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Artificial neural networks are rapidly gaining popularity in the hard sciences and
in social science. This article discusses neural networks as tools business re-
searchers can use to analyze data. After providing a brief history of neural net-
works, the article describes limitations of multiple regression. Then, the charac-
teristics and organization of neural networks are presented, and the article shows
why they are an attractive alternative to regression. Shortcomings and applica-
tions of neural networks are reviewed, and neural network software is discussed.

Keywords: artificial neural networks; multiple regression; prediction

Why don’t business researchers use neural networks? Artificial neural networks have
been successfully employed for analysis and research in the hard sciences for decades.
In organizational science, regression and associated techniques have been the widely
used tools for testing and analyzing relationships among variables (Landis & Dunlap,
2000). However, in recent years, neural networks have been gaining popularity as sta-
tistical and decision tools in applied settings such as business and the social sciences
(Al-Deek, 2001; Laguna & Marti, 2002; Neal & Wurst, 2001; Nguyen & Cripps, 2001;
Phua, Ming, & Lin, 2001; Racine, 2001). In fact, in some areas of business such as data
mining, neural networks have become the most widely used analysis technique (Chen
& Sakaguchi, 2000).

There are several reasons for the growing popularity of neural networks. Modern
computers are now powerful enough to run large, useful neural networks
(Pethokoukis, 2002). Several powerful neural network software packages are now
available from companies such as SAS, SPSS, and MATLAB (Gencay & Selcuk,
2001; Sarle, 2002). Furthermore, neural networks are capable of learning using real
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data; hence, they do not need the a priori knowledge required by expert systems and
regression (Littell, 2000; Mitchell, 2001). Artificial neural networks have also been
shown to outperform multiple regression in data analysis in several problem domains
(Garson, 1998). Also, neural nets offer capabilities beyond those of regression, such as
the ability to deal with nonlinear relationships, missing data, and outliers (Somers,
2001). Finally, neural networks can be used in combination with regression, so
researchers can take advantages of the strengths of both techniques.

This article discusses artificial neural networks in the context of statistical analysis
and as an alternative to conventional multiple regression. A brief historical review of
neural nets is followed by a description of the limitations of multiple linear regression.
After discussing the characteristics and organization of neural networks, this article
shows why they are an attractive alternative to regression. Then, some of the common
applications and shortcomings of neural networks are analyzed. Finally, the major
neural network software packages are discussed.

History of Neural Networks

The first major paper on neural networks was published in 1943 by McCulloch and
Pitts. Their research showed that human brain functionality could be modeled mathe-
matically and that a network of artificial binary-valued neurons could perform the cal-
culations. In the early 1960s, Rosenblatt (1962) developed a learning algorithm for a
model called the perceptron. Research interest in the field of neural networks contin-
ued to rise until the publication of a paper by Minsky and Papert (1969) that showed
that neural networks possessed the ability to approximate only a limited number of
functions. Practically speaking, this has turned out to be not much of a restriction.

A resurgence of interest in the area of artificial neural networks has been fueled by
the development of the Hopfield model (Hopfield, 1982), the development of the
backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), and the exponen-
tial advances in computational capability. Currently, there is no practical limit on the
types of functions a neural net can approximate.

Description of Neural Networks

A neural network may be envisioned as a highly connected structure of processing
elements that attempts to mimic the parallel computation ability of the biological
brain. When compared to a conventional linear computer, the biological brain may not
be able to process serial computations as fast as the computer. However, in certain situ-
ations, the biological brain’s parallel processing ability can abstract, process, and gen-
eralize data instantly, whereas a conventional computer would take massive amounts
of time and in most situations be unable to understand the problem. By attempting to
emulate the brain, an artificial neural network attempts to overcome the drawbacks of
conventional computers.

Limitations of Regression

One attraction of neural networks arises from the many limitations of conventional
multiple regression. Multiple regression has numerous disadvantages that hamper its
effectiveness as a statistical tool. Many of these disadvantages are overcome by artifi-

DeTienne et al. / NEURAL NETWORKS AS STATISTICAL TOOLS 237

 © 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on April 17, 2008 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


cial neural networks. Some of the common faults of linear multiple regression analysis
are detailed here.

Linear in Nature

The inability to deal effectively with nonlinearity is a critical drawback of multiple
linear regression (Marquez et al., 1991). Compounding the problem is that multiple
linear regression returns no direct indicator as to whether the data is best presented lin-
early. The nature of the phenomenon in management science makes linear statistical
analysis inappropriate in many cases. If prior knowledge of nonlinearity exists, then it
is easier to treat. However, in many cases, researchers are unaware of the nonlinear
relationship between variables and unsure of which statistical tools to use with nonlin-
ear data.

Model Specification Required in Advance

In conventional least squares linear regression, the model must be specified in
advance. This a priori model specification makes the problem easy to solve but entails
significant guesswork. Assumptions have to be made concerning the underlying rela-
tionship between independent and dependent variables. By default, it is often assumed
to be linear. In case the model specification is incorrect, the regression line can also be
erroneous, even though the error of the fit can be small. Therefore, regression results
are highly dependent on the practitioner’s choice of the model. In addition, two models
are extremely difficult to combine in the same regression equation. Each model is gen-
erally specified and analyzed separately (Duliba, 1991).

Assumptions of Regression

The error term ε in a conventional multiple regression model is subject to the fol-
lowing assumptions: the Gaussian distribution of e, zero mean of ε, independence of ε,
and the constant variance of ε. Furthermore, the aforementioned assumptions are
required conditions for deriving the least squares regression function (Wang, 1998).
These assumptions might not hold true in many cases, maligning the regression func-
tion.

Not Adaptive

Multiple regression is not adaptive, in the sense that model components cannot be
modified as suggested by the data being analyzed. Although individual coefficients
can be eliminated from the model (a coefficient of zero nullifies the contribution of that
variable to the model), the form of the equation cannot be changed. Even if it is obvious
a linear model is not adequate, regression does not directly suggest how to improve the
model or segment the data. Similarly, computer regression programs cannot learn or
become smarter. The regression equation is typically applied to the whole data set.
Furthermore, the regression equation does not grant relative importance to parts of the
data set. Significant underlying patterns in the data may be lost due to this macro
approach.
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Knowledge of Underlying Distribution

Multiple regression requires knowledge of the underlying distribution of the data to
specify a model. One requirement of regression is that data be well distributed. How-
ever, we cannot expect past operational data or human performance and interaction
data to possess an ideal distribution, as is possible with data from well-planned labora-
tory experiments. Generally, data tend to be clustered around certain regions and
skewed with respect to certain variables (Joseph, Wang, & Shieh, 1992). Similarly,
most regression models assume that the underlying population follows a Gaussian dis-
tribution. This is an unrealistic expectation for many data sets used by organizational
scholars.

Multicollinearity

Multicollinearity is a high degree of correlation among two or more variables. Not
recognizing correlations among supposedly independent variables is a major defect in
regression practice. If variables are strongly collinear, more data are not better. In fact,
in an extreme case, collinearity can make the regression unstable; small changes to the
input can lead to wild swings in the output. Dealing with collinearity involves trim-
ming the variables out of the data or combining collinear variables into a single score.
However, in doing so, correlation with the dependent variable can also be weakened
(Walter & Levy, 1979).

