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 Although normal distributions and related current quantitative methods are still relevant for some organizational research, the growing ubiquity of power laws signifies that Pareto rank/frequency distributions, fractals, and underlying scale-free
 theories are increasingly pervasive and valid characterizations of organizational dynamics. When they apply, researchers
 ignoring power-law effects risk drawing false conclusions and promulgating useless advice to practitioners. This is because

 what is important to most managers are the extremes they face, not the averages. We show that power laws are pervasive in
 the organizational world and present 15 scale-free theories that apply to organizations. Next we discuss research implications
 embedded in Pareto rank/frequency distributions and draw statistical and methodological implications.
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 Although normal (bell-shaped) distributions and
 related quantitative methods are still relevant for a sig
 nificant portion of organizational research, the increas
 ing discovery of power laws signifies that Pareto
 rank/frequency distributions, fractals, and underlying
 scale-free (SF) theories are pervasive and valid charac
 terizations of nonlinear organizational dynamics. Where
 they validly apply, researchers ignoring Pareto distribu
 tions risk drawing false conclusions and promulgating
 useless advice to practitioners. This is because under

 many circumstances what is important to most managers
 are the extremes they face, not the averages. Given this,

 we raise the question: How do we redirect organization
 science toward the study of Pareto distributions in ways
 that still fall within the bounds of an effective science!

 Power laws signify Pareto rank/frequency distri
 butions having long and fat tails, potentially infi
 nite variance, unstable means, and unstable confidence
 intervals. Pareto distributions are alien to most quan
 titative organizational researchers, who are trained via

 Gaussian statistics to go to great lengths to configure

 their data to fit the requirements of linear regression
 models and related statistical methods. For example,
 most of the discussion in econometrics textbooks, such
 as Greene (2002), aims to accomplish this. Gaussian dis
 tributions have vanishing tails, thereby allowing focus
 to dwell on limited variance and stable means. As a
 result, confidence intervals for statistical significance
 are clearly defined, stable, and squeezed in toward the

 mean, increasingly the likelihood of achieving statistical
 significance.

 The implications for organization science, however,
 go beyond extreme events. Tools do not exist in a
 theoretical vacuum. The adoption of normal distribu
 tion statistics carries a heavy burden of assumptions.
 Reliance on linearity, randomness, and equilibrium influ
 ences how theories are built, how legitimacy is con
 ferred, and how research questions are formulated.
 Abbott (2001) says that linear thinking, what he calls
 the General Linear Model, defines the philosophical
 and methodological assumptions upon which linear sci
 ence is based. It affects (a) how units of analysis are
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 conceptualized, selected, and operationalized; (b) how
 variables are selected; and (c) how the interactions
 among variables are described by quantitative/qualitative
 models. Given these premises, we introduce scalabil
 ity and the study of SF theories to begin a reorienta
 tion of the organization science paradigm from linear
 toward a Pareto based science more relevant to nonlin
 ear organizational phenomena.

 Scalability results from what Mandelbrot (1982) calls
 fractal geometry. A cauliflower is an obvious exam
 ple. Cut off a floret, cut a smaller floret from the
 first floret, then a cut piece off the second, and so
 on. Now set them in line on a table. Each subcom
 ponent is smaller than the former; each has the same
 shape and structure. They are fractal because they all
 look and behave about the same way. Fractals are
 signified by power laws and rank/frequency distribu
 tions. Researchers find organization-related power laws
 in intrafirm decisions, consumer sales, salaries, size
 of firms, ecosystems, director interlocks, biotech net
 works, and industrial districts, for example. These are
 all rank/frequency distributions.

 Responding to the state of scientific disciplines of
 many kinds, Gell-Mann emphasized the study of "sur
 face complexity arising out of deep simplicity" at the
 founding of the Santa Fe Institute (1988, p. 3; his ital
 ics). In describing the Santa Fe vision, Brock says the
 study of complexity .. tries to understand the forces
 that underlie the patterns or scaling laws that develop"
 as newly ordered systems emerge (2000, p. 30). Many
 complex systems tend to be self-similar across levels.
 That is, the same dynamics drive order-creation behav
 iors at multiple levels (West et al. 1997). These processes
 are called scaling laws because they represent dynamics
 appearing similarly at many orders of magnitude (Zipf
 1949). We present fifteen SF theories, arguing that most
 apply to organizations. Gell-Mann (2002) argues that in
 living systems, scalability and scaling laws are as impor
 tant a means of scientific explanation as is reductionism
 and explanation via law-like equations.
 We first use findings from 141 kinds of power

 laws from natural to social and organizational phe
 nomena to suggest the pervasiveness and importance
 of power laws, which typically signify well-formed
 rank/frequency Pareto distributions stemming from scal
 able causes. Next we classify 15 SF theories about scal
 able causal dynamics that apply to organizations, dis
 cussing several in detail. Then we switch to research
 implications: How do theory and methods change if we
 focus on rank/frequency Pareto distributions rather than
 squeezing all organizational phenomena into normal dis
 tributions (or more broadly, distributions that rely on
 finite variance)?as is currently the practice? Finally, we
 discuss implications in terms of the basic predictor func
 tion, y = f(x) + s. How does basic thinking about pre
 diction, data, error terms, and statistics have to change?
 A conclusion follows.

 Entering the Third Phase of
 Complexity Science
 Background
 Complexity science has emerged in three phases.

 Energy: The first phase appeared in Europe, led by
 Nobel Laureate Ilya Prigogine (1955; Prigogine and
 Stengers 1997). He built on Henri Benard's (1901) study
 of emergent structures in fluids. Because these serve
 to dissipate energy imposing on a system, he labeled
 them dissipative structures. This phase transition, which
 occurs at the so-called first critical value of imposed
 energy, defines what we may call the edge of order.
 Schieve and Allen (1981), Haken (1983, 2004), Nicolis
 and Prigogine (1989), and Mainzer (2007) continue this
 line of work.

 Emergence: This phase was initiated by Nobel
 Laureates Anderson (1972) and Gell-Mann (1988, 2002)
 along with Holland (1988, 2002), Kauffman (1993), and
 Arthur (1994) at the Santa Fe Institute. It is mostly ori
 ented toward biology and the social sciences?i.e., living
 systems (Gell-Mann 2002). Its focus is on heterogeneous
 agents interacting at what was early on called the edge
 of chaos; this occurs at the second critical value of
 imposed energy. In between the "edges" of order and
 chaos is the region of emergent complexity, what Kauff
 man terms the melting zone (1993, p. 109). Bak (1996)
 argued that to survive, organisms have to have a capa
 bility of staying within the melting zone, maintaining
 themselves in a state of self-organized criticality, i.e.,
 adaptive efficacy. Holland (2002) defines emergent phe
 nomena as multi-level hierarchies, intra- and inter-level
 causal processes, and nonlinearities. Nonlinearity incor
 porates two additional outcomes: the butterfly effect1 and
 scalability. Stacey (1992), Goldstein (1994), and many
 others apply complexity science to organization studies
 (Maguire et al. 2006).

 Scalability: Though beginning decades ago with'
 Pareto (1897), Auerbach (1913), and Zipf (1949), the
 third phase?which includes econophysics (West and
 Deering 1995, Mantegna and Stanley 2000)?focuses on
 power-law phenomena (Newman 2005). Econophysics
 began with Benoit Mandelbrot's (1963a) focus on stock
 market crashes. Although crashes are negative extreme
 events, their showing the power-law signature indicates
 that the markets were free to go up or down without
 restraint. Power laws often appear as telltales of self
 organization, emergence-in-action, and self-organizing
 economies (Krugman 1996).

 If one plots a well-formed Pareto rank/frequency dis
 tribution with both x and y axes as log scales, a
 negatively-sloped straight line will appear; this is the
 inverse power-law signature. Power laws often take the
 form of rank/frequency expressions such as F ~ N~?,
 where F is frequency, N is rank (the variable), and ?, the
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 exponent, is constant.2 This is in contrast to "exponen
 tial" equations stated in terms of the natural log, e, where
 the exponent is the variable and TV is constant. Power
 laws show potentially infinite variance and an unstable
 or nonexisting mean and are frequently "... indicative
 of correlated, cooperative phenomena between groups
 of interacting agents..." (Cook et al. 2004)?but not
 always, as we will point out below. Andriani and

 McKelvey (2007a) present more than 80 kinds of power
 laws (with sources)?16 physical; 24 biological; 21
 social; and 23 pertaining to economic, business, and
 organizational phenomena. We show an expanded list of
 101 social and organizational power laws in Table 1.
 Power laws indicate long-tailed Paretian rank/

 frequency rather than "normal" Gaussian distributions?
 see Figure 1. The difference lies in assumptions about
 the correlations among events. In a Gaussian distri
 bution, data points are assumed independent-additive
 (hereinafter simply independent). These events gener
 ate normal distributions, which sit at the heart of mod
 ern statistics. When causal elements are independent
 multiplicative, a lognormal distribution results, which
 turns into a Pareto distribution as the causal complex
 ity increases (West and Deering 1995)?detailed below.

 When events are interdependent, interactive, or both,
 normality in distributions is not the norm. Instead, Pareto
 distributions dominate because positive feedback (and
 other) processes leading to extreme events occur more
 frequently than "normal" Gaussian-based statistics lead
 us to expect. Further, as tension imposed on the data
 points increases to the limit, they can shift from inde
 pendent to interdependent (Boisot and McKelvey 2007).

 Phase three brings a totally new look to organizational
 applications of complexity science: (1) power laws as
 indicators of effective emergence-in-action, (2) SF theo
 ries as explanations of the underlying SF causal dynam
 ics, and (3) Holland's "levers" as managerial action tools
 to foster scalable dynamics.

