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Summary. We derive equilibrium bidding strategies in divisible good auctions
for asymmetrically informed risk neutral and risk averse bidders when there
is random noncompetitive demand. The equilibrium bid schedules contain both
strategic considerations and explicit allowances for the winner’s curse. When the
bidders’ information is symmetric, the strategic aspects of bidding imply that
there always exist equilibria of a uniform-price auction with lower expected rev-
enue than provided by a discriminatory auction. When bidders are risk averse,
there may exist equilibria of the uniform-price auction that provide higher ex-
pected revenue than a discriminatory auction.

Keywords and Phrases: Divisible good auctions, Treasury auctions, Equilibrium
bidding.

JEL Classification Numbers: D44.

1 Introduction

Many markets exist for which the exchange mechanism is best characterized as
an auction for a divisible good. An important example comes from the financial
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markets, the primary market for U.S. government debt. There are many others.
While a well developed literature concerning unit-demand auctions has existed
since the 1980’s, only recently has significant attention been paid to auctions for
divisible goods (or shares). Because of the widespread use of this mechanism, it
is important that we increase our understanding of these auctions.

In a divisible good auction, a seller offers some amount of a good for sale
at auction. Once the bids are submitted, the “stop-out” price (the price at which
aggregate demand equals the available supply) and the individual bids determine
the allocation of the good to the bidders. Bids submitted at prices greater than
or equal to the stop-out price are winning bids. In uniform-price auctions, all
winning bids are filled at the stop-out price, while in completely discriminatory
auctions, winning bids are filled at the bid price. A distinguishing feature of di-
visible good auctions is that bidders are allowed to submit multiple price/quantity
pairs as bids. These bid schedules specify the quantity (or fraction) of the good
desired by the bidder at each price. Much of the difficulty associated with the
study of divisible good auctions rests with the fact that this allows the bidders a
very large strategy space. While in unit-demand auctions bidders compete only
through price, in divisible good auctions bidders may choose among all weakly
downward sloping bid schedules. Thus, understanding the strategic nature of
bidding in divisible good auctions is an important aspect of the problem.

We present a general, common values, model of Treasury auctions that ex-
plicitly accounts for a perfectly divisible good, an arbitrary number of bidders,
different levels of price discrimination, and the presence of random noncompet-
itive demand.1 The auction rules imply a bidder’s expected utility is dependent
upon his entire bid schedule, i.e., is a functional, so restricting attention to strate-
gies (bid schedules) that are piecewise continuously differentiable allows standard
techniques in dynamic optimization to identify the optimal strategies.

Results are derived for two different informational structures. In order to
concentrate on the strategic aspects of bidding in divisible good auctions we
consider a case in which the competitive bidders have symmetric information.2

The resulting equilibrium bid schedules nicely illustrate the strategic aspects of
bidding in divisible good auctions. We confirm several intuitive comparative
static results concerning the equilibrium bidding.

The central results of the paper are characterizations of equilibria when
the competitive bidders possess asymmetric information. These characterizations
demonstrate that equilibrium bid schedules take explicit consideration of the
“winner’s curse” and that (almost) all also contain some amount of strategic
bidding.

A specific solution of the general characterizations with asymmetric infor-
mation in a uniform-price auction is provided. The intuitions from the general

1 In U.S. Treasury auctions bidders may submit noncompetitive bids that are guaranteed to be
filled.

2 Throughout the paper, we will assume that the seller’s information is inferior to that of the
bidders. This is a common rationale for the use of an auction. The termssymmetricor asymmetric
information will refer to the information partition of the competitive bidders relative to one another.
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model are illustrated by this example and results from the symmetric information
case are shown to extend to the case of private bidder information.

Recently, there has been considerable attention paid to divisible good (or
multi-unit) auctions;3 however, our understanding of this important mechanism
is far from complete. The most closely related papers are Wilson [30] and Back
and Zender [2]. In a model of share auctions, Wilson [30] showed that the selling
price can be significantly lower if bidders are allowed to submit bid schedules
rather than a single price bid. Back and Zender [2] demonstrates explicitly how
a uniform-price auction can yield a variety of results (most of which are inferior
for the seller), illustrates the strategic difference between unit-demand auctions
and auctions of divisible goods, and compares uniform-price and discriminatory
auctions. Mixed empirical results regarding the choice of auction formats provide
an additional motive for further theoretical analysis of divisible good auctions.4

The paper is organized as follows. Section 2 describes a model of divisible
good auctions. Section 3 characterizes symmetric equilibrium bidding strategies
when the competitive bidders are symmetrically informed. The case of asym-
metric bidder information is analyzed in Section 4. The unique linear solution of
a uniform-price auction model with asymmetric bidder information is presented
in Section 4.4 to further illustrate the effect of private information. Section 5
concludes. Appendices provide the proofs of our results.

2 The model

Although our results are more generally applicable, we present them in the con-
text of auctions for U.S. Treasury securities. This section describes the model
and relates its features to those of the Treasury auction environment.5

A risk neutral seller has one unit of a perfectly divisible, risky asset for sale.
The seller’s information concerning the value of the good is inferior to that of

3 A partial list of recent work includes the following. Maskin and Riley [18] and Branco [6] study
divisible good auctions in a mechanism design framework but do not directly compare uniform-price
and discriminatory auctions. In Tenorio [27], a private values model is used to describe Treasury
auctions. Bidders are allowed to demandmultiple units at thesameprice. A three-stage model
in Edsparr [9] considers the cross-market interactions surrounding Treasury auctions. Ausubel and
Cramton [1] discuss demand reduction in divisible good auctions and its impact on allocational
efficiency. Engelbrecht-Wiggans and Kahn [10 and 11] consider auctions in which bidders may bid
for two units of a good at different prices. Perry and Reny [22] show that thelinkage principledoes
not necessarily hold in multi-unit auctions. Back and Zender [3], Lengwiler [16] and McAdams [20]
consider multi-unit auctions with endogenous supply.

4 For example, Baker [4] and Simon [24] examine the U.S. Treasury’s experience with uniform-
price auctions in the early 1970’s and find that they cost the Treasury money. However, due to sample
size and other data restrictions, the authors caution careful interpretations of their results. Umlauf
[28] analyzes the Mexican Treasury auctions during 1986-1991, and finds that bidder profits dropped
to nearly zero when that Treasury switched from a discriminatory to a uniform-price format in
1990. There is, however, openly acknowledged collusion between the largest bidders in the Mexican
auctions, and this and other institutional differences make these results difficult to compare with those
from other auctions.

5 Treasury auctions actually take place in terms of yields, not prices. We present our analysis in
terms of prices for simplicity and added generality.
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the competitive bidders’ and she chooses a divisible good auction as an exchange
mechanism because of this informational disadvantage. The seller’s objective is
to maximize her expected revenue from the auction and her choice variables are
the auction’s pricing rule and its reserve price.

There areN > 2 competitive bidders,6 each acting to maximize his expected
utility. We consider both risk neutral and risk averse competitive bidders. Risk
aversion is introduced by assuming the competitive bidders act as if to maximize
a derived mean-variance utility of profit function with a common risk aversion
parameter,ρ.7

Noncompetitive bids are also allowed for in the model. The total noncom-
petitive demand, which has priority over the competitive bids, is given by the
random variable ˜z, with support [0,1]. The competitive bidders, therefore, com-
pete for an uncertain quantity, 1− z̃. The pdf and cdf for ˜z are denotedg( ) and
G( ) respectively.8

When an explict distribution for noncompetitive demand is required (the dis-
criminatory auctions in Section 3), we assume that ˜z ∈ [0,1] has the probability
density function:

g(z) =
1
θ

z
1−θ

θ . (1)

These are the inverted pareto distributions (withθ ∈ (0,∞) and theβ parameter
restricted to be one) and are used for analytical tractability.

Competitive bidderi ’s strategy is a schedule,xi (p, si ), that specifies his quan-
tity demanded at different price levels,p, and for different realizations of his
private signalsi ∈ S, whereS is a signal space with a possibly infinite number
of elements. Bid schedules are assumed to be piece-wise continuously differen-
tiable with respect to price.9 Only bid schedules that are weakly decreasing in
price are considered.

After the individual demands are aggregated, thestop-out pricefor the auc-
tion is defined as the highest price,p, at which aggregate excess demand is
nonnegative:10

6 In U.S. Treasury auctions primary dealers, large instituitions required to maintain active markets
in the auctioned securities, may submit competitive bids.

7 For uniform-price auctions, this utility function may be derived from the combination of CARA
utility and normally distributed random variables. However, in the case of discriminatory auctions,
these assumptions do not imply a quadratic objective function in the dynamic optimization problem.
This occurs because the pointwise maximization that works with a uniform-price auction does not
work in a discriminatory auction. This representation of risk aversion is also used in Biais [5].

8 In the U.S. Treasury auctions, individuals or institutions may submit noncompetitive (or quantity)
bids (for up to $10 million in face value) that are guaranteed to be filled.