Other Limitations

Some additional limitations of regression are as follows. The tendency to regress
too many variables at the same time increases error. Generating an unwieldy number of
candidate regression equations is another pitfall of multiple regression. Ignoring the
sign, magnitude, and statistical significance of individual regression coefficients can
also be a drawback of regression (Johnson, 1989). Furthermore, linear regression is
especially inept at dealing with outliers in the data set (Denton, 1995; Marquez et al.,
1991). Finally, regression equations may be distorted when data are missing and in
noisy environments.

Thus, there are several major drawbacks and several minor drawbacks that make
regression less attractive for analyzing organizational data. A few of the drawbacks
can be overcome by using nonlinear regression. The following section shows how neu-
ral networks can handle both linear and nonlinear relationships and how they can over-
come almost all of the drawbacks discussed above.

Characteristics of Neural Networks

A neural network is a computational structure consisting of several highly intercon-
nected computational elements, known as neurons, perceptrons, or nodes (see Fig-
ure 1). Each neuron carries out a very simple operation on its inputs and transfers the
output to a subsequent node or nodes in the network topology (Mavrovouniotis &
Chang, 1992). Neural networks exhibit polymorphism in structure and parallelism in
computation (Wu & Yen, 1992).
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In general, a neural network is characterized by the following three major parts:

• the network’s topology,
• the computational characteristics of its elements, and
• the training of the network (Hernandez & Arkun, 1992; Stern, 1996).

Network Computation

The neuron is the basic computational unit of a neural network. The concept of a
neuron was developed by McCulloch and Pitts in the 1940s in an attempt to mimic the
neurons in the biological brain. Each neuron does the following tasks:

1. Signals are received from other neurons (X0, X1, X2).
2. Signals are multiplied by their corresponding weights (W0X0, W1X1, W2X2).
3. Weighted signals are summed (Sum = W0X0 + W1X1 + W2X2).
4. The calculated sum is transformed by a transfer function [F(Sum)].
5. The transformed sum is sent to other neurons (repeats 1-4 above) (Mukesh, 1997, p. 96)

(see Figure 2).

The input into a neuron or node is the weighted sum of the outputs from nodes con-
nected to it. Therefore, the net input into a node is

Netinput outputi = × +∑Wij j i
j

µ ,

where Wij are the weights connecting neuron j to neuron i. A negative weight Wij gener-
ally means that output from the neuron will decrease and a positive weight will excite
the neuron (Stern, 1996). Outputj is the output from node j, and µi is a threshold for neu-
ron i. The threshold term is the input to a neuron in the absence of any other input
(Warner & Misra, 1996). The threshold term is also called the bias term. Figure 2 illus-
trates this point.

Artificial neural networks receive inputs and generate outputs in the form of vec-
tors. Netinputi is simply the dot product of the input and weight vectors.
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Figure 1: Neural Network Computational Structure
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The prior equation can be expressed by matrix notation as,

Netinputi = +X Wj
T

j iµ ,

where X indicates the vector of inputs, T indicates the transpose of the column vector,
and W indicates the vector of weights. In the vector notation, an additional dot product
is sometimes used to give µi, which is the bias value. The output of a bias i is often 1.0,
and the biases (µis) are treated in the same manner as the Wis. This additional set of bias
weights gives the network a higher degree of flexibility than networks without the
additional set of weights (Spining, Darsey, Sumpter, & Noid, 1994). An example of
this improved equation is

Netinputi = +X W Xj
T

j j
T

iµ .

Computational Characteristics of the Elements

Computation of net input is the core of neural network analysis because it deter-
mines why selected neurons become associated with given input patterns (Garson,
1998). The calculated sum of inputs is transformed into output by a neuron using an
activation function. An activation function maps any real input into a usually bounded
range, often 0 to 1 or –1 to 1. Bounded activation functions are known as squashing
functions.1 If a network has a linear transfer function, then a network with multiple lay-
ers can be represented as a network of a single layer that is the product of the weight
matrices of each layer. Researchers have also used many nonlinear activation func-
tions. Nonlinear transfer functions between layers allow multiple layers to furnish new
modeling capabilities (Harrington, 1993). The specified activation function is arbi-
trary but often chosen to be a monotonic function (Stern, 1996). Some of the common
activation functions are the following:

• linear or identity: F(x) = x
• hyperbolic tangent: F(x) = tanh(x)
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• threshold: F(x) = 0 of x < 0, 1 otherwise
• Gaussian: F(x) = x exp(–x

2/2)
• logistic: F(x) = (1 + e

–x)–1 (Sarle, 1994)

The most common activation functions are of the sigmoid or logistic form, such as

( )F x
e x

=
+ −

1

1
.

A differentiable activation function is desirable. A minor disadvantage of the sigmoid
function is that it does not efficiently interpolate or extrapolate efficiently (Hwang,
Lay, Maechler, Martin, & Schimert, 1994).

To briefly summarize, the activation function limits the neuron’s response. No mat-
ter how weak or strong the inputs, the activation function limits the response to –1 to
+1. This is a crucial feature of neural nets and part of the reason a neural net deals with
outliers so well. A seven sigma input data point can destroy a regression prediction.
For example, if a researcher has an N of 50, and the typical range of a variable is 1 to 5, a
response of 75 from one of the participants can skew the regression results signifi-
cantly. However, because the activation function limits the neural network’s response,
the effect of an outlying rogue data point is less likely to significantly skew the output
result.

Network Topology

Traditional neural networks have neurons arranged in a series of layers. The first
layer is termed the input layer. The last layer is known as the output layer. The number
of neurons in the input layer corresponds to the number of independent variables used
as inputs, and the number of neurons in the output layer corresponds to the number of
variables or output data points to be predicted. The layers of neurons in between the
input and output layers are called the hidden layers (see hidden layers in Figure 1).

When referring to neural network layers, the input layer is generally ignored
because the input layer performs no computations. In a feed-forward neural network,
the only permissible connections among nodes are between themselves and are
directed downward. Connections are not allowed among the neurons of the same layer
or the preceding layer. Networks where neurons are interconnected with neurons in the
same layer or neurons from a preceding layer are termed feedback or recurrent net-
works.

If the neural network model includes estimated weights between the inputs and the
hidden layer, and the hidden layer uses nonlinear activation functions, such as the sig-
moid or logistic form, the model becomes genuinely nonlinear in its parameters. The
resulting model is known as a multilayer perceptron (Sarle, 1994).

The number of nodes in the hidden layer may be as large as required and is related to
the complexity of the task the network is designed to perform. More layers may be
added by increasing the number of intermediate hidden layers while maintaining full
connectivity between successive layers. Each node of a particular hidden layer is usu-
ally connected to all nodes in the subsequent layer.

Although the size of the network and the number of neurons may be varied, no com-
monly accepted rules are available for designing the configuration of a neural network.
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In function generation and regression applications, a neural network with fewer than
the required hidden nodes will be unable to generate complicated functions. However,
too many hidden nodes could cause unwanted oscillation of the fitted curve. In terms
of dealing with nonlinearity in the data, fewer than the required hidden nodes will be
unable to generalize the nonlinearity and too many nodes may result in overfitting
(Wang, 1998). This is analogous to choosing the correct order of polynomial (or other
function) for a nonlinear regression fit. A very-high-order polynomial will wiggle to fit
noise in a way not representative of the actual underlying phenomenon.