 From Reductionism to a New Regularity: Scalability
 Brock (2000, p. 29) says,

 The study of complexity... is the study of how a very
 complicated set of equations can generate some very
 simple patterns for certain parameter values. Complex
 ity considers whether these patterns have a property of
 universality about them. Here we will call these patterns
 scaling laws.

 The increasing discovery of power laws brings scal
 ability and SF theories to prominence (Newman
 2005). Many complex systems?resulting from emer
 gent dynamics?tend to be self-similar across levels.
 That is, the same process drives order-creation behav
 iors across multiple levels of an emergent system (Casti
 1994, West et al. 1997). These processes are called scal
 ing laws because they represent empirically discovered
 system attributes applying similarly across many orders

 of magnitude (Zipf 1949). Scalability occurs when the
 appearance of phenomena is independent of the scale
 used to measure them (inches, feet, yards, miles) or the
 same causal dynamic operates at multiples levels.
 Gell-Mann (2002) defines "effective complexity" as

 regularities or "schema" found or judged to be useful.
 For him, they appear as equations, genotypes, laws and
 traditions, and business best practices. What is new is
 Gell-Mann's recognition of a new regularity. In doing
 so, he sets forth two regularities:

 T^pe 1. Reductionist Law-Like Regularities: The old
 simplicity of reductionist causal processes of normal
 science, which are predictable and easily represented
 by equations?the data and information much preferred
 in classical physics and neoclassical economics (2002,
 p. 19). These are the point attractors of chaos theory?
 defined by forces, energy conservation, and equilibrium.

 Type 2. Multilevel SF Regularities: The new simplic
 ity of insignificant initiating events?what we call butter

 fly events. Outcomes over time that result from an accu
 mulation of often random tiny initiating events that have
 lasting effects are compounded by positive-feedback
 effects over time, and become frozen accidents (2002,
 p. 20). These are the strange attractors and fractals of
 chaos theory?never repeating, fostering indeterminacy,
 and offering a different kind of regularity.
 The first process generates regularities characteriz
 ing existing empirical organization and management
 research. These may be confidently described via Gaus
 sian statistics and allow predictions that become the
 basis of schemata and prescriptive solutions. They are
 the basis of "reductionist" science?using components
 to explain a more macro level of behavior. The second
 focuses on the effects of tiny initiating butterfly events.
 The butterfly events of chaotic histories are seldom
 repeated, are not predictable, and can produce significant
 nonlinear outcomes that may become extreme events.
 Consequently, descriptions of these systems are at best
 problematic and easily outside the explanatory/scientific
 traditions of normal science. Gell-Mann concludes by
 noting that when butterfly events spiral up such that their
 effects appear at multiple levels and are magnified, we
 see self-similarity, scalability, and power laws.
 Underlying most power laws is a causal dynamic

 explained via SF theories. Each theory points to a sin
 gle pervasive generative cause to explain the dynamics
 at each of however many levels at which the scalability
 effect applies. SF theories yield what Gell-Mann (1988,
 p. 3) refers to as deep simplicity. Whereas tradition rests
 on the idea that lower-level dynamics can explain and
 predict higher-level phenomena and simplicity comes in
 the form of (usually) linear mathematical equations?
 i.e., reductionism (Gell-Mann 2002)?SF theories point
 to the same causes operating at multiple levels?the
 "simplicity" is one theory explaining dynamics at multi
 ple levels. SF causes are Holland's levers. "... Almost all
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 CAS [complex adaptive systems] exhibit lever point phe
 nomena, where 'inexpensive' inputs cause major directed
 effects in the CAS dynamics" (2002, p. 29). These levers
 trigger butterfly effects across multiple levels.

 Explaining via SF Theories
 Along with those areas mentioned earlier, researchers
 find power laws in social networks, industry sec
 tors, growth rates of firms, bankruptcies, transition
 economies, drug and movie profits, sales decays, and
 economic fluctuations?see Table 1. Power laws are
 mostly explained by SF theories. We identify 15 SF the
 ories applying to organizations?see Table 2. We believe
 that the following logic chain applies:

 1. Successful emergence results in fractals, SF
 dynamics, and power laws explainable via SF theory.

 2. Power laws are far more ubiquitous than heretofore
 realized and are usually indicators of SF dynamics.

 3. Consequently, SF dynamics are also ubiquitous;
 many SF theories seemingly apply to organizations.

 4. If power laws are not obviously evident in organi
 zations, then emergence has failed to emerge.

 5. Therefore, organization-relevant complexity theory
 and research have to apply scalability dynamics.

 Two new complexity thrusts are identifiable. First,
 roughly one-third of complexity science theory is miss
 ing in organizational and managerial applications to
 date, i.e., the scalability phase?power laws and the
 underlying fractals, scalability, and SF theory. Organi
 zations are multilevel phenomena. Almost by defini
 tion we can take power-law signatures as the best evi
 dence we have that emergence dynamics are operating
 at multiple organizational levels. We now know for
 sure that power laws apply at the overall industry level
 (Stanley et al. 1996, Axtell 2001) and industry sectors
 (Aoyama et al. 2009, Glaser 2009), with some appear
 ing within firms. If power laws are not evident in a
 particular firm, we can only conclude that emergence,
 if it exists at all, is not multilevel. Building from the
 interacting food-web literature (Pimm 1982, Sole et al.
 2001, Cuddington and Yodzis 2002, Sims et al. 2008),

 we can also surmise that absent the power-law signa
 ture, a firm's emergence dynamics are not capable of
 keeping it competitive with its changing competitors,
 suppliers, and customers (McKelvey et al. 2009). The
 bottom line is that power laws are significant indica
 tors of crucially important managerial and organizational
 dynamics.

 Second, organization change and entrepreneurship
 researchers should be especially interested in SF dynam
 ics and related theories. Who more than entrepreneurs
 wouldn't like to let loose SF dynamics in their firms?
 Think of how many small entrepreneurial ventures stay
 that way simply because the emergent growth dynamics
 they had at the one- or two-level size failed to scale up
 as levels increased. Think how many large organizations
 show failing intrapreneurship for the same reason?the
 hundreds of "butterfly ideas" never become meaning
 ful butterfly events, never produce butterfly effects, and
 never spiral into multilevel SF causal dynamics produc
 ing power-law signatures. Jean-Pierre Gamier, CEO of

 GlaxoSmithKline says:

 ... Size is a problem early in the drug-development pro
 cess. "Drug finders" and innovators may well get tripped
 up by bureaucracy and tangled in red tape; good ideas
 are lost. Even worse, bad ideas may not be weeded out
 in time. {The Economist 2007, p. 57)

 Complexity theory applied to organizations is silent on
 the foregoing points. One important move we recom

 mend now is to learn how to apply SF complexity
 theories to organization change, organizational develop

 ment, and entrepreneurship/intrapreneurship and strat
 egy. Teaching and preaching complexity theory is out of
 date in our organizational world, absent SF theory. These
 points are further elaborated in Andriani and McKelvey
 (2007a, 2009) and Boisot and McKelvey (2007).

 Causes of Power Laws in Organizations
 Of the many kinds of power laws we list in Table 1,
 more than 50 are associated specifically with firms and
 organizational processes. Some of the power laws in
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 Table 1 Some Examples of Social and Organizational Power-Law Phenomena

 1. Size of nations by population (Buldyrev et al. 2003)
 2. Fractal structure of hunter/gatherer social networks

 (Hamilton et al. 2007).
 3. Hierarchy of social group size (Zhou et al. 2005)
 4. Economic fluctuations (Scheinkman and Woodford 1994)
 5. Growth rate of countries' GDP (Lee et al. 1998)
 6. Duration of recessions (Ormerod and Mounfield 2001)
 7. Recessions and prosperity in Latin America

 (Redelico et al. 2008)
 8. Transition economies (Podobnik et al. 2006)
 9. Distribution of wealth (Pareto 1897, Levy and Solomon 1997)
 10. Financial crashes (Sornette 2003)
 11. Casualties in war (Cederman 2003)
 12. Political complexity in communities (Carneiro 1987)
 13. Size of cities (Zipf 1949)
 14. Area, height, volume, size of buildings (Batty et al. 2008)
 15. Costs of homeless in cities (Gladwell 2006)
 16. Number of religious adherents (Clauset et al. 2007)
 17. Price movements on exchanges (Mandelbrot and Hudson 2004)
 18. Scientific discoveries (Plerou et al. 1999)
 19. Copies of books sold (Hackett 1967)
 20. Cascades in book sales (Sornette et al. 2004)
 21. Sales of fast moving consumer goods (Moss 2002)
 22. Movie profits (De Vany 2003)
 23. Market share distribution of UK retail outlets (Moss 2002)
 24. Cotton prices (Mandelbrot 1963a)
 25. Blockbuster drugs (Buchanan 2004)
 26. Wealth distribution of investors (Solomon and Richmond 2001)
 27. Saving effects on wealth distribution (Patriarca et al. 2006)
 28. Medieval wealth distribution (Hegyi et al. 2007)
 29. Job vacancies (Gunz et al. 2001)
 30. Changing language (Dahui et al. 2005)
 31. Deaths of languages (Abrams and Strogatz 2003)
 32. Social networks (Watts 2003)
 33. Sexual networks (Liljeros et al. 2001)
 34. Social influence (Castellano et al. 2000)
 35. Coauthorships (Newman 2001)
 36. Publications and citations (Lotka 1926, deSolla Price 1965)
 37. Actor networks (Barab?si and Bonabeau 2003)
 38. Scale-free business networks (Souma et al. 2006)
 39. Number of inventions in cities (Bettencourt et al. 2007)
 40. Traffic jams (Nagel and Paczuski 1995)
 41. Frequency of family names (Zanette and Manrubia 2001)
 42. Global terrorism events (Dume 2005)
 43. Revenues of top 500 Chinese firms (Zhang et al. 2009)
 44. Learning rates in heart surgery (Huesch 2009)
 45. Firm size (Axtell 2001)
 46. Firm size, interfirm relationships (Saito et al. 2007)
 47. Growth rate: Japanese SIC industries (Ishikawa 2006)
 48. Growth rates by sales: internal structure of firms (Stanley et al. 1996)
 49. Growth rates: universities, countries (Stanley et al. 2000)
 50. Economic effects of zero-rational agents (Ormerod et al. 2005)
 51. Delinquency rates (Cook et al. 2004)
 52. Aggressive behavior among boys (Warren et al. 2005)
 53. Supply chains (Scheinkman and Woodford 1994)
 54. Complex product development