9 While in (the U.S.) treasury auctions competitive bidders are allowed to submit as many price-
quantity pairs as they wish, in practice they seem to use a relatively small number (see, for example,
Bikhchandani and Huang [7]). The assumption of piece-wise continuous bid schedules is not, there-
fore, reflective of actual practice. It does, however, allow us to learn a great deal about the problem
in a tractable environment. Work in progress examines the issue of equilibrium bidding strategies in
a discrete framework.

10 This definition assumes that the reserve price is zero.
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p =

{
max{p|

∑
i
xi (p, si ) ≥ 1 − z; p ≥ 0} if {p|

∑
i
xi (p, si ) ≥ 1 − z; p ≥ 0} /= ∅,

0 if {p|
∑

i
xi (p, si ) ≥ 1 − z; p ≥ 0} = ∅.

The intrinsic value of the asset is determined by the random variable ˜v.11 We
assume that theprior distribution of asset value is common knowledge.

Prior to the submission of bids, the competitive bidders receive private signals
concerning the value of the asset. The competitive bidders’ valuation of the asset
is, therefore, a conditional valuation. The seller does not observe the signals
and so knows only the distribution of the conditional expected value. We will
suppress the dependence of the conditional distribution of value on the bidders’
signals for ease of notation and everywhere consider ˜v and its distribution from
the competitive bidders’ point of view. In Section 3 we consider the case in which
all competitive bidders receive the same signal (symmetric bidder information)
and in Section 4 the case of differential private information on the part of the
bidders is examined. With risk neutral competitive bidders, we assume that the
conditional expected value is well defined. For risk averse competitive bidders,
we will assume that the conditional mean (E[ ˜v] = v̄ ≥ 0) and variance of the
asset’s value (Var[ ˜v] = τ−1

v ) are well defined.
In an auction with a pricing rule given byα ∈ [0,1] and a stop-out pricep,

bidder i ’s actual profit is:

π̃i (p, si ) = (ṽ − p)xi (p, si ) − α

∫ pmax

p
xi (t , si )dt,

wherepmax is the largest price for which demand is nonnegative. The uniform-
price (α = 0) and the discriminatory auctions (α = 1) are special cases of
this formulation. The parameterα represents the proportion of the area under
a competitive bidder’s bid schedule captured by the seller.

The solution concept is Bayesian-Nash equilibrium in bidding strategies.
Only symmetric, pure strategy equilibria are considered. A symmetric strategy
Bayesian-Nash equilibrium is a set of strategiesxi (p, si ) = x(p, si ) for the N
competitive bidders such that for each bidderi , x(p, si ) maximizes his expected
utility of profit for all si ∈ S.

3 Equilibria with symmetric bidder information

This section of the paper characterizes all equilibria in piece-wise continuous bid
schedules when the competitive bidders have symmetric information and there is
random noncompetitive demand. Abstracting from issues related to information
aggregation, highlights intuitions related to the strategic aspects of bidding in
divisible good auctions.12

11 Typically, the competitive bidders are not the ultimate holders of the auctioned securities. It is
therefore appropriate to consider the resale price of the securities in the secondary market to be the
common valueof the assets. This after-market price is unknown at the time bids are submitted.

12 Also, since the U.S. government securities market is characterized by tremendous liquidity and is
generally believed to involve small degrees of asymmetric information among the most active traders
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3.1 Risk neutral bidders

Uniform-price auctions

Proposition 3.1 In a uniform-price auction with symmetric bidder information,
the equilibrium bid schedules submitted by the N risk neutral competitive bidders
satisfy the following condition:

(N − 1)x′(p) = − x(p)
v̄ − p

, (2)

which may be solved (in inverse form) as:

p(x) = v̄[1 − (
x
x0

)N−1]. (3)

Proof. To avoid duplication, we utilize Eq. (38) which is a result proved in
Appendix A. In Eq. (38), setting the parametersα = 0 (uniform-price auction),
ρ = 0 (risk neutral bidders), and bidderi ’s information partition{ψ̃, s̃i } = z̃
(no private signal correlated with asset value is available to the bidders), we
immediately have Eq. (2).

The solution to Eq. (2) (in inverse form) is:

p(x) = v̄ − C1xN−1.

Noticing that the integration constant,C1, is equal to the quantity at zero price,
x0 ≡ x(p = 0), we can rewrite the solution as Eq. (3). For anyx0 ∈ (0,∞), the
associated bidding strategy is downward sloping. �	

The equilibrium bid schedules in uniform-price auctions (Eq. (3)) are not
sensitive to the distributional properties of ˜z, the noncompetitive demand. Given
the bids submitted by the other competitive bidders, for each realization of ˜z,
bidder i would not change his bid schedule if allowed to do soex post.13 The
intuition is that, in uniform-price auctions, a bidder’s decision to choose his
price-quantity combinations is localized in the sense that his optimal response to
any particular residual supply curve14 does not impact his choice with respect to
any other realized residual supply curve. If the family of residual supply curves
can be parameterized by a single random variable, the set ofex postoptimal
price-quantity pairs may serve as the bidder’sex anteoptimal bidding strategy.

There exists a continuum of equilibria indexed by the parameterx0. A very
small x0 implies a very inelastic bid schedule and so a large amount of demand

(Cornell [8] reports that typical bid-ask spreads for inter-dealer trades are about one basis point),
the characterization “symmetric bidder information” may therefore represent the Treasury auction
environment fairly well.

13 Solutions possessing such anex postoptimality were found by Klemperer and Meyer [14] and
Kyle [15].

14 The residual supply curve facing bidderi is derived by first subtracting therealizednoncom-
petitive demand then the equilibrium competitive bids from the available supply. Of course,ex ante
bidderi does not know which residual supply curve he will face; he has only a conjecture of a family
of curves.
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reduction. As in Back and Zender [2],15 the ability to submit (steep) bid sched-
ules in a divisible good auction provides the bidders with an important strategic
advantage. At the other extreme,x0 = ∞, each bidder submits a completely
elastic (flat) bid schedule at a price of ¯v.

Mathematically, anyx0 can be part of the solution to the Euler equation
presented in Eq. (2). Economically, given the interpretation ofx0, only x0 ∈
(0,∞) are meaningful. The equilibrium bid schedules forx0 ∈ (0, 1

N ) allow the
possibility of a negative realized stop-out price. Forx0 ∈ [ 1

N ,∞), however, no
point on the corresponding equilibrium bid schedules that can be “hit” has a price
that is less than zero.

To limit the competitive bidders’ strategic advantage and avoid “unreason-
able” outcomes, yet leave the analysis as general as possible, we assume through-
out this section that the seller imposes a reserve price equal to zero, effectively
restrictingx0 ≥ 1

N .16

Corollary 3.1 When the N competitive bidders in a uniform-price auction are
risk neutral, there exists a continuum of equilibria indexed by x0. When x0 is varied
from 1

N to ∞, the expected stop-out price increases fromv̄(1 − E[(1 − z̃)N−1])
to v̄. For each given x0, the equilibrium bid schedules and the expected stop-out
price are increasing in̄v and N .

Proof. The first statement is a direct result of solving a first-order differential
equation. Given the equilibrium bids, the realized equilibrium stop-out price
behaves as:

p̃ = v̄[1 − (
1 − z̃
Nx0

)N−1]. (4)

The second and third statements follow from an examination of Eqs. (3) and
(4). �	

Corollary 3.1 indicates thatx0 serves as an index of the amount of strategic
bidding or demand reduction in a uniform-price auction. All of the equilibria
with strictly downward sloping bid schedules include some demand reduction.
Corollary 4.2 establishes that this is a general property of a class of equilibria
which encompasses the symmetric information case.

Discriminatory auctions

Proposition 3.2 In a discriminatory auction with symmetric bidder information,
the equilibrium bid schedules submitted by the N risk neutral competitive bidders
satisfy the following condition:

15 This solution is equivalent to Back and Zender’s Theorem 4. Here we have also demonstrated that
this set of equilibria represents all possible symmetric equilibria in bid schedules that are piecewise
continuously differentiable, and that all such equilibria areex postoptimal.

16 A reserve price greater than zero may improve the seller’s expected profits, it however also
exposes the seller to the risk of undersubscription in the auction.
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(N − 1)x′(p) = − (G/g)(1 − Nx(p))
v̄ − p

. (5)

If z has an inverted pareto distribution (β = 1), this equation may be solved as:

p(x) = v̄[1 − (
1 − Nx0

1 − x
)

N−1
Nθ ]. (6)

Proof. Eq. (5) is again a special case of Eq. (38), proved in Appendix A, by
settingα = 1 (discriminatory auction),ρ = 0, and bidderi ’s information partition
{ψ̃, s̃i } = z̃. �	

Corollary 3.2 When the N competitive bidders are risk neutral, the unique equi-
librium with weakly downward sloping bid schedules in a discriminatory auction
with a reserve price of zero is:

p(x) = v̄. (7)

This is obtained when x0 = 1
N . The stop-out price is independent of N and given

by v̄.