Several researchers have found techniques to ascertain the required number of
nodes. For instance, Kung and Hwang (1988) found that the number of neurons in the
single hidden layer should be equal to the number of distinct training patterns.
Masahiko (1989) concluded that N input patterns required (N – 1) neurons in the single
hidden layer. Unfortunately, it is difficult to select the optimum size of a network with-
out knowing in advance the rules that the network is going to abstract from the data
(C. W. Lee, 1997).

Rumelhart, Widrow, and Lehr (1994) stated that minimal networks provide more
efficient generalization performance than more complex networks do. Smaller net-
works learn more quickly, operate more quickly with less complexity, and are simpler
to interpret in terms of rules (Hagiwara, 1993; Looney, 1996). This is because the
shortage of units forces the algorithm to develop general rules to discriminate between
input patterns, whereas otherwise it would tend to learn each item of data as a special
case. Extending training time in the second case to improve discrimination will have
only a detrimental effect on generalization (C. W. Lee, 1997).

Neural networks generalize better when succeeding layers of neurons are smaller
than the preceding ones (Kruschke, 1989; Looney, 1996). In addition, Hornik,
Stinchcombe, and White (1989) showed that continuous functions on compact subsets
of Rp can be uniformly approximated by two-layer neural networks with sigmoid acti-
vation functions. The magnitude of weights is more important than the size of the net-
work. The error of a neural network increases with the magnitude of the parameters
(weights) and not on the number of parameters (Bartlett, 1998).

No method exists to optimally determine what a network topology should be. Some
rules of thumb and math principles help guide the process for determining how many
layers the neural network should have.

The simplest neural network consists of just an input layer and output layer, with no
hidden layers. In the case of identity activation functions, this is exactly a single matrix
multiplication, where the input vector is the input layer, the output vector is the output
layer, and the matrix is given by the neural network’s weights. This is mathematically
linear. Even with nonlinear activation functions, the behavior will typically be close to
linear as given by a single matrix multiplication, except for outlier inputs. As matrix
multiplication covers this case very well and offers analytic methods for solving for the
weights, zero hidden-layer neural networks are rarely used.

Single hidden-layer neural networks, although more general than zero hidden-layer
networks are, cannot model all continuous functions. Also, they often take more nodes
to do the same problem than a two-layer network (Warner & Misra, 1996). For these
reasons, single hidden-layer networks are not often used.

The two-layer neural network can model any continuous function (cf. http://
hendrix.ei.dtu.dk) to an arbitrarily desired degree of accuracy. Two-layer networks can
model both linear and nonlinear functions and offer many benefits over matrix mathe-
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matics. This ability to model continuous functions makes neural networks with two
hidden layers the optimal choice for many problems.

Three hidden-layer neural networks can be used to model situations with discontin-
uous behavior. Most analyses look for relationships (preferably smooth and linear)
between inputs and outputs. If inputs and outputs map in a discontinuous manner (an
infinitesimally small change in input leads to a macroscopic change in the output),
such behavior is often difficult to explain. Explanations are often better done linguisti-
cally rather than mathematically. As an example, income tends to rise with age, but
there can be a sudden discontinuous drop at a forced retirement age.

For the majority of problems of interest, a network with two hidden layers is the
common choice. Networks with three or more hidden layers are rarely used. Too many
layers can lead to overfitting, where the network tries to follow the noise or swings
wildly between training points.

Once the number of hidden layers has been chosen, the next problem is determining
how many nodes to use in each layer.2 The input layer is easy; this is equal to the num-
ber of inputs for the system. Likewise, the output layer is determined by the number of
desired outputs.3

Where the neural network art comes into play is choosing the number of nodes for
the hidden layers. Conventional matrix algebra (which is the special case of a neural
network with identity activation functions) would dictate matrix dimensions be set
equal to either the number of inputs or outputs. Going much larger than this number
can lead to overfitting. Going much smaller can lead to underfitting.

Unfortunately, there is not a rigorous mathematical test to determine the optimal
number of nodes to put in a hidden layer. Trial and error methods are necessary, partic-
ularly if the functional input-output relationships are not known. One common rule of
thumb is to use one more node in the hidden layers than in the input layer. This pro-
vides a good compromise for many problems and provides the confidence of being
close to matrix multiplication dimensions.

Training the Network

In general, the behavior of any training process depends on the following factors:

1. data set,
2. initial weight set,
3. architecture of the neural network,
4. activation functions and their biases (if any), and
5. step gain and adaptive strategy for it (Looney, 1996).

The first four determinants have been discussed in previous sections. This part of
the article discusses number five and other aspects of training the network.

Neural networks “learn” in two principal ways: supervised and unsupervised learn-
ing. Supervised training is used when a training set consisting of inputs and outputs, or
a set of examples with known results, is available. A supervised network must have a
training set consisting of an input vector paired with a corresponding output vector.
Supervised learning means learning a static mapping from a vector X to a vector Y,
where there is a training set containing data on both vectors. The vector X contains a
pattern and vector Y contains a classification of that pattern (Werbos, 1991). The net-
work uses the training set to learn any general features that may exist in the training set
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and also to determine an error and then adjust itself with respect to the error. The error
adjustment is termed backpropagation, which is discussed shortly. Once adequately
trained, the network will be capable of predicting patterns from new data not used in
training.

The most common form of a supervised network is the backpropagation network
discussed in this article. Some of the other types of networks with supervised training
include the following: mean field annealing, recurrent backpropagation, perceptron,
Boltzmann machine, linear vector quantization, ARTmap, Cauchy machine, fuzzy
cognitive map, backpercolation, and cascade correlation (Spining et al., 1994).

On the other hand, unsupervised networks are used when training sets with known
outputs are not available. In vector terms, the output vectors are unavailable. This means
that the network is trained with absolutely no directive feedback. Such networks use
inputs to adjust themselves so that similar input gives similar output. In effect, the net-
work adjusts itself to correlations in the input data. During training, output nodes are
not used; output nodes are used only in interpreting the results (Spining et al., 1994).
Unsupervised networks are ideal for real-time applications. Some examples of unsu-
pervised networks are Kohonen self-organizing maps, Kohonen topology preserving
maps, fuzzy associative memory, Hopfield nets (discrete, continuous), linear associa-
tive memory, optimal linear associative memory, adaptive resonance theory, fuzzy
associative memory, temporal associative memory, and counterpropagation (Spining
et al., 1994).

Neural networks can be used in classification or in prediction modes. A neural
network is trained with known cases. Once the weights are frozen and the network is
put into use, repeats of earlier learned input patterns will classify the output as a
known output pattern. If the input data are incomplete (e.g., if some of the input
nodes are unknown), or if a new input pattern is presented, neural networks are good
at prediction. It will make an “educated guess,” in contrast to a computer program that
halts on unknown input or a regression equation that can be totally wrong if one input is
missing.

