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We compare a sealed-bid uniform-price auction
(tbe Treasury’s experimental format) with a sealed-
bid discriminatory auction (the Treasury’s format
beretofore), assuming the good is perfectly divis-
ible. We show that the auction theory that prompted
the experiment, which assumes single-unit
demands, does not adequately describe the bidding
game for Treasury securities. Collusive strategies
are self-enforcing in uniform-price divisible-good
auctions. In these equilibria, the seller’s expected
revenue is lower than in equilibria of discrimi-
natory auctions.

In September 1992, the Treasury began experiment-
ing with a uniform-price auction for selling Treasury
notes. This experimental format will be used in the
monthly two-year and five-year note auctions for a
period of one year. In the discriminatory auction for-
mat that has been used since the mid-1970s, the price
at which any winning bid is filled is the bid price.
In the uniform-price auction format, each winning
bid is filled at the lowest winning price (highest win-

We thank Richard Boylan, Phil Dybvig, John Nachbar, Tom Noe, Chester
Spatt (the editor), and Robert Wilson for helpful comments. Back gratefully
acknowledges financial support from a Batterymarch Fellowship. Zender
thanks the Olin School, Washington University in St. Louis, and the School
of Business, The University of Michigan, for their support and hospitality.
Address correspondence to Kerry Back, Olin School of Business, Washington
University, St. Louis, MO 63130.

The Review of Financial Studies Winter 1993 Vol. 6, No. 4, pp. 733-764
© 1993 The Review of Financial Studies 0893-9454/93/$1.50



The Review of Financial Studies /v 6 n 4 1993

ning yield).? Early evidence indicates that the experiment has not
been successful;®> however, our purpose is not to assess the experi-
ment but to contribute to the theory that prompted it. The experiment
arose out of a general review of the Treasury’s auction procedures—
a review provoked by the 1991 Salomon scandal. According to the
Undersecretary of the Treasury for Finance, Jerome Powell, the pri-
mary motivation for the experiment was the “very substantial aca-
demic opinion that the single price auction could result in lower
financing costs.”*

There are two sorts of academic opinion supporting the uniform-
price format. There is an informal argument that collusion among
bidders is less likely in a uniform-price auction. The argument is that
a discriminatory auction discourages relatively uninformed bidders
because of the severity of the winner’s curse, so bidding becomes
concentrated among a few bidders who therefore may find it feasible
and profitable to collude. This argument was advanced most notably
by Milton Friedman (1960, pp. 64-65):

(Having) different purchasers . .. pay different prices for the
same security . .. establishes a strong tendency for the initial
market to be limited to specialists and gives them a strong incen-
tive to collude with respect to the bids submitted . . . . A decidedly
Dreferable alternative is to ask bidders to submit a schedule of
the amounts that they will buy at a series of prices or of coupons;
to combine these bids, and set the price or coupon rate at the
level at which the amount demanded equals or exceeds the
amount offered.

The second strand of academic support is founded on the theory of
auctions for indivisible goods. This theory shows that a second-price
auction’® yields more revenue on average than does a first-price auc-

' This description conveys the essence of the auction format. The actual mechanics of note and bond
auctions are as follows. A bid consists of a quantity-yield pair. The bids at lowest yields are accepted.
The coupon rate is set equal to the quantity-weighted average yield of the accepted bids (to the
nearest  of 1 percent). The price on each winning bid is then set so that the yield equals the yield
bid.

* This type of auction is also called a “single-price” or “Dutch” auction. The term Dutch auction
has a different meaning outside financial markets.

3 The average markup of auction yields over when-issued yields (midpoints of spreads at 1:00 p.m.
on auction dates) through February 1993, has been 1.35 basis points for the two-year notes and
2.31 basis points for the five-year notes (we thank R. H. Wrightson & Associates for this data). As
a point of comparison, the average markup in the 66 Treasury coupon auctions from January 1990
through September 1991 was only 0.56 basis points (Simon, 1992a). NoTe AppED IN ProoF: The
average markup for the full twelve-month experiment was 0.83 basis points for the two-year notes
and 1.17 basis points for the five-year notes.

4 This quotation comes from the Reuter transcript report of a news conference at the Treasury
Department on September 3, 1992.

s A second-price auction is an auction for an indivisible good in which the highest bidder gets the
object but pays the price bid by the second-highest bidder. In a first-price auction, the highest
bidder gets the object and pays the price he bid.
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tion, at least when bidders are risk neutral. The key is that the winner’s
curse is less severe in a second-price auction, so bidders bid more
aggressively. Because of the more aggressive bidding, the second
highest bid in a second-price auction is higher on average than is the
highest bid in a first-price auction. Several economists have assumed
this logic would extend to Treasury auctions. Referring to Treasury
auctions, McAfee and McMillan (1987, p. 728) state: “theory predicts
that the uniform-price auction, which is similar to the second-price
auction, yields more revenue than the discriminatory auction, which
corresponds to the first-price auction.” Similarly, Milgrom (1989, p.
3), arguing on the basis of a model in which each bidder wants only
one unit of the good being auctioned, states: “a sealed-bid Treasury
bill auction in which each bidder pays a price equal to the highest
rejected bid would yield more revenue to the Treasury than the cur-
rent procedure in which the winning bidder pays the seemingly higher
amount equal to his own bid.”¢ This claim has been repeated recently
by Bikhchandani and Huang (1992), Chari and Weber (1992), and
Smith (1992).

The main point of this article is that the results based on single-
unit demands do not generalize to auctions in which bidders desire
multiple units. For a buyer of a single unit, marginal cost equals price.
However, for a buyer of multiple units in a uniform-price auction,
marginal cost may exceed price. This is of great importance because
marginal cost is endogenous—the supply curve faced by a bidder is
the residual from the demands of other bidders, so his marginal cost
depends on his competitor’s strategies. By submitting steep demand
curves, bidders can make marginal cost much higher than price for
their competitors, leading to equilibria in which value is much higher
than price. In these equilibria, the seller’s revenue can be much lower
than the revenue obtained from a discriminatory auction, so the rank-
ing of auction formats which holds for single-unit demands does not
generalize.

Our results have some bearing on Friedman’s argument. The uni-
form-price auction equilibria we construct could be characterized as
“collusive,” even though they are noncooperative equilibria. This
shows that coordination and information sharing are important in
uniform-price auctions as well as in discriminatory auctions. However,
we do not develop a formal model of collusion.

McAfee and McMillan define a uniform-price auction as an auction “in which all pay a price equal
to the lowest accepted bid.” This is the procedure being used by the Treasury in its experiment.
Milgrom argues in favor of auctions “in which each bidder pays a price equal to the highest rejected
bid.” Using the lowest accepted bid or highest rejected bid can lead to different results in principle
(see note 12), but in practice they are equivalent. The reason is that in Treasury auctions there is
always excess demand at the market-clearing price, so the lowest accepted bid and highest rejected
bid are the same. The choice of lowest accepted bid or highest rejected bid does not matter for
our main result (Theorem 1).

y
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Our results are illustrated by the following simple example. Sup-
pose $10 billion of notes are to be sold and there are three bidders.
Suppose each bidder knows that the yield in the after-market will be
5 percent. If the notes were indivisible (i.e., if the only bids that
could be submitted were for the entire $10 billion), then the only
equilibrium in either a first-price or a second-price auction would be
for bidders to bid 5 percent. Consequently, the auction would be an
efficient mechanism for selling the notes. However, in reality, bids
do not have to be for the entire $10 billion. Consider the following
strategies: each bidder bids for $3333 million at 6 percent and bids
for $6667 million at 20 percent. Given a uniform-price format, the
entire $10 billion will be sold at 20 percent, a very favorable yield
for the bidders. Essentially, each bidder in this example has a quota
of one-third of the market and is adhering to it. The point we wish
to emphasize is that this “collusion” on the part of the bidders is
consistent with self-interested behavior. The collusion is enforced by
the steepness of the demand curves submitted by the bidders: a steep
demand curve for one bidder implies a high marginal cost for his
competitors, which will cause his competitors to optimally restrain
their bidding. Specifically, each bidder is getting $3333; million at
20 percent. He could increase his quantity to $3334 million by low-
ering the yield on his $6667 million bid to 19.99 percent, but this
would cause the yield on the entire issue to fall to 19.99 percent.
Losing a basis point on $3333; million costs more in lost income than
is gained from the additional $3 million face value, so lowering the
yield to 19.99 percent is not optimal.” To increase the quantity above
$3334 million will cause the yield to drop from 20 to 6 percent or
below, which would certainly not be profitable, so adhering to the
collusive arrangement is optimal. Note that this sort of equilibrium
exists regardless of the number of bidders in the auction. Increasing
the number of bidders need not increase the price received by the
seller.