The set of equilibria is dramatically reduced by imposing two restrictions.
x0 ≤ 1

N ensures the bid schedule is downward sloping. A reserve price of zero
implies x0 is no less than1

N .17

With risk neutral bidders, discriminatory pricing intensifies bidder competi-
tion to the fullest extent, the bidders compete by submitting flat bid schedules.18

In contrast to the uniform-price auction, the seller’s informational disadvantage
does not limit the extent to which she can control strategic bidding. A reserve
price of zero together with discriminatory pricing eliminates all of the bidders’
strategic advantage.

Revenue comparison

The revenue comparison is limited by the dependence of the equilibrium bid
schedules, for discriminatory auctions, on the distribution of the noncompetitive
demand. It must be acknowledged that the results may not be robust to alternative
specifications of this distribution function.

17 This is the equilibrium identified in Back and Zender [2] for risk neutral bidders in a discrimina-
tory auction. We have extended this result to allow for noncompetitive demand and have shown that
this is the unique equilibrium when bid schedules are weakly downward sloping and do not include
negative prices.

18 A related result from Engelbrecht-Wiggans and Kahn [10] shows that when bidders have de-
creasing marginal values for units of the good, in equilibrium they will submit equal bids for several
units with positive probability. Empirically, we would expect bids to be more dispersed in uniform-
price auctions as compared with bids in discriminatory auctions if bidders are risk neutral. Reinhart
and Belzer [23] and Feldman and Reinhart [12] present results consistent with this prediction.
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Proposition 3.3 When the competitive bidders are risk neutral and symmetrically
informed, the seller’s expected revenue isv̄ in the unique equilibrium of a dis-
criminatory auction. The seller’s expected revenue is less thanv̄ in (almost) all
equilibria of a uniform-price auction.19

In a uniform-price auction, the seller’s expected revenue is strictly increasing
in x0.

Proof. See Appendix B. �	

3.2 Risk averse competitive bidders

Uniform-price auctions

Proposition 3.4 In a uniform-price auction with symmetric bidder information,
the equilibrium bid schedules submitted by the N risk averse competitive bidders
satisfy the following condition:

(N − 1)x′(p) = − x(p)

v̄ − p − ρτ−1
v x(p)

, (8)

which may be solved as:

p(x) = v̄[1 − (
x
x0

)N−1] − x[1 − (
x
x0

)N−2]
(N − 1)ρτ−1

v

N − 2
. (9)

Proof. Eq. (8) is a special case of Eq. (38), proved in Appendix A, by setting
the parameterα = 0, and bidderi ’s information partition{ψ̃, s̃i } = z̃. �	

With risk averse bidders, there also exists a continuum of equilibria in a
uniform-price auction. It can be shown that, forp(x) to be weakly downward
sloping (∀x ∈ [0, x0]), x0 must be no greater than ¯v/(ρτ−1

v ), a restriction that
implies all equilibrium bid schedules are strictly downward sloping. A reserve
price of zero restrictsx0 to be at least1N .20

Corollary 3.3 Assume that1N ≤ v̄
ρτ−1

v
. When the N competitive bidders in a

uniform-price auction are risk averse, there exists a continuum of equilibria in-
dexed by x0. When x0 is varied from 1

N to v̄
ρτ−1

v
the expected stop-out price in-

creases. For each x0, the equilibrium bid schedules and the expected stop-out
price are decreasing inρ, and are increasing in̄v, N , andτv.21

19 The only exception is that, forx0 = ∞, the expected revenue from a uniform-price auction is
equal to ¯v.

20 The two restrictions onx0 require that 1
N ≤ v̄/(ρτ−1

v ), or ρ ≤ N v̄/τ−1
v . Given thatτ−1

v is
much smaller thanN v̄ in Treasury auctions and that the competitive bidders are large institutions
that are close to being risk neutral, this implicit upper bound onρ is, therefore, not expected to bind.

21 The fact that the equilibrium bid schedules are increasing inτv implies that it is always in the
seller’s interest to promote the release of information. This is due to the presence of risk aversion
and demand reduction and should not be confused with a similar conclusion from the unit auction
literature related to the winner’s curse. Directly related to the unit auction result, Corollary 4.5 shows
that when the competitive bidders in a divisible good auction possess asymmetric information this
same conclusion can be drawn because of the benefit the seller obtains from any reduction in the
winner’s curse.
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Proof. Equation (9) can also be written as:

p(x) = v̄ − ρτ−1
v (N − 1)
N − 2

x − C1xN−1,

where

C1 = (v̄ − N − 1
N − 2

ρτ−1
v x0)

1

xN−1
0

.

C1 is strictly decreasing inx0 if and only if x0 ≤ v̄
ρτ−1

v
. Therefore, asx0 increases

from 1
N to v̄

ρτ−1
v

, the expected stop-out price (which is decreasing inC1) increases.

The second statement follows from substitutingx = 1−z
N into Eq. (9), considering

the corresponding values ofx0 and taking its expectation. The rest of the proof
is similar to that of Corollary 3.1. �	

For x0 ≤ v̄/(ρτ−1
v ), the expected stop-out price and the seller’s expected

revenue are increasing inx0. The competitive bidders’ certainty equivalent utility
is strictly positive in all of the equilibria and decreasing inx0. x0 again serves as
an index of the amount of strategic bidding associated with the equilibria of the
uniform-price auction.

Examples

Quite generally, a large variety of bid schedules can support Nash equilibria in
a uniform-price auction if there is no supply noise. The presence of stochastic
noncompetitive demand proves to be very useful in choosing among the plethora
of Nash equilibria. As one example of the infinite number of equilibria possible
in the absence of supply noise, consider:

p(x) = v̄ + ρτ−1
v x − ρτ−1

v

2
− C1

√
x

1 − x
,

a solution constructed by Wilson [30] for a (uniform-price) share auction with
two bidders competing for one unit of a good.22 In this example, the sale price
can be made arbitrarily small whenC1 is made large enough.

In contrast, the solution to Eq. (8) in a similar context is:23

p(x) = v̄ + ρτ−1
v x ln x − C1x.

Notice that while our solution solves Wilson’s problem, the reverse is not true.
The difference is that our solution is robust with respect to the presence of uncer-
tain noncompetitive demand, whereas Wilson’s solution is an equilibrium bidding
strategy only if both bidders know,ex ante, their equilibrium quantity allocation.

22 Both bidders are assumed to possess CARA utility. Asset value is normally distributed. To ensure
that the bid schedule is downward sloping,C1 must be greater thanρτ−1

v 3
√

3/8.
23 Here,C1 must be greater thanρτ−1

v for the bid schedule to be downward sloping.
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In other words, without supply uncertainty, an equilibrium bid schedule only
needs to be an optimal response (to the schedules submitted by the other bid-
ders) at a single point. With supply uncertainty this condition must be satisfied
at all points that have a positive probability of being “hit.”

As a further illustration of this point, consider Wilson’s example when the
bidders know the value of the good with certainty. This corresponds with our case
of risk neutral competitive bidders with symmetric information. For a uniform-
price auction withN bidders his solution is a linear bid schedule:

p(x) =
N v̄
2

− N v̄
2

(N − 1)x. (10)

Our solution in this case is:

p(x) = v̄[1 − (
x
x0

)N−1], x0 ∈ [1/N ,∞). (11)

While any of our bid schedules solve Wilson’s problem the reverse is not true.
With risk averse bidders there is a downward sloping linear equilibrium that
solves Eq. (9), with risk neutral bidders the only “linear” solution robust to
uncertain supply isp(x) = v̄. Eq. (10)’s lack of robustness to supply noise is
dramatically illustrated by noting that, for smallx it includes bids at prices far
above the value of the good.

Discriminatory auctions

Proposition 3.5 In a discriminatory auction with symmetric bidder information,
the equilibrium bid schedules submitted by the N risk averse competitive bidders
satisfy the following condition:

(N − 1)x′(p) = − (G/g)(1 − Nx(p))

v̄ − p − ρτ−1
v x(p)

. (12)

If z has an inverted pareto distribution (β = 1), this equation may be solved as:

p(x) = v̄ − ρτ−1
v

N (θ + 1)− 1
[θ + (N − 1)x]

−(
1 − Nx0

1 − Nx
)

N−1
Nθ {v̄ − ρτ−1

v

N (θ + 1)− 1
[θ + (N − 1)x0]}. (13)

Proof. Eq. (12) is a special case of Eq. (38), proved in Appendix A, by setting
the parameterα = 1, and bidderi ’s information partition{ψ̃, s̃i } = z̃. �	
Corollary 3.4 For N risk averse competitive bidders in a discriminatory auction
with a reserve price of zero the unique weakly downward sloping equilibrium bid
schedule is:

p(x) = v̄ − ρτ−1
v

N (θ + 1)− 1
[θ + (N − 1)x]. (14)
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This is obtained when x0 = 1
N . The expected stop-out price

E[p̃] = v̄ − ρτ−1
v θ[N (θ + 2)− 1]

N (θ + 1)[N (θ + 1)− 1]

increases in̄v, N , and the mean noncompetitive demand,z̄ = 1
1+θ , and decreases

in τ−1
v andρ.