Backpropagation

The backpropagation algorithm is a method to ascertain the weights in a multilayer
feed-forward neural network. One of the major reasons for renewed interest in neural
networks has been the development of the backpropagation algorithm. Cybenko
(1989) illustrated the power of the backpropagation algorithm by showing that any
continuous function could be approximated to arbitrary accuracy by a two-layer feed-
forward network with a sufficient number of hidden units.4 Backpropagation, as for-
mulated by Rumelhart et al. (1986), with acknowledgment of the earlier work by
Parker (1985), is the most widely used method of adapting artificial neural networks
for pattern classification applications (Werbos, 1988).

Backpropagation is a conceptually simple iterative gradient descent algorithm.5 As
stated above, neural networks learn by changing the weights of interconnection. Dur-
ing the training phase, network outputs are compared to desired output. If the two
match, no change is made to the network. If desired inputs and actual inputs do not
match, an expression for the error is generated. This error is backpropagated through
the network and the weights are accordingly adjusted. Figure 3 shows the backpropa-
gation process.
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The problem is to determine which connections in the entire network were generat-
ing the error. This is a process of blame assignment. The basic idea is to specify an
expression of the overall performance of the system and subsequently to find a way to
optimize that performance (Rumelhart et al., 1994).

In the case of neural networks, the performance criterion is the minimization of
error—to be more precise, minimization of squared error. Therefore, the expression
for the total error of the system is as follows:

( )Error E= = −∑ t yip ip
p i

2

,

,

where i indexes the output units, p indexes the input-output pairs to be learned, tip indi-
cates the desired output, and yip is the actual output of the network. The object is to min-
imize this function. If the output functions are differentiable, blame assignment be-
comes simplified. A particular unit can be assigned blame in proportion to the degree
to which change in that unit’s activity leads to change in the error. That is, we change
the weights of the system in proportion to the derivative of the error with respect to the
weights (Rumelhart et al., 1994). Therefore, the change in Wij (from p. 240) is propor-
tional to ∂

∂
×

∂
∂

E

y i

y i
wij

.
Backpropagation can be achieved by implementing the following equation. We

start with a set of arbitrary weights W0 and update them by implementing the formula

h(X, W) = output function of the network

Wt = Wt–1 + η � h(Xt, Wt – 1) (Yt – h(Xt, Wt – 1)) t = 1, 2, 3, . . .,
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η = learning rate
�h = vector containing partial derivatives of h with respect to Yt

Xt = vector of inputs
W = weights
t = time index (White, 1989)

As shown above, using a differentiable function as an output function considerably
enhances the capabilities and the ease of design of backpropagation of a neural net-
work. The sigmoid function illustrated earlier,
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has a first derivative of the form
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The popularity of the sigmoid function can be attributed to its simplicity,
differentiability, and nonlinearity.

Learning Parameters

In training neural networks, the following three training parameters are required:
learning rate, momentum, and training tolerance.

Learning rate limits or multiplies the extent of weight changes in any given itera-
tion. A high learning rate, one that reacts very quickly to input changes, tends to make
the network unstable. The changes are too radical, and the network’s ability to predict
will suffer. However, if the learning rate is lower than optimum, the network will take a
substantially longer time to learn (Garson, 1998; C. Kuo & Reitsch, 1995). A large
learning rate is helpful to accelerate learning until the weight search starts to plateau.
However, at the same time, the possibility that the weight search jumps over a mini-
mum error condition and moves into undesirable regions is increased. When this hap-
pens, backpropagation learning may fail (Yu & Chen, 1997).

There is a consensus among researchers that adaptive learning rates can stabilize
and accelerate convergence to a desired solution (Looney, 1996). Keeping the learning
rate η constant is inefficient. A learning rate eventually declining to zero is minimally
required for backpropagation to settle down. It has also been shown that the learning
rate can be generalized from a scalar quantity to a matrix of a very specific form
(White, 1989).

The momentum factor determines the proportion of the last weight change that is
added to the new weight change.6 Low momentum often causes oscillation of weights
and renders the network unstable, and learning is never completed. High momentum
corresponds to a lack of flexibility and adaptability on the part of the network. Changes
are slow to happen in te face of new information (C. Kuo & Reitsch, 1995). In general,
the momentum factor should be less than one (unity) to stabilize backpropagation.
When error oscillations happen, a momentum factor close to unity is needed to smooth
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the error oscillations (Yu & Chen, 1997). On steep slopes during the middle of training,
it is desirable to have a small momentum factor. Toward the end of training, the
momentum factor should be relatively large (Looney, 1996).

The training tolerance factor specifies the margin of error allowable when network
output patterns are compared to training patterns. A training tolerance of zero indicates
that network outputs must exactly match training patterns. A training tolerance close
to zero will adversely affect the ability of the model to generalize, as a high degree of
accuracy in the model is desired relative to training data. However, a high training tol-
erance factor is also not recommended. This will result in inaccurate results because
the specified accuracy is low (C. Kuo & Reitsch, 1995).

Balance must be achieved in specifying the training parameters for a neural net-
work. The training parameters are application specific and are usually determined by
trial and error.

Overtraining

In general, artificial neural networks use more parameters than conventional statis-
tical procedures and are thus more susceptible to overtraining. Figure 4 shows the
training and overtraining of neural networks. The overtraining phenomenon is
observed when the mean squared error of the network continues to increase while the
network performance is still improving in learning training patterns. This is highly
undesirable as it signifies that the network cannot recognize unknown patterns and its
generalization ability is hampered (Tzafestas, Dalianis, & Anthopoulos, 1996).

There are two common methods of dealing with the overtraining phenomenon. The
simplest method is to fit the model using only one part of the data and using the other
part of the data to evaluate the model’s performance.

The second approach to the problem is to use a network pruning algorithm to reduce
the network size and hence the number of parameters to be estimated (Hill, Marquez,
O’Connor, & Remus, 1994). The benefits of pruning are

1. reduction in operational size,
2. reduction in introduced extraneous noise, and
3. improvement in the rate of successful recognition through generalization.

Pruning should be done at the end of training, and then further training should be un-
dertaken (Looney, 1996; Seitsma & Dow, 1988).

Alternatives to Backpropagation

Several alternatives have also been proposed to backpropagation as a method of
learning and correcting weights in an artificial neural network. A sampling of some of
the alternative techniques includes the probabilistic neural network, which involves a
one-pass learning procedure and can be directly implemented in the neural network
architecture (Specht, 1991). Another alternative to backpropagation, projection pur-
suit learning, beats conventional backpropagation in learning accuracy, is more parsi-
monious (requires fewer neurons for achieving the same level of accuracy), and
requires a shorter training period to achieve the same level of accuracy (Hwang et al.,
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1994). In addition, a sequential learning procedure has been adopted that has the abil-
ity to train networks with mixed neuron types.

Networks with mixed neurons can give more accurate predictions and require a
smaller number of neurons for comparable accuracy. Most important, the number of
neurons required for a problem may be determined (J. Zhang & Morris, 1998). A non-
linear form of backpropagation has been developed in which the derivatives of the acti-
vation function need not be calculated. Furthermore, backpropagation of errors is
through the same nonlinear network of forward propagation and not linearized as in
standard backpropagation (Golomb & Hertz, 1997). In essence, several modifications
and alternatives have been proposed to the standard method of backpropagation.