A discriminatory auction works much better in this example. The
“collusive” equilibrium unravels in a discriminatory auction. If other
bidders are bidding in the way described above, then each bidder
will find it optimal to bid for the entire quantity at, say, 19.99 percent.
This will increase the yield the bidder receives on $3333 million from
6 to 19.99 percent while only dropping the yield on $5 million by
one basis point. Also, it will increase the quantity the bidder receives
from $33335 million to $3334 million. However, if everyone does this,

This argument depends on the fact that bids are in two decimal places. However, in the formal
model, we will take the price grid to be continuous and the securities to be perfectly divisible and
show that strategies like this are still self-enforcing.
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then each will find it optimal to bid for the entire quantity at 19.98
percent (thereby capturing the entire $10 billion), and so forth. In
fact, in any pure strategy equilibrium of a discriminatory auction the
yield will be 5 percent on the entire issue. Therefore, a discriminatory
auction is an efficient mechanism for selling securities in this situa-
tion.

This example illustrates a key difference between uniform-price
and discriminatory auctions. Relatively high inframarginal bids (steep
demand curves) inhibit competition. Such bids are costless in a uni-
form-price auction. However, they are costly in a discriminatory auc-
tion. This cost induces bidders to submit flatter demand curves, which
in turn stimulates greater price competition at the margin.

There have been very few theoretical studies of auctions for divis-
ible goods.® Maskin and Riley (1989) and Branco (1993) characterize
optimal mechanisms for sellers of divisible goods, but they do not
compare uniform-price anad discriminatory auctions. Also, Maskin
and Riley assume bidders have independently distributed valuations
for the good, which is not a good model for Treasury securities. Branco
allows for common values but assumes the value is additively sepa-
rable in bidders’ signals and signals are independently distributed,
which is also not a reasonable model for Treasury securities. The most
relevant article is Wilson (1979), which compares a uniform-price
auction for a divisible good (a “share auction”) with an auction in
which the good is treated as indivisible (a “unit auction”). Wilson
concludes that “a share auction is subject to manipulation by the
bidders, with the result that the sale price is reduced significantly.”
This manipulability of uniform-price auctions is what we described
as collusion. Theorem 1 is a general version of Wilson’s result. The
additional contribution of this paper is the comparison of uniform-
price auctions with discriminatory auctions.

A few empirical articles have compared uniform-price and discrim-
inatory auctions for divisible goods. Baker (1976) reviews the Trea-
sury’s experience with uniform-price auctions in the early 1970s. He
describes his results as tentative and states that ‘‘there may be the
possibility of a small cost saving to the Treasury by pricing through
use of the uniform-price auctions; that is, however, probably the
shakiest result of all.”” Simon (1992b) has recently reexamined this
experience and finds that the uniform-price auctions cost the Treasury
money. He finds that the markup of auction yields over when-issued
yields was significantly higher when the Treasury used a uniform-

In the study of multiobject auctions it has generally been assumed either that each bidder wants

~ only one unit [e.g., Harris and Raviv (1981), Bikhchandani and Huang (1989), Milgrom (1989)] or

that the objects are different or that the objects are auctioned sequentially. See Weber (1983) for
a review of results in these areas and McAfee and McMillan (1987) for additional references.
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price auction. This finding is consistent with our results. As men-
tioned, it also seems to be consistent with the early results of the
current experiment. However, different results were obtained by
Umlauf (1993) in a study of Mexican Treasury auctions and by Tenorio
(1993) in a study of Zambian foreign exchange auctions. The Mexican
Treasury switched from a discriminatory to a uniform-price format in
mid-1990. Umlauf analyzes the profits of bidders in 150 discriminatory
auctions and 26 uniform-price auctions. He finds that the bidders’
profits dropped dramatically to near zero when the uniform-price
auction was introduced. Zambia conducted a weekly auction of U.S.
dollars between 1985 and 1987 and switched from a uniform-price
format to a discriminatory format in 1986. Tenorio finds that average
prices were higher under the uniform-price format; however, the lack
of a competitive secondary market to establish benchmark prices
makes these results less reliable.

The Mexican Treasury experience is puzzling. It is possible that it
illustrates Friedman’s point. According to Umlauf, there is open col-
lusion among the six largest bidders in the Mexican auctions. The
percentage of the aggregate issues won by these six bidders in Umlauf’s
sample was 73 percent under the discriminatory format and only 62
percent under the uniform-price format. It seems possible, therefore,
that competition from bidders outside the cartel increased when the
uniform-price format was introduced, and this led to the decline in
bidder profits. Nevertheless, it seems surprising that bidder profits
fell to the extent they did, given the continued importance of the six
largest bidders. Another possible explanation is discussed in the Con-
clusion.

The model studied in this paper is as follows. A single seller wishes
to sell a fixed quantity Q of a perfectly divisible good to » bidders.
The bidders are assumed to possess heterogeneous information con-
cerning the value 7 of the good. We assume that there are numbers
v* and v¥ such that v* < # < v¥ with probability 1. This is without
loss of generality for Treasury securities, because one can take v* to
be zero, and v¥ to be the undiscounted sum of the security’s payouts
(tighter bounds can be obtained by considering substitute securities).
For simplicity and added generality (the model applies to goods other
than bonds), we take bidding to be in terms of prices rather than
yields. We assume the seller sets a reserve price p* = 0 and does not
consider bids at prices below p*. In both the uniform-price auction
and discriminatory auction, bidders submit demand schedules. The
price at which aggregate demand equals supply is called the stop-out
price. If there are flats in demand curves that cause the aggregate
demand to exceed supply at the stop-out price, only the marginal
bids are rationed. This is the procedure used by the Treasury. In a

738



Auctions of Divisible Goods

uniform-price auction, each bidder pays the stop-out price on the
quantity he is awarded. In the discriminatory auction, each bidder
pays the area under his demand curve out to the quantity he receives.

In our analysis of uniform-price auctions in the general model, we
assume p* =< v*. We show that for any p € [p%, v*], there is a symmetric
pure-strategy equilibrium in which, independent of the signals
received by bidders, the price received by the seller is p. The demand
curves of the bidders in these equilibria do not depend on the bidders’
signals and are similar in form to the demand curves in the above
example. There may be other equilibria that we have not found. If
the reserve price p’ is set above v*, then bidders may not want to buy
the entire issue when they have bad signals. We analyze this case in
the context of an example.

In our analysis of discriminatory auctions, we assume bidders are
risk neutral. The tendency to submit relatively flat demand curves in
a discriminatory auction motivates us to look for an equilibrium in
which bidders submit entirely flat demand curves. We show that such
an equilibrium exists.® The bid prices in this equilibrium are the
equilibrium bids for a first-price auction in which the good is treated
as indivisible. These prices are higher than v, so, when p* < v%, this
equilibrium is better for the seller than are the equilibria of the
uniform-price auction described in the preceding paragraph. This is
the only equilibrium we have found, but we do not have a proof of
uniqueness. In the example, we show that this equilibrium with an
optimal reserve price yields at least as great and sometimes greater
expected revenue than do the equilibria we have found for the uni-
form-price auction with an optimal reserve price.

The collusive equilibria we construct for uniform-price auctions
rely on bidders submitting relatively high inframarginal bids. These
bids are never marginal, so it is costless for bidders to submit them.
If there were some randomness in demands (e.g., from noncompe-
titive bidders), these bids could sometimes be marginal. One would
expect this to inhibit the submission of such bids and thereby reduce
the degree of collusion that can be supported in equilibrium. To
analyze this, we consider a model in which there are random non-
competitive bids. We assume the bidders are risk neutral and have
the same information. This is not a good model of auctions, but it is
tractable and allows us to examine the robustness of our general
argument to randomness in demands. Our main point remains valid
in this model. In any pure-strategy equilibrium of the discriminatory

° In Treasury auctions, there is a maximum amount for which any bidder can bid. When this constraint
is present, there is an equilibrium in which each bidder submits a single bid for the maximum
quantity.
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auction, the seller receives the expected value of the securities, con-
ditional on the bidders’ common information. However, there are a
continuum of pure-strategy equilibria of the uniform-price auction,
all of which generate less, or at best the same, revenue for the seller
as the discriminatory auction.