 (Braha and Bar-Yam 2007)

 55. Bankruptcy of firms (Fujiwara 2004)
 56. Robustness in organizational networks

 (Dodds et al. 2003)
 57. Learning strategy (Delaney et al. 1998)
 58. Cognitive skills: "power law of practice"

 (Newell and Rosenbloom 1981)
 59. Number of phone calls, emails (Aiello et al. 2000)
 60. Website hits per day (Adamic and Huberman 2000)
 61. News website visitation decay (Dezs? et al. 2005)
 62. "Fordist" power (Diatlov 2005)
 63. Alliance networks among biotech firms

 (Barab?si and Bonabeau 2003)
 64. Branch networks of Polish firms

 (Chmiel et al. 2007)
 65. Worldwide investment networks (Song et al. 2009)
 66. Antibody alliances in biotech

 (Gay and Dousset 2005)
 67. "Power curves" in U.S. industries (Zanini 2008)
 68. Entrepreneurship/innovation (Poole et al. 2000)
 69. Italian industrial districts (Andriani 2003)
 70. Mergers and acquisitions waves (Park 2009)
 71. Director interlock structure (Battiston

 and Catanzaro 2004)
 72. Microsoft's ecosystem (Data from lansiti and

 Levien 2004; additional analysis by Colon Drayton)
 73. Market capitalization in industries (Glaser 2009)
 74. Earnings, multilevel marketing by firms

 (Legara et al. 2008)
 75. Biotech networks (Powell et al. 2005)
 76. Growth of firms (Lee et al. 1998)
 77. Productivity of innovation (Jones 2005)
 78. Work incapacity from back pain (Schmid 2004)
 79. Intra-firm decision events (Diatlov 2005)
 80. Type of political officers, size of community

 (Johnson 1982)
 81. Decision making and queuing (Barab?si 2005)
 82. Physical space, long-tail analysis

 (Bentley et al. 2008)
 83. Japanese (J.) income3
 84. J. income tax 1887-2003
 85. J. firms' sales

 86. J. firms' profit
 87. J. company income
 88. J. iron/steel fabrication sector

 89. J. electrical machinery sector
 90. J. wholesale sector
 91. J. steel, other metals sector

 92. J. general machinery sector
 93. J. chemical, petroleum products sector
 94. J. retail trade sector

 95. France: size by total assets
 96. France: size by sales in France
 97. UK: size by total assets
 98. UK: size by number of employees
 99. Italy: size by total assets
 100. Italy: size by sales in Italy
 101. Italy: size by number of employees

 aThe source of the power-law distributions from 80-98 is H. Aoyama et al. (2009). Similar distributions have been found in many other
 industrialized countries?see for instance Gaffeo et al. (2003).
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 Table 2 Empirical Basis of Scale-Free Causes of Power Laws

 Rules  Explanation

 1. Surface-volume law

 2. Random walk

 3. Hierarchical modularity

 4. Event bursts

 5. Combination theory

 6. Interactive breakage theory

 7. Interacting fractals

 8. Least effort

 9. Preferential attachment

 10. Spontaneous order creation

 11. Irregularity generated gradients

 12. Phase transition

 13. Contagion bursts

 14. Self-organized criticality

 15. Niche proliferation

 Organisms; villages: In organisms, surfaces absorbing energy grow by the square but the
 organism grows by the volume, resulting in an imbalance (Carneiro 1987); fractals emerge to
 bring surface/volume back into balance. West and Brown 2004 show that several phenomena
 in biology such as metabolic rate, height of trees, life span, etc., are described by an allometric
 power law whose exponent is a multiple of ?1 /4. The cause is fractal distribution of resources.
 Allometric power laws hold across 27 orders of magnitude of mass.

 Coin flipping; gambler's ruin: Given a stochastic process such as coin flipping and, say, two
 players with a finite number of pennies to gamble, the probability that eventually one of the
 players will lose all his/her pennies is 100% (Kraitchik 1942). Number of tosses required is
 Pareto distributed (Newman 2005).

 Growth unit connectivity. As cell fission occurs by the square, and connectivity increases by
 [n(n-1)/2], producing an imbalance between the gains from fission versus the cost of maintaining
 connectivity; consequently, organisms form modules or cells so as to reduce the cost of
 connectivity; Simon argued that adaptive advantage goes to "nearly decomposable" systems
 (Simon 1962).

 Activity prioritization: Individuals show bursts of communication, entertainment, and work activities
 followed by long delays, as opposed to random (Poisson) distribution (Barab?si 2005).

 Number of exponentials; complexity Multiple exponential or lognormal distributions or increased
 complexity of components (subtasks, processes) sets up, which results in a power-law
 distribution (West and Deering 1995, Newman 2005).

 Wealth; mass extinctions/explosions: A few independent elements having multiplicative effects
 produce lognormals; if the elements become interactive with positive-feedback loops materializing,
 a power law results; based on Kolmogorov's "breakage theory" of wealth creation (1941).

 Food web; firm and industry size: The fractal structure of a species is based on the food web
 (S. Pimm quoted in Lewin 1992, p. 121), which is a function of the fractal structure of predators
 and niche resources (Preston 1948, Pimm 1982, Sole et al. 2001, West 2006).

 Language; transition: Word frequency is a function of ease of usage by both speaker/writer and
 listener/reader; this gives rise to Zipf's power law, now found to apply to language, firms,

 and economies in transition (Zipf 1949, Ishikawa 2006, Podobnik et al. 2006).

 Nodes; gravitational attraction: Given newly arriving agents into a system, larger nodes with an
 enhanced propensity to attract agents will become disproportionately even larger, resulting
 in the power-law signature (Barab?si 2002, Newman 2005).

 Heterogeneous agents seeking out other agents to copy/learn from so as to improve fitness
 generate networks; there is some probability of positive feedback such that some networks
 become groups, and some groups form larger groups and hierarchies (Kauffman 1993,
 Holland 1995).

 Coral growth; blockages: Starting with a random, insignificant irregularity, coupled with positive
 feedback, the initial irregularity starts an autocatalytic process driven by emergent energy
 gradients, which results in the emergence of a niche. This explains the growth of coral reefs
 and innovation systems (Turner 2000, Odling-Smee et al. 2003).

 Turbulent flows: Exogenous energy impositions cause autocatalytic, interaction effects and
 percolation transitions at a specific energy level?the first critical value?such that new
 interaction groupings form with a Pareto distribution (Prigogine 1955, Nicolis and Prigogine
 1989).

 Epidemics; idea contagion: Often, viruses are spread exponentially?each person coughs upon
 two others and the network expands geometrically. But changing rates of contagious flow
 of viruses, stories, and metaphors, because of changing settings such as almost empty or
 very crowded rooms and airplanes, result in bursts of contagion or spreading via increased
 interactions; these avalanches result in the power-law signature (Watts 2003, Baskin 2005)
 due to the small-world structures of the transient underlying networks.

 Sandpiles; forests; heartbeats: Under constant tension of some kind gravity (ecological balance,
 delivery of oxygen), some systems reach a critical state where they maintain adaptive stasis
 by preservative behaviors?such as sand avalanches, forest fires, changing heartbeat rate,
 species adaptation?which vary in size of effect according to a power law (Bak 1996).

 Markets; when production, distribution, and search become cheap and easily available, markets
 develop a long tail of proliferating niches containing fewer and fewer customers; they become
 Paretian with mass market products at one end and a long tail of niches of the other
 (Anderson 2006).

 Note. Additional power law causes are mentioned in West and Deering (1995), Sornette (2000), and Newman (2005).
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 broader social phenomena also apply to organizations.
 These discoveries of organization-relevant power laws
 offer substantial evidence that well-formed Pareto distri

 butions are everyday organizational phenomena. Given
 this, two questions follow:

 1. What causes power laws in organizations and what
 theories might explain the causes?

 2. To what extent does the existence of power laws
 undermine prevailing assumptions that organizational
 phenomena are linear, equilibrium-seeking, and nor
 mally distributed?

 In this section, we respond to the first question by
 arguing that SF theories apply to organizations.

 Classifying Scale-Free Theories About Causes of
 Power Laws
 We have assembled enough SF theories that a classifica
 tion of them seems relevant, as follows:

 1. Ratio Imbalances?Theories 1-4: In each, the basic
 SF cause is some kind of 'cost-driven efficiency requir
 ing constant or periodic adjustment:

 2. Multiple Distributions?Theories 5-7: Here the SF
 cause of long tails is some kind of combination in the
 form of p(j) ~ ea,b,c,d -n^ wjiere distributions under
 lying variables a, b, c, d- -n are somewhat skewed and
 tainted with outliers. The multiplicative effect of the
 outliers progresses into a long-tailed Pareto distribution
 (West and Deering 1995).

 3. Positive Feedback?Theories 8-11: In some sys
 tems the initial interaction possibilities are such that
 there is the possibility, if not probability, of positive
 feedback spirals emerging simply as time progresses.
 The underlying SF cause is some probability that but
 terfly events will mutually interact so as to spiral up to
 produce long-tailed distributions.

