR algorithm). We will further ana-
lyze negation in Section 4.4.

There are several other very frequent words that do have a strong negative sentiment, but are
not included in the LM dictionaries: down, back and impact(ed) are leading examples, all as-
sociated with bigrams that are quite negative, as we will illustrate in Section 4.3. Using the
words change(s), costs, timing also has a negative sentiment, as do references to expectations,
expected, trying, and understand.

The main goal of the discussion in this section, associated with Tables 6 and 7, is to show that
while there is some agreement between the LM and ML dictionaries, they are colouring words
in quite different ways. Their intersection is particularly powerful, as shown by the LM & ML
scores throughout Tables 2-4, while it is a small set of words (Table 5). But the ML words
not included in the LM lists are both much more frequent, and also quite colourful. In the next
section we will use bigrams to illustrate how the ML algorithm makes such word choices.

4.3 Disambiguation

The goal of this section is to study the role of bigrams to construct measures of sentiment above
and beyond the standard “bag-of-words,” which focuses on unigrams, as well as highlight why
the ML algorithm chooses the words it chooses. We argue that using the colour of bigrams
helps understand the sentiment of individual unigrams, and that bigrams are extremely useful at
disambiguating the meaning of words.

36One can increase costs, and continue to do poor things, but no CEO would use such narratives in an earnings
call.
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We start our analysis by depicting graphically the main output from the ML analysis: the per-
centage of times a given unigram is considered positive/negative/neutral. Figure 3 plots these
three coordinates, for the top 4,096 unigrams by frequency, in a ternary plot. We plot the posi-
tive (negative) LM terms in blue (red), and the rest in black.

Under the null hypothesis that there is no need for disambiguation, we would expect all points
to concentrate in the three corners: either a words is neutral, positive, or negative. Figure 3
shows that the ML algorithm strongly rejects this null: the bulk of the points is concentrated in
the upper center of the triangle, corresponding to unigrams that are mostly neutral, with some
instances of positive and negative context.

There are terms that have some zero positive (negative) scores across all of the samples, plotted
on the sides of the triangle, but we see that the ML algorithm classifies many such terms as
neutral in the majority of the cases. It is important to note that these patterns apply broadly to
the LM dictionary words: on average the blue (red) words are on the positive (negative) side of
the ternary plot, but by and large they concentrate on the top neutral space.

There are terms that seem to be fairly unambiguous, those in the shaded areas in the ternary plot,
where the D+ and D− scores are higher than our 80% threshold. Those are the terms that the
ML algorithm picks, dropping all the other unigrams, which are mostly neutral. It is important
to note that while there are a handful of LM terms in the shaded areas of Figure 3, most of these
unigrams are new to the literature, and present one of the contributions of our paper.

As shown in Figure 3, there are many unigrams which have mixed sentiment loadings. The ML
algorithm is able to disambiguate many of these using bigrams, coding differently a unigram
according to its company. Table 8 considers bigrams associated with six unigrams, two from the
LM dictionaries, and four from the ML dictionaries. We require the bigrams D+ (D−) scores to
be above 20%, and cap the list at five bigrams, since those will tend to dominate the sentiment
scoring using frequency counts. The table lists the bigram, its relative frequency (out of all
occurrences of a given unigram in our bigram dtm, the percentage of times that given bigram
occurs), as well as its D+ score in the left panel, with the D− scores in the right.

As argued earlier, the LM positive term improve does not score very positive in the ML analysis.
We see that the bigrams continue(s) improve and able improve get relatively high ML positive
scores. On the other hand, there are many bigrams that get flagged as negative by the robust
MNIR estimation: improve performance/over/second, going/conditions improve. The existence
of such sentences, in which improve is not being used with a positive connotation, makes the
unigram not well suited as a sentiment indicator. Using bigrams, we get to pick only those
instances where improve is indeed being used with a positive spin.
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Next in the table we see the bigrams associated with confident. While there are two bigrams that
are relatively positive, the most salient is the bigram remain confident, which is very frequent
(about 16% of all occurrences of confident), and has a very large D− score.

The words solid and soft both belong to the final ML dictionaries. Table 8 shows that these
words are virtually associated with bigrams that are only positive (in the case of solid) or nega-
tive (in the case of soft). Note that the first solid bigrams are more than 20% of the frequencies
of that term, whereas there is only one (rare) bigram with a D− score above 20%. The three
soft bigrams on the right panel comprise more than 30% of the counts of the term, all with large
negative scores. The fact that these words are used in an unambiguously positive/negative sense
makes them ideal candidates for sentiment dictionaries.

When looking at the positive bigrams associated with cash, we see how the five included com-
prise over 40% of its term frequencies. On the negative side, we see terms that most humans
would associate with a negative connotation, i.e. cash burn, but their term frequencies are signif-
icantly lower, with none of the bigrams comprising more than 1% of all instances of cash.

The last term included in Table 8 is continue, which would hardly be considered as a sentiment
word by most human readers. The bigrams shown indeed read quite “plain,” but the ML positive
scores, as measured by D+, are quite large, with a couple in the 99.5% tail of D+ scores.37

Moreover, the term frequencies of those bigrams add up to over 15%, whereas those in the
negative bigram list do not break 2%. The ML algorithm picks up continue, and derivatives of
the verb, as a positive word precisely because of its frequent use in a negative context.

The above discussion is limited, due to the large scope of words we study and obvious space
constraints. Our goal is that it gives a feel for why the ML algorithm chooses terms to be
included in positive/negative dictionaries. In particular, the examples in Table 8 are meant to
illustrate how some tokens may need disambiguation (improve, confident), whereas others do
not (solid, soft). The set of unigrams chosen by the ML algorithm are precisely those words
that do not need any disambiguation.

We end this section by highlighting some of the tradeoffs and limitations of our approach. Our
ML algorithm is trained on earnings calls, which induces some context specificity (i.e. cash

flow), which is overall positive, as we are trying to measure “finance discourse,” but clearly
not ideal: while a CFO will use cash flow during an earnings call only when things are going
well, a journalist may choose to use it in a different context. We have calibrated our empirical
exercise to avoid overfitting, but it is inevitable to have some words that may not resonate to a

37The bigrams “think continue” and “continue improve” do not make the table, but both have a relative frequency
of 1.2%, and D− scores of 73 and 64 respectively.
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human. On the other hand, relaxing our stringent inclusion criteria will add many potentially
good signals, at the cost of including other (noisy) terms. The data and code we share in the
data depository discussed in Section 4.5 allows the reader to refine and expand the analysis in
this section to look at any other word that is included in our analysis.