We describe the general model more fully in the following section.
The main results for uniform-price auctions are presented in Section
2 and the results for discriminatory auctions in Section 3. The example
is presented in Section 4. We characterize optimal mechanisms for
the example. Neither the uniform price nor the discriminatory auction
is optimal in general. The model with random demands is analyzed
in Section 5. We conclude in Section 6 with some suggestions for
future research.

The Model

There are n > 1 bidders and a single seller. The good is assumed to
be perfectly divisible, and a quantity Q is to be sold. The value per
unit of the good is a random variable . Prior to the auction, each
bidder observes a signal §, that is correlated with 2. Let §= (§, ...,
5,), and denote a generic value of §by s. The joint distribution of 7,
%) is assumed to be known to all bidders. Let S, denote the support
of §,. Assume there exist numbers v* and v¥such that0 < v! < § <
v with probability 1.

The seller sets a reserve price pt = 0. A strategy of bidder 7 is the
selection of a demand schedule for each s; € S,. A demand schedule
is a nonincreasing left-continuous function g: [p*, @) —> [0, Q]. Denote
the demand schedule of bidder iby ¢,(- | s,). The aggregate demand
schedule is g,(- | §) = 22, q.(- | s).

In Section 3, we will need to consider mixed strategies. For this
purpose, we assume each bidder 7 observes a random variable 2, that
is uniformly distributed on [0, 1] and uses this to randomize; that is,
he chooses his demand schedule as a function of s; and z,. To ensure
that the randomization is not coordinated across agents, we assume
the random variables 2, . . ., £, are independent.

In both auction formats, all bids above the stop-out price are
accepted. The stop-out price, which we denote by pe(s), is the max-
imum price at which demand equals or exceeds supply or it is the
reserve price if there is excess supply at all prices. Formally,

pe(s)

_ {max{p > pt qup, ) = QY if{p=ptlq.p s = QF * 4,
pt if{p=ptlq.p s = Q) =4.
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If there is a discontinuity (flat) in the aggregate demand curve at
the stop-out price, then it may be necessary to ration the demands.
We assume there is pro rata rationing of marginal bids. This is defined
as follows. The flat in an individual’s demand curve is Ag,(p|s,) =
a,(p|s) — lim,,q,(p' |s), and the flat in the aggregate demand
curve is Ag,(p|s) = Zx, Aq,(p|s.). The fraction of the flat in the
aggregate demand curve that cannot be filled is

2.p®) 1) — Q
N = max{ Ag,(pe(9) |9 ’O}’
so the quantity received by bidder 7 is
q: () = q.(p(9) | s) — N)Aq,(p=(s) | 5.). ¢Y)
In the uniform-price auction, each bidder pays the stop-out price,
so his payment is p°(s)g:(s). In the discriminatory auction, each

bidder pays the area under his demand curve out to ¢¢(s). This is
given by

oo

pe(s)gi(s) + f - q.(p|s) dp.

Throughout, “equilibrium” will mean Bayesian-Nash equilibrium
of the auction game.

Uniform-Price Auctions

For our first result, we suppose the reserve price p* is at or below the
lower bound v* of the value distribution. Theorem 1 shows that there
are equilibria of a uniform-price auction that are very bad for the
seller—the seller would do as well by discarding the auction format
and fixing the price at v*. If bidders are risk neutral, the theorem is
actually true if v* is replaced throughout by the minimum conditional
expectation of ¥ given any bidder’s signal (see Proposition 1 for an
illustration of this). This suggests that the reserve price can be set
somewhat above v*. One could try to improve the outcome by raising
the reserve price even further, but this would supplant the price-
discovery role of the auction and lead to the possibility of undersub-
scription. This is also illustrated in Proposition 1.

Theorem 1. Assume p* < v'. For each p* € [pt, v'], there exists a
Dbure-strategy symmetric equilibrium of the uniform-price auction in
which pe(s) = p* in every state s and in which the bidders’ demand
curves do not vary with their signals. The equilibrium demand curve is
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0 it p > pt,
pt=»p e
7(p) = Q[n(pw‘—pﬂp—p*] fpr<p=rt @
n?l if p* = p = p*,

where pt = (n — Dv*/n + p*/n. Each bidder receives the quantity
Q/n in every state s.

Proof Suppose all bidders j # i submit the demand curve (2) and
consider the optimization problem of bidder 7. The residual supply
curve he faces is the total quantity Q minus the demands of other
bidders. This is

x(p) = Q if p > pt
xp) =) et <p=pt
x(p) € [o, %] it p = p*,
x(p) =0 if p < p*.

As this indicates, the residual supply curve has a flat at p*. The entire
quantity is demanded by the other bidders at price p*, so no bid
below p* can be successful, and the quantity (z — 1) Q/7 is demanded
by other bidders at prices above p*, so at most Q/7 can be obtained
by bidder 7 at price p*. Any quantity g* € [0, Q/n] can be obtained
by submitting a demand curve g(-) satisfying lim, ,.q(p) = g*. There
is rationing of the bids at p* if lim,, ,.q(p) < Q/n.

Obviously, if the best price for bidder 7 is p*, he will want the
maximum possible quantity at p*, so his demand curve will satisfy
lim,, .q(p) = Q/n. If the best price for bidder #is above p*, bidders
j# iwill not be rationed, so bidder 7 cannot gain by forcing aggregate
demand to exceed supply at any price above p*. Furthermore, there
is no reason to submit bids at prices above pt. Therefore, the decision
problem of bidder 7 is to choose a price p € [p*, pt] and obtain the

quantity
*(p) = Q(&L")‘

n\vf—p

Given any possible value v for the securities, and any price p € (p*,
pP), we have

d. __9 (v = pH) (" — V) _
dp(v p)x(p) ( 0 = p)? ) =<0,

n
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Figure 1

Residual supply and marginal cost curves facing a bidder when other bidders submit the
demand curve (2), and Q= 100, =5, v” = 6, and p* = 2

Marginal cost jumps from p* to v* at g = Q/n. Therefore Q/n is the optimal quantity for any value
v between p* and v* and therefore for any v between »* and »".

because v* = v. Hence, the best point on the supply curve is p = p*,
q = Q/n. This can be attained by submitting the demand curve (2),
because lim,, ,.q,(p) = Q/n. Given that this demand curve is optimal
for any possible value of v, it is optimal conditional on any sig-
nal s,. [

Figure 1 illustrates the proof. This result is driven of course by the
slope of the residual supply curve. It would also be an equilibrium
for bidders to submit even steeper demand curves with flats beginning
at (p*, Q/n), because this would imply a steeper supply curve and
therefore a higher marginal cost.

Note that the demand for each bidder in (2) is bounded above by
Q/(n — 1). Therefore, the demands will be feasible even when there
is a2 maximum quantity for which any bidder can bid, as in Treasury
auctions.

If other bidders do as expected—submit the demand curve (2)—
then the steep portion of a given bidder’s demand curve turns out to
be costless; that is, these prices are never hit. It is optimal to submit
this steep portion but only weakly so; for example, a flat demand
curve at p* would be just as good. It is natural to ask whether a flat
demand curve at p* would be preferred if there were some small
probability that other bidders would deviate from (2). If so, we would
not expect the equilibria in Theorem 1 to be realized. More generally,
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we would not expect the equilibria in Theorem 1 to be realized unless
they are trembling-hand perfect.

The analysis of perfection is complicated by the fact that the strategy
sets (the space of demand curves) are infinite dimensional. However,
we can easily see that the equilibrium in Theorem 1 is trembling-
hand perfect in a dense sequence of games. Take a sequence of
demand curves that is dense in the space of demand curves, with (2)
being the first one. Choose the sequence so that (2) is the only one
that passes through the point (Q/n, p*). For =1, 2, . .., construct
a game by taking the strategy sets to consist of the first 7 demand
curves in the sequence. In each game, (2) is a strict best response
for each player if the other players are playing (2), so playing (2) is
a trembling-hand perfect equilibrium.