 4. Contextual Effects?Theories 12-15: Exogenous
 effects set SF dynamics in motion. In this set, different
 kinds of imposing effects set off SF causal processes.
 The common effect is context, but in each case the con
 textual effect is different and acts to set off a different

 kind of SF dynamic.
 The definition and discipline base of each theory are

 given in Table 2. Ours is the first actual classification
 of this many theories about SF causes?most publica
 tions don't mention any SF cause; some mention one.

 Newman (2005) emphasizes preferential attachment and
 self-organized criticality, with minor reference to a few
 other physical ones (see also Sornette 2000). There are
 a few we don't include. Like the proliferation of power
 law discoveries, the growing set of SF theories makes it
 harder and harder not to wonder if they don't also apply
 to organizational phenomena.

 Do Scale-Free Theories Apply to Organizations?
 In Andriani and McKelvey (2007b) we make shorter
 arguments as to how most of the SF theories in Table 2

 apply to organizations. Although each is briefly defined
 in Table 2, we discuss five of them here in more depth.

 Square-cube/quarter-power. In biology, many scaling
 laws take the allometric form Y ~ Mb, where Y is some
 observable and M the mass of the organism. Allomet
 ric refers to a type of growth in which the parts of
 an organism grow at different rates determined by fixed
 ratios. Among these, West et al. (1997) cite metabolic
 rate, height of trees, life span, growth rate, heart rate,
 DNA nucleotide substitution rate, lengths of aortas, size
 of genomes, mass of cerebral gray matter, and density of
 mitochondria. In organisms, surfaces absorbing energy
 grow by the square but the organism grows by the vol
 ume, resulting in an imbalance. By adaptation, fractal
 structures emerge to keep surface absorption of energy
 in balance with the volume's use of energy. But energy
 is moved from surface to places in the volume by capil
 laries and other tubes in which fluid flows are governed
 by the quarter-power law. By nature, organisms adapt in
 a fashion such that quarter, square, and cube capacities
 are appropriately balanced. They are allometric'3 scaling
 laws because they set up rigid relationships.
 Allometric growth reflects universal structural con

 straints in the way organisms use energy. The emerging
 field of allometric growth (Whitfield 2006) is redefining
 biology and more in general the study about how ecosys
 tems self-organize around fundamental energetic con
 straints. Insofar as organizational ecosystems use energy
 and energy-related quantities (money is the equivalent of
 energy according to some economists?see for instance
 Beinhocker 2007) and conform to general principles of
 ecosystem organization, we expect the study of allomet
 ric growth to yield compelling inputs to organization
 science.

 Firms operate in ecosystems defined by the need to
 maximize revenues (exchange area between firm and
 customers) and minimize expenses (energy spent for
 developing, manufacturing, and distributing products). If
 this revenue-energy constraint can be given a meaning
 ful geometric economic form, we may discover similar
 allometric relationships in many organizations. We now
 present some initial findings.

 Haire (1959) first applied the square-cube law success
 fully to four firms. Levy and Donhowe (1962) confirmed
 his findings in 62 firms in eight industries. Stephan
 (1983) applied the square-cube law to firms in terms
 of effectiveness. Employees dealing with people out
 side the firm are "surface" employees?they bring in
 the resources from the environment. "Volume" employ
 ees are those inside who produce and coordinate. As
 firms grow, then, they have to maintain the square-cube
 ratio by adding more surface units or making them more
 efficient.

 Carneiro (1987) applies the law to explain the upper
 bound on the size of villages. The law limits their size
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 unless they develop what he terms "structural complex
 ity," where complexity grows at two-thirds power of
 a village's population. Only by doing this do villages
 avoid splitting in two. Carneiro's theory is more general
 than Stephan's; Carneiro says social entities can increase
 in size only by building in structural complexity. In his
 data, for example, 100-person villages had 10 "complex
 ity traits" whereas 1,000-person villages had four to five
 times as many. Johnson (1982), studying the governance
 of primitive organizations, finds that organizational com
 plexity and leadership diversity scale accordingly with
 the allometric principles mentioned above. Much like
 Carneiro, Johnson finds that the emergence of nested
 hierarchical systems seems to be a response to the scalar
 stress induced by the exponential increase in the num
 ber of communication channels among the parts of the
 organization. The number of communication channels
 scale exponentially with the volume of the organization.
 A scalar stress increase forces the organization to elab
 orate more complex hierarchical systems with the effect
 of keeping scalar stress under control. By doing so, the
 organization changes the surface-volume ratio. From the
 point of view of the square-cube law, a decentralized net
 work organization is a way to transform a large portion
 of the organizational employees into surface employees,
 thereby correcting scalar stress and bringing the sur
 face/volume tension in line with allometric growth?but
 still subject to the quarter-power law.

 The quarter-power law applies to the supply chain
 materials-flow "tube" that limits both the size of a sup
 plier and retailer, for example. Zara is a retailer of new
 high-fashion designs?three weeks from models in the
 designer's mind to new fashions in its stores. How?
 By bringing manufacturing from China back to Europe,
 thereby shorting the "fluid" flow of clothing in trans
 portation corridors and long-distance design communi
 cations. The primary factor in the virtual collapse of
 Citigroup stems from its "silo" design (Moore 2008).
 None of its employees having diverse vantage points of
 observations of its activities leading up to the subprime
 meltdown were connected to useful communication flow

 channels?no part of the firm could readily learn from
 any of the other parts.4 One could call this "a total
 quarter-power breakdown."

 Combination and Breakage Theories. Kolmogorov
 (1941) originally applied his "breakage theory" to
 coal?when large chunks of coal were smashed so as
 to be used in furnaces, resulting in small chunks down
 to powder?they appeared Pareto distributed. We now
 see Pareto distributions and power laws in chromosome
 breakage (Pevzner and Tesler 2003) and hydrodynamics
 (Bache 2004). In organizations the simple breaking up
 of firms into nearly autonomous modular designs makes
 breakage theory applicable?an approach dating back to
 Simon's (1962) "nearly decomposable" systems theory.

 Oppositely, combination theory holds that the require
 ment for a power law to emerge is the number of
 elements in a complex system and their propensity to
 interact with one another. West and Deering (1995) and

 Newman (2005) both make the case that the combina
 tion of exponents results in a power-law distribution?
 the more of them that are combined, the more obvious
 the power law. Of course it does at the equation level, but
 what interacting non-normal phenomena actually occur
 in organizations?

 If several organizational components or behaviors
 appearing vertically across several levels individually
 generate non-normal distributions having somewhat
 longer tails, and also influence each other, then combi
 nation theory tells us that organizations are inevitably
 going to contain well-formed Pareto distributions and
 show the power-law signature. Because they appear
 across several vertical levels, there is also a high prob
 ability that fractal structures and scalable causes are
 present?unless, of course, there are explicit attempts
 by management to negate them. In combination the
 ory, the occurrence of interaction is taken as a naturally
 inherent likelihood as systems become more complex.
 Because many larger organizations have many degrees
 of freedom?and thus are complex by definition?they
 will show Pareto distributions, as is preliminarily evident
 in our Table 1.

 As it has been applied to wealth (Montroll and Badger
 1974), breakage theory appears as a set of independent

 multiplicative elements that are lognormally distributed
 (West and Deering 1995, p. 152). To be wealthy, an
 individual has to have some minimum level of specified
 kinds of attributes (elements). The eight elements are
 social background, education, personality type, technical
 ability, communication skills, motivation, right place
 right time, willing to take risks. But social background,
 education, technical ability, communication, and being
 in the right place at the right time are all potentially
 interactive, with an embedded positive-feedback effect?
 e.g., for a family, the more social status, education,
 and technical skills, then over time, the more technical
 skills, the more social status, etc. Now in the business
 world, suppose that some set of elements are required
 in organizations to cause the GEs, Microsofts, Toy
 otas, and Wal-Marts of this world?say CEO skills, the
 right industry, new technology, "star" employees, spe
 cial markets, weak competitors, borrowing ability, etc.
 As these and other elements become more complexly
 interactive with positive-feedback effects, the distribu
 tion of firms changes from lognormal to Pareto. Axtell's
 (2001) research shows that this is, indeed, how U.S.
 industry appears.

 Least effort. Zipf (1949) argued that least effort
 explained his Zipf's Law?a power law of word usage
 in English, French, and Spanish. The first question is,
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 what is least-effort? Consider: Why would you learn
 words we don't use? Why would we use words you
 don't understand? In both cases it is wasted effort. Least

 effort theory holds that each of us will minimize down
 to the only words relevant for meaningful transaction.
 For example, the 1953 Merriam-Webster's unabridged
 dictionary had more than 550,000 words; by 1971 it was
 reduced to about $450,000 words. Merriam-Webster's
 collegiate dictionary that most of us have in our offices
 is abridged down to around 86,000 words. The Harper
 Collins Italian-English dictionary contains some 28,000
 English words. We get by with fewer and fewer words.
 Why is word usage Pareto distributed? Why are

 words like the, of, and, and so on at the top of the
 rank/frequency distribution? These words have to fit in
 with both the "before" words and the "after" words.

 Adjectives and adverbs, however, only have to fit with
 "after" words. Some words with narrow technical means

 are seldom used?the word "unabridged" is used only
 once in this paper until this sentence. High usage
 brought more opportunities, historically, for more pro
 posed usages and more chances for disagreement on
 word usage. Higher usage also brings more opportunities
 for least-effort movements to improve efficiency. The
 result is increased demand for least effort and greater
 payoff. In word usage, then, we have an interactive
 market transaction of word usage that slowly works
 toward increased efficiency. The basic dynamic is a cir
 cular, positive-feedback process where each party moves
 toward the maximum efficiency, least-effort attractor
 basin. It is the opposite of the other positive-feedback
 SF theories.