4.4 Negation

The token not deserves some further discussion, as it is standard negation in English, it is very
common in our corpus, and the robust MNIR algorithm includes it in the ML negative word lists
due to its D− score of 97% (see Table 7), an extremely negative sentiment score. The folklore in
the literature is that positive words have less impact due to such negations. Loughran and Mc-
Donald (2020), summarizing the literature, write: “The framing of negative information is so
frequently padded with positive words that the measured positive sentiment is ambiguous. Al-
though some papers have identified statistically significant effects associated with positive tone
(e.g., Garcı́a (2013), Jegadeesh and Wu (2013)), Tetlock (2007) and Loughran and McDonald
(2011) find little incremental information in positive word lists, which is consistent with the
concern about negation of positive words.”

Table 9 mimics the construction of Table 8, focusing on bigrams that start with “not.” The com-
mon wisdom echoed in the previous quote from Loughran and McDonald (2020) stems from the
possibility, in the English language, to use negation to invert the meaning of a term. Focusing
first on the right panel of Table 9, we see that there are four unigrams that are preceded by not

that are ML negative bigrams, with fairly large D− scores (not able/happy/satisfied/pleased).
At the same time, there are two LM negative words that when negated are still being scored as
negative by the ML algorithm (not lost/losing). Moreover, we have several ML negative uni-
grams that are preceded by not in Table 9 (changed, believe, expected, issue, related, offset),
and their ML scores are still very negative.

Turning to the left panel, we see a similar mix. There is one single LM negative term that shows
up as a positive bigram, not break. There are five positive terms that negated are still considered
positive by the ML algorithm. Most importantly, the frequency counts of the bigrams in the left
panel are significantly smaller than the frequency counts in the right panel. Furthermore, note
how the D− scores are quite large, relative to the D+ scores. The not bigrams are overall quite
negative.

It is true that negating positive words generates negative bigrams, but it is also true that negating
negative words generates negative bigrams. Differently put, using negation in English carries a
strong negative sentiment, no matter what is being negated. At the very least this is what stock
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prices, using our ML algorithm, suggest about negation in a financial context.38

4.5 Data depository

The data depository39 that complements the paper consists of the underlying dtm representa-
tion of the earnings calls under study, with associated public metadata, together with the above
dictionaries and other auxiliary files (code+). We note that we provide a version of our analysis
that uses Kaggle data, which can be used to both train/predict (without some controls).40 We
include in our depository the code that generates the dictionaries introduced above, so the read-
ers can adapt it to their needs. We also include functions that can reproduce the disambiguation
results, as in Table 8.

Perhaps of most interest for readers wanting to go beyond the word lists included in the Ap-
pendix, we provide two files containing the robust MNIR output, the D+ and D− scores, for
all unigrams in our 16K dtm, as well as all the bigrams in our 65K dtm. These files allow re-
searchers to be more stringent/lax regarding the inclusion of unigrams or bigrams in their own
projects, as well as reproduce many of the results we report in our paper.

In case our English narrative in the paper is not persuasive enough, we hope the open source
code and data we provide can convince the interested reader that, while ML algorithm does not
speak English, it brings out new ways to colour financial discourse. We conjecture, but leave for
future research, that the approach advocated in our research should work equally well in other
languages/emojis.41

5 Conclusion

We construct dictionaries based on a variation of the machine learning algorithm of Taddy
(2013), using a large corpus of earnings calls transcripts. We find that the tokens chosen by
our algorithm perform significantly better than the existing techniques based on bag-of-words.
We further argue that the machine learning approach can help us refine existing word lists,

38We are speculating in this footnote, but while we clearly agree much of the jargon we provide in our new ML
dictionaries is context specific (finance/accounting/economics), the negation evidence we provide is likely to have
more external validity. For example, the best-selling book “How to negotiate with your kids” is explicit about how
using not while talking to children is perceived quite negatively.

39See http://leeds-faculty.colorado.edu/garcia/data.html.
40We can reproduce all our results with this alternative dataset/empirical approach. See https://www.kaggle.

com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs.
41We note that working with sentiment dictionaries in other languages is a challenge, as translating the LM words

is not a real option, given the nuances of translation. The robust MNIR algorithm is an off-the-shelf alternative to
construct such sentiment dictionaries in any language, given a training sample associated with stock returns.
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highlighting which words have more bite than others, and also find new words that could be
missed by human coders. Our empirical results show how bigrams can colour financial text via
disambiguation.

We note that our empirical approach cannot differentiate between shocks to discount rates (risk)
and to cash flows: our ML approach confounds such shocks, as it is only trained on returns.
Adding the dictionaries of risk words from Hassan, Hollander, van Lent, and Tahoun (2019,
2021) does not change any of our findings,42 which suggests that cash flow news are what drive
the choices of the ML algorithm. Further work disentangling those two different sources of
news seems like an interesting avenue for future research.43

While the debate is far from settled, our evidence shines a much brighter light on machine learn-
ing algorithms than that suggested in Loughran and McDonald (2020). Our analysis supports
the external validity of the new ML dictionaries, but only future empirical work will settle the
debate on how to measure the sentiment of narratives in our dismal science.

42Results available from the authors upon request.
43See Hanley and Hoberg (2019) for related research on risk in the context of the financial sector.
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This figure reports average absolute normalized excess return around the earnings call events (blue), the filing
date of 10-Ks (green) and WSJ article publications (red). Excess return is CRSP daily stock return less the value-
weighted total return index, normalized by its mean and standard deviation, computed in the period of −60 to −2
days relative to the event date. The dashed horizontal line is the the expectation of the absolute value of a standard
normal random variable.