The genetic algorithm is another method of training neural networks. The genetic
algorithm can not only serve as a global search algorithm, but also by correctly defin-
ing the objective function, it can achieve a parsimonious architecture (Sexton, Dorsey,
& Johnson, 1998).

Applications of Neural Networks in Statistical Analysis

Many neural network models are similar to conventional statistical methods.
Some of the conventional statistical techniques that can be emulated by neural net-
works are generalized linear models, polynomial regression, nonparametric regres-
sion and discriminant analysis, projection pursuit regression, principal components,
and cluster analysis. Neural networks are especially good as statistical models when
the emphasis is on prediction and/or classification of complicated phenomena rather
than on explanation.

Even though a neural network can arbitrarily accurately produce the same results
as conventional regression, a neural net is inherently a different mathematical
approach. With this caveat in mind, some features of neural nets and regression will be
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compared—noting that strict mathematical equality could generally occur only in the
case of an extremely simple, degenerate neural net.

A neural network with linear activation functions can mimic a linear regression
model. A perceptron with a logistic activation function is analogous to a logistic
regression model. A perceptron with a threshold activation function can model a linear
discriminant function.7 With multiple outputs, the function becomes a multiple
discriminant function. Multiple linear regression has a closed form solution for the
coefficients whereas a neural network generally uses an iterative process (Cheng &
Titterington, 1994; Sarle, 1994). A nonlinear additive model can also be implemented
as a neural network.

With a small number of hidden neurons, a multilayer neural net is a parametric
model and may be considered as an alternative to polynomial regression. With a mod-
erate number of hidden neurons, a multilayer neural net can be thought of as a quasi-
parametric model similar to projection pursuit regression. A multilayer neural net with
one hidden layer is similar to a projection pursuit regression model except that a
multilayer neural net uses a predetermined functional form for the activation function
and projection pursuit regression uses a flexible nonlinear smoother. If the number of
hidden neurons is increased with sample size, a multilayer neural net becomes a
nonparametric sieve that provides a useful alternative to methods such as kernel
regression (Sarle, 1994; White, 1992).

Advantages of Neural Networks

In the field of exploratory multivariate modeling, neural networks have several
major advantages over conventional multiple linear regression. Artificial neural net-
works have the capabilities for learning to identify patterns between independent vari-
ables and dependent variables in a data set. In addition, they possess the ability to spec-
ify and estimate a specialized regression model or model adjustment for each pattern.
Neural networks can also deal very effectively with nonlinear transformations and
data discontinuities. Furthermore, neural networks are adaptive in the sense that they
can trigger and choose models appropriately as patterns recur. Multimodel coordina-
tion may also be achieved through artificial neural networks (Gorr, 1994). Principal
successes of neural networks lie in large-scale optimization and pattern recognition
problems (Stern, 1996).

Several researchers have used neural networks in regression analysis (Marquez
et al., 1991; Specht, 1991; Wu & Yen, 1992). Many researchers have also compared
conventional multiple regression and neural-network-based regression (Bansal,
Kauffman, & Weitz, 1993; De Veaux, 1995; Duliba, 1991). In a significant majority of
cases, neural-network-based analysis outperformed conventional regression tech-
niques. As a matter of fact, linear regression is a simple case of a single-layer neural
network with linear activation functions. The most significant advantages of neural
networks when compared to regression are illustrated below.

Nonlinear

Neural networks by their nature are nonparametric and nonlinear in nature. They
can deal with data sets exhibiting significant conventionally uncharacterizable
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nonlinearity. Neural networks can automatically transform and represent highly com-
plex nonlinear relationships more effectively than regression (Gorr, Daniel, &
Szczypula, 1994; C. Kuo & Reitsch, 1995; Marquez et al., 1991).

The nonlinear nature of neural networks does not mean that they cannot abstract
linear patterns or that they cannot emulate linear methods when the situation requires
them to. Holcomb and Morari (1992) developed an architecture where linear regres-
sion has been beneficially merged with neural networks. The inclusion of one linear
unit in the architecture has been shown to perform as well as linear methods. Networks
lacking this feature will have a difficult time recovering linear performance in situa-
tions well treated by linear methods. Problems that are nearly linear or that are linear
over a portion of the input space will benefit from the inclusion of the linear unit.
Therefore, network architectures may be designed that give “linear” performance as a
lower bound without compromising the capability of the network to reproduce nonlin-
ear functions.

Thus, the prudent design of neural networks can ensure superior performance for
data exhibiting all degrees of nonlinearity.

Prior Model Specification Is Not Required

While conducting artificial neural-network-based regression, the model to be
optimized need not be specified in advance.8 Thus, neural network–based regression
does not require explicit a priori relationships between inputs and outputs (Mukesh,
1997). This feature eliminates the guesswork involved in model specification when
using conventional regression techniques (Marquez et al., 1991). In the simulation
conducted by Marquez et al. (1991), the neural network performed close to the true
model when the relationship was not sufficiently defined. In fact, Denton (1995)
found that neural networks performed better than regression when the model was
misspecified.

Neural Networks Do Not Require
the Assumptions of Regression

Neural network–based regression is not constrained by the assumptions required of
conventional regression analysis. Neural network–based regression does not have to
make assumptions about underlying population distributions (C. Kuo & Reitsch,
1995). Neural networks are an extremely flexible, almost nonparametric tool less
prone to the curse of dimensionality (Intrator & Intrator, 1993). Neural network–based
analysis methods need not assume that independent variables are not correlated with
each other. This solves the problem of multicollinearity that arises in multiple linear
regression. Neural networks do not assume that residuals of independent observa-
tions are independent of each other. In addition, they do not require the assumptions
that residuals are normally distributed with zero mean and constant variance
(Denton, 1995). In the simulations conducted by Wang (1998), only two properties
were considered essential to check the curve-fitting results of an artificial neural net-
work–based regression, that the probability distribution of the error term ε is normal
and E(ε) = 0.
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Adaptive

Neural networks have the capability to learn from experience, allow adaptive
adjustment to the predictive model as new examples become available, and generalize
the results (Tam & Kiang, 1992; Rumelhart et al., 1994). As new information comes in,
past information is not ignored; instead, its importance will be reduced incrementally
as new examples are fed into the network (Tam & Kiang, 1992). Furthermore, neural
networks can automatically detect different states of phenomena through independ-
ently variable data patterns and switch on/off model components as appropriate (Gorr
et al., 1994). Data patterns that repeat more often are reinforced, and those that do not
are weakened.

See Through Noise and Irrelevant Data

In general, neural networks can see through noise and distortion. They have the
ability to abstract essential characteristics in the presence of irrelevant data (Lippman,
1987; Marquez et al., 1991). Neural networks are useful for analyzing data contained
in “fuzzy” data sets, data in which there are stable patterns that are subtle or deeply hid-
den (Mukesh, 1997). Simulations conducted by Bansal et al. (1993) show that the pre-
dictive capability of a neural network was unaffected by data quality.

Neural networks and neural network–based regression are particularly good at ana-
lyzing data sets in which outliers are present (Denton, 1995; Marquez et al., 1991).
This is due to a network’s ability to abstract only the essential characteristics of a data
set. In analyses conducted by Oja and Wang (1996), neural fitting models clearly out-
performed linear methods including least squares and total least squares in impulse
noise and colored noise environments and in the presence of outliers. In simulations
conducted by Marquez et al. (1991), at the highest levels of noise and smallest sample
size, the neural network model outperformed even the noiseless model used to gener-
ate the underlying model.