 To make least-effort theory even more compelling
 and applicable to organizations, we find that it has now
 shown to be especially characteristic of changing cir
 cumstances. Four recent studies suggest that Zipf's Law
 appears predominantly in the context of change:

 1. In testing whether Zipf's Law applies to Chinese as
 well as English, Dahui et al. (2005) find that the power
 law signature applies only during the period before
 Emperor Qin Shihuang's unification (about 1720), when
 Chinese characters were in flux. They conclude that the
 law does not apply when the number of characters is
 stable.

 2. Ishikawa (2006) shows that Pareto's law holds
 when applied to firms in less populated JSIC5 two-digit
 categories (having fewer firms) where growth rate is
 high, but a lognormal distribution applies to firms in
 large categories (filled with firms) where growth rate is,
 therefore, low.

 3. Dahui et al. (2006) use two computational network
 models to show that the distribution of firms in growth
 markets is a power law but in markets without growth it
 is Gamma or exponential. They conclude, "... we can
 not get [a] power-law distribution by preferential attach
 ment in a constant market.... Economic growth is an

 important condition for the power-law distribution of
 firm size..." (pp. 363-364).

 4. Podobnik et al. (2006) find empirically?and
 test further with a computational model?that time
 series indices in transition economies (i.e., Hungary,

 Russia, Slovenia, etc.) fit Paretian rather than Gaussian
 distributions.

 Three of the foregoing studies apply to organizations
 or markets.

 Preferential attachment This positive-feedback pro
 cess (Barab?si 2002) underlies biological and social net
 works, going from groups of individuals to groups of
 organizations. The Internet grows according to prefer
 ential attachment (Dorogovtsev and Mendes 2003). The
 same happens with cities and airport hubs?as nodes
 grow they attract even more people or flights (Barab?si
 2002). Internet marketing and sales are very much a
 positive-feedback process (Gladwell 2000). Any time
 a system grows by adding nodes to an existing net
 work, the nodes' growth will amplify historically gen
 erated imbalances among the links. Absent top-down
 regulation, older or larger nodes will gain more links
 and generate a Pareto distribution?as in the biotech
 industry (Powell et al. 2005, Gay and Dousset 2005).
 Because organizations are made of social networks, pref
 erential attachment plays a crucial role in their forma
 tion and evolution, thereby providing a solid base for
 a network-based theory of organizational formation and
 development. This "rich get richer" dynamic explains
 the emergence of central hubs and peripheral groups
 that characterize the geography of most organizations
 and the inherent concentration (and dispersion) of deci
 sion making. Other examples are Arthur's (1994) study
 of increasing returns?firms making profits can invest
 in things that make even more profits. Microsoft is a
 good modern example, as is Wal-Mart; the more it low
 ers prices, the more people come to buy; the more they
 come to buy, the more Wal-Mart can lower prices. And
 the more Wal-Mart sells, the more pressure it can put
 on suppliers to lower prices; the more they lower prices,
 the more Wal-Mart can sell.

 Self-organized criticality (SOC). This theory is sym
 bolized by Bak's (1996) and others' (Frigg 2003)
 sandpile experiments. A sandpile subjected to an
 infinitesimal external perturbation (sequentially adding
 single grains of irregularly edged sand) evolves toward a
 critical state, characterized by a critical slope, whereby
 any additional grain induces a systemic sand movement
 reaction that can span any order of magnitude (from
 one grain to thousands), with a frequency distribution
 expressed by a power law. This is counterintuitive. We
 generally assume a linear relationship between pertur
 bation size and a system's reaction, i.e., small causes
 yield small effects. This is true before SOC is attained.
 Thus before criticality, each falling grain has a constant
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 probability of displacing an adjacent grain. The proba
 bility of an avalanche therefore scales exponentially with
 the number of sand grains. This makes large avalanches
 highly unlikely. However, at criticality a power-law dis
 tribution results, given the global connectivity of the
 irregularly edged grains making up the sandpile. As Bak
 (1996, p. 60) writes, "In the critical state, the sand
 pile is the functional unit, not the grain of sand." SOC
 dynamics arise when an emergent system of links con
 nects local pockets into a coevolving whole such that
 small and local fluctuations may be amplified to achieve
 systemic effects. More generally, as the tension in the
 system increases to the SOC limit (usually as a result
 of externally imposed tension?in Bak's SOC this is a
 function of gravity and accumulating sand grains) inde
 pendent data points become interdependent. Mathemat
 ically this means that sandpile behavior obeys a power
 law of the type F ~ S~a, where F represents avalanche
 frequency with given size, 5.

 From the dynamics of earthquakes (Gutenberg and
 Richter 1944) and booms and busts in economic cycles
 (Sornette 2003, Mandelbrot and Hudson 2004, Malev
 ergne and Sornette 2006) to the dynamics of supply
 chains (Scheinkman and Woodford 1994, Wycisk et al.
 2008), a common pattern appears across disparate fields.
 Many systems exist in the state of criticality?on the
 critical slope, as it were. Bak argues that all systems in
 efficaciously adaptive states are in the state of criticality.
 Needless to say, then, SOC occurs frequently in mar
 kets and organizations (Buchanan 2000). Arguing that
 individual decisions are sticky like irregular sand grains,
 Bak applies SOC to economies. Because the tension
 between supply and demand builds and the actions to
 reduce it are not of equal size or regularity, free market
 economies operate at or near the critical state. Economic
 fluctuations (business cycles) are SOC (Scheinkman and

 Woodford 1994). We see SOC in the price of cotton and
 financial markets (Mandelbrot and Hudson 2004): many
 small changes in the price of stocks and the overall value
 of the market separated by volatility incidents averag
 ing one in every four years from 1950 to 1980 and one
 every two years since 1980.6 We also see SOC in con
 sumer product sales (Moss 2002, Sornette et al. 2004)
 and managerial actions leading to different sized firms
 (Stanley et al. 1996, 2000)?all of which show power
 law signatures.

 In the foregoing we detail how five SF theories apply
 to organizations. Elsewhere we argue that almost all
 apply (Andriani and McKelvey 2007b). Thus we have
 potentially 15 reasons why organization scientists should
 take as their new null hypothesis (Alderson 2008) the
 reality that organizations and managers very often live
 in a world of interdependent and not independent events;
 a world of Pareto distributions, fractals, and power laws;
 not Gaussian distributions where stable averages and
 finite variances across large samples are what count.

 Yes, we agree that there are many times and places
 where Gaussian statistics apply, but it is simply wrong
 to assume that they are the rule. If it is explicitly shown
 that a normal distribution holds, use Gaussian statistics.
 But absent this, the new null hypothesis should be pre
 sumed to apply.

 Some Research Implications

 All the world believes it [Gaussian distribution] firmly,
 because the mathematicians imagine that it is a fact of
 observation and the observers that it is a theorem of

 mathematics. (Henry Poincare 1913)7

 We now offer Pareto driven alternatives, starting from
 a discussion of the predictor function. Take a standard
 predictor function consisting of a dependent variable, y,
 several independent or explanatory variables, xn, and an
 error term, s: Thus y = f{xx, x2, *3, ..., xn) + s.

 There are two concerns when one shifts from a
 Gaussian to a Paretian perception of data: (1) What hap
 pens to the predictor function? and (2) What happens to
 the error term? Organizational researchers using statis
 tics as their basis of making truth claims?usually trans
 lated as findings significant at p < 0.05 or < 0.01?
 generally use statistical methods calling for Gaussian
 distributions.

 For instance, Greene's textbook, Econometric Analysis
 (2002), is in its fifth edition and is the standard for many
 econometricians and other social science researchers. He

 begins his approximately 950 pages of analysis with lin
 ear multiple regression and its five endemic assumptions:
 (1) independence among data points, (2) linear rela
 tionships among variables, (3) exogenous independent
 variables, (4) homoscedasticity and nonautocorrelation,
 and (5) normal distribution of error disturbances (p. 10).

 Mostly his book focuses on how to make econometric
 methods work when one or more of these assumptions
 are untrue of the data. Given nonlinearity, for example,
 Greene says, "by using logarithms, exponentials, recip
 rocals, transcendental functions, polynomials, products,
 ratios, and so on, this 'linear' model can be tailored to
 any number of situations" (p. 122). Regarding data dis
 tributions, he says (p. 105):

 Large sample results suggest that although the usual
 t and F statistics are still usable... they are viewed as
 approximations whose quality improves as the sample
 size increases.... As n increases, the distribution...
 converges exactly to a normal distribution.

 Most standard econometric textbooks, such as Greene
 (2002) and Kennedy (2003), present methods to trans
 form datasets into distributions with finite variance. Of
 these, the normal distribution is by far the most used
 due to its stability and conformance to the central limit
 theorem. However, as Bartels (1977, p. 86) writes:

 Economic data are seldom plentiful or accurate enough
 to distinguish between a hypothesized normal population
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 and a nonnormal stable one, and since such data are noto

 riously long-tailed it is difficult to determine whether the
 population variance is finite or not.

 This is crucial: Mandelbrot (1963b) claims that reliance
 on finite variance is the "Achilles heel" of econometrics.

 Our Table 1 offers reasonable evidence that increasing
 n may very well result in Pareto distributions?the Cen
 tral Limit Theorem (CL7) doesn't apply I West (2007)
 takes it a step further, saying that Pareto distributions
 are so ubiquitous that finding a CLT-based average is
 "exceptional!"

 The various robustness8 tests standard economet
 ric textbooks discuss give evidence that modern-day
 researchers have not taken on board Mandelbrot's
 (1963b, p. 438) plea:

 There is strong pragmatic reason to begin the study of
 economic distributions and time series by those that sat
 isfy the law of Pareto. Since this category includes prices,
 firm sizes, and incomes, the study of Paretian laws is of
 fundamental importance in economic statistics.