Figure 1: Average absolute returns around events (earnings calls, 10K, WSJ)

32



●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

51
2

1,
02

4

2,
04

8

4,
09

6

8,
19

2

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

1,
04

8,
57

6

2,
09

7,
15

2

4,
19

4,
30

4

8,
38

8,
60

8

16
,7

77
,2

16

33
,5

54
,4

32

Token rank order (2^k)

S
ha

re
 o

f t
ot

al
 c

or
pu

s

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

8

128

2048

32768

51
2

1,
02

4

2,
04

8

4,
09

6

8,
19

2

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

1,
04

8,
57

6

2,
09

7,
15

2

4,
19

4,
30

4

8,
38

8,
60

8

16
,7

77
,2

16

33
,5

54
,4

32

Token rank order (2^k)

F
re

qu
en

cy

The top graph plots the proportion of the total text of earnings calls that is covered by having document-term-
matrices of different sizes, starting with 512 tokens (29) up to 67m (226) tokens. The bottom graph plots the
log-frequencies when ranking individual n-grams by such frequencies. The red crosses refer to unigrams, the blue
circles to bigrams, and the green diamonds to trigrams.

Figure 2: n-gram coverage and log-frequencies
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This ternary graph plots each of the top 4,096 unigrams by frequency, as well as all LM words, showing the
percentage of times a given unigram is considered positive (right), negative (left), or neutral (top), according to the
robust MNIR algorithm. The blue circles are LM positive words, whereas the red x’s are LM negative words. The
black crosses are terms that do not belong to the LM dictionaries.

Figure 3: Unigram and bigram sentiment scores
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Table 1: Corpus overview

The following three panels show the start and end dates for each of the three corpora we study, as well
as the number of unique firms, the total number of observations (event-firm), and the average number of
words per document (counted after applying the NLP cleaning procedure detailed in the Appendix).

Earnings calls
Start 13.10.2005
End 07.10.2020
Unique firms 3,229
Observations 85,530
Average words per document 3,130

Annual reports (10-K)
Start 02.01.1996
End 27.12.2018
Unique firms 10,076
Observations 76,922
Average words per document 17,294

Wall Street Journal (WSJ)
Start 03.01.2000
End 31.12.2021
Unique firms 189
Unique articles 144,383
Observations (firm-days) 87,198
Average words per document 457
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Table 2: Horse race regressions — earnings calls

The following table presents the output from regressions of the form:

R jt = βS jt + γX jt + ε jt ,

where t is the date of the earnings call; R jt is the firm’s buy-and-hold stock return minus the CRSP
value-weighted buy-and-hold market index return over the 4-day event window, expressed as a percent;
S jt is one (or more) of our measures of sentiment, and X jt are controls. Our controls include standarized
unexpected earnings (SUE), log(book−market), log(size), log(shareturnover), industry fixed effects
(Fama-French 49), a NASDAQ dummy and quarter-year fixed effects. For earnings calls prior to 2016,
we train the MNIR model and extract which n-grams are annotated as positive and negative. The results
presented in the table correspond to earnings calls from 2016–2020. We construct the sentiment measures
using term frequency weights separately for LM positive/negative word lists (not included in the ML
dictionaries), ML positive/negative dictionaries (not overlap with LM), positive/negative unigrams that
overlap in the ML and LM dictionaries, and ML positive/negative bigrams. All sentiment measures are
scaled to unit variance. Standard errors are clustered on FF49 industries and fiscal quarters. The table
presents point estimates and t-statistics (in parenthesis).

Dependent variable:

Filing period excess return

(1) (2) (3) (4) (5) (6)

LM positive 0.41∗∗∗ −0.14∗ 0.06
(6.6) (−1.9) (1.0)

LM negative −0.50∗∗∗ 0.39∗∗∗ 0.24∗∗∗

(−4.4) (6.0) (3.0)
ML positive 0.98∗∗∗ 0.78∗∗∗

(7.7) (8.7)
ML negative −1.37∗∗∗ −0.94∗∗∗

(−11.7) (−9.8)
LM & ML positive 1.25∗∗∗ 0.90∗∗∗ 0.89∗∗∗

(11.4) (9.5) (9.7)
LM & ML negative −1.56∗∗∗ −1.32∗∗∗ −1.34∗∗∗

(−9.3) (−9.1) (−9.4)
ML positive bigrams 1.38∗∗∗ 1.06∗∗∗

(10.7) (12.4)
ML negative bigrams −1.36∗∗∗ −0.79∗∗∗

(−7.7) (−5.8)

Adjusted R2 0.021 0.046 0.054 0.045 0.065 0.064
Observations 39,269 39,269 39,269 39,269 39,269 39,269
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Table 3: External validity — 10K filings

The following table replicates the analysis in Table 2, using the 10K filing as the event of interest,
measuring sentiment using the LM and ML dictionaries. The dependent variable is the firm’s buy-and-
hold stock return minus the CRSP value-weighted buy-and-hold market index return over the 4-day event
window. Our controls include log(book−market), log(size), log(shareturnover), industry fixed effects
(Fama-French 49), a NASDAQ dummy and quarter-year fixed effects. The machine learning dictionaries
are constructed using the earnings calls database, from 2005–2020, following the classifications in Table
2. We include all 10K filings, filtered as in Loughran and McDonald (2011), for the period 1995–2018.
We construct the sentiment measures using term frequency weights separately for LM positive/negative
word lists (not included in the ML dictionaries), ML positive/negative dictionaries (not overlap with
LM), positive/negative unigrams that overlap in the ML and LM dictionaries, and ML positive/negative
bigrams. All sentiment measures are scaled to unit variance. Standard errors are clustered on FF49
industries and fiscal quarters. The table presents point estimates and t-statistics (in parenthesis).

Dependent variable:

Filing period excess return

(1) (2) (3) (4) (5) (6)

LM positive −0.14∗∗ −0.14∗∗ −0.13∗∗

(−2.2) (−2.1) (−2.1)
LM negative −0.06∗ 0.03 0.01

(−1.9) (1.1) (0.4)
ML positive 0.11∗∗∗ 0.13∗∗∗

(5.1) (4.9)
ML negative −0.05 −0.01

(−1.2) (−0.3)
LM & ML positive 0.05∗∗ 0.05 0.05∗

(2.4) (1.5) (1.8)
LM & ML negative −0.18∗∗ −0.21∗∗∗ −0.14∗∗

(−2.4) (−2.9) (−2.2)
ML positive bigrams 0.15∗∗∗ 0.13∗∗∗

(3.8) (3.1)
ML negative bigrams −0.16∗∗ −0.10∗∗

(−2.6) (−2.5)

Adjusted R2 0.013 0.013 0.013 0.013 0.013 0.014
Observations 76,922 76,922 76,922 76,922 76,922 76,922
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Table 4: External validity — WSJ articles