Proof. There exists a continuum of equilibrium. However, restricting to down-
ward sloping bid schedules and imposing a reserve price of zero, only the case
of x0 = 1

N remains. The comparative statics obtained are similar to those in
uniform-price auctions. �	

The existence of a continuum of equilibria in discriminatory auctions and
the elimination of all but one of these equilibria by the use of a reserve price
is related to conflicting statements in Back and Zender [2] and Wilson [30].
Wilson states that for any equilibrium bidding strategy,p(x), in a uniform-price
auction there is a corresponding equilibrium in a discriminatory auction, given
by q(x) = p(x)+xp′(x), providing the same expected revenue. This claim is often
interpreted as a revenue equivalence result. Theorems 1 and 3 in Back and Zender
show, for the case of no private bidder information with no noncompetitive
demand, that while there are equilibria in uniform price auctions providing the
seller with any level of revenue in the range [0, v̄Q], the seller’s revenue is ¯vQ
in any pure-strategy equilibrium of a discriminatory auction.24

Our results relate to this issue in two ways. First, the bid schedules derived
for uniform-price and discriminatory auctions are the only equilibria (for the class
of piece-wise continuously differentiable bid schedules), therefore, there are no
equilibrium bid schedules for uniform-price auctions related to equilibrium bid
schedules in discriminatory auctions according to Wilson’s equation. Second, the
minimal restriction that no bids at negative prices are accepted, implies there are
multiple equilibria in uniform-price auctions (with differing expected revenue)
but only one equilibrium for the discriminatory auction.

Examination of Eq. (14) indicates that the certainty equivalent utility of a
risk averse competitive bidder in the only equilibrium of a discriminatory auc-
tion is strictly positive so the equilibrium bid schedules include some demand
reduction. Risk averse bidders do not compete as aggressively as risk neutral
bidders so some strategic bidding survives in equilibrium. Nevertheless, numeri-
cal calculations show that the certainty equivalent utility of risk averse bidders is
larger inall equilibria of the uniform-price auction than in the only equilibrium
of the discriminatory auction (see Appendix B). Price discrimination is therefore
effective in limiting the strategic advantage possessed by risk aversecompetitive
bidders.

24 The equilibrium requirement does not appear to be met for Wilson’s proposed bids in the
discriminatory auction.
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Revenue comparison

Proposition 3.6 When the competitive bidders are risk averse and symmetrically
informed, the seller’s expected revenue in a discriminatory auction is strictly
greater than the expected revenue from the bidders’ most preferred equilibrium
(x0 = 1

N ) of a uniform-price auction.
In a uniform-price auction, the expected revenue is increasing in x0. If z̄ and

N are sufficiently large,25 there exist equilibria (x0 near v̄
ρτ−1

v
) of the uniform-

price auction that generate a larger expected revenue than does a discriminatory
auction.26

Proof. See Appendix B. �	
The competitive bidders’ expected profit and certainty equivalent utility are

always (i.e., for allx0) higher in a uniform-price auction than in a discriminatory
auction. The final statement in Proposition 3.6 is explained by the fact that, the
expected profit of the noncompetitive bidders is larger in discriminatory auctions
than it is in uniform-price auctions whenN and z̄ are large. When competitive
bidders in a uniform-price auction, for reasons outside of the current model, do
not select a relatively advantageous equilibrium27 (andN and z̄ are sufficiently
large), this becomes the dominant effect.

Corollary 3.5 Under both pricing rules the seller’s expected revenue is increas-
ing in v̄, N , and 1

1+θ and decreasing inρ andτ−1
v .

Proof. See Appendix B. �	
The obvious subset of comparative static results holds in the risk neutral case.

4 Equilibria with asymmetric bidder information

The most general results of this paper are characterizations of equilibrium bidding
strategies in divisible good auctions when risk averse or risk neutral bidders
possess asymmetric information. In general, deriving the equilibrium strategies
in a divisible good auction is difficult with asymmetric bidder information due to
the inference problem equilibrium bids must address combined with the strategic
component of bidding. In order to formulate the problem in a way that will allow
the use of control theory the inference problem must be simplified, requiring that
we consider only a subset of the equilibria.

25 We can compute numerically the precise indifference curve that separates parameter regions
where the seller prefers one auction format versus another.

26 Experimental evidence (see Smith [25]) is consistent with the results of Propositions 3.3 and
3.6.

27 For example, Back and Zender [3] show that if the seller retains the right to restrict the supply
after all bids are submitted, the bidders are not able to sustain their more preferred equilibria;x0 has
a lower bound that is much larger than1N . Alternatively, the seller may use a reserve price greater
than zero. This, however, exposes the seller to the risk of under-subscription.
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We restrict attention to equilibria in bid schedules that are additively separable
in price and a bidder’s private signal,x(p, s̃i ) = x1(p) + x2(s̃i ). In other words,
if bidder i expects the other bidders to submit separable schedules, his best
response is also separable in price and signal. This simplifies the problem since,
in formulating his optimal bid schedule, if an individual bidder conjectures that
the other bidders submit bids that are additively separable, the stop-out pricep
may be inverted from the market clearing condition. This invertibility implies
the existence of a sufficient statistic,ψ̃, summarizing any information regarding
z̃ and the ˜sj ’s relevant for determining the residual supply curve facing bidder
i , such that we can writep = p(ψ̃).28 The economic meaning of this restriction
is that each bidder faces a family of parallel residual supply curves that can be
ordered by a single index variable. The optimization technique allows the bidder
to then choose among all weakly downward sloping piece-wise continuously
differentiable bid schedules.

4.1 Risk neutral competitive bidders

We first characterize the signal-dependent bidding strategies of risk neutral com-
petitive bidders assuming that the asset’s expected value conditional on the pri-
vate signal of each bidder is well defined.

Uniform-price auctions

The following proposition characterizes the equilibrium bid schedules for risk
neutral bidders in a uniform-price auction.

Proposition 4.1 If the N competitive bidders are risk neutral, the following con-
dition characterizes any Bayesian-Nash equilibrium of a uniform-price auction
in which the privately informed bidders submit symmetric bid schedules that are
piecewise continuously differentiable and additively separable:

∑
j/=i

x′(p, sj ) = − x(p, si )
V (ψ, si ) − p

, (15)

whereψ̃ is a sufficient statistic for̃z ands̃j , (j = 1,2, ...,N , j /= i ), in determining
bidder i ’s residual supply curve, and V(ψ, si ) = E[ṽ|ψ, si ].

Proof. See Appendix A. �	

Discriminatory auctions

The equilibrium solution for risk neutral bidders in a discriminatory auction is
characterized as follows.

28 We can defineψ̃ = z̃ +
∑

j/=i
x2(s̃j ).
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Proposition 4.2 If the N competitive bidders are risk neutral, the following con-
dition characterizes any Bayesian-Nash equilibrium of a discriminatory auction
in which the privately informed bidders submit symmetric bid schedules that are
piecewise continuously differentiable and additively separable:

∑
j/=i

x′(p, sj ) = − (G/g)(ψ)
V (ψ, si ) − p

, (16)

whereψ̃ is a sufficient statistic for̃z ands̃j , (j = 1,2, ...,N , j /= i ), in determining
bidder i ’s residual supply curve,g( ) and G( ) are the pdf and cdf forψ̃, and
V (ψ, si ) = E[ṽ|ψ, si ].

Proof. See Appendix A. �	

4.2 Risk averse competitive bidders

To consider risk averse competitive bidders we assume they act as if to maximize
a derived utility function defined on the conditional mean and variance of profit
and that the asset’s expected value and variance, conditional on the private signal
of each bidder, are well defined.

Uniform-price auctions

For the case of risk averse bidders in uniform-price auctions Proposition 4.3
characterizes the equilibrium solution.

Proposition 4.3 If the N competitive bidders are risk averse the following con-
dition characterizes any Bayesian-Nash equilibrium of a uniform-price auction
in which the privately informed bidders submit symmetric bid schedules that are
piecewise continuously differentiable and additively separable:

∑
j/=i

x′(p, sj ) = − x(p, si )
V (ψ, si ) − p − ρT−1(ψ, si )x(p, si )

, (17)

whereψ̃ is a sufficient statistic for̃z ands̃j , (j = 1,2, ...,N , j /= i ), in determining
bidder i ’s residual supply curve, and V(ψ, si ) = E[ṽ|ψ, si ], T(ψ, si ) = 1

Var[ṽ|ψ,si ]
.

Proof. See Appendix A. �	
From Propositions 4.1 and 4.3 we notice that the equilibrium bid schedules

in uniform-price (α = 0) auctions are not sensitive to the distributional properties
of ψ̃, indicating that the solutions for the uniform-price auction are againex post
optimal.
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Discriminatory auctions

For risk averse bidders in a discriminatory auction the equilibrium solution is
characterized in Proposition 4.4.

Proposition 4.4 If the N competitive bidders are risk averse the following con-
dition characterizes any Bayesian-Nash equilibrium of a discriminatory auction
in which the privately informed bidders submit symmetric bid schedules that are
piecewise continuously differentiable and additively separable:

∑
j/=i

x′(p, sj ) = − (G/g)(ψ)
V (ψ, si ) − p − ρT−1(ψ, si )x(p, si )

, (18)

whereψ̃ is a sufficient statistic for̃z ands̃j , (j = 1,2, ...,N , j /= i ), in determining
bidder i ’s residual supply curve,g( ) and G( ) are the pdf and cdf forψ̃, and
V (ψ, si ) = E[ṽ|ψ, si ], T(ψ, si ) = 1

Var[ṽ|ψ,si ]
.

