Lecture 8:
Stochastic Discount Factors - Lucas

· Readings:

· Lucas, “Asset Prices in an Exchange Economy,” Econometrica, 1978
· Chapters 21 – 24 in Leroy and Werner

THE MODEL
· Lucas develops an infinite horizon, discrete time, representative agent model of an “endowment economy” in order to examine the basis for and behavior of price movements.
.

· Utility of consumption is assumed to be given by:
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So, the assumption of additively separable utility is used but 
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 is reasonably general.
Where,

ct is the date t consumption level (consumption of the single good)
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 is the periodic discount factor 
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 is the periodic utility function over the single consumption good.  
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 is
continuously differentiable, bounded, increasing, and strictly concave with u(0)=0.


· Production:   There are n productive units (or “Lucas trees” as they have come to be known) exogenously producing (no production decision is made nor is any scarce resource used in production) different (weakly positive) amounts of the same good.  yit is the stochastic output of unit i at time t and 
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 is the vector of output levels of the economy at time t.
· The good is perishable (none can be saved so there is no riskless asset), so aggregate consumption at time t must satisfy: 
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 (consumption is weakly positive).
· ct is a choice variable (recall: there is no investment of the consumption good in production).
· yt follows an exogenously specified Markov process defined by the transition function: 
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the agent can not manipulate this in any way.


· Each productive unit has one (perfectly divisible) share of stock outstanding which trades on a competitive market.

· Ownership of a share at time t (“the beginning of date t”) entitles the owner to the time t production of the associated “tree” – shares then trade at (“the end of”) time t at ex-dividend prices 
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to assign ownership of the time t+1 production
· Denote a consumer’s beginning of period t holdings as 
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, thus at time t the agent chooses ct and zt+1 (what to eat and what to buy at prices 
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· The representative agent nature of the model and the assumption of increasing utility imply that, in equilibrium, the following must be true:  
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 (consume or it vanishes, there is no other use) and 
[image: image14.wmf])

1

,

,

1

,

1

(

1

L

=

=

t

z

 
[image: image15.wmf]t

"

(demand must equal supply in equilibrium).


· Because the only uncertainty in the model is introduced via “production” and because utility is recursive – at each date the choice problem looks the same – price should be a fixed function of the “useful history” of production.  Given that production, yt, follows a Markov process the useful history of production is summarized in the current state.  Thus, the price vector at the end of date t is a fixed function of the time t production:  pt = p(yt).
· Therefore, knowing the transition function governing production 
[image: image16.wmf])

,

(

y

y

F

¢

 and the price function p(yt) will allow determination of the process followed by price.


· Similarly, 
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(current consumption) and 
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(future holdings), which are the agent’s time t choice variables, depend on current holdings (zt), current production (yt), and what you think the price will be ( pt) at each future point in time.  So we have fixed functions 
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· To “close” the model - Lucas uses rational expectations – the idea that the anticipated or hypothesized price function used in the agent’s optimization problem is the same as the realized market clearing price function (the true price function).
Definition:
An equilibrium is a continuous function 
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 (En+ is the subset of n-dimensional space with non-negative elements) and a continuous bounded value function 
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s.t.
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with
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where 
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 is a vector with all n elements exceeding 1.0

(ii)
for each y, 
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i.e. – an equilibrium is (i) a price function and a value function such that the agent’s consumption and investment (in shares) decisions at each point in time maximize the value function (total discounted expected utility) subject to the budget constraint and (ii) that the optimal consumption and investment decisions given that price function are market clearing choices.

Let’s build up to the solution slowly:

· Examine first a one-period (two date) version of his model because we have seen a version of this before – the agent has endowment yo – generated by his/her endowed initial holding of all the assets (perhaps thought of as coming from “last period”) – the uncertainty is described by a distribution function governing future production F(y) with density dF(y)/dy = f(y) (here we need not condition on the previous production level as only y1 is uncertain).


· Utility of consumption for the 2 dates is 
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· The budget constraint is given by:  
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 (what you eat and buy must cost weakly less than your dividends and proceeds from asset sales).  p is the price of assets that payoff y1.  And c1 must be satisfy 
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· Market clearing is simply 
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· Equilibrium:
A vector 
[image: image37.wmf])

,

,

(

1

n

p

p

p

L

=

, a consumption choice co, and an investment choice x that maximize:
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s.t.
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and markets clear co= 1yo’ , 
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· Write the agent’s optimization problem as:


[image: image42.wmf])]

(

[

)

(

1

,

y

x

u

E

c

u

Max

o

x

c

o

×

+

b



s.t.
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· The Lagrangian is:

L = 

[image: image44.wmf])

1

(

)]

(

[

)

(

1

×

-

-

×

+

-

×

+

p

y

x

p

c

y

x

u

E

c

u

o

o

o

l

b




· The FOC’s are:

co (
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Budget (
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 (which will hold with equality at the optimum)


· Solving the FOC’s and imposing the market clearing provides:
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Does the solution for p look familiar? (the expectation of the state price density times the return on any asset must equal 1 or price is the discounted value of future payoff)

· As a specific example of this, consider the following utility function:
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(the negative signs appear because c* is the satiation level of consumption).