This does not tell us anything about perfection in other sequences
of games, such as games in which the strategy sets include the flat
demand curve at p*. The example in the introduction may shed some
light on this issue. In that example, the bid at 6 percent represents
the high inframarginal bid. A bidder would get the same allocation
in the example by bidding for the entire issue at 20 percent, but this
does not dominate bidding for $3333 million at 6 percent and $6667
million at 20 percent (given that the after-market yield was assumed
to be only 5 percent and known to bidders). Of course, this only
shows that the equilibrium is not obviously imperfect, and we would
like to be able to say something stronger than this. In order to do so,
we will consider a special model with nonnegligible random demands
in Section 5. In this model, every portion of each bidder’s demand
curve can be hit with positive probability in equilibrium; yet there
still exists a continuum of equilibria that yield low expected revenue
for the seller.

. Discriminatory Auctions

In a discriminatory auction, there is an obvious incentive to submit
flatter demand curves than one would submit in a uniform-price auc-
tion. Assuming risk neutrality, we describe in Theorem 3 an equilib-
rium in which bidders submit entirely flat demand curves, bidding
for the entire quantity ata single price. Bids in this equilibrium exceed
v*, so the equilibrium yields greater revenue for the seller than the
equilibria of uniform-price auctions described in Theorem 1. As will
be explained following the statement of the theorem, there is a similar
equilibrium when bidders are prohibited from bidding for more than
a given fraction of the issue.

To construct the equilibrium, we suppose that a first-price unit
auction (i.e., a first-price auction in which the only bids allowed are
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for the entire quantity Q) has an equilibrium. In a first-price unit
auction, a pure strategy for bidder 7 is the selection of a price p = 0
for each signal s, € S,. Bids below p* are allowed for convenience;
such a bid is interpreted as not participating in the auction. To accom-
modate mixed strategies, we assume as explained in Section 1 that
each bidder 7 observes a random variable Z; that is uniformly distrib-
uted on [0, 1], with the Z, being independent across bidders. A mixed
strategy is a function p(-) of (s, z,).

Theorem 2. Assume the bidders are risk neutral. Let (p;, ..., D)
denote a (possibly mixed strategy) equilibrium of the first-price unit
auction. It is an equilibrium in the discriminatory auction for each
bidder i to bid p, for the quantity Q.

Proof By assumption, (p,, Q) is the best bid among flat demand curves
for each bidder, in response to his competitors’ flat demand curves.
What we need to show is that it is optimal for each bidder to submit
a flat demand curve when his competitors do so. This is verified in
the appendix. ]

When there are quantity constraints on bids, as in Treasury auctions,
Theorem 2 must be modified. For example, suppose each bidder’s
demand curve must be bounded above by Q/3. Then there is an
equilibrium in which each bidder submits a flat demand curve for
Q/3. This equilibrium is as if there were three units being auctioned,
with each successful bidder paying his bid price. The proof is the
same as the proof in the Appendix, with the exception that p should
be defined as the third highest price of the other bidders.

The starkest contrast between discriminatory and uniform-price
auctions occurs when all bidders know the true value #.1° Theorem
1 shows that there are pure-strategy equilibria of a uniform-price
auction in which the seller receives p*Qfor any p* € [p%, 7). However,
in a discriminatory auction the seller receives 7Q in every pure-strat-
egy equilibrium.

Theorem 3. Assume each bidder knows D (i.e., §,= 0 for each i). Then
the seller’s revenue is 0Q in any pure-strategy equilibrium of a dis-
criminatory auction.

Proof: Clearly the seller cannot receive more than #Q in any equilib-
rium. Suppose that for some realization v of 7 the seller’s revenue is

1 Equivalently, one can assume that bidders are risk neutral and have the same information. In this
case, one can interpret ¥ as the conditional expectation of the value, given their common infor-
mation.
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R < vQ. Because revenue is greater than or equal to p¢Q, the stop-
out price p°must be less than ». Consider for any bidder 7the strategy
of bidding p¢ + € for the entire quantity Q, where p°¢ < p° + € < v.
The quantity g obtained from this strategy would be at least as great
as the equilibrium quantity g¢, and the stop-out price would be p¢ +
¢, so the profit from this strategy would be

(v=—p°—eg=(v—p°—qg:—> (v— p9g:

as € | 0. Therefore the bidder’s equilibrium profits must be at least
(v — p°)gq:. This implies that there is no area under the bidder’s
demand curve above the stop-out price p¢; that is, his demand curve
is flat at p° up to or beyond the quantity g. This must be true for all
bidders. Therefore any bidder can obtain the entire quantity Q by
bidding for Q at price p¢ + € for any € > 0. This would yield profits
of (v —pe—eQ— (v— p)Qase | 0. Therefore, each bidder’s
equilibrium profit must be at least (v — p¢) Q, which means that each
bidder obtains the entire quantity, which is impossible. This contra-
diction establishes that the seller’s revenue must be greater than or
equal to vQ. L

Typically, there is no equilibrium in a uniform-price auction in
which bidders submit flat demand curves.!* Consider a vector (p,, . . .,
b,) of possibly mixed strategies of flat demand curves as in Theorem
2. Suppose it is an equilibrium and that some bidder’s ex ante expected
profits are positive. We will show that this leads to a contradiction.
Let 7denote a bidder for whom there is some bidder j # iwith positive
expected profits in equilibrium. Set p = max{p, | j # #}. The sum of
the ex ante expected profits of the bidders j # i is

Eo — p|p= p]prob(p=p) > 0.

Hence, for some values s, of bidder 7’s signal,

E[ﬁ_ﬁlpzpiagi=si] > 0.

For these signals, bidder 7 could increase his profit by bidding very
high, say p = v#, for Q — e and bidding p, for the remaining quantity
e. Using this alternative strategy will not change the distribution of
the winning price, but it will ensure that bidder 7 receives a greater
quantity at the winning price at times when a greater quantity is
desirable. Thus, the flat demand curves (p,, ..., p,) cannot form an
equilibrium.*?

' An exception is when all bidders know the true value. Then, as remarked above, one of the equilibria
described in Theorem 1 has all bidders bidding the true value.

12 John Nachbar pointed out to us that this reasoning depends on the fact that the selling price in
the uniform-price auction, as we (and the Treasury) define it, is the lowest winning bid rather than
the highest rejected bid.
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With risk aversion, it is probably not an equilibrium for bidders to
submit flat demand curves in a discriminatory auction. When bidders
are risk averse, their true demands are downward sloping, and one
would expect this to be reflected in their bids. However, the point
that discriminatory auctions induce some degree of price competition
seems robust, even if the price competition is not always identical to
that in a first-price unit auction.

An Example

Suppose there are two risk-neutral bidders who receive independent
signals. Each bidder’s signal takes on one of two values, which we
label L and H. These values are equally likely. Let v* < v¥, set v™ =
(vt + v#)/2 and assume

vt if$§=Land §, = L,
={pH if§ =Hands, = H, (3)
v¥ otherwise.

A1

The interpretation for Treasury auctions is that each bidder receives
a signal about the level of demand in the after-market, through the
orders received from customers. These orders are independent and
together determine the level of demand and hence the price in the
after-market.

We first consider the uniform-price and discriminatory auctions
with various reserve prices, constructing equilibria similar to those
described in Theorems 1 and 3. Then the seller’s expected revenue
is computed under an optimal mechanism. Finally, we demonstrate
that from a risk-neutral seller’s point of view, considering only equi-
libria like those described in Theorems 1 and 3 and using optimal
reserve prices in the auctions, the mechanisms are ranked as

Optimal = Discriminatory = Uniform Price.

Whether these rankings are weak or strict depends on the size of v
relative to v*. The precise results are

Optimal > Discriminatory ~ Uniform if v¥/0vt < 2,
Optimal > Discriminatory > Uniform if 2 < v/t < 3,
Optimal ~ Discriminatory > Uniform if vf/vt = 3.