Proof. See Appendix A. �	
The results of Propositions 4.1 through 4.4 can be seen as generalizations of

Propositions 3.1, 3.2, 3.4 and 3.5. For example, Eq. (17) reduces to Eq. (8) when
the competitive bidders’ private signals become valueless so their strategies are
not signal-dependent and̃ψ is informationally equivalent to ˜z. This indicates
that the strategic aspects of bidding remain when asymmetric information is
introduced.

4.3 Properties of the equilibrium solution

Bids in unit demand auctions can be viewed as perfectly elastic bid schedules in
the context of divisible good auctions. Therefore, a natural question is whether
the preceding formulation of divisible good auctions admits an equilibrium in flat
bid schedules. Corollary 4.1 establishes that, with risk neutral bidders, there exists
such an equilibrium and that the bidders reveal their true demands. Since risk
aversion implies diminishing marginal valuation, the equilibrium bid schedules
for risk averse bidders are necessarily downward sloping.

Corollary 4.1 There does not exist a Bayesian-Nash equilibrium in which risk
averse, privately informed bidders submit symmetric bid schedules that are com-
pletely flat.

For risk neutral bidders, it is a Bayesian-Nash equilibrium for the privately
informed competitive bidders to submit a flat bid schedule implied by p= V (p, si ).

Proof. See Appendix C. �	
If there is a solution to the equationp = V (p, si ) it represents an equilibrium

bidding strategy in a first-price unit auction.29

29 An adaptation of Theorem 2 in Back and Zender [2] for the presence of noncompetitive demand
can also be used to show that, for the case of risk neutral competitive bidders in a discriminatory
auction, it is an equilibrium for the competitive bidders to submit bids for the entire quantity at this
price.
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Explicit solutions to the ODE established in Appendix A are generally dif-
ficult to obtain. To better understand the equilibrium bidding behavior of the
competitive bidders, we recast the most general characterization of the solution
as follows:

p = V (ψ, si ) − ρT−1(ψ, si )x(p, si ) +
(1 − α)x(p, si ) + α(G/g)(ψ)∑

j/=i x′(p, sj )
. (19)

Given our representation of risk aversion, the first two terms on the right-hand-
side are the bidders’ marginal valuations.

From Eq. (19), it is clear that whenever the equilibrium bid schedules are
strictly downward sloping the third term, which has the interpretation ofbid
shadingor demand reduction, is always nonpositive.30 Thus, except for those
with completely elastic bid schedules, demand reduction (relative to the marginal
valuation curve) is present in allequilibriumbid schedules of divisible good auc-
tions regardless of the extent of price discrimination, the degree of informational
asymmetry, or the nature of noncompetitive bids.

Corollary 4.2 Under the assumptions of Propositions 4.1 through 4.4, the equi-
librium bid schedules in divisible good auctions almost always involve demand
reduction relative to the competitive bidders’ marginal valuations. Demand re-
duction is absent only in the equilibria in which risk neutral bidders submit bid
schedules that are perfectly elastic.

In divisible good auctions, risk aversion affects the bidders’ strategies in two
ways. First, there is a standard risk premium adjustment to the bidders’ marginal
valuation functions and so to their equilibrium bid schedules (the second term
in Eq. (19)). The third term in Eq. (19), representing the competitive bidders’
market power, reinforces this effect and the equilibrium schedules become even
more inelastic. Increasing risk aversion results in less aggressive competition and
so allows more demand reduction in equilibrium.31 This is very different from the
impact of risk aversion in, for example, a first-price unit auction. In a first-price
auction, the effect of increasing risk aversion is to move the equilibrium bids
closer to the bidder’s valuation of the good.32 Intuitively, the difference derives
from the fact that in a unit auction the risk involved is the difference in payoff
from winning or losing the auction. In a divisible good auction, the risk concerns
how much of the good a bidder wins.

The inclusion ofV (ψ, si ), the conditional expected value of the asset, in
Eqs. (15) through (18) indicates that the equilibrium bid schedules in divisible
good auctions with asymmetric information incorporate the standard notion of the

30 As in Kyle [15], the notion of demand reduction here arises out of the imperfect, oligopolistic
competition among the bidders. Note that the size of this term is reduced as the number of competitive
bidders gets large. Demand reduction is the focus of a recent paper by Ausubel and Cramton [1].
They show that the demand reduction implies that the common auction forms do not lead toex post
efficient allocations.

31 Tenorio [26] obtains a related result assuming bidders believe their bidding will not affect the
outcome.

32 See, for example, Matthews [19] and Maskin and Riley [17].
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winner’s curse.33 In these equations,V is a function ofψ̃ and s̃i . Nevertheless,
the fact thatψ̃ is a sufficient statistic for ˜z and s̃j (j /= i ) (in determining bidder
i ’s residual supply curve) implies that (ψ̃, s̃i ) is informationally equivalent to
(p̃, s̃i ). With risk averse bidders, the bids depend upon the expectation of the
value of the good, given that the price,p, was the stop-out price, as well as the
variance of the value of the good conditional on this same information, extending
the standard result.

Because of the complex inference problem embedded in the derivation of the
equilibrium bid schedules, obtaining explicit solutions to the general problem
is nontrivial. Analytically, we must computeV and T−1 conditional on (̃ψ, s̃i )
and,simultaneously, find a solution to the Euler equation that is consistent with
the choice of such ãψ. Disentangling the interplay among private information,
uncertain noncompetitive demand, price discrimination, and demand reduction,
is difficult. To gain insights into the informational properties of divisible good
auctions, Section 4.4 presents a parametric example of the preceding formulation
for a uniform-price auction with asymmetrically informed risk averse competitive
bidders.

4.4 An example of asymmetric information in a uniform-price auction

To further examine the impact of asymmetric information on the equilibrium
bidding strategies in a divisible good auction this section examines a special case
of our general results. Here, all bidders have CARA utility with the risk aversion
coefficientρ. Bidder i ’s private signal takes the form: ˜si = ṽ + ε̃i . The signal
errors are assumed to be identically distributed: ˜εi ∼ N (0, τ−1

e ), i = 1,2, ...,N .
In equilibrium, each bidder’s bid schedule must solve a statistical inference

problem, i.e., the bid schedule submitted by each bidder optimally takes into
account the effect of his own bids, as well as that of the other bidders and the
supply uncertainty, on the auction outcome. A high stop-out price could be the
result of aggressive bidding by other informed bidders or high demand by the
noncompetitive bidders. These aspects of the model are absent when there is
symmetric bidder information.

We assume that the total supply isQ = 1 +f and the noncompetitive demand
is f + z̃, wheref ∈ (0,1), z̃ ∼ N (0, τ−1

z ) andτ−1/2
z � f .34 All primitive random

variables of the model are mutually independent.

Proposition 4.5 In a uniform-price auction with N competitive bidders there ex-
ists a unique symmetric equilibrium in linear strategies. This equilibrium is char-
acterized by:

x̃i = µ + βs̃i − γp̃, i = 1,2, . . . ,N , (20)

33 See, for example, Milgrom and Weber [21].
34 Normality is needed in conjunction with the assumption of CARA utility for tractability reasons.

This assumption assigns nonzero probability to the event that noncompetitive bidders sell to the
Treasury. The impact of such undesirable events on the equilibrium properties of the model is
minimized by focusing on supply shocks that are small relative to the size of the offering.
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whereβ is the unique positive root of a cubic equation:

ρτ−1
e β3 +

N
N − 1

β2 +
ρτ−1

z

N − 1
β − (N − 2)τeτ

−1
z

(N − 1)2
= 0, (21)

and

γ = β[1 +
τvτ

−1
e

1 + (N − 1)φ
], (22)

µ = (γ − β)v̄ +
φ

1 + (N − 1)φ
, (23)

φ =
(N − 1)β2

(N − 1)β2 + τeτ
−1
z

∈ (0,
N − 2

2(N − 1)
). (24)

Proof. See Appendix D. �	
Neither linearity nor separability in price and signal represents a restriction

on the allowable strategies in Proposition 4.5. In response to linear and separable
strategies by the other bidders, each bidderoptimally choosesto submit a bid
schedule that is also linear and separable in price and his own private signal.

In these bidding strategies,γ is the slope of each bidder’s bid schedule. It
measures how elastic are the equilibrium bid schedules to the stop-out price.β
represents each bidder’s sensitivity (or responsiveness) to his own private signal.
In Appendix D, it is shown that the equilibrium bid schedules are downward
sloping and thatβ is positive, indicating that the bidders respond positively to
their private signals. In the limit, asτ−1

e approaches infinity, these equilibrium bid
schedules become the linear equilibrium bid schedules contained in the symmetric
information case. Confirming the result from the general model, the equilibrium
bid schedules become more inelastic when the bidders are more risk averse.

