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A Simple-But-Powerful Test for Long-Run Event Studies 
 

Abstract 
 

 Testing for long-run abnormal performance has become an important part of the 
finance literature.  We propose a test for abnormal performance in long-run event studies 
using the buy and hold abnormal return (BHAR).  We augment the control firm approach 
of Barber and Lyon (1997) by using multiple control firms per event firm to create 
multiple correlated BHARs for each event firm. Using the control firm structure allows us 
to easily avoid the new listing, rebalancing, and skewness biases.  Further, despite the 
induced correlation amongst the BHARs, using multiple control firms allows us to 
increase the power of the test beyond that of existing tests.  Most importantly, we show 
that, with the appropriate choice of control firms, our test is well-specified in both 
random and nonrandom samples.  
 



Introduction 
 

Long-run event studies, which have been used to examine the price behavior of 

equity for periods of one to five years following significant corporate events (e.g. IPOs, 

SEOs, repurchases, bond rating changes, etc.) are an increasingly important part of the 

finance literature.  Despite considerable interest in the long-run behavior of prices 

relative to expectations, finance scholars are engaged in a continuing debate concerning 

the appropriate measure of long-run abnormal performance and the appropriate statistical 

methodology to use to test for the significance of any measured abnormal performance. 

 Here we develop a well-specified and powerful test for long-run abnormal 

performance as measured by the buy and hold abnormal return (BHAR); defined as the 

difference between the long-run return for a sample asset and that of a benchmark asset 

selected to capture expected return.  The buy and hold abnormal return is the focus of this 

study as it provides a measure of long-run investor experience, the focus of most long-run 

event studies (see for example Ritter (1991) or Loughran and Ritter (1995)).  Our 

approach modifies the control firm approach (Barber and Lyon (1997)) by using multiple 

performance measures per event firm to address the associated power problem.  The 

resulting test is uniformly more powerful than those currently extant and, more 

importantly, is well specified in all samples, random and non-random, we have examined. 

The most popular alternative abnormal return measures, the cumulative abnormal 

return (CAR) or average abnormal return (AAR), measure average periodic abnormal 

returns and so are biased estimators of long-run investor experience.  Fama (1998) and 

Mitchell and Stafford (2000) have argued for their use and for calendar time tests for the 

presence of abnormal performance primarily because of statistical problems associated 
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with the use of the BHAR and the associated test statistics.  Our approach is designed to 

address these concerns and so allows for the legitimate use of the BHAR.   

Barber and Lyon (1997) and Lyon, Barber, and Tsai (1999) identify three 

problems with inference in long-run event studies using the BHAR.  Labeling these 

problems the new listing, rebalancing,1 and skewness biases, they use simulations to 

examine the impact of these biases on inference when abnormal performance is measured 

using the BHAR and standard tests (predominantly t-statistics2) are applied.  When a 

reference portfolio is used to capture normal or expected return, the new listing and 

rebalancing biases can be addressed in a relatively simple way by careful construction of 

the reference portfolio (see Lyon, Barber, and Tsai (1999)). 

The more serious problem associated with the use of a reference portfolio to 

capture expected return is the skewness bias.  This bias arises because the long-run return 

of a portfolio is compared with the long-run return of an individual asset.  The long-run 

return of an individual security is highly skewed; whereas the long-run return for a 

reference portfolio (due to diversification) is not.  Consequently, the BHAR, the 

difference between these returns, is also skewed.  Barber and Lyon demonstrate in 

simulations that the BHAR’s positive skewness causes standard tests to have the wrong 

size (the null hypothesis is rejected too often when it is true, see also Kothari and Warner 

(1997)) and causes the power of the test to be asymmetric; rejection rates are far higher 

when induced abnormal returns are negative than when they are positive.   

The skewness bias does not arise when a control firm rather than a reference 

portfolio is used as the long-run return benchmark.  In that case, the BHAR is measured as 

                                                 
1 See Canina, Michaely, Thaler, and Womack (1996). 
2 An alternative, Bayesian approach is presented in Brav (2000). 
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the difference between the long-run holding-period returns of the event firm’s equity and 

that of a control firm.  Although the distribution of each asset’s holding-period return is 

highly skewed, the distribution of their difference is not.3  Therefore, standard statistical 

tests based on the control firm approach have the right size in random samples. 

Unfortunately, Barber and Lyon (1997) show that the power of standard tests 

based on the control firm approach is very low when compared with the reference 

portfolio approach.  Simply put, the use of a control firm is a noisier way to control for 

expected returns than is the use of a reference portfolio and this added noise reduces the 

power of the test.  The variance of the difference between the returns on two individual 

assets is generally much higher than the variance of the difference between an asset’s 

return and that of a portfolio; even when the control firm is chosen carefully.  Hence, for 

the control firm approach, powerful tests require very large samples.  

In order to develop a well-specified test with high power, Lyon, Barber, and Tsai 

(1999) examine two ways to modify the reference portfolio approach to fix the associated 

size problem: the use of p-values generated from the empirical distribution of long-run 

abnormal returns and the use of skewness-adjusted t-statistics.4  These methods, 

combined with careful construction of reference portfolios to remove the rebalancing and 

new listing biases, solve the size problem in “random” samples.  These corrections, 

however, do not yield well-specified tests in many of the non-random samples considered 

                                                 
3 Barber and Lyon (1997, Table 7) report skewness for annual BHARs using the control firm approach of 
about 0.4 compared to 8.0 when the reference portfolio approach is used. 
4 In a strict statistical sense the comparisons made in Lyon, Barber and Tsai (1999) (and in the present 
work) are not standard comparisons of the power to reject the null across different tests.  The different 
methods of computing BHARs define normal returns differently.  Changing the definition of normal returns 
changes slightly the null hypothesis, because the definition of abnormal returns is also altered.  However, 
the different ways to construct the test, i.e. the use of pseudoportfolios to calculate empirical p-values, the 
use of skewness-adjusted t-statistics or our use of multiple BHARs per event firm, simply create different 
statistical interpretations of the same underlying economic hypotheses: is there long-run abnormal 
performance after a specific event?  It is in this context that the comparisons are considered. 
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by Lyon, Barber, and Tsai.  In non-random samples the use of a standard reference 

portfolio approach often fails to match the expected return of the event firm with the 

expected return of the reference portfolio resulting in a mis-specified test (the “bad 

model” problem highlighted by Fama (1998)).  Furthermore, when the return on a 

diversified portfolio is used to capture expected returns, there is no offset of any 

contemporaneous correlation of idiosyncratic returns that may exist across firms.  This 

problem is likely to be heightened when events are highly clustered in time. 

Rather than refine the reference portfolio approach, we introduce a methodology 

that increases the power of the control firm approach by matching each of N event firms 

with M control firms.  This results in M correlated BHARs per event firm and we use a 

Wald test statistic to account for this induced correlation when testing whether the 

average of the NM BHARs is zero.  We can, in this way, retain the benefits of the control 

firm approach and at the same time greatly increase the power of the test.  By careful 

choice of control firms, our methodology provides a test whose power is uniformly 

higher than that of any examined by Lyon, Barber, and Tsai (1999).  More importantly, 

the flexibility provided by the selection of a relatively few control firms per event firm 

provides well specified tests in all the samples, random and non-random, we consider. 

Although a variety of possibilities exist, we examine the properties of two 

matching procedures.  The first matches each event firm with multiple control firms 

based on a set of characteristics that have been shown to be related to average returns 

(size, book-to-market, beta, etc.).  The second is a statistical (“maximal R2”) matching 

procedure.  From a set of K potential control firms, we choose the M that jointly 

maximize the R2 of the regression of an event firm’s return on its set of M control firm 
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returns over a pre-event estimation period.  The K potential control firms are selected to 

minimize the possibility that the maximal R2 procedure will result in problems of 

“overfitting.”  While both approaches provide tests with the correct size, we find that the 

maximal R2 procedure consistently produces a more powerful test.  Using either 

approach, the power of the tests increase significantly until M = 3 control firms per event 

firms are used.  Further increases in M result in relatively small increases in power. 