The most reasonable case is v#/v* < 2, because the spread of
possible values for Treasury securities is actually quite small. In this
case the discriminatory and uniform-price auctions, each with an
optimal reserve price, yield the same expected revenue for the seller,
namely (3vt/4 + v*/4) Q. This revenue could be obtained simply by
posting a price of 3vt/4 + v#/4. This is the conditional expected
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value of & for a bidder with a low signal, so all bidders would be
willing to demand Q at this price. This is also the optimal reserve
price in the uniform-price auction. The advantage of a discriminatory
auction in this example is that it does not require the seller to compute
this value. The seller can post any reserve price p* < v* in the dis-
criminatory auction, and the expected revenue will be (3v%/4 + v#/

£)0.

4.1 Uniform-price auctions

If the seller sets a reserve price p* < v*, then Theorem 1 shows that
for each p* between p* and v* there is an equilibrium in the uniform-
price auction in which the entire quantity is always sold at price p*.
The equilibrium demand schedule for each type of bidder is

0 if p > pt,

_ pt—p ok < p<
q(p) Q[Z(pT ~ )+ p= p*] fpr <p=pt, @
Q if p*t = p = p*,
where pt = (p* + v#)/2. This is actually true for all reserve prices
less than or equal to (3v* + v¥) /4. If the reserve price is set above
(3v* + v*) /4, then there is a possibility of undersubscription. Part 1
of the following extends Theorem 1 to reserve prices up to (3v* +
v*¥)/4, and parts 2-4 deal with higher reserve prices and undersub-
scription. The last statement of the proposition is a general charac-
terization of the pure-strategy equilibria.

Proposition 1.

1. If 0 < p* =< (Bvt+ vH)/4, then for each p* € [pt, (vt + vH)/
4], it is an equilibrium for each type of bidder to submit the demand
schedule (4). The equilibrium price isp*, and the equilibrium demand
is Q, independently of the bidders’ signals. Therefore, the expected
revenue is p*Q.

2. If (Bvt+ vH)/4 < pr< v™, then, for p* = p’, itis an equilibrium
Jfor a low-type bidder to demand zero and a bigh-type bidder to submit
the demand schedule (4). The equilibrium price is p* for any signals
of the buyers, and the equilibrium demand is Q if at least one of the
bidders is a bigh type and 0 if both bidders are low types. Therefore,
the expected revenue is 3p*Q/4.

3. IfvM = pr< (vt + 3v%)/4, then for p* = p*, it is an equilibrium
Sfor a low-type bidder to demand zero and a bigh-type bidder to submit
the demand schedule
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0 if p > pt,

a(p) = Q[ pt—»n
2t —p) +p—p*

(5)

] if pt = p = pt.

The equilibrium price is p*, independently of the bidders’ signals.
The equilibrium demand is Q if both bidders are bigh types, Q/2 if
exactly one bidder is a bigh type, and 0 if both bidders are low types.
Therefore, the expected revenue is p*Q/ 2.

4. If (vt + 3vH)/4 = pt, then it is an equilibrium for each type of
bidder to demand zero.

Given any reserve price pt > v* and any symmetric pure strategy
equilibrium of a uniform-price auction, if the equilibrium demand
is Q in every state, then the equilibrium price is the same in every
state and no greater than (3v* + vf)/4.

Proof. See the Appendix. ]

Given equilibria as described in the proposition, the seller should
set the reserve price above v*. If v#/v* < 3, the optimal reserve price
is (3v* + vH)/4 and the expected revenue is (3vt/4 + v#/4)Q. If
vH/vt > 3, the optimal reserve price is ¥ and the expected revenue
is (3v%/8 + 3v%/8) Q. The motivation for using the higher reserve
price v™ in the latter case is that v* is so low it is optimal to charge
high types more and not sell to low types.

A property of the equilibria in cases 1-4 is that the price received
by the seller does not increase when the bidders have good signals.
The last statement of the proposition shows that this is a general
property of all pure-strategy equilibria, when p* > »* and the entire
quantity is always sold. In such cases, the auction does not succeed
in stimulating competition among the bidders in order to arrive at a
good price.

4.2 Discriminatory auctions

In a discriminatory auction a high-type bidder bids more than a low-
type bidder, so the auction does succeed in eliciting information
from bidders. The revenue of the seller is higher when bidders have
good signals. This is true, at least, in the equilibria of Theorem 3.
The following describes these equilibria for reserve prices p* = v™.
It shows that the seller obtains nonnegligible revenue, even if the
reserve price is zero. If the reserve price is set above v#, then there
are pure-strategy equilibria in which the low type does not bid and
the high type bids for Q/2 at a single price. These are never optimal
for the seller.
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Proposition 2. Suppose p* = v™. There exists a mixed-strategy equi-
librium in which the bigh-type bids for the entire quantity at a single
price. Let | = max {p*, v*}. The price bid by the bigh type is chosen
randomly from the interval (I, | + v¥)/2] according to the distri-
bution function F(p) = (p — D/vF— p).

1. If p* = v%, it is an equilibrium for the low type to randomize in
an arbitrary way over quantities less than or equal to Q at price v*.
If the low-type bids for Q at this price, then the expected revenue to
the seller is (3v*/4 + vH/4)Q.

2. If p* > v, the low type does not bid. The expected revenue to
the seller is (p*/2 + vH/4)Q.

There are no other equilibria in which bidders bid for the entire
quantity Q at a single price.

Proof. See the Appendix. n

If v/vt < 2, any reserve price pt € [0, v*] is optimal and the
expected revenue is (3vt/4 + v#/4)Q. If vH/vt > 2, the optimal
reserve price is v* and the expected revenue is (v*/4 + v%/2)Q.

It is interesting to compare the discriminatory auction with a sec-
ond-price unit auction. It is straightforward to show that equilibrium
bids in the second-price unit auction are v* for low types and v* for
high types. The expected revenue of the seller is (3v:/4 + v¥/4) Q,
the same as in case 1.

4.3 Optimal mechanisms

To find an optimal mechanism it suffices, by the Revelation Principle
(Myerson, 1979), to consider only direct mechanisms in which it is
incentive compatible for each bidder to truthfully reveal his signal.
Let x“ denote the amount of the good received, and let #%* denote
the amount of money paid (not the price per unit) by a bidder who
announces he is type a when the other bidder announces he is type
b. We assume the seller’s objective is to maximize the expected
transfers® 3(#££ + t:7 + L + tH#7) subject to selling no more than Q
of the good; that is,

xH =< Q/2, ©
XM+ xHL < Q, @)
X" < Q/2, (8

and subject to the incentive compatibility constraints

13 The assumption that the seller values only the expected transfers implies that the seller’s valuation
of any unsold quantity is zero. It is straightforward to modify the analysis to handle the more realistic
case in which the seller’s value is a nonzero constant.
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xHpM — pLH 4 sellpl — pLL > g HH M _ pHH 4 gHLyL — pHL (9)

xHHpH — pHH 4 sHLyM _ pHL > oglHpH . pLH 4 o llyM L, (10)
and the participation contraints

xHpM — pLH 4 olLpl — pLL > 0’ (11)

xHHYH — pHH + xHLyM — pHL > (), (12)

The left-hand sides of (9) and (10)—which are repeated in (11) and
(12)—equal twice the expected profit of a low type and high type,
respectively, when the bidder announces his true type. The right-
hand sides are twice the expected profits when bidders announce the
wrong types. The participation constraints guarantee at least zero
expected profit to each type. The transfers are allowed to be negative
(i.e., the seller pays the bidders), but there are optima in which all
transfers are nonnegative.

Proposition 3. In an optimal mechanism, x'1= 0, x" = Q, and x"¥
= Q/2 Furthermore,

L 4 piH = ULxLL, (13)
and
Z)L xLL
L + pHH = —2— + v7)Q + (vt — v”)—z—, (14)
S0 the expected revenue is
vt vH 3t vH
— _|.. —_— + —_— LL.

If 3vt < vH, then x' = 0 yields an optimum. If 3v* = v¥, then x't=
Q/2 yields an optimum.

Proof. See the Appendix. ]

Notice that the high-type bidder gets the good when one type is
high and the other is low. This is the same outcome that occurs in
the discriminatory auction but is very different from the outcome in
the uniform-price auction.

When v#/vt < 3, the maximum expected revenue is (507/8 +
30%/8) Q. In this case it is optimal to always sell all of the good. An
example of an optimal mechanism in this case is a first-price auction
in which bids are for the entire quantity and in which bidders are
only allowed to bid one of the prices v* and v*. A high-type bidder
will be indifferent between the two prices and a low-type bidder will
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strictly prefer bidding »*. If these bids are made, then the allocation
and transfers will satisfy the conditions in the proposition.