The following table replicates the analysis in Table 2, using as the corpus of interest the publication of
articles about a firm in the Wall Street Journal (WSJ). The dependent variable is the firm’s buy-and-hold
stock return minus the CRSP value-weighted buy-and-hold market index return over the 2-day event win-
dow around the article publication. Our controls include day-of-the-week, month and firm fixed effects.
The machine learning dictionaries are constructed using the earnings calls database, from 2005–2020,
following the classifications in Table 2. The WSJ database consists of 87,198 event days, correspond-
ing to 189 unique firms, see Section 2.1 and Table 1 for details. We construct the sentiment measures
using term frequency weights separately for LM positive/negative word lists (not included in the ML
dictionaries), ML positive/negative dictionaries (not overlap with LM), positive/negative unigrams that
overlap in the ML and LM dictionaries, and ML positive/negative bigrams. All sentiment measures are
scaled to unit variance. Standard errors are clustered at the month and firm level. The table presents point
estimates and t-statistics (in parenthesis).

Dependent variable:

Filing period excess return

(1) (2) (3) (4) (5) (6)

LM positive 0.10∗∗∗ 0.08∗∗∗ 0.09∗∗∗

(7.6) (6.1) (6.7)
LM negative −0.11∗∗∗ −0.05∗∗∗ −0.08∗∗∗

(−7.5) (−3.5) (−5.8)
ML positive 0.12∗∗∗ 0.09∗∗∗

(7.4) (5.2)
ML negative −0.21∗∗∗ −0.17∗∗∗

(−10.4) (−9.3)
LM & ML positive 0.16∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(10.7) (8.8) (9.2)
LM & ML negative −0.19∗∗∗ −0.16∗∗∗ −0.16∗∗∗

(−8.7) (−7.6) (−7.5)
ML positive bigrams 0.14∗∗∗ 0.09∗∗∗

(7.2) (4.9)
ML negative bigrams −0.14∗∗∗ −0.10∗∗∗

(−7.8) (−6.0)

Adjusted R2 0.007 0.010 0.009 0.007 0.013 0.012
Observations 87,198 87,198 87,198 87,198 87,198 87,198
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Table 5: Dictionary breadth

The following table presents the length of the different dictionaries considered in Section 3, as well as
their breadth in the different corpora, measured by the percentage of the corpora that each dictionary
covers.

Coverage (% of corpus)

Dictionary Number of tokens Earnings calls 10K WSJ

Positive words
LM positive 329 1.9% 0.7% 1.3%
ML positive 57 8.4% 4.1% 3.2%
ML & LM positive 18 1.3% 0.2% 0.4%
ML positive bigram 381 2.3% 0.8% 0.3%

Negative words
LM negative 2,315 1.4% 2.7% 3.2%
ML negative 64 4.5% 4.3% 3.1%
ML & LM negative 30 0.4% 0.4% 0.5%
ML negative bigram 344 1.4% 0.7% 0.4%
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Table 6: Top LM unigrams and ML scores

We consider the top 30 LM unigrams by frequency, separately for positive and negative words. For
each of them, the table presents the total coverage (Cov., frequency over the whole earnings calls corpus
measured in basis points), and the robust MNIR scores (positive and negative), namely the number of the
500 cross-validation samples for which that unigram is labelled as positive (negative) by the MNIR fit.
Tokens coloured in blue (red) belong to the ML positive (negative) unigram dictionaries.

Positive words Negative words
Token Cov. % Pos % Neg Token Cov. % Pos % Neg

good+ 35.1 99.4 0.0 question 25.6 39.2 7.0
strong+ 26.0 100.0 0.0 questions 10.5 21.8 6.4
better+ 15.1 92.4 0.0 decline− 8.0 0.0 99.8
opportunities 12.9 58.4 4.6 loss− 6.8 0.0 99.0
able 12.1 63.2 2.2 negative− 4.4 0.2 96.6
opportunity 11.9 68.0 3.8 difficult 3.7 0.0 78.4
positive 10.2 62.6 2.6 against 3.6 7.8 27.4
improvement+ 10.0 100.0 0.0 declined− 3.5 0.2 91.4
progress 7.9 56.4 5.0 restructuring 3.2 30.8 30.4
pleased+ 7.7 99.8 0.0 losses 2.8 6.0 69.0
improved+ 6.9 100.0 0.0 challenges− 2.6 0.0 99.8
improve 6.7 11.0 34.0 challenging− 2.4 0.2 87.0
best 6.5 25.6 10.4 recall 1.8 8.2 25.6
strength+ 4.8 100.0 0.0 declines− 1.8 0.0 85.8
success+ 4.4 88.8 0.0 volatility 1.7 6.8 42.4
excited 4.4 49.8 4.6 slow 1.6 0.2 66.4
profitability 4.3 63.0 4.8 break 1.5 22.6 6.6
confident− 3.9 0.4 80.4 weakness− 1.4 0.0 99.8
improving+ 3.8 82.4 0.0 bad 1.3 6.0 44.4
favorable+ 3.6 86.4 0.0 challenge 1.3 0.2 77.4
improvements+ 3.5 89.4 0.2 problem 1.3 1.6 71.4
gain 3.4 64.0 1.2 weak 1.2 0.2 78.8
despite 3.3 3.8 33.6 claims 1.2 12.0 61.8
successful 3.2 41.2 2.4 slower− 1.2 0.0 93.0
gains+ 3.2 82.4 0.0 negatively− 1.2 0.0 96.8
stronger 3.2 72.0 0.2 lost− 1.2 0.0 96.8
efficiency 3.1 68.6 1.6 cut 1.1 3.4 50.2
advantage 3.0 61.0 1.4 slowdown− 1.1 0.0 96.8
achieve 3.0 32.0 6.0 impairment 1.1 1.2 81.0
innovation 2.8 57.2 6.4 missed 1.0 0.6 49.2

40



Table 7: Top ML unigrams by frequency

We consider the top 30 ML unigrams by frequency, separately for positive and negative words. For
each of them, the table presents the total coverage (Cov., frequency over the whole earnings calls corpus
measured in basis points), and the robust MNIR scores (positive and negative), namely the number of the
500 cross-validation samples for which that unigram is labelled as positive (negative) by the MNIR fit.
Tokens coloured in blue (red) belong to the LM positive (negative) unigram dictionaries.