We then investigate the performance of “conditional” versions of our matching 

procedures on non-random samples.  Lyon, Barber, and Tsai (1999) show that the 

reference portfolio approach often leads to mis-specified tests when the event firms share 

certain firm characteristics.  The underlying problems are either that the expected return 

of the event firms is not well-matched by the expected return of standard reference 

portfolios when the “event” affects a non-random sample of firms or that idiosyncratic 

returns are correlated across event firms.  Because our approach uses control firms to 

capture normal returns and relatively few control firms per event firm, we modify our 

matching procedures to capture expected returns sufficiently well for non-random 

samples of event firms that they provide well-specified tests. 

Finally, we investigate the effect of calendar clustering (see Fama (1998) or 

Mitchell and Stafford (2000)) of events.  The potential problem here is that the observed 

positive contemporaneous cross-sectional correlation in idiosyncratic returns suggests 

that samples clustered in calendar time may generate positive cross-sectional correlation 

in the BHARs, which in turn would cause over-rejection of the null hypothesis when it is 

true.  The use of control firms rather than a reference portfolio for defining abnormal 

performance implies that the idiosyncratic component of the measure of abnormal 
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performance is the difference in the contemporaneous idiosyncratic returns of two similar 

assets and so some of the observed correlation in idiosyncratic returns may be removed 

by the model used to adjust for expected returns (Fama (1998)).  Empirically, we show 

that our procedures generate BHARs that are only minimally correlated across event firms 

and result in test statistics that have the right size even when events are maximally 

clustered in simulations so that they all begin on the same day. 

Our paper is organized as follows.  Section 1 describes our methodology.  In 

section 2, we describe the data generation procedure for our simulations.  In section 3, we 

provide our results and a comparison with those in earlier studies.  Section 4 concludes. 

 

1. Methodology 

1.1 The Abnormal Return Metric 

 A fundamental choice for any long-run event study concerns the measure of long-

run abnormal return.  The literature concentrates on the use of either compounded long-

run abnormal returns (BHARs) or measures of average periodic performance (CARs or 

AARs).  While BHARs directly measure investor experience, the measure of concern for 

most long-run event studies, Fama (1998) raises several significant concerns with their 

use as a performance metric.  First, the “bad model” problem (errors in specifying 

expected return) is more of a problem for the use of BHARs than it is for the use of 

average periodic abnormal return measures due to compounding.  Secondly, long-run 

BHARs (under the reference portfolio approach) are highly skewed, causing standard 

tests to have the wrong size.  Finally, to the extent that events tend to be clustered in time, 

cross-sectional correlation of contemporaneous returns may also cause tests using 
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BHARs to be mis-specified.  In addition to the bad model problem, if the idiosyncratic 

components of returns are correlated in the cross-section5 BHARs may also be cross-

sectionally correlated.  In that case, estimates of BHAR variation that do not account for 

the correlation between contemporaneous observations will be understated (see Brav 

(1997)) causing the associated test statistics to reject the null too often.  Individually, 

each of these problems would cause one to distrust hypothesis testing done on BHARs. 

Jointly they motivate Fama to argue for the use of CARs. 

 The main argument against using average periodic abnormal returns in long-run 

event studies is that they do not measure the variable of interest.  Barber and Lyon (1997) 

show that CARs are a biased predictor of investor experience.  Therefore a failure to 

reject the null of no abnormal return measured as average period abnormal return does 

not imply a lack of abnormal return as measured by the BHAR.  It is therefore useful to 

develop well-specified tests of abnormal return using buy and hold abnormal returns as 

the performance metric.  Any such test must, of course, address Fama’s (1998) concerns.  

 Our approach alleviates each of Fama’s concerns. As discussed in the 

introduction, we modify the control firm approach by matching each event firm with 

several control firms.  Therefore, by design (see Barber and Lyon (1997) table 8) 

skewness in the BHARs is much less of a problem as compared to the reference portfolio 

approach. Barber and Lyon also show that the control firm approach leads to well-

specified tests using conventional t-statistics. 

 As noted by Fama (1998), errors in specifying expected returns are compounded 

when using BHARs as the measure of abnormal performance which could lead to over-

                                                 
5 See Mitchell and Stafford (2000), Collins and Dent (1984), Sefcik and Thompson (1986) and Bernard 
(1987). 
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rejection of the null if the errors are significant.  Furthermore, as Fama notes, the bad 

model problem is likely to be most problematic when using equally weighted abnormal 

returns.  This is because small stocks have been shown to provide the greatest difficulty 

in capturing expected returns and are weighted relatively heavily when returns are 

equally-weighted.  Although our methodology is easily adapted to any weighting scheme, 

to determine whether equal weighting presents a problem, we consider only equally-

weighted BHARs in our simulations.  Despite this disadvantage, our simulations show 

that our approach is well specified in both random and non-random samples of event 

firms.  Empirically, therefore, we find that our approach, with its associated procedures 

for selecting control firms, leads to firm specific proxies for normal or expected returns 

that are accurate enough that the bad model problem is not a significant concern.   

 Finally, if contemporaneous idiosyncratic returns are cross-sectionally correlated, 

then even if the systematic component of returns is captured accurately, the cross-

sectional correlation of the residuals could also lead to a mis-specified test if it is not 

accounted for in the measure of BHAR variation.  Mitchell and Stafford (2000) report 

average cross-sectional correlation in monthly BHARs (using the reference portfolio 

approach) between 0.002 and 0.0177 when there is complete calendar time overlap.  They 

also show that ignoring correlations even of this magnitude can lead to a sufficient 

underestimation of BHAR variance so standard tests significantly over-reject the null.   

The reference portfolio approach uses a large, well-diversified portfolio’s return 

to proxy for the systematic component of returns.  Therefore, any cross-sectional 

correlation in residual returns will be inherited by the BHARs.  The situation is different 

with the control firm approach.  In this case the BHAR is the difference between the 
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returns on two individual assets and so (if the systematic components of returns for the 

assets are the same) the BHAR is the difference between their residual returns.  Therefore 

cross-sectional correlation in residual returns does not necessarily imply cross-sectional 

correlation in the BHARs.  Indeed, in our simulations average cross sectional correlation 

between monthly BHARs, analogous to that reported by Mitchell and Stafford, is .00015.  

This measure is generated assuming all events occur on the same day and is an order of 

magnitude smaller than that reported by Mitchell and Stafford (2000).  Furthermore, 

when we cluster events in time so that they all occur on the same day (to induce the 

maximal amount of cross-sectional correlation) our approach yields a well-specified test. 

1.2 The Model 

Consider an “event” shared by a sample of N firms, i=1,…, N.  We use the BHAR 

to estimate any subsequent long-run abnormal performance for each firm in this sample.  

For each event firm, the BHAR is the difference between the long-run holding period 

return for that firm and the long-run holding period return for some benchmark asset.  

The benchmark return is a proxy for the normal or expected return of the event firm.  

Conventionally, the benchmark is a reference portfolio (see Barber and Lyon (1997), 

Lyon, Barber, and Tsai (1999), and Brav (2000)).  That is, each event firm is matched to 

a portfolio of firms with similar attributes, such as size and/or book-to-market.  In the 

case of the control firm approach, the benchmark is a single firm. 

Under the null hypothesis of no abnormal return the expected BHAR for each 

event firm, which we label μ , is zero.  This follows because each BHAR measures the 

difference between a firm’s long-run return and the long-run return of a proxy designed 

to have the same expected long-run return.  Hence, the BHAR measures any abnormal 
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performance and idiosyncratic risk.  The idiosyncratic risk has an expectation of zero and 

covariance matrix Ê under the null hypothesis.  