As mentioned before, part of the reason a neural net is so good at rejecting outliers
and anomalous data is because the activation function is typically chosen to limit each
neuron’s response.

High Degree of Robustness

Neural networks offer a high degree of robustness when compared to conventional
regression. Even when model assumptions are violated, neural networks exhibit a high
degree of robustness and fault tolerance because of primarily local connections
(Lippman, 1987; Wu & Yen, 1992). Even if areas of the neural network model break
down, the overall performance of the model remains largely unaffected. The observed
fault tolerance is primarily due to the highly connectionist architecture and the distrib-
uted nature of the computations (Tam & Kiang, 1992).

Limited Data Availability

Neural networks outperform regression when data is limited (C. Kuo & Reitsch,
1995). Neural networks are superior to regression analysis for forecasting, particularly
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in situations with limited data availability (Chiang, Urban, & Baldridge, 1996). Many
managers like this feature of neural nets. Used as a black box, neural nets just produce
“the answer,” whereas regression tends to emphasize more the why of the problem
(Hall & Krumm, 1999).

Highly Efficient in Dealing With Missing Data

The neural network approach to dealing with missing values in a data set and to
reconstructing a data set is more efficient than conventional regression-based methods
(C. Kuo & Reitsch, 1995). Gupta and Lam (1996) showed that a backpropagation neu-
ral network outperformed both the average method and the iterative regression analy-
sis to compute missing values. There are several possible reasons for the superiority of
the neural network approach. The average approach can skew the data distribution, and
multiple regression cannot account for the nonlinear relationships in the data set. Fur-
thermore, for both average and regression methods, the presence of outliers or influen-
tial observations in the data set may shift fitted values. In this respect, neural networks
are better as they can account for nonlinear relationships and do not require any distri-
bution assumptions concerning the underlying data set. Furthermore, neural nets have
a big advantage in that they are facile at switching models as needed. In case some ele-
ments of an input data vector are missing, the neural net, through past experience, can
switch models to one that best predicts or deals with the missing data.

Model Combinations

A single neural network has the capability of combining two or more different
model specifications. For instance, unlike regression, neural networks can incorporate
both a fixed effects and random effects model (Duliba, 1991). A properly designed
neural network can choose a linear model, a binary yes/no output model, and a nonlin-
ear model. It makes the choice by learning which type of input needs which type of
model. In the case in which an input is some combination, the neural net will combine
the models. As an example, a neural net can give an answer such as “the influence tac-
tic was 80% job-focused and 20% supervisor-focused.”

Capability of Real-Time Applications

Being adaptive, neural networks offer online processing capabilities. Although
expert systems are satisfactory for offline processing, neural networks are superior for
online applications (Tam & Kiang, 1992). In addition, an expert system needs good a
priori knowledge of the problem to be programmed. The neural net can shadow an
expert and learn during the project in real time.

Compared to regression, neural networks (a) deal with both linear and nonlinear
data, (b) formulate the correct data model without a priori specification by the
researcher, (c) require less stringent assumptions than regression, (d) learn from expe-
rience, (e) see through noise and irrelevant data, (f) offer a high degree of robustness,
(g) perform well with limited data, (h) deal effectively with missing data, (i) combine
two or more models at the same time, and (j) complete real-time applications.
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Limitations of Neural Networks

Numerous advantages accrue to organizational scholars by using neural networks.
Neural networks grant the capability to analyze complex problems for which conven-
tional techniques may be inadequate. However, researchers should understand the sev-
eral inherent limitations of neural networks before using them in analysis.

Difficulty in Choosing the Number of Units

Choosing the number of hidden units to include in a network is at best a trial and
error exercise (Warner & Misra, 1996). Although some researchers have attempted to
find a mathematical formula for the number of hidden units, there is no single accepted
rule. At best, the complexity of the problem will determine the number of required hid-
den units. In cases in which one layer seems adequate, the number of nodes required
may be prohibitive (Warner & Misra, 1996). This is a problem shared by conventional
regression, too. Choosing the correct number of variables or degree of the fitting poly-
nomial can be more art than science.

Overfitting may occur if the number of nodes is large relative to the training sam-
ples (Tam & Kiang, 1992). A larger than optimum structure may not improve results.
In simulations conducted by Gorr et al. (1994), additions to the structure of the neural
network did not improve predictive accuracy. Too small a network, on the other hand,
can have longer training times, and failures to learn to discriminate are more frequent.
If the architecture of the network is larger than required, there are obvious difficulties
in selecting which neurons or connections to remove. The removal of inactive connec-
tions is unlikely to improve performance, and the removal of active connections may
necessitate considerable retraining (C. W. Lee, 1997).

Model Parameters Are Unidentifiable

Unlike conventional multiple linear regression, regression-type model coeffi-
cients cannot be ascertained directly from neural network–based regression.
Although it could be argued that neural network weights are the parameters for a
neural network model, they cannot be interpreted in the same manner as regression
weights are interpreted. For finite samples, neural network models are unidentifi-
able (Intrator & Intrator, 1993). In addition, the significance of individual inputs
cannot be analyzed (Tam & Kiang, 1992). The difficulty in interpreting neural net-
work weights arises due to the absence of marginal evaluators (Gorr et al., 1994). A
neural network does not directly reveal the functional relationship among vari-
ables; they are buried in the summing of the sigmoidal functions (Warner & Misra,
1996). Especially in predictive situations, neural networks provide superior pre-
dictions but are difficult to interpret. The disadvantages are most evident in expla-
nation research or when an underlying relationship among variables is to be found
(Cheng & Titterington, 1994; Stern, 1996).

There are several solutions for this situation. One is to teach the network to calcu-
late the regression coefficients, teaching it via conventional regression results. The
other method is to estimate sensitivities by varying one input and watching how the
output varies. A danger of this method is that the neural net can be quite nonlinear,
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and this derivative-type information may be valid only locally. A slightly different
input vector could potentially exhibit very different sensitivities. However, a recent
study by Lu, AbouRizk, and Hermann (2001) showed that by analyzing the input
sensitivity of the backpropagation neural network, the researchers were able to solve
this problem and sort out the relationship between the output variable and the input
parameters.

Superiority of Regression Under Ideal Conditions

Multiple linear regression is superior to neural network analysis in cases in which
all the assumptions are met and the model is specified correctly. Regression performs
better when the functional relationship is known (Warner & Misra, 1996). The best
regression model performs slightly better than neural networks. Similarly, a simple
statistical criterion for prediction intervals may be specified for regression, whereas
tedious sensitivity analyses need to be conducted when using neural networks to spec-
ify prediction intervals. Model fitting through regression is much less computationally
intense than neural network model fitting. Regression can accommodate a limited data
set for model fitting through larger prediction, whereas neural networks require a large
number of input/output samples for training (Chang & Su, 1995). When the model is
correctly predicted in advance, regression requires fewer data points to converge or fit
the model. Furthermore, regression is better at decomposition (Gorr, 1994).