Positive words Negative words
Token Cov. % Pos % Neg Token Cov. % Pos % Neg

think 97.0 82.4 2.0 not 108.5 0.6 97.0
growth 62.2 96.2 0.4 down 27.9 0.0 94.8
up 54.8 91.4 0.6 back 25.3 0.0 95.8
well 50.0 82.8 0.4 impact 21.8 0.0 99.8
over 47.3 87.8 0.2 believe 18.4 0.4 84.2
really 38.6 97.2 0.0 lower 17.3 0.0 100.0
continue 37.8 96.6 0.0 due 15.2 0.0 91.0
good+ 35.1 99.4 0.0 costs 14.1 0.4 89.2
results 27.9 91.2 0.0 expected 11.5 0.0 97.4
share 27.8 91.2 0.8 related 11.2 0.0 99.2
cash 26.9 83.2 1.6 change 10.3 0.0 96.2
increase 26.6 95.8 0.0 need 9.8 0.4 81.4
strong+ 26.0 100.0 0.0 offset 8.3 0.0 90.0
basis 25.5 84.0 1.4 expectations 8.0 0.2 81.2
operating 25.3 89.4 0.6 decline− 8.0 0.0 99.8
margin 25.2 93.2 0.2 trying 7.3 0.4 83.2
lot 23.6 87.8 1.0 changes 7.0 0.0 95.0
years 20.9 81.4 0.4 loss− 6.8 0.0 99.0
increased 20.4 96.4 0.0 term 6.7 0.4 83.6
income 17.5 88.6 0.6 certain 6.6 0.0 82.0
performance 17.2 94.0 0.0 factors 6.4 0.0 80.8
better+ 15.1 92.4 0.0 taking 6.0 0.0 96.0
pretty 14.3 94.0 0.0 understand 5.9 0.0 100.0
great 13.4 100.0 0.0 timing 5.7 0.0 97.8
across 12.2 91.4 0.2 however 5.2 0.0 99.8
continued 12.2 91.2 0.0 associated 4.9 0.2 91.2
flow 12.1 84.0 1.6 impacted 4.5 0.0 100.0
improvement+ 10.0 100.0 0.0 negative− 4.4 0.2 96.6
benefit 8.9 83.6 0.2 decrease 4.4 0.0 96.2
pleased+ 7.7 99.8 0.0 issues 4.1 0.0 100.0
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Table 8: Disambiguating unigrams

This table presents a subset of the bigrams associated with the six tokens improve, confi-
dent, solid, soft, cash, and continue. The column “Bigram” lists the bigram. The column
“Rel. Freq.” is the relative counts of the bigram out of all the bigrams that contain the given
unigram i.e. 8.88% of the times “improve” is written, it is within the bigram “continue im-
prove.” The D+ and D− score columns refer to the robust MNIR scores, namely the proportion
of the cross-validation subsamples where the n-gram is classified as positive (negative) minus
the number when it is classified as negative (positive). Tokens marked with a positive/negative
sign (blue/red) denote LM positive/negative words. We also mark with a positive/negative sign
(cyan/brown) all the ML words. The LM/ML overlap words are marked with a positive/negative
sign (blue/red). Only bigrams with D+ or D− scores above 20% are presented.

Positive bigrams Negative bigrams

Bigram Rel. Freq. D+ score Bigram Rel. Freq. D− score

continue+ improve+ 8.88 64.40 improve+ performance+ 2.17 39.60
continues+ improve+ 2.91 41.60 improve+ over+ 1.38 21.40
able+ improve+ 0.97 22.80 going improve+ 1.11 25.20

improve+ second 0.80 27.60
conditions improve+ 0.79 22.20

more confident+ 5.05 31.60 remain confident+ 15.82 75.20
increasingly confident+ 0.76 29.40 still confident+ 1.74 36.00

confident+ get 1.53 34.00
confident+ strategy 1.46 45.40
confident+ see 1.03 36.20

solid+ growth+ 7.10 21.20 solid+ tumors 1.19 28.60
solid+ quarter 5.75 37.00
solid+ results+ 3.55 22.40
quarter solid+ 2.53 21.80
pretty+ solid+ 2.51 23.40

soft− launch 6.48 21.80 bit soft− 10.62 25.00
soft− demand 9.94 33.60
soft− quarter 9.43 26.00

cash+ flow+ 25.86 77.20 cash+ used 0.54 42.80
free cash+ 10.58 63.00 cash+ burn 0.33 27.60
operating+ cash+ 2.89 42.40 cash+ cost 0.32 39.20
cash+ balance 1.96 37.60 company cash+ 0.26 26.80
strong+ cash+ 1.45 83.20 used cash+ 0.23 23.40

continue+ see 4.95 47.00 continue+ believe− 1.19 43.60
going continue+ 3.15 26.00 continue+ advance 0.19 40.00
continue+ grow 2.96 45.00 continue+ face 0.14 36.80
expect continue+ 2.62 51.60 continue+ impact− 0.12 53.00
continue+ focus 1.67 27.60 may continue+ 0.11 21.80
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Table 9: Disambiguation: bigrams starting with “not”

This table presents a subset of the bigrams that start with the token “not,” a total of 1,267 unique bigrams
(using our dtm with 217 terms). The column “Term” lists the bigram. The column “Rel. Freq” is the
relative counts of the bigram out of all the bigrams that start with “not,” i.e. 3% of the times “not” is
written, it is within the bigram “not really”. Tokens marked with a positive/negative sign (blue/red)
denote LM positive/negative words. We also mark with a positive/negative sign (cyan/brown) all the ML
words. The LM/ML overlap words are marked with a positive/negative sign (blue/red).