Our approach can be thought of as consisting of two parts.  The first is that we 

consider multiple BHARs per event firm and use a Wald statistic to control for the 

correlation between observations induced by this approach.  The use of multiple 

measures per event firm can be seen as a way to increase the number of observations and 

so the power of tests for abnormal performance.  Secondly, the use of a (relatively) few 

control firms per event firm implies that the selection of control firms can be done in such 

a way as to provide well-specified and powerful tests in a variety of circumstances. 

1.3 The Test Statistic 

For a sample of N firms, we consider the long-run performance for each firm over 

an interval of length t, which is divided into T periods of equal length.  In this study, t 

equals one year which is divided into T = 12 months, each indexed by t = 1, …,12.6  For 

each event firm i, we consider the event date to be date zero.  Firm i’s gross holding-

period return, rit, is then the product of the gross monthly returns, ∏ =
= T

t iti rr
1τ .  For each 

event firm, there are M associated control firms, m=1,…,M, each with a gross holding-

period return denoted by ∏ =
= T

t mtm rr
1τ .  The BHAR for a event firm with respect to a 

given control firm is defined as ττμ miimim rrBHAR −≡≡ ˆ .  The BHAR with respect to a 

reference portfolio p is given by ττμ piip rr −≡ˆ . 

                                                 
6 We focus on a annual holding period for two reasons. First, the results are very similar for longer holding 
periods thus in the interest of space we present results only for a holding period of one year.  The 
techniques are easily extended to account for any desired holding period.  Furthermore, typical investors 
appear to turnover their portfolios frequently so a relatively short holding period is appropriate if one is to 
measure “investor experience” (Benartzi and Thaler (1995) estimate the typical investor’s investment 
horizon as one year, see also Barber and Odean (2000)).   
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For each event firm we compute a set of M BHARs, one for each control firm.  To 

test hypotheses about linear combinations of BHARs, we compute the Wald statistic 

)ˆ(])([)ˆ( 1 Γ−′⊗′Γ−= − AaAISAAaW , 

where ]ˆ,,ˆ,ˆ,,ˆ,,ˆ,ˆ[ˆ
2111211 NMNNM μμμμμμ=Γ′ .  That is, Γ̂  is a column vector of 

BHARs of length NM.  The first M rows of Γ̂  are the BHARs of the first event firm with 

respect to each of its M reference assets. The next M rows in Γ̂  are the BHARs of the 

second event firm with each of its M reference assets, and so on.  The cross-sectional 

covariance structure of the BHARs is represented by the contemporaneous covariance 

matrix MMS × , where S is our estimate of Ê.  The covariance matrix of Γ̂  has a block-

diagonal structure IS ⊗ , where I is an N×N identity matrix.   

The test of whether the equally weighted average BHAR equals zero considers 

whether 0ˆ =Γ− Aa , where the scalar a = 0 and A is row vector of ones corresponding to 

the NM rows of the imμ̂  in Γ̂ .  Under the null, the test statistic W is drawn from a )1(2χ  

distribution.  Value weighted schemes are easily considered by altering the vector A. 

 In contrast, the standard test of the hypothesis that the expected BHAR is zero 

(using a portfolio as the reference asset) computes the sample average of N BHARs, 

( ∑ =

N

i ipN 1
ˆ1 μ ), and tests whether it is statistically significantly different from zero using a 

t-test.  The reason this test is commonly misspecified is that each ipμ̂ , the difference 

between a skewed holding-period return on an individual security and a much-less-

skewed portfolio return, is positively skewed.  This positive skewness implies that the 

average BHAR is likely to be negative when the variance of the BHAR is low, leading to 

high rates of rejection when the null is true.  This is in contrast to any control firm based 
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approach where the BHAR is the difference between two holding-period returns with 

approximately equal skewness and variance.7 

 Some basic properties of the Wald statistic can be seen directly from its 

definition.  First, as the correlation between control firm returns increases, ceteris 

paribus, the value of the test statistic decreases, making it harder to reject the null.  To 

see this, we first define some notation.  Let the sample covariance between BHARs 

defined using control firms j and k be jkσ̂ .  Further, when j=k, 2ˆˆ jjk σσ = , the variance of 

the BHAR using control firm j.  The denominator of our test statistic, ])([ AISA ′⊗ , is then 

∑ ∑= =

M

j

M

k jk1 1
σ̂ , the sum of the variances of the BHARs plus twice the sum of the 

covariances of the BHARs within each block of the covariance matrix.  Now, fixing the 

variances of the individual BHARs, and increasing jkσ̂ , kj ≠  has the effect of increasing 

])([ AISA ′⊗  and reducing W.  In the limit, when the correlation between control firms 

equals one (so no new information is added after the first control firm), W becomes the 

square of the t-statistic obtained when using one control firm per event firm. 

 Second, the numerator of the test statistic is the average BHAR across the M 

control firms for each event firm and across the N event firms.  Therefore, a well 

specified test requires, for each event firm, the average BHAR, across the M control firms, 

to be zero under the null.  It is not necessary that the mean return of event firm i be 

matched by the mean return of each of its M control firms, rather the mean return of the 

event firm need only match the average of the mean returns for the M control firms. 

                                                 
7 For the difference of two approximately-equally-skewed distributions not to be skewed, it is well-known 
that the variances of the two distributions must also be approximately equal.  Empirically, even without 
controlling for equivalent variances, BHAR skewness under the control firm approach is minimal. 
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1.4 Control Firm Selection 

 In simulations using artificial “monthly stock returns” generated using identical 

(but not independent) lognormal distributions, we found that the optimal way to match 

event and control firms was to find M control firms that were each highly correlated with 

the event firm, but which had correlations with each other that were as low as possible.  

This is equivalent to running a population regression of each event firm’s holding-period 

return on every possible combination of M matching firm returns and choosing the 

combination of M firms that generates the highest R2.  In this way, for any given M, the 

set of control firms add the maximum amount of information, making the test as powerful 

as possible.8  The discussion above concerning the properties of the test statistic 

illustrates the intuition behind such a procedure. 

With actual returns additional issues arise.  First, if event firm mean returns are 

not matched by the average of the control firm mean returns, the size of the test is 

affected.9  Further, if the average of the mean returns of the control firms equals the mean 

return for each event firm, but each individual control firm does not have the same mean 

return as the event firm, the added noise will lower the power of the test.  Second, 

because correlations among firm returns are not necessarily the same in the estimation 

period as in the event period, using a purely statistical procedure to select control firms 

can result in over-fitting and consequently a test with low power.  Some control for this 

potential problem must therefore be used in any statistically-driven matching procedure.   

                                                 
8 In the simulations, control firm and event firm mean returns were the same and inter-firm return 
correlations were the same across all control firms. 
9 This statement conveys the intuition but is not precisely true.  What is required is that across the 
observations the expected return of the each reference asset is an unbiased estimate of the expected return 
of its associated event firm.  This is why samples that are biased towards particular firm specific 
characteristics known to be related to expected returns cause problems for the reference portfolio approach. 
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 Our first approach matches event firms with control firms based on pre-selected 

firm characteristics.  For each event firm we select M control firms that match the event 

firm as closely as possible on some combination of characteristics which have been found 

to be related to the cross-section of average returns.  Barber and Lyon (1997), for 

example, show that for random samples of event firms a well specified test is obtained by 

selecting control firms matched on size and book-to-market.  We employ the following 

matching criteria: size; book/market; size and book/market (Barber and Lyon (1997)); 

beta; buy-and-hold return momentum (geometric returns); cumulative return momentum 

(arithmetic returns); industry (2 digit SIC code); industry and size; industry and 

book/market; industry, size and book/market (as in Barber and Lyon (1997)); industry 

and beta; industry and buy-and-hold return momentum; industry and cumulative return 

momentum.  We construct and compare tests using different numbers of control firms 

(different M) with different combinations of the above mentioned matching criteria in 

order to determine whether different combinations of criteria materially affect the results.  