Contrary to the unit auction case but consistent with Ausubel and Cramton
[1], in this example, only a partialallocational efficiencyresult is obtained:

Corollary 4.3 For any realized stop-out price, the competitive bidder who values
the good the most receives the largest share.

Proof. This follows immediately from Proposition 4.5 sinceβ is strictly positive.
�	

The stop-out price reflects information about the fundamental value of the
asset because the competitive bidders respond to their private signals. From
an individual bidder’s point of view, the variableφ measures the efficiency
with which the equilibrium stop-out price aggregates the otherN − 1 bidders’
private information. Appendix D demonstrates that althoughφ may theoretically
lie anywhere between 0 and 1, it will never exceed 1/2. It is often notationally
convenient to useI ∈ (1,N − 1), a monotonic transformation ofφ, derived in
Appendix D with the same interpretation and comparative statics.

Properties of the equilibrium when the competitive bidders submit the sym-
metric, linear strategies of Proposition 4.5 are described below.
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Corollary 4.4 For the equilibrium in Proposition 4.5, the total expected profits
from competitive and noncompetitive bidding are, respectively:

Nπ =
1 + I τ−1

z

NγI
,

πnc =
f − I τ−1

z

NγI
.

The seller’s expected revenue is:

R = (1 + f )E[p̃]

= (1 + f )(v̄ − 1
NγI

). (25)

In addition, the ex ante variance of each competitive bidder’s quantity allocation,
and of the stop-out price, are given by:

Var[x̃] =
τ−1

z + N (N − 1)β2τ−1
e

N2
=

I τ−1
z

N2
,

Var[p̃] =
τ−1

z + Nβ2τ−1
e + N2β2τ−1

v

N2γ2
.

Proof. See Appendix E. �	
It is easy to verify that in equilibrium, theex anteexpected quantity allocation

for each competitive bidder is oneN -th of the average quantity available for
competitive bidding.

It is evident from Corollary 4.4 that,ceteris paribus, the seller prefers higher
aggregate demand elasticity (Nγ). This point underlies the intuition that inelastic
bid schedules support “collusive seeming” equilibria. Corollary 4.4 also indicates
that, ceteris paribus, the seller benefits from greater price efficiency (I ). More
information revelation reduces the severity of the winner’s curse leading to a
higher level of expected revenue. Thus, there are two forces acting on the seller’s
expected revenue: the bidders’ use of their strategic advantage, and the extent to
which the bidders’ private information is revealed by the stop-out price.

Finally, consider Eq. (22) in Proposition 4.5 which can be rewritten as fol-
lows:

γ(τv, τe)
τv + [1 + (N − 1)φ(τe)]τe

=
β(τe)

[1 + (N − 1)φ(τe)]τe
. (26)

Hereτv measures the precision of public information and [1 + (N − 1)φ]τe can
be understood as measuring theoverall quality of private information in the
auction (the first term comes from each bidder’s own signal and the second
from the signals of the otherN − 1 bidders as reflected in the stop-out price).
Eq. (26) suggests that, in equilibrium, the competitive bidders respond to private
observations and price signals in proportion to their respective qualities. An
immediate implication of this discussion is that the seller should always adopt
policies that promote the production and release of public information.



Auctioning divisible goods 693

Corollary 4.5 The seller’s expected revenue, R, is strictly increasing inτv, the
precision of the public information.

Proof. The result follows from two observations. First, the precision of public
information,τv, has no effect on the aggregation of private information (β, and,
thereforeφ, are both independent ofτv). Second, higher quality public informa-
tion always leads the bidders to submit more elastic bid schedules (γ is strictly
increasing inτv) and reduces the use of the bidders’ strategic advantage in di-
visible good auctions. �	

Corollary 4.5 confirms that a well-established intuition from the unit-demand
auction literature (see, e.g., Milgrom and Weber [21]) generalizes to divisible
good auctions — namely, that mitigating the winner’s curse problem increases
the seller’s expected revenue. Results from Milgrom and Weber [24, Theorems 20
and 21] and the example in Perry and Reny [22] suggest that CARA utility may
play an important role in this result.

5 Concluding remarks

This paper investigates auctions of divisible goods. The Treasury auction envi-
ronment is modeled, considering the divisible nature of the good offered for sale,
the presence of noncompetitive bidding, and different degrees of price discrimi-
nation.

Characterizations were provided of equilibria of auctions in which the bidders
possess private information. The results show that equilibrium bid schedules in
divisible good auctions contain strategic aspects and take explicit account of the
“winner’s curse.”

In the case of symmetric bidder information it was shown that a continuum
of equilibria exists for both uniform-price and discriminatory auctions, and that
the use of a zero reserve price eliminates all but one of those equilibria in
discriminatory auctions. Explicit solutions for the equilibrium bid schedules were
provided and their properties were examined.

We also provided an explicit solution for a uniform-price auction with asym-
metrically informed bidders. The example illustrates results from the general
analysis, the symmetric information case, and from the unit auction literature.

We consider a stand-alone auction. In U.S. Treasury auctions, the potentially
complex interplay between the when-issued market, the auction, and the after
market suggests that analysis of a stand-alone auction cannot lead to a complete
understanding of this important auction environment.35 Further work on such
issues is necessary.

35 Viswanathan and Wang [29] and Reinhart and Belzer [23] provide theory and empirical evidence,
respectively, that suggests this is indeed the case.



694 J. J. D. Wang and J. F. Zender

A Proof of an ODE for divisible good auctions

Formally, the proof presented below is for the risk averse case. The proof for the
risk neutral case follows essentially the same line of reasoning and can be traced
back by setting the risk aversion coefficientρ = 0 everywhere in this appendix.

Suppose all biddersj use a certain bid schedulex(p, s̃j ). As usual, thej
subscript runs from 1 toN , and j /= i . Bidder i ’s problem is to find a bid
scheduley that is measurable with respect to the stop-out price,p, and bidder
i ’s own private signal,si , such that the conditional expected utility function:

E(ṽ,z̃,s̃j )|si
[U (π̃i )] = E(z̃,s̃j )Eṽ|(z,sj ,si )[U (π̃i )],

is maximized, whereU ( ) is a utility function and ˜πi is the bidding profit defined
below. With a price discrimination parameterα ∈ [0,1], bidder i ’s uncertain
bidding profit is:

π̃i = (ṽ − p)y(p, si ) − α

∫ pmax

p
y(t , si )dt,

wherepmax is the intercept of the bid schedule with the price axis.36 Define the
area under the bid schedule asw(p, si ) ≡ ∫ p

0 y(t , si )dt. We can use a change of
variable,37 y(p, si ) = w′(p, si ), to rewrite the bidding profit as:

π̃i = (ṽ − p)w′(p, si ) − α[w(pmax, si ) − w(p, si )], (27)

The stop-out price,p, in the preceding formulation is itself a random variable
determined by the market clearing condition. We restrict attention to conjectures
made by bidderi concerning the bids submitted by theN − 1 other competitive
bidders such that under this conjecturep is invertible from the above market
clearing condition in the sense that there exists a sufficient statistic,ψ̃, which
summarizes all relevant information regarding ˜z ands̃j in determining bidderi ’s
residual supply curve, such that we can writep = p(ψ̃).

Denoting the pdf ofψ̃ conditional onsi as g( ) [the corresponding cdf is
denotedG( )], we assume that bidderi chooses his optimal bidding function to
maximize the following derived mean-variance utility function:

Eψ̃[(V (ψ, si ) − p)w′(p, si )

− ρ

2T(ψ, si )
w′2(p, si ) + αw(p, si ) − αw(pmax, si )]

=
∫ Ψ

[(V (ψ, si ) − p)w′(p, si )

− ρ

2T(ψ, si )
w′2(p, si ) + αw(p, si ) − αw(pmax, si )]g(ψ)dψ,

36 When we formulate the bidders’ optimization problem below,p( ) will be one of the state
variables. In that context,pmax = p(Ψ ) is the price that corresponds to the maximum level of the
sufficient statisticψ = Ψ .

37 In this paper, the prime ’ is used to denote partial differentiation with respect to the first variable.
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where:

V (ψ, si ) ≡ E[ṽ|ψ, si ],

T(ψ, si ) ≡ 1/Var[ṽ|ψ, si ].