Positive Negative

Term Rel. Freq. D+ score Term Rel. Freq. D− score

not really+ 3.15 14.8 not think+ 4.53 43.4
not break− 0.23 27.4 not going 4.05 53.4
not call 0.19 14.4 not get 1.39 53.4
not mind 0.18 16.4 not seeing 0.91 48.0
not undertake 0.18 13.4 not able+ 0.75 74.2
not guarantees 0.17 15.4 not changed− 0.69 42.2
not surprised 0.14 17.0 not believe− 0.63 53.0
not whole 0.13 22.6 not come 0.35 54.0
not spend 0.10 17.4 not enough 0.32 72.2
not sustainable+ 0.08 28.2 not getting 0.32 56.8
not single 0.06 20.2 not happen 0.30 49.2
not hard 0.06 26.2 not expected− 0.17 60.0
not built 0.05 14.2 not issue− 0.16 45.8
not thing 0.05 14.6 not meet 0.14 89.8
not statements 0.04 13.8 not affect 0.14 41.0
not driving+ 0.04 15.8 not related− 0.10 47.0
not raise 0.04 19.0 not happy+ 0.10 79.6
not traditional 0.03 16.2 not lost− 0.09 59.4
not happier 0.03 15.6 not satisfied+ 0.09 54.0
not actively 0.03 15.0 not performing 0.06 44.6
not tremendous+ 0.03 30.4 not materialize 0.06 61.0
not asked 0.02 18.2 not losing− 0.05 73.8
not obvious 0.02 17.8 not perform 0.05 43.2
not separate 0.02 13.4 not offset− 0.04 42.8
not raising+ 0.02 22.0 not pleased+ 0.04 51.0
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Appendix

Parsing algorithm
The transcripts from the earnings calls are parsed and each paragraph is mapped to the man-
ager, analyst, or operator speaking. Comments by the operator are subsequently removed. The
earnings calls typically consist of two parts: an Introduction, typically scripted and read by the
management team, and a Questions and Answers (Q&A) section where participants in the call
can ask management about details of the earnings release. While we can separate the Introduc-
tion and the Q&A section of the call, we merge both parts.

Before proceeding to the creation of our new dictionaries, we perform a set of standard cleaning
procedures from the NLP literature. We first remove non-ASCII characters and single character
words. We split the strings into sentences and tokenize it, tagging each token using the NLTK
package. We remove all words that are tagged as proper nouns by the NLTK tagger (codes
NNP or NNPS), and other words such as determinants.44. We convert abbreviations to their
full English word.45 We eliminate all number characters, punctuation, and anything that are
not alphanumeric characters. We remove stopwords starting with the list from the Snowball
project in different languages.46 We include/exclude a handful of terms into this stopword list.47

Since one of our goals is to compare ML and LM word-by-word, and the LM dictionaries are
unstemmed, we will present our results using unstemmed words.48 We note that we are keeping
the tokens no/not, which will have some bite when using bigrams regarding potential negation
of positive words.

Data descriptions
These are the variables that we use in our tests:

1. Event period excess return: firm’s buy-and-hold stock return minus the CRSP value-
weighted buy-and-hold market index return over the 4-day event window, expressed as a
percent.

2. Size: the number of shares outstanding times the price of the stock as reported by CRSP
on the day before the event date.

3. Book-to-market: Book value is derived from quarterly Compustat for earnings calls and
annual Compustat for 10-Ks. We derive book value as specified in Fama and French

44To be precise, we drop the following POS: NNP, NNPS, DT, SYM, CD, TO, LS, PRP, PRP$.
45This simply involves changing n’t/not, ’ll/will, ’re/are, ’d/would, ’m/am, ’ve/have. We also change cannot/can

not, as can is one of the stopwords we remove.
46Obtained from http://svn.tartarus.org/snowball/trunk/website/algorithms/*/stop.txt.
47We include the following words in our analysis that are part of the Snowball stopword list: against, above,

below, up, down, over, under, again, further, few, more, most, no, not. We add can, will, must, and let. We also
exclude all 2-character terms with the exception of no, up, and go.

48Previous versions of the paper constructed all the ML analysis using document-term-matrices (dtms) with
stemmed words. The results using stemmed words are slightly stronger for the ML algorithm, but they penalize
LM by “mis-stemming”. For example both the words quitting and quite become quit when stemmed, which loses
semantic meaning.
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(2001) except for items not covered in quarterly Compustat. Market value is the number
of shares outstanding times the price of the stock at the end of the last calendar year before
the event date. We eliminate observations with a negative book-to-market.

4. Share turnover: The volume of shares traded in days [−252,−6] prior to event date di-
vided by shares outstanding on the event date. At least 60 observations of daily returns
must be available to be included in the sample.

5. Pre FFAlpha: The Fama-French alpha based on a regression of their three-factor models
using days [−252,−6] relative to the event date. At least 60 observations of daily returns
must be available to be included in the sample.

6. NASDAQ dummy: A dummy variable set equal to one for firms whose shares are listed
on the NASDAQ stock exchange, else zero.

7. Standardized Unexpected Earnings (SUE): Unexpected earnings is computed as the dif-
ference between quarterly earnings per share (Compustat item EPSPXQ) minus earnings
per shares from four quarters ago. SUE is defined as unexpected earnings scaled by indi-
vidual firm’s standard deviation.

The data depository49 contains many other details, from the lists of uni/bigrams used in the the
paper, to code that refines the dictionaries and replicates our analysis using public data.

ML dictionaries
LM&ML positive unigrams: achieved, benefited, benefiting, better, excellent, fantastic, fa-
vorable, gains, good, impressive, improved, improvement, improvements, improving, pleased,
strength, strong, success.

LM&ML negative unigrams: challenges, challenging, decline, declined, declines, delay, de-
layed, delays, disappointed, disappointing, disappointment, inefficiencies, lack, losing, loss,
lost, miss, negative, negatively, shortfall, slowdown, slowed, slower, slowing, underperfor-
mance, unexpected, unfortunately, weaker, weakness, worse.

ML positive unigrams: above, across, basis, benefit, cash, congrats, congratulations, continue,
continued, continues, curious, delivered, driving, drove, exceeded, exceeding, expansion, flow,
generated, great, grew, growing, growth, helped, helping, income, increase, increased, increas-
ing, job, leverage, lot, margin, momentum, nice, nicely, operating, outperformance, outstand-
ing, over, performance, pretty, proud, raising, really, record, repurchase, results, share, solid,
sustainable, terrific, think, up, upside, well, years.

ML negative unigrams: actions, address, affected, affecting, anticipated, associated, back,
believe, below, caused, causing, certain, change, changed, changes, confident, costs, decision,
decrease, decreased, down, due, dynamics, expectations, expected, experienced, factors, fell,
goodwill, happened, headwinds, however, impact, impacted, impacting, impacts, issue, issues,
longer, lower, necessary, need, not, offset, pressure, pressures, pronounced, pushed, related,

49See http://leeds-faculty.colorado.edu/garcia/data.html.
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resolve, revised, short, slipped, soft, softer, softness, steps, taking, temporary, term, timing,
transition, trying, understand.