When v#/v* > 3, the maximum expected revenue is (v*/4 + v#/2) Q.
In this case it is optimal to never sell the good to a low type. This
allows the seller to extract more revenue from the high type (it relaxes
the incentive compatibility constraint for the high type). In fact, the
seller extracts all the surplus from the high type in this case. A dis-
criminatory auction with reserve price v is optimal in this case.

When v#/v* < 3, neither the discriminatory nor the uniform-price
auction is optimal for the seller. The shortfall in the discriminatory
auction stems from two sources: sometimes failing to sell the good
when it is optimal to do so, and giving the high-type bidder excess
expected profits. If 2 < v#/p* < 3, then an optimal mechanism always
sells all of the good, but the discriminatory auction (with optimal
reserve price pt = v*) does not sell the good if both bidders have
low signals. If v#/v* < 2, then both mechanisms sell the good to
low-type bidders, but a high-type bidder earns excess expected profits
of (v — v*) Q/8 under a discriminatory auction. This is the shortfall
in expected revenue to the seller in a discriminatory auction relative
to an optimal mechanism.

Noise

It is unreasonable to suppose that all of the bidders in a Treasury
auction will be able to coordinate on an equilibrium of the type
described in Theorem 1. It is more likely that coordination will be
limited to a few dominant bidders. From the viewpoint of these bid-
ders, the bids of the other bidders will be random. In particular,
competitive bidders may view noncompetitive bids as random. We
show in this section that this type of noise reduces the set of equilibria
of uniform-price auctions, but there are still equilibria of such auc-
tions that are inferior to equilibria of discriminatory auctions.

We demonstrate this only for a special case, because we have not
been able to solve a general model. We assume in this section that
the true value v of the good is known to all of the bidders. As was
true for Theorem 2, this can be interpreted in a somewhat more
interesting way. If the bidders are risk neutral and have the same
information, it is not necessary that they know the true value. In this
case, we can interpret v as the conditional expectation of the value
given their common information. Also, we will assume that the ran-
dom bids are noncompetitive bids, so the aggregate supply is a ran-
dom quantity and is not price sensitive. However, this random supply
can have full support in [0, Q] (where Q continues to denote the
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quantity being sold by the seller), so any portion of any bidder’s
demand curve can be hit with positive probability in equilibrium.

Theorem 2 remains valid when the supply is random, so the seller’s
revenue will be vQ in any pure-strategy equilibrium of a discrimi-
natory auction. We will show that Theorem 1 also generalizes in the
sense that there is a continuum of pure-strategy equilibria of a uni-
form-price auction, all but one of which generate less revenue for
the seller than does the discriminatory auction.

Let E denote the random demand. Continue to denote the number
of strategic bidders by #z and, to simplify the notation, let 8 denote
the constant 1/(n — 1).

Theorem 4. Assume p* < v. For each o such that
Qv —pH=*/n<a=< oo

it is an equilibrium for each bidder to submit the demand curve

0 if p> v,
q(p) =3a(v—p)f ifpt=p=<vanda(v—p)F=<Q, (15
Q ifpt=p=<vand a(v— p)f > Q.

The equilibrium stop-out price is
_ ., _[Q—&
p@®=v ( o )

The meaning of (15) for a = oo is that the demand curve is flat at
price p = v (i.e., the quantity Q is demanded at each price less than
or equal to v). This is the best equilibrium for the seller and generates
the same revenue as the discriminatory auction; however, there is no
mechanism by which the seller can ensure this equilibrium will occur.
Since the bidders are the players in the auction game, it is more
reasonable to assume their preferred equilibrium will be played. Their
preferred equilibrium is at the lower bound for «. In the case n = 2
the expected stop-out price for this value of « takes the simple form

Recall that the stop-out price in the bidders’ preferred equilibrium
in the fixed-supply model is p*. Therefore, the randomness of supply
increases the seller’s expected revenue. However, this expected rev-
enue can still be substantially less than is provided by a discriminatory
auction.™

n—1

(16)

* One difference between this model and the fixed-supply model is that the expected revenue in
the bidders’ optimal equilibrium in this model does converge to vQ as n — co.
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Proof. Given the strategies (15), each bidder faces the random supply
curve S(p, §) = Q— £if p > vand

S, & =max{Q — £ — (n — Da(v — p)*, 0}

if p* = p = v. For each realization §, the optimal price on this supply
curve is given by (16) with corresponding quantity g = (Q — £)/n.
This price-quantity pair can be realized by submitting the demand
curve (15). Therefore, this demand curve is optimal for each realiza-
tion of £ and hence is optimal in expected value terms. u

The demand curve (15) is optimal for each bidder because it passes
through the optimal point on the residual supply curve faced by the
bidder for each realization of . The equilibria in the models of Kyle
(1989) and Klemperer and Meyer (1989) also have this property. As
in Klemperer and Meyer (1989, Section 3) one can show, under some
mild regularity conditions, that the equilibria in Theorem 4 are the
unique symmetric pure-strategy equilibria having the property that
bidders’ demand curves “pass through ex-post optimal points.”

The fixed-supply and random-supply models with known v are
analogous to the certainty and uncertainty models of Klemperer and
Meyer. Klemperer and Meyer show that any price can be supported
as an oligopoly equilibrium if demand is certain and the strategies
of firms are demand curves. This is analogous to our Theorem 1.
Uncertainty, in the form of a random supply in our model, reduces
the set of equilibria. An important difference between our results and
Klemperer and Meyer’s is that there remains a continuum of equilibria
in our model when the supply is random. The reason for this is that
supply is bounded above by Q—the nonstrategic traders can only buy
and cannot sell at the auction. If supply were unbounded above, one
could show, following the reasoning of Klemperer and Meyer, that
there is a unique equilibrium (in which demand curves pass through
ex post optimal points). This unique equilibrium would be the a =
oo case, the best equilibrium for the seller. This suggests that the
seller could benefit by randomizing the quantity offered.

Conclusion

A principal point of this article is that auctions for divisible goods
are very different from auctions for indivisible goods, or, more gen-
erally, auctions in which each bidder wants only one unit of the good.
Bidders buying multiple units are concerned with marginal cost rather
than price. This can have great importance in auctions, because mar-
ginal cost is endogenous, being determined by the demand schedules
submitted by bidders. By submitting very steep demand curves, bid-
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ders in uniform-price auctions can make marginal cost very high for
other bidders and thereby inhibit competition from them. Via this
device, bidders can realize a collusive outcome in a noncooperative
equilibrium. This problem does not necessarily diminish as the num-
ber of bidders is increased. Furthermore, it appears to be robust to
noise in the demands of bidders.

This point has practical implications for the assessment of the
experiment’s success. One measure the Treasury plans to consider
in evaluating the experiment is the spread of winning bids. Appar-
ently, the assumption is that a greater spread will indicate that bidders
are bidding their “true values.” However, as Theorem 1 and our
example in the introduction indicate, a large spread can also be
evidence of manipulation. The coverage ratio (the total of the quantity
bids divided by the size of the issue) is another variable the Treasury
will examine. This is also of doubtful value. In our example in the
introduction, the coverage ratio is the maximum possible (three), yet
the bidding is really not competitive.

The second main point of the paper is that uniform-price auctions
may be worse than discriminatory auctions. Our results here are qual-
ified by the fact that we have only isolated certain classes of equilibria
for the two auction formats. There may be other equilibria for which
the ranking of the auctions is reversed.

We have only analyzed Nash equilibria of one-shot auctions. If the
bidders compete repeatedly, as they do in Treasury auctions, then
the theory of infinitely repeated games tells us that many different
outcomes are possible. For example, collusion can be supported by
appropriate threats of retaliation against defectors. There is no theory
indicating whether this is more likely to occur in a discriminatory
auction or a uniform-price auction. However, it is obviously easier to
enforce collusion when bidders do not have an incentive to defect
in the one-shot game. This suggests that collusion based on the equi-
libria in Theorem 1 is likely in repeated uniform-price auctions.