Although neural network models can incorporate more than one model, correctly
specified individual regression models seem to work better. In simulations conducted
by Duliba (1991), a fixed effects regression model outperformed a neural network
model incorporating both a fixed effects and random effects model. In addition, neural
networks are very sensitive to R2. In simulations conducted by Bansal et al. (1993),
multiple linear regression performed better than a neural network when R2 was the per-
formance criterion.

Because neural networks are nonlinear in coefficients, the normal probability
model is not applicable. Finally, regression methodology is more established; hence,
managerial practitioners will be able understand and interpret the results of regression
more easily than the outputs of a neural network.

Problems With Backpropagation and Sample Size

Backpropagation is the most widely used method of training neural networks. Clas-
sical backpropagation has several inherent limitations. Generally, a moderate to large
sample size and number of iterations are required for the network to converge to a
desired solution (Al-Deek, 2001; Nguyen & Cripps, 2001). The large number of itera-
tions result in a training time that is unusually long (Specht, 1991; Tam & Kiang,
1992). Another major limitation of classical backpropagation is the tendency to con-
verge to local rather than global minima (Stager & Agarwal, 1997). Because the mean
square error function can be multimodal, it can be necessary to use nonlinear optimiza-
tion algorithms. Furthermore, backpropagation fails to make use of all relevant statisti-
cal information (White, 1989). In addition, deciding when to stop training is another
uncertain parameter (Warner & Misra, 1996).
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Difficulty in Choosing Initial Parameters

Neural networks are highly sensitive to initial conditions. McCormack and Doherty
(1993) noted that the initial architecture has a strong influence on the learning ability
of a neural network and that the architecture depends on the data to be learned. Small
changes in learning rates, network design, and initial conditions may produce large
changes in network behavior (Refenes, Zapranis, & Francis, 1994).

There is a consensus among researchers that adaptive learning rates can stabilize
and accelerate convergence and that a good starting weight set improves both the train-
ing speed and learning quality. However, choosing the learning rate, the momentum
factor, the cost functions, and other network design elements is difficult because of a
lack of formal rules (Looney, 1996; Warner & Misra, 1996).

Neural networks can simulate both linear and nonlinear regression and can over-
come most of the drawbacks of regression. However, as the previous paragraphs have
shown, neural networks also have drawbacks. One option is for researchers to use neu-
ral networks and regression in combination to take advantage of the strengths of both
techniques. For example, a researcher can use the neural network to predict and
regression to show the relative strength of the various inputs that predict the outcome
variables.

Specific Applications of Neural Networks

This section reviews numerous data analyses that have been done in business
research using artificial neural networks. Then, the article discusses several areas of
management research that do not currently use neural networks but could benefit from
using this technique.

Studies That Compare Neural Networks and Regression

Garson (1995) analyzed studies that compare neural networks to traditional statisti-
cal techniques. He described 8 studies that found that neural networks are not superior
to other analysis techniques. He reviewed 35 studies that found neural networks are
superior to traditional statistical techniques. Garson also lists more than 60 studies that
use neural networks in the areas of business and economics. His conclusion is that neu-
ral networks present the researcher with a tool that is powerful across a wide range of
applications.

Forecasting is one specific area of business research in which neural networks have
been examined. For example, R. J. Kuo (2001) analyzed convenience store sales fore-
casting, comparing a fuzzy neural network with the conventional statistical method.
Using time series data, he found that the genetic algorithm initiated fuzzy neural net-
work performed more accurately than the conventional statistical method (the
autoregressive and moving average technique). T. H. Lee and Jung (2000) found more
mixed results. In their study of forecasting credit risk, they found that regression out-
performed neural networks for urban accounts but that neural networks outperformed
regression for rural accounts (T. H. Lee & Jung, 2000).

In financial forecasting, Chiang et al. (1996) compared neural nets with linear and
nonlinear regression analysis. Results of their study showed that neural nets signifi-
cantly outperformed regression analysis in situations with limited data availability.
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Similarly, Denton (1995) compared neural nets with multiple regression in causal
forecasting. Results of his research showed that under ideal conditions, there was little
difference in predictability between regression and neural nets. However, results indi-
cated that in less than ideal conditions, neural networks do a better job (Denton, 1995).
Also, C. Kuo and Reitsch (1995) performed a study that compared neural nets with
several conventional forecasting models including regression analysis. The
researchers found that “neural networks provide a superior method of forecasting in
almost all cases” (p. 17). On the other hand, G. Zhang, Patuwo, and Hu (1998) ana-
lyzed 24 studies that compare neural networks to other forecasting methods and
reported that the findings are not conclusive as to whether neural networks are supe-
rior to other methods.

Several studies have examined neural networks in managerial and MIS applica-
tions. Tam and Kiang (1992) analyzed managerial applications of neural networks.
They used bank default data to compare neural networks with multivariate
discriminant analysis (DA), logistic regression (logit), k nearest neighbor (kNN), and
decision tree (ID3). Results of the study showed “that neural nets offer better predic-
tive accuracy than DA, logit, kNN and ID3” (p. 942). Jain and Nag (1997) compared
neural networks to logit models. They found that if using a realistic holdout sample,
neural networks are superior to similar logit models.

Hardgrave, Wilson, and Walstrom (1994) compared neural nets to other techniques
in predicting graduate student success. They evaluated five different models: least
squares regression, stepwise regression, discriminant analysis, logistic regression, and
neural nets. Results of their study showed that neural nets “perform at least as well as
traditional methods and are worthy of further investigation” (p. 249). Similarly, Gorr
et al. (1994) used neural networks to model the decision-making process of college
admissions. Neural networks were compared with linear regression, stepwise polyno-
mial regression, and an index used by the graduate admissions committee. These
researchers found that “while the neural network identifies additional model structure
over the regression models, none of the empirical methods was statistically signifi-
cantly better than the practitioners’ index” (p. 17).

Neural networks have also been compared to regression in operations research. Al-
Deek (2001) compared a backpropagation neural network (BPN) with regression anal-
ysis for modeling freight movement at seaports. He found that the “BPN model is more
accurate than the regression model” (p. 284) and can handle highly nonlinear prob-
lems. Thus, some studies have found neural networks to be superior, whereas other
studies have found that other techniques work better. A critical factor is the type of
problem to be solved. The next section discusses questions that could be answered
using neural networks.

Areas of Organizational Research in Which
Neural Networks Could Be Used

Many areas of business research will benefit from use of neural networks. As exam-
ples, the areas of managerial judgment, marketing management, communication pat-
terns, group research, workplace composition, management compensation, and diffu-
sion will be discussed.

Modeling of managerial judgment is a good area for the application of neural net-
works. The linear decision rule has been popular and has been successful in many
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experimental and practical conditions (e.g., Deckro & Herbert, 1984; Goldberg, 1970;
Mantel & Galman, 1982; Moskowitz & Miller, 1975; Remus, 1984). However, the lin-
ear decision rule is limited by several factors: Its complexity is limited to the linear
combination of variables; without expertise it is possible to misspecify the model and
fail to make the necessary data transformations. According to research by Remus and
Hill (1990), neural networks can automatically handle nonlinearity and should per-
form better.

Neural networks could also be used to study marketing management and customer
service. For instance, Hall and Krumm (1999) used neural networks to develop prod-
uct return and sales forecasts. In their simulations, neural network performance was
significantly better than regression when model R2 and forecast R2 were compared.
Neural networks have also been used in data-mining applications to ascertain levels of
customer satisfaction.