While a variational approach is feasible, from this point on we model thei th
bidder’s optimization decision as a control problem withw(ψ) andp(ψ) as state
variables, andu1(ψ) = w′(ψ)/p′(ψ) andu2(ψ) = p′(ψ) as control variables. The
problem statement then becomes:

max
w(ψ), p(ψ), u1(ψ), u2(ψ)

∫ Ψ

[(V (ψ, si ) − p(ψ))w′(p) − ρT−1(ψ, si )
2

w′2(p)

+αw(p) − αw(pmax)]g(ψ)dψ

=
∫ Ψ

[(V (ψ, si ) − p(ψ))
w′(ψ)
p′(ψ)

− ρT−1(ψ, si )
2

(
w′(ψ)
p′(ψ)

)2

+αw(ψ) − αw(Ψ )]g(ψ)dψ

=
∫ Ψ

[(V (ψ, si ) − p(ψ))u1(ψ) − ρT−1(ψ, si )
2

u2
1(ψ)

+αw(ψ)]g(ψ)dψ − αw(Ψ ),

subject to two state (transition) equations:

w′(ψ) = u1(ψ)u2(ψ),

p′(ψ) = u2(ψ),

the market clearing constraint:

1 − z = u1(ψ) +
∑
j/=i

x(p(ψ), sj ), (28)

and the following boundary conditions:

w(Ψ ) > w0, p(Ψ ) > p0,

wherew0 andp0 are constants.
We can “generate” the first-order conditions for the above control problem

based on the following Lagrangian (the first two lines below are called the Hamil-
tonian):

L = [(V (ψ, si ) − p(ψ))u1(ψ) − ρT−1(ψ, si )
2

u2
1(ψ) + αw(ψ)]g(ψ)

+λ1(ψ)u1(ψ)u2(ψ) + λ2(ψ)u2(ψ)

+λ3(ψ)[u1(ψ) +
∑
j/=i

x(p(ψ), sj ) + z − 1], (29)

whereλ1(ψ), λ2(ψ), andλ3(ψ) areψ-dependent Lagrangian multipliers.
The necessary conditions are the optimality equations:
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∂L
∂u1

= 0,
∂L
∂u2

= 0,

the adjoint equations:

∂L
∂w

= −λ′
1(ψ),

∂L
∂p

= −λ′
2(ψ),

as well as the state equations and the market clearing constraint. In addition, any
optimal solution to the problem must also satisfy the transversality condition:38

λ1(Ψ ) = −α, (30)

λ2(Ψ ) = 0. (31)

The optimality equations and the adjoint equations are:

[V (ψ, si ) − p(ψ) − ρT−1(ψ, si )u1(ψ)]g(ψ)

+λ1(ψ)u2(ψ) + λ3(ψ) = 0, (32)

λ1(ψ)u1(ψ) + λ2(ψ) = 0, (33)

αg(ψ) = −λ′
1(ψ), (34)

−u1(ψ)g(ψ) +
∑
j/=i

x′(p(ψ), sj )λ3(ψ) = −λ′
2(ψ). (35)

Equation (34) can be integrated to yield:λ1(ψ) = −αG(ψ), where the integration
constant is fixed to be zero by Eq. (30). Combining the previous equation with
Eq. (32), we have:

λ3(ψ) = −[V (ψ, si ) − p(ψ) − ρT−1(ψ, si )u1(ψ)]g(ψ) + αG(ψ)u2(ψ).

Also, λ2 can be solved from Eq. (33):λ2(ψ) = αG(ψ)u1(ψ).
Upon substituting the last three expressions for the Lagrangian multipliers

into Eq. (35), we obtain the following:

−u1(ψ)g(ψ) +
∑
j/=i

x′(p(ψ), sj ){−[V (ψ, si ) − p(ψ)

−ρT−1(ψ, si )u1(ψ)]g(ψ) + αG(ψ)u2(ψ)}
= −α[u1(ψ)g(ψ) + G(ψ)u′

1(ψ)]. (36)

Given our focus on symmetric strategy equilibria, we can make use of the
following relations:

u1(ψ) =
w′(ψ)
p′(ψ)

= w′(p) = y(p) = x(p, si ),

u′
1(ψ) =

d
dψ

[
w′(ψ)
p′(ψ)

] =
dx(p, si )

dψ
= x′(p, si )p

′(ψ),

38 See Kamien and Schwartz [13] for a treatment of dynamic optimization problems under various
endpoint conditions.
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to simplify Eq. (36), which becomes:39

−x(p, si )g(ψ) −
∑
j/=i

x′(p, sj )[V (ψ, si ) − p(ψ) − ρT−1(ψ, si )x(p, si )]g(ψ)

+
∑
j/=i

αG(ψ)x′(p, sj )p
′(ψ)

= −α[x(p, si )g(ψ) + G(ψ)x′(p, si )p
′(ψ)]. (37)

In equilibrium, the market clearing condition Eq. (28) also implies the fol-
lowing (notice thatψ can always be scaled such that∂z

∂ψ = 1):

1 = −x′(p, si )p
′(ψ) −

∑
j/=i

x′(p, sj )p
′(ψ).

Therefore, Eq. (36) in fact reduces to:

∑
j/=i

x′(p(ψ), sj ) = − (1 − α)x(p(ψ), si )g(ψ) + αG(ψ)
[V (ψ, si ) − p(ψ) − ρT−1(ψ, si )x(p(ψ), si )]g(ψ)

. (38)

�	

B Proof of Propositions 3.3 and 3.6

In this appendix, we first present the seller’s expected revenue for the general
solutions of a uniform-price auction. We then compute the revenue for the unique
(linear) solution of a discriminatory auction. Propositions 3.3 and 3.6 are based
on these expressions.

Expected revenue

The seller’s expected revenue in a uniform-price auction is:

Rα=0 = E[p̃]

=
∫ 1

0
{v̄[1 − (

1 − z
Nx0

)N−1]

− (1 − z)
N

[1 − (
1 − z
Nx0

)N−2]
(N − 1)ρτ−1

v

N − 2
}g(z)dz. (39)

This uses Eq. (9) and the fact thatx = (1− z)/N in symmetric equilibria.
Next we compute the seller’s expected revenue in a discriminatory auction.

In fact we derive a revenue expression that is valid for any linear strategy equi-
librium in an auction with price discrimination parameterα. Suppose the bidding
strategies are of the form:

39 In this step, we used the transition equationu2(ψ) = p′(ψ).
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p(x) =
µ− x
γ

, (40)

it is straightforward that expected payment by theN competitive bidders is:

Nµ(1 − E[z̃]) − (1 − α/2)E[(1− z̃)2]
Nγ

,

and the noncompetitive bidders’ expected payment to the seller is:

NµE[z̃] − (1 − α/2)E[(1− z̃)z̃]
Nγ

.

Thus, the seller’s expected revenue is the sum of these two expressions:

Rα =
Nµ− (1 − α/2)(1− E[z̃])

Nγ
. (41)

Using Eqs. (14) and (41), we have the following revenue for a discriminatory
auction:

Rα=1 = v̄ − ρτ−1
v θ

N (θ + 1)− 1
[1 +

N − 1
2N (θ + 1)

]. (42)

On Proposition 3.3

For risk neutral bidders, we can setρ = 0 in Eqs. (39) and (42). Thus:

Rα=1 = v̄ ≥ Rα=0 =
∫ 1

0
v̄[1 − (

1 − z
Nx0

)N−1]g(z)dz,

where the equality holds forx0 = ∞.

On Proposition 3.6

That Rα=0 is increasing inx0 can be directly seen from Eq. (39). The revenue
comparison result for the risk averse case is based on numerical evaluations of
the analytic expressions for the seller’s expected revenue.

On certainty equivalent profit

Under symmetric bidder information, the certainty equivalent profit for compet-
itive bidder i is:

CEi = E[(v̄ − p̃)x̃i − ρτ−1
v

2
x̃2

i − α

2γ
x̃2

i ].

Using Eq. (9) and noting thatx = (1 − z)/N in symmetric equilibria, we
can express the certainty equivalent profit from allN competitive bidders in a
uniform-price auction as follows:
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CEα=0 =
∫ 1

0
{v̄(

1 − z
Nx0

)N−1 +
(1 − z)

N
[1 − (

1 − z
Nx0

)N−2]
(N − 1)ρτ−1

v

N − 2
}

(1 − z)g(z)dz − ρτ−1
v

2N

∫ 1

0
(1 − z)2g(z)dz. (43)

With linear solutions of the form Eq. (40), the sum of certainty equivalent
profit from all N competitive bidders is:

CEα = (v̄ − µ

γ
)E[(1 − z̃)] +

1 − (α + γρτ−1
v )/2

Nγ
E[(1 − z̃)2].

Using the above expression and Eq. (14), we have the following certainty equiv-
alent profit for the discriminatory auction:

CEα=1 =
ρτ−1
v θ2

(1 + 2θ)[N (θ + 1)− 1]
. (44)

Numerical computation based on Eqs. (43) and (44) confirms that CEα=0 >
CEα=1. �	

C Proof of Corollary 4.1

The first statement is proved by showing that the converse is false. Suppose it is
an equilibrium for the risk averse competitive bidders to submit flat bid schedules
of the form p = p(si ), then the left-hand-side of Eq. (17) is (negative) infinity.
Focus on the set of parameter values such that (G/g)(ψ) is strictly positive,
then the numerator of the right-hand-side of Eq. (17) is nonzero. Therefore, the
denominator of the right-hand-side of Eq. (17) must be zero. That is:

p = V − ρT−1x.

Notice thatV is a function of (ψ, si ). Given our assumption that̃ψ is a
sufficient statistic for ˜z and s̃j in determining bidderi ’s residual supply curve,
(ψ, si ) is informationally equivalent to (p, si ). Therefore, we can write the solution
as:

p = V (p, si ) − ρT−1(p, si )x.