A policy that might be effective for the seller in a uniform-price
auction is to choose the quantity after the bids are submitted. This
would allow the seller to “pick off” any high “inframarginal” bids
that are submitted, so it might eliminate the collusive equilibria we
have found. The Mexican Treasury has this option, which could explain
Umlauf’s results. We are currently studying this issue.

The presence of a pool of potential bidders is an important aspect
of the auction that has not been captured in this article. The low
prices in the equilibria of Theorem 1 should attract additional bidders,
which may make the low prices difficult to sustain. This is related to
Friedman’s point that increasing the number of bidders will lead to
higher prices for the Treasury. Offsetting Friedman’s point is the
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observation that additional bidders will not be drawn to the auction
unless prices are low, because the when-issued market offers a rea-
sonable alternative to the auction.!® Practitioners seem to be skeptical
of the argument that the change in format will increase the number
of bidders. Nevertheless, determining what outcomes are stable when
the number of bidders is endogenous is an important subject for future
research.

Another issue in need of study is the subject of open auctions. The
Treasury proposed such a format but decided to shelve the idea tem-
porarily, at least until the experiment with sealed-bid uniform-price
auctions is complete. When collusion is not considered and only a
single unit is being auctioned, ascending-price open auctions are
better for the seller than sealed-bid first-price auctions, sealed-bid
second-price auctions, or descending-price open auctions (Milgrom
and Weber, 1982). However, open auctions may be more susceptible
to collusion (Milgrom, 1986). Ascending price divisible-good auc-
tions are discussed by Menezes (1993).

We have assumed that the value of the securities does not depend
on the allocation in the auction. However, the postauction market in
Treasury securities is not perfectly competitive, and prices in this
market may depend on the auction allocation and prior when-issued
trading [as the short-squeeze incidents illustrate; see Jordan and Jor-
dan (1993)]. In general, it is important to analyze the interaction of
the when-issued market with the auction.

Appendix

Proof of Theorem 2. Suppose each bidder j # 7 bids p; for the entire
quantity Q. Consider an arbitrary downward-sloping demand curve.
We need to show that there is some constant price p such that a bid
for the entire quantity at price p is as good for bidder 7 as the down-
ward-sloping curve. This will imply that an optimum among flat
demand curves is optimal among all demand curves, so it will show
that (p,, Q) is an optimal response in the discriminatory auction.

Define p(z_, s_,) = max,., p(z, s). Given a demand curve g(-

| s, the equilibrium price is p¢(z_,, s) = max{p*, p(z_; s_), p;(s)},
where p,(s) = max{p | g(p | s) = Q}.

The demand curve g(- | s;) can be approximated by step functions.
Fix an arbitrary s,€ S, denote g(- | s;) by g(+), denote the kth approx-
imating step function by g*, and let p* be defined from g* in the same
way that p, is defined from g. We can choose g* so that p* = p,. This

's This point seems to be related to Rock’s (1986) explanation of IPO underpricing as a premium
necessary to compensate uninfored bidders for the winner’s curse.
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implies that the equilibrium price is the same in all states under g*
as under g. We can also ensure that for all 1/k < p < &, | g*(p) —
q(p) | = 1/k. This guarantees that the expected profit from g* con-
verges to the expected profit from g as & — co. So it suffices to show
that a flat demand curve is optimal among step functions.

We will consider a function with a single step. The argument for
an arbitrary number of steps is analogous. Consider prices p, > p,
and an arbitrary quantity g. Define

0 ifp>p,,
qp) =39 ifp,<p=pa
Q if p=p,.

Let Fdenote the distribution function of the random variable p(z_,,
s_;) conditional on §; = s,. Define F°(p) = lim,,, F(p’) and AF(p) =
F(p) — F°(p). Set h(p) = E[D|3,=s,p<pland gp) = E[D| § =
Sn b= bl

Suppose first that F is continuous at p, and p,, so there is zero

probability of bidder 7 being rationed. In this case the expected prof-
its are

(b(p) — p)aF(p.) + (b(p,) — p)(Q— PF(p,). (A1)

This is a weighted average of (b(p,) — p.) QF(p.) and (h(p,) —
) QF(p,), which are the expected profits from bidding for the entire
quantity at p, and p, respectively. Thus, the expected profits from the
step function are no greater than the maximum of the expected profits
from bidding for Q at one of the prices p, and p,.

Suppose now that AF(p,) = 0 but AF(p,) # 0. The expected prof-
its are

q9
—_ 0 — —_— A y
(b(p.) — p)aF°(p.) + (g(p.) — pa) (Q n q) F(p.)
+ (b(p,) — P)(Q — PFDy).

The factor gQ/(g + Q) is the rationed quantity from the formula (1).
There exists a sequence p* | p, such that F is continuous at each p*.
If we replace p, by p’, then the expected profits will change by

b)) — pHgf(p*) — (b(p) — p)aF(p.)

q9Q
- - AF(p,). A2
(8(p.) pa)<Q+ q) ) (42)
By the right-continuity of F, this converges to
99
- - ———|AF(p,
(&) — po) (q 0+ q> )
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as v — oo. Thus, if g(p,) > p., the expected profits can be increased
by changing p, to a slightly greater price at which F is continuous.
This avoids the rationing at price p,. There also exists a sequence
p’ 1 p.such that F is continuous at each p*. If we repalce p, by p*,
then the expected profits again change by (18). as v — o0, this con-
verges to

_ _ qQ
(gp) pa><Q n q)AF(pa).

Therefore, if g(p,) < p., the expected profits can be increased by
changing p, to a slightly lower price at which Fis continuous. Since
we are seeking an optimum, it follows that there is no loss of generality
in assuming (g(p,) — p)AF(p,) = 0.

The same argument shows that we can assume (g(p,) — p,)AF(p,)
= 0. In this case, the expected profits are

(b(p.) — p)gF°(p.) + (b(py) — p)(Q — @ F°(py).

This is a weighted average of the expected profits from bidding for
Q at the prices p, and p,, so it is no greater than the maximum of the
expected profits from these flat demand curves. ]

Proof of Proposition 1. The reasoning in the proof of Theorem 1 shows
that the best price on the supply curve facing any bidder is p = p*.
In case 1 both types of bidders want the maximum possible quantity
at this price, which is Q/2. This price-quantity pair is realized by
submitting the demand schedule (4).

In case 2 a high-type bidder again wants the maximum possible
quantity, regardless of the type of the other bidder. This is realized
by submitting the demand schedule (4). Consider a low-type bidder.
His optimal demand is zero if the other bidder is a low type. His
optimal point playing against the supply curve generated by (4) would
be p=p*, q= Q/2. On an ex ante basis he prefers zero to this point.

In cases 3 and 4, p* lies above the conditional support of 7 for a
low-type bidder, so zero is clearly an optimal demand. In these cases,
a high-type bidder would prefer a zero quantity whenever the other
bidder is a low type and would prefer the maximum possible quantity
at price p* whenever the other bidder is a high type. On an ex ante
basis the maximum quantity (Q/2) is optimal in case 3, and zero is
optimal in case 4. The given demand curves realize these quantities
in the respective cases.

To prove the last statement let p“* denote the equilibrium price,
and let g“® denote the quantity received by a bidder when he is type
a and the other bidder is type b. The self-selection conditions are
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(¥ = p")g™ + (0" — p") g™ = (v = p*) g™
+ (0% = pt)g,  (A3)

(vt = p)gh + (0¥ = p*)g" = (v* = p™)q™
+ (@ = p*)g™. (A4)

Equation (A3) states that a high-type bidder prefers the demand
schedule he submits to the one submitted by a low-type bidder, and
Equation (A4) states that a low-type bidder prefers his demand sched-
ule to that submitted by a high-type bidder. Substituting p*# = p#:,
q"" = gt = Q/2, and g = Q — g"" in these inequalities and rear-
ranging gives

(UH + UM — ZPLH)qHL

= %(v” + oM + PHH — pll — 2pli) (A5)

%(UM + pt 4+ PHH _— pLL — szH)
= (oM + vt — 2ptH) gt (A6)

Inequality (A5) implies that g+ = Q/2 if p## = p*, and inequality
(A6) implies that g#t = Q/2 if p## < p*. Therefore, g* = Q/2.