 Let us put this in California earthquake terms?about
 16,000 insignificant quakes occur every year and a
 "really big one" once every 150-200 years, with 6- and
 7-level quakes occurring within decades. If one sampled
 California quakes from 1995 to 2006, all but two would
 be in the 1-4 range: damage to no more than a few
 houses; no one killed. But this would miss the recent
 6- and 7-level quakes in urban areas (costing billions
 of dollars and killing more than 100 people) and the
 next level 8 yet to come. Californians have long con
 cluded that building codes should be based on the Pareto
 rather than Gaussian perspective. If California followed
 traditional econometric models, above, gathering more
 data could make quakes appear even more normally dis
 tributed, which is surely not the case.

 In effect, application of methods based on Gaussian
 statistics (or more broadly on finite variance) models
 would lead Californians building and living in high
 rise buildings to think that using a moving average of
 quake variance over the thousands of harmless (average)
 quakes would lead to effective building codes. Anyone
 living through a significant quake in California will tell
 you this is nonsense. No amount of so-called "robustness
 improvements" to the standard linear multiple regression

 model allow it to model the effects of extreme quakes
 on buildings, bridges, lives, and damage costs?i.e.,
 the effects of fat-tailed Pareto distributions. Robustness

 "solutions" cannot alter rank/frequency distributions to
 conform to Gaussian assumptions.

 The Predictor Function?From Gaussian to
 Pareto Thinking
 Consider the typical "linear" prediction: f(xl9 x29 x3,
 ..., xn)?the predictor function. Suppose we have a
 simple explanatory theory based on three independent

 variables: Experienced, skilled, and satisfied employees
 increase output. Thus y = f(xx, x2, x3) + e. In mak
 ing a prediction like this, we usually think linearly?x
 causes y. Furthermore, propositions and even operational
 hypotheses appear in print with the expectation of a per
 fect correlation implicit?minus the effect of the error
 term. We visualize this as an upward sloping line in the
 wished-for plot of each cause of productivity, xn (above),
 against output, y. Of course, the real world is never like
 this, and so the plot of y by xx data points, for example,
 appears as almost a circle at worst (near zero correlation)
 or a narrow ellipse at best?the thinner the better.

 Two essential features are together the defining ele
 ments of a "normal" Gaussian distribution:

 1. The "mean" is stable and meaningful. In the equa
 tion y = f(x) + e, define y as weight and x as height.
 Average weight of males in the United States is 190 lbs.;
 average height is 5'8.6". Millions of men are at or very
 near the mean.9

 2. Variance is finite. Shortest living man is 2'5";
 tallest is 7'10" (both in China); both are within 1/2

 magnitude.
 In Gaussian statistics some variance is essential, but

 too much is a problem. Worse, if there is too much
 variance, confidence intervals widen and getting sta
 tistically significant results is more problematic. In
 our worker/output example, because human bodies are
 involved, independence is reasonable: There will be
 strong stable means of skill, experience, and satisfaction,
 with enough variance around the mean to allow correla
 tions. But too little variance, and there is no meaningful
 correlation; too much variance and there is less (or no)
 chance for significance.

 As one moves away from a simple study of bod
 ies, such as our example?which is essentially where
 statistics-applied-to-firms started half a century ago?
 to study firms, distributions appear less obviously com
 posed of independent data points. As a result, some 70
 years of advances in statistics (since the founding of
 Econometrica in the early 1930s) offer devices econo
 metricians can use to get all the weird kinds of data
 in the world of firms redesigned to fit linear regression.

 Now switch to a Paretian world. What changes? Con
 sider species and consumer products.

 At one end of a Pareto distribution we have hun
 dreds of elephants or Wal-Mart.

 At the other end we have trillions of mosquitoes or
 millions of "Ma & Pa" stores (defined as having no paid
 employees).

 Elephants are huge but mosquitoes are tiny. Elephants
 eat vegetation, trample the land, and can trash your liv
 ing room; mosquitoes suck warm blood, fly, and can give
 you viral diseases. Wal-Mart is huge,10 enjoys substan
 tial bargaining power over its supply chain,11 and has
 powerful lobbying abilities.12 Tiny Ma & Pa stores exist
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 in microniches, buy supplies at the market, and have lit
 tle if any political power. The averages of these ends
 of Pareto long tails are meaningless?Axtell (2008) says
 a "typical firm" doesn't exist! The mean, median, and
 mode are different. A careful Gaussian study at the aver
 age or median may offer little, if anything, of interest or
 use about firms at either end. A Gaussian study of Ma &
 Pa stores works but obscures microniches and offers lit

 tle of value to Wal-Mart. And finally, any study close
 to the average or median (or elsewhere) ignores scalable
 dynamics.
 What are the implications?
 1. When extreme events occur they also alter the

 value of the mean?pulling it toward the tail where
 the extreme event occurred. Hence Pareto means are
 unstable.

 2. Compared to "normal" variance, Paretian variance
 is potentially infinite. From Ma & Pa stores to Wal-Mart,
 profits, assets, and indebtedness range from thousands
 to billions of dollars. Profits and assets go from zero or
 worse to billions of dollars?crossing about 11 magni
 tudes. Mode, median, and mean are not the same. The
 larger the extremes, the less frequent or predictable they
 are. But when they happen, they increase the variance?
 perhaps more obviously in things like earthquakes and
 species abundance but also apparent in firms, merger and
 acquisition (M&A) activities, and bankruptcies.

 3. Furthermore, because the variance is poten
 tially infinite, the confidence intervals are considerably
 widened, making findings less apt to be significant. The
 CLT is meaningless.

 Millions of businesses are single-proprietor or Ma &
 Pa stores with incomes in the thousands of dollars and

 possibly negative wealth. At the other extreme we see a
 few giant firms having hundreds of thousands of employ
 ees, billions of dollars in annual income, and assets
 of hundreds of billions?profits and assets can range
 across 11 magnitudes. For much organizational thinking,
 research, and practical applications, neither the distri
 butions of the variables nor theorizing about the causal
 dynamics fits within the Gaussian assumption set. A dif
 ferent approach is needed, based on scalability.

 Suppose we study 4,000 people in 500 small stores
 in small towns. Their owners' smartness; creativity; and
 knowledge of technology, markets, and customers, as
 well as good or bad attitudes, skills, behavior, network
 ing, and so on, affect the other store owners and a couple
 hundred regular customers. This is not a bad sample,
 but if we improve it, both sample and error disturbances
 will become distributed more perfectly "normal." If we
 move the same study to 500 rural outlets of Wal-Mart
 we should end up with the same high quality "normal"
 distribution and error term disturbances. So far, so good.

 But Wal-Mart is huge, having giant stores, many hier
 archical levels, vast profits and assets, and global reach.
 So, we expand the sample to 1,000 worldwide. But now

 instead of two people at one level in each small store
 and 200 small-town customers to deal with, we have
 employees, acting at multiple levels in medium to giant
 stores, who have to deal with many more increasingly
 diverse customers, subordinates and superiors, local zon
 ing issues, M&A issues, and so on. They make deci
 sions ranging from local customer concerns to mid

 management store policies affecting millions of dollars
 in profits to top-management policies and M&A activ
 ities with billions of dollars at stake. No doubt, some
 aspects of human behavior in the N =1,000 remains
 normally distributed. But as we include workers at each
 higher level of the hierarchy, things change. As we
 add levels, the dollar value of good and bad decisions
 increases: Some effects increase exponentially; some

 multiplicatively, and some may show interactivity and
 positive-feedback effects. Some of these skew distribu
 tions may combine to further assure Pareto-distribution
 effects.

 What about timing? In small stores, decisions are
 pretty much the same from one year to the next. But at
 higher levels of Wal-Mart there are "routine" years at all
 levels and then some years where significant M&A, sup
 plier realignment, or other decisions are made. We could
 sample across 5, even 10, years and miss the extreme
 outlier decisions such as buying the UK store chain that
 appears to be a mistake. If we study Wal-Mart people
 at the store-floor level, in one year, N = 1,000 will be
 normally distributed. If we study people at all levels
 across five years we might see a shift from normal to
 rank/frequency Pareto. But we may miss key extreme
 outliers; Wal-Mart doesn't make the really big decisions
 on a regular basis. To the extent our study includes
 people in larger and larger within-Wal-Mart networks
 and supply chain networks, involves multiple levels, and
 covers more years, all of the research issues embedded
 in rank/frequency research become more likely. It all
 depends on how much scalability is involved.

 The Error Term
 As noted above, once we plot Pareto distributed x and y
 on log scales, our expectation is a straight line. In empir
 ical research, Greene (2002, pp. 7-8) observes that the
 clarity of a predicted relationship is clouded by the nor
 mal distribution of error disturbances?mostly, but not
 always, due to measurement error. These effects may
 be due to unknown or uncontrolled variables, measure
 ment error, or both. How does this bear on Pareto based
 research?

 Two points follow from the foregoing analysis. First,
 it is clear that in a Pareto rank/frequency world both the
 predictor function and error term are influenced by out
 liers that are fundamentally important to the validity of
 the analysis, as opposed to what are typically viewed as
 "throwaway" outliers in Gaussian statistics. In the lat
 ter, collecting a large sample almost inevitably means
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 that the presumed validity of the analysis is improved?
 because the outliers have less effect, with statistical
 significance more easily obtained because of the nar
 rower confidence intervals. In a Pareto world this is not
 true:

 1. The analysis is faulty, if not totally meaningless, if
 the sampling of outliers is insufficient. In a Pareto world,
 building up the sample size while ignoring the outliers
 actually reduces the validity of the statistical analysis?
 it's like designing buildings based on average quakes

 while ignoring big ones.
 2. Even though confidence intervals are widened, the

 power of the variance is in the long tails?meaning that
 if the outliers are properly sampled, the impact of the
 increased variance stemming from the tails more than
 compensates for the widening of the confidence inter
 vals. For example, a Pareto distributed independent vari
 able may be a strong predictor of a Pareto distributed
 dependent variable while leaving the error term i.i.d.
 (independent, identically distributed, as statisticians pre
 fer); statistical significance is still relevant.