Our second approach we examine is a statistically based “maximal R2” matching 

procedure.  In order to control the possible problems associated with a statistically driven 

approach we divide this procedure into two parts.  First, we reduce the number of 

potential control firms to K by initially matching on firm characteristics in order to match 

the mean return of the event firm and the candidate control firms.  For example, for each 

event firm i, one might choose Sz firms that match on size, B firms that match on beta, 

and BM firms that match on book-to-market such that Sz+B+BM=K.  Matching occurs in 
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the event month.  In general, we let K=30.10  From this set of K firms, we pick the M that 

maximize the R2 of the following regression 

it

M

j
jtjit rr εβα ++= ∑

=1
  

estimated over the 60 months preceding the event month, t = -60,…, -1.   

After specifying the set of K candidate control firms, there are two ways to select 

the M control firms: unconstrained choice from the entire set of K firms, and constraining 

the number of firms drawn from each set of control firms (e.g. size, beta, and book-to-

market) to be equal.  We use the former approach in our simulations.  The advantages of 

the latter are that the number of possible sets of M is greatly reduced and the chance of 

matching the mean of the event firm is increased.  Further, the off-diagonal terms in S, 

the estimate of the contemporaneous covariance matrix for the BHAR’s (Σ) then have a 

natural interpretation.  The first vector of BHARs contains firms matched, for example, by 

size only; the second contains firms matched by book-to-market, and so on.  Each off-

diagonal term then represents the cross-sectional covariance between BHAR’s matched 

by different attributes.  Matching in this way also has the advantage that the 

contemporaneous covariances between these BHAR vectors may be lower.  Empirically, 

however, we show that there is little difference in power between the two approaches.  

 

2. Data and Simulation Methodology 

For the purpose of comparison we match our data set with that of Barber and 

Lyon (1997) as closely as possible.  Our data is monthly returns, closing prices and 

                                                 
10 The choice of K = 30 balances an increase in the power of the test that comes from selecting the control 
firms from a broader set against the increase in computing time necessary to search over the broader set. 
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shares outstanding for all NYSE, AMEX, and NASDAQ ordinary common shares 

available from CRSP between December 1962 and December 1994.  The corresponding 

book value of common equity data is from COMPUSTAT.   

We define firm size to be the market value of common equity (shares outstanding 

multiplied by the monthly closing price).  Following Barber and Lyon (1997), we 

calculate firm size in June of each year (i.e. June shares outstanding times the June 

closing price) and use it as the observation of size for the subsequent twelve months 

(from July of the same year to June of the following year) for the purpose of size-based 

ranking.  A firm’s book-to-market ratio is the book value of common equity divided by 

the market value of common equity.  As in Barber and Lyon (1997), we measure the 

book-to-market ratio in December of each year.  Rankings based on book-to-market 

ratios use the December value of the ratio for the observations of the book-to-market ratio 

for July of the next year through June of the year after. 

This study examines only annual BHARs.  As discussed above, this is a 

reasonable representation of the average holding period for individual investors.  

Furthermore, the results for 3 and 5 year horizons are essentially the same.  We therefore 

remove from our sample event firm-months that do not have 12 consecutive subsequent 

reported monthly returns and those that lack size and book-to-market information.  Firm 

months with book values of common equity less than or equal to zero are also omitted.   

In order to generate a standard simulated “event sample” we follow a procedure 

comparable to that used in Barber and Lyon (1997).  For each firm-month in the total 

sample and for each possible control firm (or reference portfolio) we calculate an annual 

BHAR.  That is, for the January 19X1 return on a given pair of sample and control firms 
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we calculate the annual BHAR using the 12 months January – December of 19X1.  From 

the same pair’s February 19X1 returns we calculate the annual BHAR using the 12 

months February 19X1 – January 19X2 and so on.  In this way we generate a panel of 

annual BHARs.  We randomly draw L = 10,000 random samples of N = 200 event firm 

months and for each event firm we calculate its BHARs with respect to each of M selected 

control firms.  We then induce an abnormal return for each event month by adding a 

constant amount between -0.2 and 0.2 to each of the LNM BHARs.  Test statistics for 

each of the L samples are calculated and the size and power of the tests are computed. 

When comparing with their tests we follow the Barber and Lyon (1997) procedure 

for building reference portfolios and for selecting control firms.  In particular, we match 

event firms to control firms based on size and then book-to-market ratios the most 

successful matching procedure used by Barber and Lyon.  When we form reference 

portfolios we follow their procedure to eliminate the new listing and rebalancing biases. 

 

3. Test Results 

3.1 Random Samples 

3.1.1 Comparison of Test Properties 

 Here we document the size and power of our test for BHARs at a one year horizon 

for random samples of event firm months.  We also compare the size and power of the 

Wald test to that of the bootstrapped skewness adjusted t-statistic, the empirical p-value, 

and control firm approaches examined in Lyon, Barber, and Tsai (1999). 

In figure 1, we compare the size and power of the different tests considered by 

Lyon, Barber, and Tsai (1999) and our Wald test using both a maximal R2 approach and a 
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characteristic approach.  Our rejection rates are based on 10,000 random samples of 200 

event months (the Lyon, Barber and Tsai simulations are based on 1,000 random 

samples).  Several results are noteworthy.  First, as expected, all of the tests have the 

appropriate size.  Second, as reported by Lyon, Barber and Tsai (1999), the power of the 

t-statistic using the control firm approach is lower but more symmetric than the power of 

the empirical p-value or the skewness adjusted t-statistics using the reference portfolio 

approach.11  Third, the Wald test with the maximal R2 approach to selecting 3 control 

firms is the most powerful of all the tests at all levels of induced abnormal returns.  

Finally, the most powerful Wald test using a characteristic approach is more powerful 

than the empirical p-value or the skewness adjusted t-statistics for positive induced 

abnormal returns but, due to the skewness in the reference portfolio approaches, slightly 

less powerful than the empirical p-value approach for negative induced abnormal returns.   

Figure 1 illustrates that with our maximal R2 approach, using only 3 control firms 

per event firm, the benefits of the control firm approach remain while the power of the 

test increases dramatically.  In essence, the benefit of the reference portfolio approach 

(increased information) is gained without introducing the skewness that comes (via 

diversification) with the use of a portfolio as a control asset.  The messages of figure 1 

are confirmed in table 1a which provides numerical documentation of the size and power 

of the relevant test statistics.   

                                                 
11 The asymmetry in the power of the test statistics developed by Lyon, Barber, and Tsai (1999, figure 1) 
using a reference portfolio approach is due to BHAR skewness.  With a positively skewed distribution for 
the BHAR, adding a small negative abnormal return to a mean zero BHAR increases the probability of 
rejecting the null very rapidly while the addition of a small positive abnormal return increases the 
probability of rejecting the null relatively slowly.  Further, adding sufficiently large positive abnormal 
returns will guarantee rejection of the null (given the truncation of the left side of the distribution).  
Addition of large negative abnormal returns may not guarantee rejection of the null given the large right tail 
of the distribution under the null.  Although Lyon, Barber and Tsai’s refinements yield well-specified tests, 
the asymmetry in the test’s power remains as a byproduct of the skewness in the BHARs. 
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As a robustness check table 1b presents the size and power for a representative set 

of tests using the characteristic based matching approach in the Wald test.  For 

illustration we present results from matching on a variety of firm characteristics that have 

been shown to explain the cross-section of average returns.  There is surprisingly little 

variation in the size or power of the tests developed based on different sets of 

characteristics.  The table presents “average” rather than extreme results for each value of 

M.  We note only that the test has the correct size for all values of M. 

Although our method of search for control firms was guided by theory, our 

procedure is in no sense optimal.  For one thing, we made no attempt to force the average 

BHAR to zero, which could be done using the coefficient estimates iα̂ and imβ̂ from an 

estimation period regression of each event firm’s return on the return of each control firm 

(m) ( imtimtimiit rr εβα ++= ).  Then, in the event period, the BHAR for a particular event 

firm-control firm pair would be given by: mtimiitim rrBHAR βα ˆˆ −−= .  Such a procedure is 

likely to generate problems however since average estimates of imβ̂ are less than one 

which would reintroduce the skewness problem.  Empirical comparative static analyses 

on other aspects of the two matching procedures are considered next. 