ML positive bigrams: able reduce, above expectations, above guidance, above high, above
top, achieved record, across board, add congratulations, addition strong, aerospace defense,
ahead expectations, ahead guidance, also benefited, also exceeded, also raising, balance sheet,
based strong, basis point, basis points, beginning see, better anticipated, better expected, better
guidance, came above, capacity utilization, capital management, cash flow, cash generation,
certainly pleased, compares favorably, congrats again, congrats good, congrats great, congrats
quarter, congrats strong, congratulations again, congratulations good, congratulations great,
congratulations quarter, congratulations strong, consecutive quarter, continue grow, continue
improve, continue see, continued focus, continued growth, continued improvement, contin-
ued momentum, continued strong, continuous improvement, couple years, data centers, deliv-
ered outstanding, delivered record, delivered strong, demand across, deposit growth, deposit
side, diluted earnings, diluted share, done great, driven improved, driven improvement, driven
record, driven strong, driving growth, drove strong, due strong, earnings per, efficiency ratio,
end market, end markets, even better, exceeded expectations, exceeded guidance, exceeded
high, exceeding guidance, exceeding high, excellent execution, excellent job, excellent quarter,
excellent start, exceptional quarter, exceptionally well, executed well, executing well, execution
across, execution team, existing customers, expanded basis, expect continue, expense leverage,
expense management, extra week, extremely pleased, fantastic quarter, favorable mix, favorable
product, first congratulations, flow generation, flow quarter, free cash, generated free, given
strength, given strong, good execution, good job, good momentum, good quarter, good results,
good see, great execution, great hear, great job, great quarter, great results, great see, great start,
grew over, growth across, growth driven, growth margin, growth quarter, growth seeing, hard
work, helped drive, helping drive, high end, higher gross, higher sales, hitting cylinders, home
equity, impressive quarter, improved basis, improved gross, improved margins, improved op-
erating, improved operational, improved outlook, improved performance, improved profitabil-
ity, improved significantly, improvement across, improvement basis, improvement compared,
improvement driven, improvement gross, improvement operating, improvement over, improve-
ment quarter, income increase, income increased, income per, income quarter, income up, in-
crease adjusted, increase basis, increase compared, increase gross, increase guidance, increase
net, increase over, increase prior, increased basis, increased guidance, increased per, increased
revenue, increased sequentially, increasing full, increasing guidance, inflection point, job quar-
ter, just curious, just great, just talk, last quarter, life sciences, linked quarter, loan growth,
loan portfolio, lot more, margin expanded, margin expansion, margin improved, margin im-
provement, margin improvements, margin increased, margin performance, margin up, margins
improved, mentioned pleased, merchandise margin, momentum business, momentum going,
momentum seeing, more efficient, more impressive, more more, net debt, net income, net inter-
est, new customers, nice improvement, nice job, nice quarter, nice results, nice see, obviously
great, obviously nice, obviously pleased, obviously strong, okay great, operating income, oper-
ating leverage, operating margin, operating margins, operating ratio, organic growth, outstand-
ing performance, outstanding quarter, outstanding results, over last, over prior, overall pleased,
particular strength, particularly pleased, particularly strong, pay down, payment volume, per
diluted, per share, per square, percentage revenue, percentage sales, performance across, per-
formance driven, performance exceeded, performance quarter, pleased financial, pleased first,
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pleased performance, pleased quarter, pleased report, pleased results, pleased second, pleased
see, pleased strong, pleased third, point improvement, positive momentum, pretty good, pretty
impressive, pretty much, pretty strong, product gross, quarter exceeded, quarter good, quarter
great, quarter improved, quarter improvement, quarter increase, quarter increased, quarter nice,
quarter performance, quarter record, quarter strong, quarter up, raise guidance, raised guidance,
raising full, raising guidance, raising revenue, range up, really good, really great, really happy,
really helped, really impressive, really nice, really pleased, really starting, really strong, really
well, record adjusted, record compared, record earnings, record gross, record net, record oper-
ating, record quarter, record quarterly, record results, record revenue, record revenues, record
up, report strong, reported record, repurchase program, result strong, results demonstrate, re-
sults driven, results exceeded, results strong, revenue exceeded, revenue grew, revenue growth,
revenue increased, revenue up, sales increase, sales up, sales wholesale, saw nice, seeing ben-
efits, seeing strength, sequential growth, sequential improvement, sequential increase, share
above, share count, share gains, share increase, share increased, share repurchase, share up,
share well, significant improvement, solid execution, square foot, starting see, still lot, strength
across, strength business, strength quarter, strength saw, strength seeing, strong across, strong
cash, strong demand, strong execution, strong financial, strong finish, strong first, strong fourth,
strong growth, strong momentum, strong operating, strong performance, strong quarter, strong
results, strong revenue, strong second, strong sequential, strong start, strong third, strong top,
stronger anticipated, stronger expected, strongest quarter, summary pleased, sustainable going,
taking share, talk little, tax rate, team done, terrific quarter, think continue, think sustainable,
third consecutive, up basis, up compared, up over, up prior, up sequentially, upside quarter,
wanted ask, well above, well ahead, well favorable, year raising, year strong.