 3. Correlations between Pareto and "normally" dis
 tributed phenomena are problematic; this needs further
 study.

 Second, the concept of error rests on the "signal plus
 noise" paradigm introduced by Wiener (1949) as part
 of cybernetics. This long-standing paradigm is based on
 the assumptions that (1) a true measure of the signal
 exists as a deterministic function, (2) noise is random
 and its emergence is due to the system-environment cou
 pling (and also because of measuring errors), and (3) the
 relationship between noise and signal is usually additive
 (Kennedy 2003, p. 8). Because noise is assumed to con
 tain no relevant information about the system, filtering
 signal from noise is necessary to reconstruct the system's
 dynamical response.

 In complex systems we have to rethink the signal
 noise paradigm. The response of a complex system
 is a mix of order and disorder, represented in math
 ematical terms by deterministic and chaotic functions.
 Schroeder (1991) separates nonlinear "noise" into four
 colors, white (random), pink (deterministic chaotic),
 brown, and black (Paretian extremes).13 In a com
 plex system, chaotic fluctuations may reflect the frac
 tal dimension of a system and its scaling properties.
 Consequently, "chaos" can be a fundamental part of the
 signal and may convey relevant information about its
 dynamics.14 If this is true, then the basis for the dis
 tinction between signal (independent variables that are
 usually assumed deterministic and predictable) and noise
 (chaotic) becomes blurred (West 2006); consequently,
 the separability between signal and error term is called
 into question. In other words, if the signal is character
 ized by chaotic fluctuations that exhibit long-term cor
 relations (as is usually the case for Paretian functions),
 and the separability between signal and noise cannot

 be based on the presence or absence of noise, then it
 is to be expected that the error term shows long-term
 correlations and "...long-term memory that ties events
 together" (West 2006, p. 271)?and it, therefore, is not

 Gaussian. This implies that statistical methods based on
 finite variance (i.e., classical regression models) may not
 be applicable when dealing with Paretian functions.

 Some Methodological Implications
 An SF theory approach in research starts from non
 prejudicial views of the environment. Most conventional
 research depends on analytical functions and usually
 assumes linearity. Additional assumptions, again often
 implicit, concern evolutionary gradualism and equilib
 rium, with motion toward equilibrium considered adap
 tive in stable niches. Alternatively, research should
 start with a discussion about whether the phenomena
 under consideration show weak or strong interdepen
 dence among data points. If the former, then assume
 independence and the validity of calculus-based analyt
 ical functions. If the latter, then it is more likely the

 world is Paretian. Because fractals are continuous but
 infinitely irregular and therefore not amenable to differ
 ential calculus, the use of analytical functions becomes
 problematic (Mandelbrot and Hudson 2004). The little
 known mathematical fields of fractional calculus and
 Levy-based statistics are more useful (West 2006). Thus
 new measures are needed. We focus on these next.

 Develop Appropriate Measures of the Variables
 Relevant to SF Theories; Test for SF Dynamics:

 (1) Start with our new null hypothesis. Determine
 whether a distribution is likely to be subjected to mul
 tiple dynamics, some of which may be Paretian, others

 Gaussian.15 Two main questions here:
 (a) Are the data points independent or interdepen

 dent? and
 (b) Are the data points additive or multiplicative or

 interactive and scalable?

 (2) If the answer is interdependent-multiplicative
 interactive, then test whether interdependence increases
 going from small to large events. If yes, lognormal dis
 tributions likely could show Paretian tails. Then

 (a) Don't exclude outliers. Even Pareto distribu
 tions may have inconsistent outliers (due to idiosyncratic
 causes); Sornette (2003) calls these "kings" or "black
 swans."

 (b) Look for power-law signatures and identify the
 relevant parameters of the distributions.

 (c) Is it a rank/frequency Pareto distribution?
 (3) See if fractal structures exist:

 (a) Study nestedness and self-similarity so as to
 establish fractal dimension(s);

 (b) When looking at spatial, time independent phe
 nomena (or time-dependent phenomena generated by
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 distributed structures), look at the underlying generating
 network(s). Identify nodes and links and analyze the dis
 tribution of links to nodes. Calculate power-law slopes.

 (c) Is the rank/frequency Pareto distribution well
 formed, as indicated by a power-law distribution? It may
 signal emergence or not.

 (d) For time series, determine fractal dimensions
 D: D = 2 ? a, where a is the scaling index of time
 series and a indicates the mix of ordered and random

 dynamics in the series (see Figure 2). a = 0.5 indicates
 a completely random time series?there are no underly
 ing patterns of order; it is purely random walk, a = 0
 or a = 1 indicate a completely ordered phenomenon?
 no randomness anywhere. The interesting case occurs
 when a / 0 or a / 1; here the data show a mix of
 ordered and random dynamics that builds from previous
 fluctuations; the closer the value is to either end or to
 the middle, the more dominant the relevant dynamic is:
 order or randomness.16 Emergence is most apt to occur
 as a goes below 0.25 or above 0.75. In Stanley et al.
 (1996) it is a =-0.16.

 (e) For instance, Stanley et al. (1996) give an exam
 ple of a hierarchical "Fordist" type organization where
 the CEO can order an increase in production, causing a

 Markov chain along the hierarchical levels?each subse
 quent action-step at time t is a replica of action at time
 t ? 1. If it is carried out exactly from top to bottom of
 the firm, then the organization is strongly interdependent
 (a = 0 for total top-down control, where a is the expo
 nent of the power law describing growth variance), which
 means that the variance in growth rate is directly propor
 tional to size. But lower-level managers and employees
 rarely follow orders exactly. If all ignore CEO orders,
 i.e., all act independently, then a = 1/2. Usually employ
 ees follow orders with some probability and stickiness.
 Thus for a 0 < a < 1/2 or so (based on Stanley et al.
 1996), we expect a power-law effect to obtain. Note that
 0 < a < 1 /2 could be due to a CEO's order implemented
 with some probability or it could be due to an emergent
 self-organizing process by employees.

 Given Measures, then Consider the Following:
 1. Develop theories and hypotheses based on SF the

 ory that are aimed at causes or consequences of extreme
 events. The tools and measures mentioned above help
 identify the nature of the phenomenon and the appropri
 ate SF theory (or mix of). See Table 2 for a list of SF
 theories.

 2. Carry out empirical studies using data at frequently
 occurring scales?i.e., the hundreds or thousands of
 smaller events at lower-level scales comparable to the
 thousands of smaller quakes. Test whether these kinds
 of studies identify causes and consequences of larger
 extremes at, say, the next higher scale(s). That is, can
 we predict emerging fractal structures one level up in
 scale?

 3. Because "extreme" extremes are rare in the real
 world, take a lesson from the econophysicists and use
 computational models to simulate known empirical find
 ings and then test whether they stretch toward the more
 infrequent "extreme" extremes in the artificial computa
 tional world.

 4. Work backwards from existing extreme events
 described in the organizational or managerial literature.

 We have already seen these sorts of studies carried out
 by official investigations of what led up to the Chal
 lenger and Pioneer disasters, the Bay of Pigs confronta
 tion, Enron, 9/11, and so on. These findings then can
 be "reversed" and further tested by tracing backwards
 from extreme to smaller-scale employee networks and
 behaviors via computational modeling.

 5. Use extreme-event statistics (Baum and McKelvey
 2006) to calculate how extreme a future event might be.
 If a power-law tail is evident, one can do this simply by
 looking down the sloping line.

 Conclusion
 We suggest that fractals, rank/frequency Pareto distri
 butions, power laws, and underlying scale-free theories
 will help organization scientists deal with Gell-Mann's
 "deep simplicity" (1988), scalability explanations of liv
 ing systems in general (2002), and organizational com
 plexity more specifically. We demonstrate that power
 laws are an inextricable aspect of how individuals, orga
 nizations, economies, and societies work. To answer
 the call for causal explanations relevant to organiza
 tions, we assemble a list of 15 scale-free theories and
 detail how several apply to organizations and manage
 ment. These theories correct two key shortcomings of
 Gaussian research. First, they signify Pareto distributions
 and extreme events as elements of the managerial world
 that need to be accounted to by quantitative researchers;
 second, they put positive-feedback and other scale-free
 dynamics at the center of analysis.

 Abbott's claim that the General Linear Model "sub
 tly shaped sociologists'" thinking (2001, p. 7) (and the
 thinking of other disciplines such as economics, manage

 ment theory, OB, etc.) may be at the base of the grow
 ing ineffectiveness between theory and practice. The gap
 between multiparadigmatic "science" appearing in jour
 nals and practitioner needs (Ghoshal 2005, Van de Ven
 and Johnson 2006) signifies the fact that the proliferation
 of academic disciplines has not produced research useful
 to practitioners (McKelvey 2006, McKelvey and Benbya
 2007) . Several environmental reasons may lie behind
 this reality: the ICT revolution, globalization, and radical
 transformations in Asia, for example, have contributed to
 the dazzling acceleration of change. These changes have
 increased global and local network connectivity making
 actors, from individuals to nation states, more interde
 pendent and therefore more exposed to positive-feedback
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 Figure 2 Persistence and Anti-Persistence Behavior in Time Series

 Order | Randomness | Order
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 0 = oscillatory pattern 1 = ballistic trajectory)

 dynamics and consequent rank/frequency distributions
 (Andriani and McKelvey 2007a).
 Unfortunately, theories and methodological tools have

 not evolved at the same rate and are mostly still rooted
 in the time-honored concepts of equilibrium and lin
 earity. In reality, organizational researchers study an
 interconnected world?full of rank/frequency disconti
 nuities, chaotic dynamics, fractals, Pareto extremes, and
 power laws?with inappropriate research tools. The con
 sequence is the gap between theory and practice that
 some theorists and many practitioners lament. In partic
 ular, theories and tools relying on "averages" and limited
 variance pledge allegiance to the altar of tradition?they
 force researchers to assume homogeneity instead of
 heterogeneity and averages instead of rank/frequency
 extremes.