3.1.2 Empirical Comparative Statics on M 

 The Wald test using the maximal R2 approach and 3 control firms per event firm 

provides a more powerful test than the others examined in figure 1.  An important 

question concerns the choice of M, the number of control firms selected for each event 

firm.  Figure 1 uses M = 3 control firms for each event firm in the maximal R2 procedure.  

A priori, there is no obvious reason for this choice.  In table 2, we compare the size and 

power of the Wald test using the maximal R2 approach for different values of M: 1, 2, 3, 
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and 4.  The table shows that across the different levels of induced abnormal return there 

is an almost monotonic increase in power with M, up to M=3.  Further increases in M 

lead to marginal increases in power at best.  This, as well as the increase in computing 

power and time required by larger choices of M leads us to choose M = 3 as our 

benchmark for this control firm selection procedure.  Note however that the set of 

potential control firms includes only firms that match on size, book-to-market, and beta.  

The use of other (or multiple) initial matching criteria may suggest a different choice. 

 In table 3 we examine a variation of the analysis of table 2 to determine if we can 

increase power by better matching the expected return of each control firm more closely 

to that of the event firm. We predict that this will increase the power of the tests for a 

given M as the volatility of the individual BHARs should be reduced.  To accomplish this, 

we use an initial matching criterion that selects candidate firms matched on two firm 

characteristics, (rather than one as in table 2).  We again select K = 30 candidate control 

firms where 10 are selected that match the event firm most closely based on firm size and 

then on book-to-market ratio, 10 are selected that match on size and then on beta, and 10 

are selected that match most closely on book-to-market and then beta.   

 Here we again see that setting M = 3 is a reasonable choice.  Power increases with 

M until M=3.  Increasing M to 4 again results in a minor improvement.  Finally, by 

comparing table 1a to table 3, we see that the use of two characteristics in the initial 

matching criteria does not bring meaningful increases in power.  The differences between 

the results of table 1a for the maximal R2 procedure and those reported in table 3 for M = 

3 are not statistically significant.  The absence of the predicted improvement may be the 
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result of sampling error.  Repeating simulations of 10,000 random draws for the same 

conditions has, however, shown little variation in the aggregate outcomes. 

 Empirical comparative static checks on the appropriate value for M in the 

characteristic-based matching procedure are also possible.  Note however that in the 

characteristic-based procedure it is difficult to vary only M in these comparisons.  We 

have performed a large variety of checks and find that they all support the conclusion that 

the use of three control firms per event firm is a reasonable choice.  To facilitate 

comparison with the control firm approach of Barber and Lyon (1997) we present a 

comparison of versions of the characteristic-based selection procedure with M = 1, 2, 3, 

4, and 5, in which all the control firms are matched based first on size and then book-to-

market ratio.  Table 4 presents these tests.  Consistent with the findings of Barber and 

Lyon (1997) we see that the Wald test has the correct size for all choices of M; empirical 

rejection levels when there is no induced abnormal return are very close to theoretical 

levels, for each of the standard significance levels.  Finally, the power of the test, at all 

levels of induced abnormal return, increases monotonically with M.  The largest increases 

in power occur as M increases from 1 to 3.  Increasing M further once again produces 

only marginal increases in power for all levels of induced abnormal return. 

3.1.3 Other Empirical Comparative Statics 

 In table 5, we compare the results of using the maximal R2
 procedure when the 

search is constrained to select one firm from each set of attributes used in the initial 

matching process versus when the search is an unconstrained maximization of the R2.  As 

the table shows, such a constraint is not costly in terms of power.  This is not surprising. 

Given that all firms associated with a given attribute were selected from the closest 
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matches for that single attribute, the correlation between such firms will tend to be 

higher.  Thus, the matches selected using unconstrained maximization should tend to be 

firms matched on different attributes. 

 Finally, given the success of the maximal R2 procedure, it is appropriate to ask 

whether the improvement in power is due to better control firm selection, or whether it is 

due to the use of the Wald test itself.  In order to address this question, we use the 

empirical p-value approach of Lyon, Barber, and Tsai (1999), but use the maximal R2 

procedure to construct a reference portfolio of (M =) 3 firms.  That is, we use the weights 

from the estimation period (maximal R2) regression to create the returns on a reference 

portfolio for event firm i: )ˆˆ(
3

1

12

1
∑∏

==

+=
j

jtj
t

ip rr βα .  Then, for each event firm, the BHARip is 

ri12-rip.  To correct for the resulting skewness of this BHAR, we employ the empirical p-

value technique of Lyon, Barber, and Tsai (1999).  The results are given in table 6.  

Columns 2 and 3 in the table present Lyon, Barber, and Tsai’s (1999) results using the 

empirical p-value and our empirical p-value tests using the maximal R2 procedure for 

reference portfolio selection.  Column 4 presents the results of our maximal R2 procedure.  

Observe that our test procedure itself contributes most to improvements in power.  

Indeed, it is not clear whether using the maximal R2 procedure to form a reference 

portfolio represents an improvement on Lyon, Barber, and Tsai’s (1999) approach.  The 

power is higher for positive induced abnormal returns, but lower when induced abnormal 

returns are negative.  This is due to the difference in skewness of BHARs created with 

standard reference portfolios versus a reference portfolio of only 3 firms.12 

                                                 
12 A similar comparison for the maximal R2 procedure and the control firm approach can be found in tables 
1a and 3.  Results for the use of a t-statistic and the selection of a control firm via a maximal R2 procedure 



 23

3.2 Nonrandom Samples 

 That the Wald statistic approach provides well specified tests in random samples 

of event firms is not surprising in that it corrects for the rebalancing, new issue, and 

skewness biases.  However, when the sample of event firms is not random the “bad 

model” problem and the concern over non-independent observations are heightened.  The 

extent to which these issues affect the size of the Wald test is an empirical question that is 

examined below.  However there are reasons to expect that the approach introduced here 

will provide a well specified test. 

 If expected returns are related to observable firm characteristics then to the extent 

that the event sample is biased towards one (or more) such characteristic(s) and the test 

for abnormal performance does not control for the implied change in normal performance 

of event firms, the test will be misspecified.  In this subsection we demonstrate that the 

flexibility imparted by choosing only a few control firms per event firm allows our 

matching procedure to control for bias in the sample of event firms and so provide a well 

specified test.  Similarly, if the nature of the sample of event firms causes observations of 

event firm returns to be correlated (time clustering) the same modification to the 

matching procedure will allow the Wald test to provide a well specified test. 