A low-type bidder pays p** = p* > v* when the other bidder is low
type and receives the quantity g** = Q/2 = g*#. If g** > g'#, then a
low-type bidder could increase his profit by making his demand in-
elastic at g** for prices less than or equal to p*#. This would reduce
his loss when the other bidder is a low type (by reducing the price,
it might even turn the loss into a profit). Therefore, g*¥ = Q/2.

Substituting g* = Q/2 in (A5) and (AG), we obtain p*t = p#H,
Thus, both demand curves pass through the point p = ptt = p#H g
= Q/2. It is easy to check from the definition of an equilibrium price
that p*# = p also. Finally, note that the expected profit of a low-type
bidder must be nonnegative, so p < (v* + v¥)/2. ]

Proof of Proposition 2. By Theorem 3 it suffices to show that the given
price bids form an equilibrium in the first-price auction in which the
only allowable quantity bid is Q.

The expected profit for a high type from a bid of Q at price I < p
={+ v™)/2is

1 1 -1
S = PO+ (" —p)(v{’, _p)g= (v = D=,
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The expected profit from a bid at p > (I + v¥)/2 is
1 1
M= pQ+ W = PO < (0= DF

To show that the given mixed strategy is optimal, it sufices now to
show that bids at or below !/ yield expected profit no greater than
(o™ — 1)Q/2. In both cases, bids below / are either impossible or
never win. A bid at price / gives expected profits less than or equal
to (v — 1)Q/2 in case 1 and exactly (o™ — /) Q/2 in case 2.

The expected profit for a low type from a bid of Q at price / < p
=+ vH)/2is

p—1

v —p

The expected profit from a bid at p > (I + v#)/2 is
@t = p R+ - pQo<o.

Bids at prices below [/ are either impossible or never win. A bid for
any quantity at / gives zero expected profits in case 1 and hence is
optimal. It gives negative expected profits in case 2, so not bidding
is optimal.

The sum of the expected profits of bidders and the expected rev-
enue of the seller must equal the expected value of the quantity sold.
The expected value of the quantity sold is (v%/4 + v¥/2 + v¥/4)Q
in case 1 if the low type bids for Q. The low-type bidder makes zero
expected profits. The expected number of high-type bidders is one,
and a high-type bidder makes expected profits of (v¥ — v%) Q/2, so
the seller’s expected revenue is

L W = L
4 2 4 2 2 Q 4 4 Q
In case 2, the expected value of the quantity sold is (v¥/2 + v#/4)Q,

the low-type bidder makes zero expected profits, and the high-type
bidder makes expected profits of (¢v* — p*) Q/2, so the seller’s expected

revenue is
LA D i W U i
(G4 -5+5)o-(5+5)e

To see that the equilibria are unique, consider any mixed-strategy
equilibrium in which both types bid for the entire quantity at some
price or do not bid. Let F, denote the distribution of the price bid of
a low-type bidder and F, the distribution of the price bid of a high-
type bidder. Define o, = sup,F,(p) and a,, = sup,F,(p). These can

%(vl—p)Q-F%(vM—p)( )Q<(UL—I)§-SO.
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be different from one because not bidding is an option. Define

b= SUP{P | FL(P) = 0}, ﬁl = lnf{P I FL(P) = a,},

Pu=suplp | Fu(p) =0}, Bu=infip | Fulp) = ay.

Normalize Q = 1.
The expected profit for a low-type bidder from bidding a price p is

(vt = PFR(p) + (vt — PAF,(p) + 3 (o™ — P FL(p)
+ (v = pP)AF,(p), (A7)

where we are adopting the notation used in the proof of Theorem 3.
The fractions ; reflect the rationing when another bidder bids the
same price p. Similarly, the expected profit for a high type is

(" = P F(pP) + (0¥ — PAF,(p) + 50" — p)Fu(p)

+ 3 (0" = PIAFL(p). (A8)
Subtracting (A7) from (A8) gives

(0" = o) F(p) + 5 (0¥ — vHAF,(p) + 3 (07 — v Fy(p)
+ (0" — v")AF ().

This is an increasing function of p. Hence, the argmax set of (A8)
must lie above that of (A7), which implies p,, = p,.

This implies that a bid p < p, never wins against a high-type bidder,
so such a bid can give nonnegative expected profits for a low-type
bidder only if p < »*. This implies sup{p | p < p,} =< v*, whence it
follows that p, = v*. This means that a low-type bidder never bids
above v*.

The expected profit for a low-type bidder from bidding p < v* is

3(vt = PYFI(p) + (vt — PAF,(p).

If AF,(p) # 0, this can be increased by bidding slightly above p at a
continuity point of F;. Hence, if AF,(p) # 0, then p is not an optimal
bid for a low-type bidder, which is inconsistent with AF,(p) # 0 and
F, being an optimal strategy. So we conclude that AF,(p) =0 (Vp <
vh).

Suppose p, < vt. Because F, is continuous below v, the supremum
in the definition of p, is actually 2 maximum; that is, F,(p,) = 0. The
expected profit for a low-type bidder from any bid p in [p,, p,) is
(vt — p)F,(p). This attains its maximum in p arbitrarily close to p,
and is continuous at p,; hence it attains its maximum also at p,. Tt
equals zero at p, because F,(p,) = 0. The only way the maximum can
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be zero is if F,(p) =0 Vp < vt. We have already observed that a low-
type bidder never bids above v, so a low-type bidder bids »* or does
not bid. In case 1, a low-type bidder is indifferent about bidding at
vt and in case 2, bidding at v* is not allowed, so we have verified
that low-type bidders always behave as described in Proposition 2.

Because low-type bidders never bid above /, the expected profit for
a high-type bidder from a bid / < p < v*is

(0 = p) + 30" = PIFu(D) + (0" = PAF,(p).

Because p < v#, this could be increased by raising p slightly if AF(p)
# 0. Hence, it must be that Fhas no mass points in (J, v*). The same
argument, adjusting for possible rationing at /, shows that / cannot
be a mass point either. Therefore, the expected profit is

(0¥ = p) + 3(v¥ — PYF(p). (A9)

If py, > I then F,(p, + ¢) = F,(I + ¢ for small ¢ > 0, so expected
profits could be increased by bidding the discretely lower price / +
¢ rather than p,, + e Since bids p, + € are optimal for small ¢, this
implies that p,, = I For the same reason, there cannot be any gaps in
the support of F,, so Fyis a continuous function on R, that is strictly
monotone on [/, p,]. Because F is an optimal strategy, this implies
that (A9) is constant on [/, p,]. When p = [, (A9) equals (v — )/
2,80

(0¥ = D =3(v" = p) + (v — P)F.(p).
Equivalently,
Fyu(p) = (@ — D/(" = p).

The upper bound p,, is found by solving F,(p) = 1, yielding p, = (/
+ vf)/2. ]

Proof of Proposition 3. Because the seller’s problem is linear in the
choice variables, the Kuhn-Tucker conditions are necessary and suf-
ficient for an optimum. Let af, a¥, o', §*, 6%, At, and A" denote non-
negative multipliers for constraints (6)-(12) respectively. The Kuhn-
Tucker conditions are the constraints (6)-(12), the corresponding
complementary slackness conditions, and the first-order conditions
for maximizing the Lagrangian in the choice variables. The first-order
conditions are

1 -6 — M\ 4 87=0, (A10)
146 — 8" — N =0, (A11)
SoM + Mot — §HpM — o < 0 with equality if x% > 0, (A12)
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of oM 4+ MM — §HpH — oM < 0 with equality if x# > 0, (A13)
—6'vt + 6" vM+ Ny — oM < 0 with equality if x# > 0, (A14)
=0t oM+ 0HvH + N pH — of < 0 with equality if x## > 0. (A15)

Equation (A10) is the first-order condition for #:£, which is the same
as the first-order condition for #*#. Equation (A11) gives the first-order
condition for ## and t##, Equations (A12)-(A15) are the first-order
conditions for the quantities.

Set x* =0, x*t = Q, xtH = Q/2, aM = pM, ' = pH §t =0, 67 =1,
A= 2, and M = 0. Let the transfers and x*¢ satisfy (13) and (14).
Then all the Kuhn-Tucker conditions are satisfied except (6) and
(A12) and the complementary slackness condition corresponding to
(6). If v < v™/2, then these are satisfied by x* = 0 and o* = 0. If v~
= v"/2, then these are satisfied by x% = Q/2 and of = 20* — ™. m
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