This contradicts the conjecture of an equilibrium in which pricep = p(si ) is
independent of quantityx, except in the uninteresting case of a riskless asset.

The second statement of the corollary can be seen by examining Eq. (15). If
there is a solution to the equation,p = V (p, si ), it represents the equilibrium of
a first-price (unit) auction. For the case of a completely discriminatory auction
this statement is, therefore, equivalent to Back and Zender’s [2] Theorem 2.�	
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D Proof of Proposition 4.5

We sketch the proof in several steps. First we find a sufficient statistic for ˜z and
s̃j for the purpose of determining bidderi ’s residual supply curve. We then apply
Proposition 4.2 and solve for the symmetric, linear strategy equilibrium. In the
next step, we verify the existence and uniqueness of the identified equilibrium.
Lastly, we establish a numerical bound for a parameter (φ) that appears in the
characterization of the equilibrium strategy.

Step 1. If N − 1 competitive bidders (the bidderj ’s) submit symmetric, linear
strategies of the formµ +βsj − γp and bidderi submits the bid schedulexi , the
market clearing condition is the following:

1 + f = f + z̃ + (N − 1)µ + β
∑
j/=i

(ṽ + ε̃j ) − (N − 1)γp̃ + xi

= f + z̃ + (N − 1)µ + (N − 1)βṽ + β
∑
j/=i

ε̃j − (N − 1)γp̃ + xi .

From the above equation, it is easy to show that ( ˜p, s̃i ) is informationally
equivalent to (̃ψ, s̃i ) with:

ψ̃ =
(N − 1)γp̃ − (N − 1)µ + 1− xi

(N − 1)β

= ṽ +
1

N − 1

∑
j/=i

ε̃j +
1

(N − 1)β
z̃ ≡ ṽ + κ̃i ,

whereκ̃i is independent of ˜εi .
Using the properties of normally distributed random variables, we have:

τ ≡ Var−1[ṽ|ψ̃, s̃i ] = Var−1[ṽ|ṽ + κ̃i , ṽ + ε̃i ] = τv + τκ + τe,

where

τκ ≡ Var−1[κ̃i ] = (
τ−1

e

N − 1
+

τ−1
z

(N − 1)2β2
)−1 = (N − 1)τeφ,

and

φ =
(N − 1)β2

(N − 1)β2 + τeτ
−1
z

(45)

is a measure ofprice efficiency.
Similarly, we calculate the conditional expectation of the asset value as:

E[ṽ|ψ̃, s̃i ] = E[ṽ|ṽ + κ̃i , ṽ + ε̃i ] = v̄ +
τκ
τ

(ṽ + κ̃i − v̄) +
τe

τ
(ṽ + ε̃i − v̄)

=
τv
τ
v̄ +

φτe[(N − 1)γp̃ − (N − 1)µ + 1− xi ]
βτ

+
τe

τ
s̃i .

To sum up the preceding discussion:
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Var−1[ṽ|ψ̃, s̃i ] ≡ τ = τv + τe + (N − 1)φτe, (46)

E[ṽ|ψ̃, s̃i ] =
βτv v̄ + φτe[1 − (N − 1)µ− xi ]

βτ

+
τe

τ
s̃i +

φτe(N − 1)γp̃
βτ

. (47)

Step 2. We postulate the following linear bid schedule for all biddersj /= i :

x̃j = µ + βs̃j − γp̃,

whereβ is the sensitivity of bidderj ’s bids to his private signal, andγ the slope
of his bid schedule.

Directly applying Eq. (17) of Proposition 4.2, we have the following relation:

−(N − 1)γ = − xi

E[ṽ|ψ̃, s̃i ] − p − ρVar−1[ṽ|ψ̃, s̃i ]xi
,

which can be written as:

xi =
E[ṽ|p, si ] − p
λ + ρτ−1

,

a linear bid schedule, where

λ =
1

(N − 1)γ
. (48)

In a symmetric strategy equilibrium,i ’s bidding strategy is:

xi = µ + βsi − γp.

comparing coefficients by making use of Eqs. (46) and (47), we obtain:

β =
τe

λτ + ρ + φτe/β
, (49)

γ =
βτ − φτe(N − 1)γ
β(λτ + ρ + φτe/β)

, (50)

µ =
βτv v̄ + φτe[1 − (N − 1)µ]

β(λτ + ρ + φτe/β)
. (51)

Using Eq. (49) and the definition ofτ , Eq. (50) can be written as:

γ =
βττ−1

e

1 + (N − 1)φ
= β(1 +

τvτ
−1
e

1 + (N − 1)φ
). (52)

Using Eqs. (48) and (52), we can rewrite Eq. (49) as:

1 − φ = ρτ−1
e β + φ +

1
N − 1

, (53)

which is equivalent to the following cubic equation (notice Eq. (45)):
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ρτ−1
e β3 +

N
N − 1

β2 +
ρτ−1

z

N − 1
β − (N − 2)τeτ

−1
z

(N − 1)2
= 0. (54)

Finally, µ is solved from combining Eqs. (49), (51) and (52):

µ = v̄(γ − β) +
φ

1 + (N − 1)φ
. (55)

We can sum up the solution to the competitive bidders’ optimization problem
as follows. First,β as a function of the exogenous parameters of the model is
solved from Eq. (54). Then, Eqs. (45), (52) and (55) provide the rest of the
characterization of the optimal symmetric, linear strategy.

Step 3. The existence and uniqueness of a positiveβ (and therefore of the other
variables) can be established based on the fact that the cubic equationy3 +a1y2 +
a2y + a3 = 0 has one and only one positive root ifa1 > 0 anda3 < 0. Since
N > 2, the corresponding coefficients in Eq. (54) indeed have the appropriate
signs.

Because bothβ andγ are strictly positive, the second-order condition of the
bidders’ optimization problem is always satisfied.

Step 4. From its definition,φ must be a number between 0 and 1. In this part,
we show that a tighter upper bound exists forφ and its monotone transform:

I =
1 + (N − 1)φ

1 − φ
. (56)

Denoteξ ≡ [1 + (N −1)φ]/N = βτ/Nγτe, we can rewrite Eqs. (49) and (50)
as:

ρβτ−1
e = 1− φ− Nξ

N − 1
, (57)

1 − ξ =
(1 − φ)(N − 1)

N
.

Therefore,

ρβτ−1
e

1 − φ
=

1 − 2ξ
1 − ξ

.

Since the left-hand-side of the above equation is nonnegative and sinceξ is
no larger than 1 (from its definition), we haveξ ≤ 1/2. Consequently,φ <
(N/2−1)/(N −1) andI < N −1. Notice thatφ is always less than one half.�	

E Proof of Corollary 4.4

The equilibrium stop-out price can be solved from the market clearing condition:

p̃ =
Nµ− 1

Nγ
+

z̃ + β
∑N

j =1 s̃j

Nγ
.
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In addition, bidderi ’s bid schedule can be written as:

x̃i =
1
N

+ βs̃i − z̃ + β
∑N

j =1 s̃j

N
.

Using these expressions, it is straightforward to calculate:

E[p̃] =
N v̄β + Nµ− 1

Nγ
= v̄ − 1 − φ

Nγ[1 + (N − 1)φ]
= v̄ − 1

NγI
,

E[x̃i ] =
1
N
,

Var[p̃] =
τ−1

z + Nβ2τ−1
e + N2β2τ−1

v

N2γ2
,

Var[x̃] =
τ−1

z + N (N − 1)β2τ−1
e

N2
=

I τ−1
z

N2
.

In addition, we have:

E[x̃i s̃i ] =
v̄ + (N − 1)βτ−1

e

N
.

Taking advantage of the symmetry of the problem, we can compute the ex-
pected payment received by the seller from the competitive bidders (denoted�)
as follows:

� ≡
N∑

i =1

E[x̃i p̃(x̃i )] = NE[x̃i p̃(x̃i )] = NE[x̃i
µ + βs̃i − x̃i

γ
].

Using properties derived in Appendix D:

� =
N v̄(γ − β) + (1− 1/I )

Nγ
+

Nβ(v̄ + (N − 1)βτ−1
e )

Nγ

−N (1 + τ−1
z + N (N − 1)β2τ−1

e )
N2γ

= v̄ − I −1 + τ−1
z

Nγ
.

The total expected bidding profit for theN competitive bidders is:

Nπ ≡ E[ṽ
N∑

i =1

x̃i ] − � = E[ṽ(1 − z̃)] − � =
I −1 + τ−1

z

Nγ
.

The expected bidding profit for the noncompetitive bidders is:

πnc ≡ E[(f + z̃)(ṽ − p̃)] = f v̄ − f (v̄ − 1
NγI

) − τ−1
z

Nγ

=
f I −1 − τ−1

z

Nγ
≡ f v̄ − Rnc,
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whereRnc denotes the expected payment received by the seller from the non-
competitive bidders.

The seller’s total expected revenue is therefore:

R ≡ � + Rnc = (1 + f )v̄ − Nπ − πnc = (1 + f )v̄ − (1 + f )I −1

Nγ
.

We observe that,ceteris paribus, R is increasing in bothI andγ. �	
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