The impact of the bad model problem in non-random samples is illustrated nicely 

by the discussion in Lyon, Barber and Tsai (1999) concerning samples of firms with high 

six month pre-event return performance.  They note, for example, that using a control 

firm approach, matching on size and book-to-market, in a sample of firms with high pre-

event return performance, the test statistics are positively biased at the one-year horizon 

                                                                                                                                                 
is found by examining M = 1 in table 3.  Comparing these results with the results of the control firm 
approach in table 1a we see that the statistical selection of one control firm provides an increase in power.  
It is also clear that the use of multiple control firms per event firm provides meaningful increases in power. 
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but negatively biased at the three- and five-year horizon.  The biases are due to the 

momentum (one-year horizon) and reversal (three-year and five-year horizons) effects 

documented by Jegadeesh and Titman (1993) and the impact these effects have on 

subsequent average returns of event firms that are not accounted for by a simple size and 

book-to-market matched reference portfolio or similarly matched control firms. 

The importance of accounting for returns that are correlated across events in the 

test statistic is illustrated by the discussion in Lyon, Barber, and Tsai (1999) concerning 

industry concentration.  When events are concentrated in a single industry the size of 

their tests are understated, indicating that the measured variation is too small.  This result 

suggests the presence of a common component of idiosyncratic returns within industries 

that must be accounted for in order to provide a well specified test.  Lyon, Barber, and 

Tsai (1999) however note that when the event is clustered within four industries, their 

tests have the correct size.  Therefore, empirically, it seems that only extreme industry 

concentration is a concern.  As shown below, when events are clustered in time, it is very 

important to account for returns that are correlated across events. 

 In table 7, we report the size of our test for six different biased samples of 200 

event firms (each replicated 10,000 times).  The samples we consider are taken from 

subsets of small and large firms, high and low book-to-market firms, and high and low 

six-month pre-event return performance.  Panel A of table 7 shows that a simple 

characteristic based matching procedure, matching one control firm on size, one on book-

to-market and one on beta provides a misspecified test.  When the event firms are drawn 

from a biased sample and that bias concerns a characteristic related to average returns a 

simple matching procedure fails to match the mean of the event firms with its set of 
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control firms.  Except for the sample of firms with low pre-event returns which is well 

specified using the standard procedure the other tests generally reject to frequently in the 

upper tail and to infrequently in the lower tail. 

 Panel B of table 7 reports the size of tests using a “conditional matching 

procedure” designed to do a better job of matching the mean return of the event firms 

with the mean of their control firms and for controlling for common, industry-specific 

components of idiosyncratic returns.  Consider the sample of event firms drawn from the 

set of small firms.  The problem with the test reported in panel A of table 7 is that while 

one of the matching characteristics is firm size, the other two ignore firm size in their 

selections of control firms.  Control firms that match closely on the book-to-market ratio 

or the beta of the event firm are likely to differ in the size dimension.  Since firm size is 

known to be related to average return, the expected returns for this set of control firms is 

unlikely to match the expected return of the event firm resulting in a misspecified test. 

 The conditional matching procedure employed in panel B of table 7 matches 

control firms to event firms by taking control firms solely from the subset of firms from 

which the event firms are drawn.  Specifically, for the sample made up of small firms we 

match control firms to event firms by matching on three characteristics.  The first control 

firm is matched on size alone.  The second control firm is matched on firm size and 

within a set of size matched firms we select the firm with the book-to-market ratio that 

most closely matches the event firm.  The third control firm is also matched first on size 

and then on industry (2-digit SIC code).  The industry based matching of control firms is 

introduced to control for the presence of any industry-specific component of returns. 
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Similarly for the samples of firms drawn from biased sets of book-to-market 

ratios or pre-event return the conditional matching procedure matches on the standard 

firm characteristics (size, book-to-market, industry) conditional on the potential matches 

being within the subset of firms from which the event firms are drawn.  When the event 

firms are drawn from the highest or lowest deciles of book-to-market ratio, the three 

control firms for each event firm are matched on book-to-market, book-to-market and 

size, and book-to-market and industry.  For the event firms drawn from the highest or 

lowest deciles of six-month pre-event return (momentum), the three control firms match 

on momentum and size, momentum and book-to-market, and momentum and industry.  

As shown in the panel B of table 7, the tests using the conditional matching 

procedure are all well specified.  This emphasizes the importance of matching the mean 

of the reference asset(s) to the mean of the event firms in long-run event studies and 

illustrates one benefit of the flexibility of our approach.  The results also indicate that 

Lyon, Barber and Tsai’s conjecture that their test would be well specified on samples of 

firms drawn from the extreme momentum deciles, if they restricted their reference 

portfolio to contain assets from these same momentum deciles, is likely to be true. 

3.3 Calendar Clustering 

 A further problem discussed by Lyon, Barber, and Tsai (1999) is calendar 

clustering.  Events are often clustered in calendar time.  The reason this clustering may 

lead to measurement problems is that contemporaneous returns are likely to be more 

highly correlated across firms than non-contemporaneous returns.  Mitchell and Stafford 

(2000) show that when the BHAR is calculated using a benchmark that is a portfolio of 

stocks matched independently on size and book-to-market quintiles they find in 



 27

simulations that a lack of independence across BHARs is so severe that the true size of a 

5% test can be up to 20%!  Based on this result, they advocate the use of the calendar-

time portfolio approach (see also Fama (1998)) for measuring long-run abnormal returns. 

 With a correct model for mean returns, however, plus the fact that in such a 

model, the errors are i.i.d (e.g. a factor model such as the APT) calendar clustering would 

not be a problem.  As Fama (1998) and Mitchell and Stafford (2000) note, problems can 

arise if the true asset pricing model permits cross-sectional dependence of the errors (e.g. 

the CAPM).  To determine whether time clustering presents problems for our estimation 

procedure, in Table 8, we consider the size of the Wald test (using the characteristics-

based matching procedure) under the extreme assumption that all “events” occur on the 

same day – an assumption that should produce maximal cross-sectional correlation in the 

BHARs.  The Wald test continues to be well-specified.  In Table 9, we examine the size 

of the Wald test using the maximal R2 matching procedure when there is calendar 

clustering.  For all choices of M > 2 the tests are also well-specified.13   

These results indicate that under our approach the resulting BHARs are only 

minimally correlated in the cross-section.  Both matching procedures appear to do a 

sufficiently good job of capturing the systematic component of returns.  If this accounts 

for the contemporaneous cross-sectional correlation it is not surprising that calendar 

clustering does not present a problem for our approach.  Furthermore, the use of control 

firms also implies that the BHARs contain the difference between the idiosyncratic 

returns on two individual assets.  Thus any cross-sectional correlation in the idiosyncratic 

returns of individual assets may not be passed through to the BHARs as it would be using 

                                                 
13 Note that because the question here is one of size and not power we have set K = 15 rather than 30 as in 
other analysis of the maximal R2 procedure.  This is simply for the savings in computing time required. 
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a reference portfolio approach.  Empirically, we find that the average cross-sectional 

correlation for the BHARs for our time clustered simulations is only .00015.  This 

compares to the average reported in Mitchell and Stafford (2000) of .002, demonstrating 

the dramatic difference between the reference portfolio approach and our procedure.  

Finally, this procedure avoids the concern with the calendar time approach noted by 

Loughran and Ritter (2000) that when calculating average abnormal returns, all months 

are equally weighted, regardless of the number of observations in a given month.14 

 

4. Conclusion 

 In this paper, we propose a simple but powerful test of abnormal long-run holding 

period returns using the buy and hold abnormal return as the measure of performance.  

The test is based on a Wald statistic and combines the benefits of the control firm 

approach (avoids the rebalancing, new listing, and the skewness biases examined by 

Barber and Lyon (1997)), and the reference portfolio approach (increased power of the 

test due to the reduction of the variance of the measure of abnormal return).   

We can think of the innovation in our approach in two different ways.  First it can 

be envisioned as considering the difference in the returns of an event firm’s equity and 

the equity of each of the firms in a reference portfolio.  The result is a set of BHARs for 

each event firm where the distribution of each BHAR is no longer skewed.  Forming an 

“equally weighted portfolio” of such BHARs then results in a test with high power.  