Neural networks can be especially useful for analyzing cyclical phenomena that
occur often in business data. Neural networks may be used to analyze topics ranging
from business cycles to communication patterns to negotiation patterns within organi-
zations, such as many of the questions posed by Wade-Benzoni et al. (2002).

Neural networks can be used to predict managers’ reactions to procedural fairness
and justice. A paper by Taylor, Masterson, Renard, and Tracy (1998) used regression
to analyze managers’ satisfaction with more procedurally just systems. The complex
nature of this type of problem lends itself to neural network analysis. Much of the
future work that Brockman (2002) suggested is well suited to neural networks. Many
procedural fairness variables have nonlinear properties, which make this area a prime
candidate for neural networks.

Several areas in group and team research are particularly suitable to neural network
analysis. A recent article by Gibson (1999) evaluated group efficacy and group effec-
tiveness across tasks and cultures. With certain groups gaining additional importance
in the organizational structure, neural network analysis may be more effective at pre-
dicting group behavior. Pelled, Eisenhardt, and Xin (1999) conducted a study analyz-
ing workgroup diversity, conflict, and performance. Their article used regression anal-
ysis for predictions about diversity. A neural network may be beneficial in prediction if
the data has nonlinear patterns. Furthermore, neural networks may be superior to lin-
ear regression if the object is to predict a threshold value such as the optimal amount of
performance monitoring for the group or the optimum level of team diversity. Also,
neural nets may be used to pick the optimum group of employees for a team.

An area of management research receiving increasing attention is the influence of
workplace composition and workplace demographics on performance. A study con-
ducted by Chatman, Polzer, Barsade, and Neale (1998) on the influence of demo-
graphic composition and organizational culture on work processes and outcomes
could be replicated using neural network–based regression.

Another area of current interest is top management compensation. Several recently
published academic papers discuss areas that may benefit from neural network–based
regression analysis. For instance, Porac, Wade, and Pollack (1999) looked at industry
categories and comparable firms in setting CEO compensation. Problems such as this
one, in which categorical data are used and prediction is the objective, could be ana-
lyzed effectively with neural networks.

Neural networks are highly effective at analyzing patterns in data. Thus, research
examining patterns in diffusion (O’Neill, Pouder, & Buchholtz, 1998), social net-
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works (Brass, Butterfield, & Skaggs, 1998; Sparrowe, Liden, Wayne, & Kraimer,
2001), and communicative interactions (Larkey, 1996) could profit from the use of
neural networks.

Neural networks are especially beneficial in problems in which the phenomenon
exhibits nonlinear patterns. For instance, a recent publication by Barkema and
Vermeulen (1998) showed that multinational diversity leads to foreign start-ups rather
than acquisitions. Product diversity has a curvilinear effect on the tendency to use
start-ups. Added insights into this type of nonlinear relationship may be possible with
the use of neural network–based analyses.

Neural Network Software

Three commonly used neural network software packages are the Data Mining Solu-
tion by SAS, Neural Connection 2.0 by SPSS, and NeuroShell 2 by the Ward Systems
Group. Many researchers will want to use the package that accompanies the statistical
analysis software they normally use, such as SAS or SPSS. NeuroShell is a relatively
inexpensive and easy-to-use package for those without strong preferences, who want
to experiment with neural networks without making a high investment.

Many other software options are available. Two additional software options, Neural
Network Toolbox 3.0 (for MATLAB) and Practical Neural Network Recipes in C++
by Masters, are good for researchers with a computer science or programming back-
ground. Gencay and Selcuk (2001) provided a critical review of Neural Network Tool-
box 3.0. In addition, there are dozens of free neural network software packages. The
SAS Web site describes 45 free packages and 41 commercial packages at ftp://
ftp.sas.com/pub/neural/FAQ.html. Another site that reviews 60 freeware and share-
ware packages and 34 commercial packages is www.it.uom.gr/pdp/DigitalLib/Neu-
ral/Neu_soft.htm.

Conclusion

This article has analyzed neural networks as statistical tools, predictive tools, and as
alternatives to conventional statistical analysis. Research has shown that neural net-
works can overcome many of the shortcomings of conventional statistical techniques,
especially regression. Furthermore, researchers can use both neural networks and
regression in combination to take advantage of the strengths of both techniques. This
article has examined the basic characteristics of and has discussed the business appli-
cations of neural networks.

Neural networks are efficient at analyzing problems that are solved by generating
predictions and classifications of complicated phenomena rather than by generating
explanations (Laguna & Marti, 2002). In terms of computational complexity, neural
networks can handle problems that require the iterative use of data to detect patterns,
where lots of example data are present, and it is difficult to specify a parametric model
for the data (SAS Web site).

It should be noted that the body of neural network research has grown tremendously
in the past 15 years. Although most of the early work was in the mathematical and
computer sciences, recent research includes applications to the social sciences and
management research. Research in organizational studies will also benefit through an
understanding of and prudent application of the technique.
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Notes

1. Activation functions may be considered analogous to the inverse of the link function in a
generalized linear model. Activation functions are generally bounded but link functions often
are not (McCullagh & Nelder, 1989; Sarle, 1994).

2. This relates to the degrees of freedom for the problem at hand. A larger neural network
with more nodes has more degrees of freedom to model a more complicated underlying process.
However, too many degrees of freedom in the neural network may cause problems of overfitting.
Recent research shows that excess degrees of freedom cause little harm and can aid in conver-
gence for some data sets (cf. http://www.neci.nec.com/~lawrence/papers/overfitting-aaai97/).

3. These choices are subject to the caveats of any social science investigation: Are the correct
inputs and outputs choices being made?

4. Application of backpropagation was proposed as early as 1951 by Herbert Robbins and
Sutton Munro, who called the procedure stochastic approximation (Robbins & Munro, 1951;
White, 1989).

5. There are two common types of backpropagation learning: batch learning and sequential
learning. The batch learning method updates weights after the presentation of the entire set of
training data. Therefore, a training iteration incorporates one sweep through all the training pat-
terns. Sequential learning, on the other hand, adjusts the network parameters as training patterns
are presented, rather than after a complete pass through the training set. The sequential approach
is a form of stochastic approximation put forward by Robbins and Munro (1951). The sequential
method is generally preferred, as the batch method tends to monopolize computer resources.
Also, the sequential, iterative method tends to be more stable due to smaller matrices. Finally,
for virtually all cases of interest, no generality is sacrificed.

6. Although the momentum factor is an important learning parameter, sometimes little, if
any, improvement may be observed due to the inclusion of momentum terms (Fahlman, 1988;
Looney 1996). Riedmiller and Braun (1993) found that momentum sometimes hinders conver-
gence. On the other hand, a good selection of parameters can significantly speed up convergence
to the desired solution.

7. As stated earlier, the activation function in a perceptron is analogous to the inverse of the
link function in a generalized linear model.

8. All continuous functions on compact subsets of RP can be approximated by a two-layer
network with sufficient neurons and sigmoid activation functions (Hornik, Stinchcombe, &
White, 1989). This feature allows the network to fit any continuous, compact function.
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