ML negative bigrams: actions address, actions taking, additional cost, address issues, ad-
versely impacted, aggressive pricing, also affected, also impact, also impacted, also impacting,
also incurred, also negatively, arms around, average day, back half, back track, back up, based
upon, beat dead, became clear, believe prudent, believe right, below expectation, below ex-
pectations, below expected, below guidance, below midpoint, biggest impact, bit longer, came
below, cell lung, challenges business, challenges quarter, challenging quarter, change guidance,
changes making, come back, compared positive, competitive pressure, competitive pressures,
confidence not, confident strategy, continue impact, corrective actions, cost overruns, cost re-
lated, costs associated, costs increased, costs related, current challenges, customer orders, day
rates, dead horse, decline adjusted, decline driven, decline due, decline gross, decline primar-
ily, decline quarter, decline revenue, decline revenues, decline sales, declined quarter, decrease
compared, decrease gross, decrease revenue, despite challenges, disappointed results, discussed
earlier, down basis, down constant, down prior, driven lower, due decrease, due delays, due
lower, due primarily, excess inventory, execution issues, expect begin, expenses related, fac-
tors impacted, fall short, fell short, felt like, first quarter, generic products, get back, get done,
get worse, gives confidence, go back, going take, good news, goodwill impairment, growing
pains, guess just, guidance down, guide down, half year, happened quarter, help understand,
higher cost, higher costs, higher labor, however believe, impact coronavirus, impact lower,
impact not, impact quarter, impact revenue, impact third, impacted ability, impacted first, im-
pacted lower, impacted quarter, impacted results, impacted revenue, impacted third, impacting
revenue, impairment charge, impairment charges, income decreased, increase cost, increase
inventory, increased competition, increased cost, increased promotional, incremental costs, in-
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ventory adjustments, inventory correction, issue not, issue quarter, issues not, issues quarter, just
matter, just not, just trying, labor costs, lack visibility, large customer, late quarter, leadership
changes, legacy business, line expectations, line guidance, long term, longer anticipated, longer
expected, longer sales, losing market, losing share, loss compared, loss continuing, loss first,
loss per, loss primarily, loss quarter, loss third, lost business, lost revenue, low end, lower an-
ticipated, lower demand, lower earnings, lower end, lower expectations, lower expected, lower
gross, lower guidance, lower incentive, lower margin, lower margins, lower net, lower rev-
enue, lower revenues, lower sales, lower volume, lower volumes, made decision, make changes,
make sure, make up, margin compression, margin decline, margin declined, margin decreased,
margin down, margin pressure, margin pressures, margins down, margins impacted, market
dynamics, meet expectations, mix issue, mixed results, months ended, more aggressive, more
cautious, more challenging, more competitive, more conservative, more pressure, more promo-
tional, more pronounced, most significant, near term, need make, negative impact, negatively
impacted, net loss, not able, not believe, not come, not enough, not expected, not get, not get-
ting, not going, not happen, not happy, not issue, not losing, not lost, not materialize, not meet,
not pleased, not related, not satisfied, not seeing, operating loss, operating losses, operational
challenges, operational issues, originally anticipated, part challenge, part issue, partially off-
set, perfect storm, performance issues, positive note, price pressure, price reductions, pricing
pressure, primarily due, product transition, profit decreased, profit down, project delays, promo-
tional activity, quarter challenging, quarter decline, quarter decrease, quarter decreased, quar-
ter down, quarter fell, quarter impacted, quarter loss, quarter not, quickly possible, reduction
revenue, related acquisition, remain confident, remains intact, result lower, resulting lower, re-
sults below, results lower, return growth, revenue decline, revenue declined, revenue decrease,
revenue decreased, revenue down, revenue expectations, revenue impacted, revenue outlook,
revenue recognition, revenue shortfall, revenues declined, revenues decreased, revenues down,
revised guidance, revised outlook, right decision, right thing, sales decline, sales down, sales
force, saw slowdown, second half, sense urgency, sequential decline, several factors, share loss,
short expectations, short term, significant decline, significant impact, significantly impacted,
slightly below, slow start, slowed down, slower anticipated, slower expected, slower start, softer
expected, stable disease, step back, step down, still believe, still feel, stock down, strategic re-
view, student starts, take little, take longer, take time, taken actions, taken longer, takes time,
taking actions, taking longer, taking necessary, taking question, taking steps, thought going,
timing issue, tough quarter, traffic trends, trying reconcile, trying understand, under pressure,
understand not, used operating, used operations, vessel revenue, want make, weaker expected,
weakness saw, weakness seeing, wind market, within guidance, worse expected.
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Table 10: Horse race regressions— earnings calls

The following table corresponds to Table 2 including the coefficients on all controls, and adding a column
for the specification without any sentiment variables.

Dependent variable:

Filing period excess return

(1) (2) (3) (4) (5) (6) (7)

LM positive 0.41∗∗∗ −0.14∗ 0.06
(6.6) (−1.9) (1.0)

LM negative −0.50∗∗∗ 0.39∗∗∗ 0.24∗∗∗

(−4.4) (6.0) (3.0)
ML positive 0.98∗∗∗ 0.78∗∗∗

(7.7) (8.7)
ML negative −1.37∗∗∗ −0.94∗∗∗

(−11.7) (−9.8)
LM & ML positive 1.25∗∗∗ 0.90∗∗∗ 0.89∗∗∗

(11.4) (9.5) (9.7)
LM & ML negative −1.56∗∗∗ −1.32∗∗∗ −1.34∗∗∗

(−9.3) (−9.1) (−9.4)
ML positive bigrams 1.38∗∗∗ 1.06∗∗∗

(10.7) (12.4)
ML negative bigrams −1.36∗∗∗ −0.79∗∗∗

(−7.7) (−5.8)
log(Size) −0.03 −0.03 −0.13∗ −0.20∗∗∗ −0.20∗∗∗ −0.25∗∗∗ −0.28∗∗∗

(−0.5) (−0.5) (−2.1) (−2.9) (−3.2) (−3.3) (−3.8)
log(Book-to-Market) −0.03 0.00 0.09 0.05 0.06 0.10 0.08

(−0.3) (0.0) (0.8) (0.5) (0.5) (0.9) (0.7)
log(Share turnover) −0.12 −0.12 0.01 −0.13 0.05 −0.05 −0.01

(−0.9) (−0.9) (0.0) (−1.0) (0.4) (−0.3) (−0.1)
SUE 0.96∗∗∗ 0.93∗∗∗ 0.82∗∗∗ 0.79∗∗∗ 0.81∗∗∗ 0.75∗∗∗ 0.73∗∗∗

(6.9) (6.9) (7.1) (7.3) (7.0) (7.4) (7.3)
Pre FFAlpha −2.67∗∗∗ −2.91∗∗∗ −4.48∗∗∗ −4.52∗∗∗ −4.18∗∗∗ −5.29∗∗∗ −5.10∗∗∗

(−3.6) (−3.9) (−5.5) (−5.3) (−4.8) (−5.7) (−5.3)
Nasdaq dummy 0.11 0.10 0.11 0.14 0.10 0.13 0.13

(0.7) (0.7) (0.8) (0.9) (0.7) (0.9) (0.8)

Adjusted R2 0.017 0.021 0.046 0.054 0.045 0.065 0.064
Observations 39,269 39,269 39,269 39,269 39,269 39,269 39,269
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