Rather than forming a BHAR for each event firm by taking the difference between its 

                                                 
14 They also point out that the problem is not just for calculating statistical significance but also of 
potentially missing an endogenous response.  For example, if firms issue seasoned equity when their stock 
prices are currently high and mispricing is correlated across securities, so that seasoned equity offerings are 
too, the calendar time approach will miss this endogenous response.  Our conditional matching procedure 
can be used to address this issue. 
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long-run return and that of a portfolio we form a set of BHARs for each event firm and 

then combine them to increase the power of the test.  Secondly, we can think of the Wald 

test as being a standard t-test on the sample of NM observations where the variance is 

adjusted to account for the induced cross-sectional correlation between observations.  The 

use of multiple control firms for each event firm is then a way to increase the sample size 

and so the power of the test without the need to increase the number of event firms.   

The Wald test is shown to be well-specified in random as well as non-random 

samples of event firms.  The key insight is that when choosing control firms, it is 

important to select them from the subset of firms from which the sample was drawn.  The 

flexibility to accomplish this vital matching is one of the benefits of our approach.  Our 

procedure also provides a well-specified test statistic even in simulations where events 

are maximally clustered in time.  Even in this extreme circumstance our matching 

procedures generate BHARs that are only minimally correlated across event firms.   

If the buy and hold abnormal return is the variable of interest in a test for the 

absence of long-run abnormal performance against a specific alternative hypothesis, the 

approach developed in this paper appears to alleviate the statistical concerns associated 

with using buy and hold abnormal returns for evaluating abnormal performance.  This is 

important because in such a circumstance, the finding of an absence of abnormal 

performance based upon long-run cumulative abnormal return does not imply the absence 

of long-run buy and hold abnormal performance.  However, if the alternative hypothesis 

is simply a vaguely defined notion of market inefficiency, then either performance metric 

may be seen to capture the presence or absence of market inefficiencies.  A conservative 

approach to long-run event studies, which seems prudent given the difficulty associated 
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with specifying long-run normal returns, would be to consider both a calendar time 

approach utilizing average periodic abnormal returns and the approach developed here 

based on the long-run buy and hold abnormal returns. 

 An issue of ongoing study is the most appropriate selection of control firms.  We 

have introduced two approaches, a maximal R2 approach and a characteristic approach, 

both of which serve to greatly increase the power of the test relative to the standard t-

statistic approach using a single control firm for each event firm.  The maximal R2 

approach examined here is well-specified and has power that is greater than any of the 

tests proposed by Lyon, Barber, and Tsai (1999) but may not be the most powerful 

approach available using this framework. 
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Figure 1. Comparison of the power of test statistics in random samples.  In each simulation, there are 
200 event firms.  For out tests, we run 10,000 simulations. The control firm with standard t-statistic, 
bootstrapped skewness-adjusted t-statistic and empirical p-value results come from Lyon, Barber, and Tsai 
(1999), who run 1000 simulations.  For the maximal R2 procedure,  the number of potential matching firms, 
K=30, so that Sz=B=BM=10. The number of control firms for each event firm, M, is 3.  The characteristic-
based matching procedure, which represents our best result for M=6, uses the following matching 
characteristics: size; book-to-market; SIC and size; SIC and book-to-market; SIC and beta; SIC, size, and 
book-to-market.  The horizontal axis in the figure is the induced abnormal return. The graphs  represent the 
percentage of the time that the null hypothesis of no annual buy-and-hold abnormal return, is rejected.  
 



 34

 

Induced 
annual 

abnormal 
returns 

Bootstrapped 
Skewness 
adjusted  

t- statistic 
Empirical 
 p value 

t- statistic 
control firm 

Wald test 
Max R2 

Wald test 
characteristic 

approach 
      

-20 90.7 99.1 92.0 100.0 96.4 
-15 80.1 94.7 73.0 99.2 89.0 
-10 54.8 73.4 42.8 89.4 64.0 
-5 29.3 29.3 15.1 42.1 22.5 
0 4.9 5.1 5.3 5.0 5.4 
5 21.7 15.1 13.3 47.5 36.3 

10 70.5 50.1 39.5 96.9 86.1 
15 99.1 88.0 70.1 100.0 98.8 
20 100.0 99.1 89.8 100.0 99.8 

          
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 1a. Figure 1. Comparison of the power of test statistics in random samples.  These numbers are 
used to create figure 1.  
 

M 3 4 5 6 

Induced 
annual 

abnormal 
returns Size, BtM, Beta 

Size, BtM, 
SIC&Size, Beta 

Size, BtM, Size&BtM,  
SIC&Pi Momentum, 

SIC&CARMomentum 

Size, BtM, 
SIC&size, 
SIC&BtM, 
SIC&Beta, 

SIC&Size&BtM 
     

-20 95.5 96.3 96.2 96.4 
-15 85.1 88.2 88.6 89.0 
-10 56.1 61.1 65.7 64.0 
-5 18.6 20.5 26.6 22.5 
0 5.1 5 5.3 5.4 
5 27.0 32.9 19.3 36.3 

10 74.8 81.6 67.2 86.0 
15 96.0 98.0 95.1 98.8 
20 99.4 99.6 99.6 99.8 

      
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 1b. Comparison of the power of test statistics in random samples of characteristic-based 
matching for different numbers of matching firms and different characteristics.   In each simulation, 
there are 200 event firms.  For out tests, we run 10,000 simulations.  The numbers in the table represent 
“typical” results (with the exception of M=6, which is the “best” result shown in table 1a) in the sense that 
for each number of matching firms the use of alternative characteristics yields very similar results.  
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M 

 
Induced annual 

abnormal returns 4 3 2 1 
      

-0.2 98.8 100.0 98.8 98.6 
-0.15 97 99.2 95.5 94.3 
-0.1 80.4 89.4 79.9 74.9 
-0.05 39.5 42.1 37.1 31.9 

0 4.5 5.0 5.9 5.8 
0.05 26.1 47.5 25.9 21.4 
0.1 84.9 96.9 79.8 66.6 

0.15 99.4 100.0 98.0 93.5 

Pow
er 

0.2 100 100.0 99.7 98.9 
            
      

0.5 0.5 0.4 0.5 0.5 
99.5 0.7 0.3 0.7 0.5 
2.5 2.3 2.6 2.4 2.2 

97.5 2.1 2.1 3.0 2.7 
5 4.5 5.1 4.7 4.3 

Size 

95 4.5 4.5 5.9 5.8   

          
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 2 Effect of number of matching firms on size and power of Wald tests using maximal R2 
matching.  The number of potential matching firms, K=30, so that Sz=B=BM=10.  In each simulation, 
there are 200 event firms.  We run 10,000 simulations.  For the power comparison, the numbers in column 
2 are the induced abnormal returns.  For the size comparison, the induced abnormal return is zero; the 
numbers in column 2 represent the theoretical size of the two-tailed test. The numbers in the rest of the 
table represent the percentage of the time that the null hypothesis that there is no annual buy-and-hold 
abnormal return, is rejected.  
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M 

 
Induced annual 

abnormal returns 4 3 2 1 
      

-0.2 99 99.2 98.9 98.8 
-0.15 95.5 97.6 95.7 94.3 
-0.1 81.7 81.3 79.6 73.2 
-0.05 38.9 39.1 36.1 29.2 

0 5.0 4.8 5.3 4.9 
0.05 28.6 30.9 29.4 24.4 
0.1 88.0 85.5 84.0 71.0 

0.15 99.8 99.7 98.9 95.0 

Pow
er 

0.2 100 100 99.8 99.1 
            
      