 The impact on use of statistics is significant.
 Researchers should start from the assumption that phe
 nomena are rooted in interdependent dynamics and that
 long tails are the effect of scalable causal dynamics.

 Means and variance are unstable and cannot be used
 to represent the phenomenon, unless independence is
 demonstrated. We show that predictor and error terms
 acquire new meaning. We also show that complexity
 offers researchers some tools to characterize the mix of

 order and randomness in the systems, and we give exam
 ples about how research could be done in a Paretian
 world. More specifically,

 1. Data about the trillions of mosquitoes or millions
 of Ma & Pa stores in one tail don't offer much use
 ful information about the elephants or Wal-Mart in the
 opposite tail;

 2. Methods that work on the large numbers in
 the Ma & Pa tail don't apply to studying extremes
 like Wal-Mart, Microsoft, Enron, or the organizational
 response behaviors to disasters like Katrina, Pioneer, and
 Challenger;

 3. Which is to say, large samples at the mode don't
 speak to any other part of the distribution;

 4. Studies of normal distributions at the median or
 mean don't speak to either tail;

 5. Distributions of, and in, firms may not become
 "normal" just by increasing sample size;

 6. Data collection working hard to include all Paretian
 outliers needs to replace approaches that delete outliers
 on the assumption that they are all errors and anomalies;

 7. Scalable causes, dynamics, and theories become
 more important; they are absent from standard econo
 metrics textbooks and current statistical practices in
 general;

 8. Scalability-relevant methods simply don't exist
 in existing research approaches or in management
 theorizing.

 The field of power-law science, extreme event the
 ory, and complexity is relatively young. From the first
 Pareto distribution in Pareto's (1897) publication, Pareto
 rank/frequency and then power laws and scale-free the
 ories have appeared in many instances. However, in
 comparison with the three centuries of development of
 the Newtonian/Gaussian world, power-law science is
 far from paradigmatic. There is no accepted standard
 for high quality research; limits of predictability are
 unknown; tools, frameworks, and methods are scarcely
 developed; the "line in the sand" that defines the spheres
 of influence of Gaussian and Paretian approaches needs
 clearer demarcation and new epistemological rules of
 justification logic.

 Scale-free theories offer the promise of explaining
 extreme events and reducing the fragmenting effect of
 social science disciplines on organizational research.

 Discipline-centric researchers may dislike this conse
 quence; discipline-neutral researchers will see research
 advantages and practitioner relevance. But remember:
 The average of the rank/frequencies from mosquitoes to
 elephants, from Ma & Pa to Wal-Mart retail firms, of
 from small aerospace-oriented foundries to Boeing and
 Airbus, or small computer repair stores to Microsoft,
 offers little useful information to any other part of a
 Pareto distribution. As Brunk says (2002, p. 36):

 Instead of the bulk of the data being produced by one
 process and the "outliers" by another, all events?both
 minuscule and the historically monumental?are pro
 duced by the same process in a SOC environment.

 Whereas normal distributions call for more stan
 dardized management, the long unique tails of
 rank/frequency Pareto distributions call for more unique
 managerial responses. We argue that managers live in
 a world of mostly Paretian organizational and eco
 nomic rank/frequency phenomena and that the fat/long
 tail and chaotic properties of Pareto distributions have
 to become more evident in empirical organizational
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 research. For some portion of organizational research,
 the use of the so-called "robustness" enhancement tech

 niques described in standard econometric textbooks is
 dysfunctional. Instead of being deleted, extreme events
 have to be properly sampled and analyzed. Given current
 quantitative practices, this is, indeed, a call for signifi
 cant change. It is time to change.

 Endnotes
 !The so-called butterfly effect stems from Lorenz's (1972)
 paper: "Does the flap of a butterfly's wings in Brazil set off a
 tornado in Texas?" These are Holland's (2002) "tiny initiating
 events" that scale up to extreme outcomes.
 2Though a power-law exponent is constant in a particular func
 tion, its exponent may change for different settings, industries,
 times, etc. Stanley et al. (1996) find slightly different scaling
 coefficients across a large sample of firms for sales, assets,
 number of employees, etc. Newman (2005) also shows differ
 ent scaling coefficients.
 3In general the exponent b is a multiple of ?1/4.
 4"Besides ensuring that Citigroup has a proper handle on
 risk, Pandit's other challenge will be to streamline opera
 tions. Over the years, Citigroup has strapped together a vast
 array of businesses across its five business segments. The bank
 is now looking to improve efficiency and reduce overlap"
 (quoted from the Morningstar stock analyst report on Citi
 group: http://news.morningstar.com/). In New York, for exam
 ple, all the acquired businesses remained in their original,
 separate buildings?there was acquisition without integration,
 i.e., M&A without the "M."
 5JSIC is the Japanese counterpart to the SIC code in the
 United States. Ishikawa (2006) studies all 14 Japanese two
 digit industry classifications, which in the paper he refers to
 as "job categories."
 6Just take a look at the market volatility chart in Ghysels et al.
 (2005) and count the number of times the red line (volatili
 ties) goes above the black line, which represents the moving
 average (GARCH) line.
 7Quoted in West and Deering (1995, p. 83).
 8Other robustness techniques (not based on least square esti

 mation) to deal with data sets that deviate from idealized
 assumptions can be found in Rousseeuw and Leroy (1987).
 In general, these techniques are not based on normal distribu
 tion and CLT but instead use the t-distribution. They assume
 finite variance, and like other robustness techniques, they have
 developed highly sophisticated tools (trimming, "winsorizing"
 to deal with outliers, skewness and long-tailed distributions
 tend to cut the tails start from trimming, winsorizing, etc.).
 9From Wikipedia (http://en.wikipedia.org/wiki/Robust_Statistics
 accessed September 23, 2009).
 10Wal-Mart is now the largest company in the world, has rev
 enue more than $280 billion, and serves 138 million shoppers
 per year in approximately 5,300 stores (Bianco 2007).
 11 "Wal-Mart wields its power for just one purpose: to bring the
 lowest possible prices to its customers. At Wal-Mart, that goal
 is never reached. The retailer has a clear policy for suppliers:

 On basic products that don't change, the price Wal-Mart will
 pay, and will charge shoppers, must drop year after year. But
 what almost no one outside the world of Wal-Mart and its

 21,000 suppliers knows is the high cost of those low prices.

 Wal-Mart has the power to squeeze profit-killing concessions
 from vendors. To survive in the face of its pricing demands,
 makers of everything from bras to bicycles to blue jeans have
 had to lay off employees and close U.S. plants in favor of
 outsourcing products from overseas" (Fishman 2003).
 12Wal-Mart's lobbying expenses increased by 60% in 2007
 (see Sarkar 2008).
 13Following West (2006, p. 79) we define chaos as the "kind
 of randomness... which is generated by the nonlinear dynam
 ical property of a system." Chaos can be divided into deter

 ministic chaos, colored and white noise, defined as follows:
 white, truly random, is characterized by a power spectrum
 whose exponent ? = 0 (or frequency independent). Colored
 noise is divided into anti-persistent or mean-reverting [pink;
 deterministic chaos-based, anti-persistent; known as l/f or
 power spectra with exponent ~/_1) and persistent (brown
 (f~2) and black (persistent reoccurrence of extreme events;
 f~? with ? > 2)] (Schroeder 1991). Colored noise and deter
 ministic chaos can also be characterized by their dimension
 ality and pattern/path predictability (Dooley and Van de Ven
 1999).
 14The origin of chaos in complex systems' behavior is not
 always due to the system-environment coupling?although
 environmental interactions may contribute to it (Haken
 1983)?but is often endogenous. Two consequences follow:
 First, chaos characterizes consistent dynamics of the system
 and therefore cannot be discarded as noise. Second, because
 chaos and noise are both nonlinear, separating them is prob
 lematic, though Dooley and Van de Ven (1999) and Baum and
 Silverman (2001) start down this path empirically. In Paretian
 systems a new type of mathematics and statistics is needed
 (West and Deering 1995, West 2006).
 15Note that the Gaussian distribution belongs to a broader class
 of heavy-tailed distributions, the so-called Levy stable distri
 butions (West and Deering 1995). Levy distributions need not
 be symmetric; they follow a generalized form of the law of
 large numbers. Levy distributions are characterized by four
 parameters a, ?, /ul, c, where a (0-2) is the exponent, ? rep
 resents the skewness, \x a scaling factor, and c a shift factor.
 For 0 < a < 2, we get the family of heavy-tailed distribu
 tions, which includes the Cauchy, Pareto, etc., most of which
 show no finite means and variance, a ? 2 yields the Gaus
 sian distribution, which is a particular case of a much larger
 statistical distribution family. One referee of this paper notes
 that because the Gaussian distribution corresponds to a narrow
 region of the general class, decisions presuming the generality
 of Gaussian distributions risk being "brittle."
 16More specifically: 0 < a < 0.5 indicates anti-persistence (see

 Figure 2). The system "remembers" a fluctuation and reacts
 with the opposite. Head is more likely to be followed by tail,
 a long stride by a shorter one, exploration by exploitation, or
 centralization by decentralization, etc.; 0.5 < a < 1 indicates
 persistence. In finance draw-downs and draw-ups (Sornette
 2003) are repeated, i.e., sudden changes of stock market values
 that follow each other. For instance, the 1987 crash was really
 three financial crashes repeating (30.7% cumulative loss) in a
 short time period.
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