0.5 0.8 0.7 0.5 0.7 
99.5 0.8 0.5 0.5 0.4 
2.5 2.6 2.3 2.3 2.5 

97.5 2.4 2.4 2.7 2.3 
5 4.9 4.7 4.6 4.6 

Size 

95 5.0 4.8 5.3 4.9   

          
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 3. Effect of number of matching firms on size and power of Wald tests using maximal R2 
matching.  The number of potential matching firms, K=30, so that Sz&B= Sz&BM=BM&B=10.  In each 
simulation, there are 200 event firms.  We run 10,000 simulations.  For the power comparison, the numbers 
in column 2 are the induced abnormal returns.  For the size comparison, the induced abnormal return is 
zero; the numbers in column 2 represent the theoretical size of the two-tailed test. The numbers in the rest 
of the table represent the percentage of the time that the null hypothesis that there is no annual buy-and-
hold abnormal return, is rejected.  
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M 

 

Induced annual 
abnormal 
returns 1 2 3 4 5 

       
-0.2 92.1 94.8 95.6 96.0 96.3 

-0.15 76.0 83.5 86.0 87.4 88.2 
-0.1 45.5 55.2 60.0 62.3 64.1 

-0.05 15.7 20.6 23.2 25.1 26.5 
0 4.7 4.8 5.2 5.3 5.5 

0.05 15.3 17.3 18.3 18.7 18.4 
0.1 44.9 55.6 60.2 63.2 64.6 

0.15 75.7 87.2 91.5 93.4 94.5 

Pow
er 

0.2 91.5 97.3 98.9 99.4 99.5 
              
       

0.5 0.4 0.4 0.4 0.5 0.5 
99.5 0.4 0.6 0.6 0.7 0.8 
2.5 2.3 2.1 2.1 2.4 2.5 

97.5 2.4 2.5 2.6 2.8 2.8 
5 4.5 4.5 4.7 4.7 4.7 

Size 

95 4.7 4.8 5.2 5.3 5.5   

            
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 4.  Comparison of the power of test statistics in random samples for characteristic-based 
matching for different numbers of matching firms.   Here, we standardize the characteristic-based 
procedure.  For all M, we first match on size decile.  We then find the M closest match(es) by book-to-
market.  In each simulation, there are 200 event firms.  For out tests, we run 10,000 simulations.  The 
numbers in the table for represent the percentage of the time that the null hypothesis that there is no 
annual buy-and-hold abnormal return, is rejected. 
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Induced annual 
abnormal 
returns 

 
Unconstrained matching Constrained matching  

    
-0.2 100.0 100.0 

-0.15 99.2 99.0 
-0.1 89.2 88.0 

-0.05 40.7 40.4 
0 5.2 4.9 

0.05 46.7 45.9 
0.1 96.9 96.3 

0.15 100.0 100.0 

Pow
er 

0.2 100.0 100.0 
        
      

0.5 0.6 0.4 
99.5 0.6 0.5 
2.5 2.7 2.3 

97.5 2.8 2.4 
5 5.0 4.8 

Size 

95 5.2 4.9   

      
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 5. Restrictions on the maximal R2 procedure.  We compare the size and power of our tests when 
restricting our procedure to select one matching firm each characteristic with the size and power when the 
restriction is not imposed. The number of potential matching firms, K=30, so that Sz=B=BM=10.  In each 
simulation, there are 200 event firms, and the number of matching firms for each event firm, M=3.  We run 
10,000 simulations.  For the power comparison, the numbers in column 2 are the induced abnormal returns.  
For the size comparison, the induced abnormal return is zero; the numbers in column 2 represent the 
theoretical size of the two-tailed test. The numbers in columns 3 and 4 represent the percentage of the time 
that the null hypothesis that there is no annual buy-and-hold abnormal return, is rejected. 
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Induced annual 
abnormal 
returns 

LBT 
(1999) 

Empirical 
 p value 

Reference Portfolio of 3 
firms generated using 
maximal R2 procedure 

Maximal R2 
procedure with 3 
matching firms 

     
-0.2 99.1 99.3 99.6 

-0.15 94.7 94.6 97.8 
-0.1 73.4 69.2 83.3 

-0.05 29.3 23.3 38.7 
0 5.1 5.0 5.2 

0.05 15.1 16.8 23.7 
0.1 50.1 58.8 83.4 

0.15 88.0 93.3 99.5 

Pow
er 

0.2 99.1 99.4 100.0 
          
       

0.5 0.4 0.61 0.2 
99.5 0.9 0.58 0.7 
2.5 2.6 2.45 3.2 

97.5 2.5 2.54 2.5 
5 5.0 4.67 6.2 

Size 

95 4.8 5.16 5.2   

      
* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 6. Size and power using maximal R2 matching with Wald tests and pseudoportfolio procedure.  
The number of potential matching firms, K=15, so that Sz=B=BM=5.  In each simulation, there are 200 
event firms, and the number of matching firms for each event firm, M=3.  We run 10,000 simulations.  
For the pseudoportfolio procedure we use 10,000 pseudoportfolios that each contains firms randomly 
drawn from the same size/book-to-market portfolio as the event firm, to generate the empirical distribution 
and find the p-value corresponding to the chosen significance level.  
For the power comparison, the numbers in column 1 are the induced abnormal returns.  For the size 
comparison, the induced abnormal return is zero; the numbers in column 1 represent the theoretical size of 
the two-tailed test. The numbers in the rest of the table represent the percentage of the time that the null 
hypothesis that there is no annual buy-and-hold abnormal return, is rejected.  Lyon, Barber and Tsai (1999) 
do not provide the size comparison. 
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Two-Tailed Theoretical Significance level 

1% 5% 10% 
      

Matching by 0.5% 99.5% 2.5% 97.5% 5.0% 95.0% 

              

       
SIC&Size,  SIC&BtM ,  SIC&Size&BtM 0.6 0.7 2.6 2.9 4.9 5.5 

Size,  BtM,  Size&BtM 0.4 0.7 2.5 2.9 4.8 5.6 

3 closest from Size&BtM  0.5 0.8  2.5 2.9  5.0 5.4 
  

* Significantly different from the theoretical significance level at the 1 percent level, one sided binomial test statistic. 
 
Table 8. Calendar clustering: size using characteristic-based matching. Column 1 details the three 
matching criteria. When we match on multiple criteria, the procedure is to first divide into deciles based on 
size and then find the closest matches on book-to-market within the size decile.  When first matching on 
industry, we match by 2-digit SIC code.  In each simulation, there are 200 event firms.  All events in a 
single simulation begin in the same month.  We run 10,000 simulations.  The headings represent theoretical 
sizes for our two-tailed tests.  The numbers in the table represent actual rejection percentages when there is 
no induced abnormal return. 
 
  

Two-Tailed Theoretical Significance level 

1% 5% 10% 

      
Number of matching firms, M 0.5% 99.5% 2.5% 97.5% 5.0% 95.0% 

              

1 0.4 3.5* 1.7 10.5* 2.9* 14.6* 

2 0.6 1.2* 2.9 5.3* 5.5 8.0* 

3 0.9 0.4 3.0 2.4 4.8 4.9 

4 0.7 0.4 2.9 2.4 5.1 5.0 

5  0.5 0.5  2.2 2.4  5.4 5.0 
  

* Significantly different from the theoretical significant level at the 1 percent level, one sided binomial test statistic. 
 
Table 9. Calendar clustering: size using maximal R2 matching as a function of the number of 
matching firms, M. The number of potential matching firms, K=15, so that Sz=B=BM=5.  In each 
simulation, there are 200 event firms.  All events in a single simulation begin in the same month.  We run 
10,000 simulations.  Column 1 represents the number of matching firms for each simulation.  The headings 
represent theoretical sizes for our two-tailed tests.  The numbers in the table represent actual rejection 
percentages when there is no induced abnormal return.  
 
 
 