· Then, 
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· From above, we know:
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· To transform this result into something familiar, recall that everything here is in real terms and that there is a single consumption good. 
So,
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wealth at t=1 results only from “dividends”
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     where, the return to aggregate wealth is:
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with 
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· 
[image: image57.wmf]W
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 is the return on aggregate wealth or the return on the market portfolio.


· Now write:
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· So, the state price density (stochastic discount factor or marginal rate of substitution) can be written as a linear function of the return to aggregate wealth or the return on the market portfolio – which leads to CAPM pricing as we know….and it should given the assumption of quadratic utility.  We could instead just note that there must be 1fs in this model and proceed from that direction using the pricing results we developed previously.
Infinite Horizon Model – 
· Equation (6) in the Lucas paper is the equivalent of the FOC in the static model:
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which basically says that at the optimum the cost of buying marginally more of any asset 
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 (cost put in utility terms) will equal the expected marginal benefit of the purchase (again in utility terms).  The same interpretation as the FOC given above.


· Let’s rewrite this equation to move toward a more familiar presentation:
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This simply uses market clearing conditions, rewrites the expectation, and restores (for clarity) some time subscripts that Lucas removes due to the stationarity of the decision variables.  Note this holds not just for times 0 and 1 but for any t and t+1.

· Now write:
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Something that looks a lot like an old friend, but not quite – the difference derives from the multi-period nature of the problem used here.  We can think of the expression as pointing out that in the infinite horizon model you derive two benefits from owning assets, dividends and capital gains.
· Now recall that in this problem, price is a fixed function of aggregate output – it is independent of time:
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· This ultimately results in:
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· More familiarly,
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 (to anticipate the notation in our next lecture we write m as the stochastic discount factor instead of λ)

where,  
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So, the multi-period version of our standard pricing representation is just a natural extension of the static model, today’s price is today’s value of the entire stream of dividends that are expected to be received from ownership of the asset.  Valuation at each date is done by multiplying the payoff by the state price density or stochastic discount factor for that date relative to today.

Consider briefly the solution process used by Lucas:

Proposition 1:


This tells us that for each function p(y) we might choose, there exists a unique value function 
v(z, y; p) that satisfies condition (i) – i.e.:
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s.t.
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The value function v() represents the optimal consumption and investment decisions for the agent given the expected price function p(y).

Proposition 1 also establishes that for each output vector y, the value function v(z, y; p) is an increasing function of z – so we have a well-behaved problem.

Proposition 2:
Gives us the derivative of v(z, y; p) with respect to z
With this derivative and the equilibrium conditions in (ii), we can derive the stochastic Euler equation (6) that represents the solution to the problem.
Then, he notes that (6) does not involve the particular value function v(z, y; p) used in its own derivation.  Thus, (6) must hold for any equilibrium price function (see proposition 1).  Conversely, if p*(y) solves (6) and v(z, y; p*) is constructed as in proposition 1 to be the unique value function associated with p* then the pair p*(y) and v(z, y; p*) represent an equilibrium.  Thus, all equilibrium price functions solve (6) and any solution of (6) is an equilibrium price function.
Proposition 3:
This provides that there is exactly one solution to (6) and so exactly one equilibrium price function for this economy.

In the endowment economy asset prices adjust to conform to the consumption pattern.
Example:
The two date structure of the last example is unattractive because most investors do not set their portfolios, consume, and then die.  We can derive our old friend the CAPM in an intertemporal context by substituting for the 2nd date utility function with a quadratic value function.

· Consider the two date quadratic “utility” function:
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· Thus, we suppose the investor cares about current consumption and the wealth she carries forward.  To simplify things (also necessary for the quadratic example) we are also going to place an extra restriction on the transition function 
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 by requiring the return to aggregate wealth RW to be i.i.d. each period.

· If such an investor considers whether to buy marginally more of an asset for price pio and receive an increase in its payoff at time 1 (of yi1 per unit), the “FOC” associated with this decision is:
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Which gives us:
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or, 
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Noting that at an optimum it must be that the marginal value of an extra penny consumed must equal the marginal value of a penny saved or,
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we can write
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· Now, impose the restriction that the value function is quadratic:
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· Then, as we did above, we can write 
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 which tells us that we have a case where the CAPM holds period by period if our value function makes any sense.

Now, let’s see where this assumed quadratic value function comes from:
· To derive the CAPM result we used two assumptions: (1) the value function depends only on wealth and (2) it’s a quadratic function of wealth.  The first told us pricing would be done in terms of wealth or returns on aggregate wealth and the second told us it would be a linear function of the returns on aggregate wealth that sets prices.
We really want to start from:
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as in the Lucas paper.


· Let’s continue to talk in terms of returns to wealth or the return on the market portfolio – this is just thinking in terms of all the n assets together and of each “y” as a dividend.

· So, paying the price pt gets you yt+1 (dividend) and pt+1 (capital gain)
· Now, let’s define a value function – as Lucas does, we’ll label it v(Wt) rather than v(z, y).  We drop the z since we will suppress the portfolio choice in what comes and we substitute W for y since we are putting things in terms of wealth.
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· Now, break out current consumption:
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or,
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· This is the power of using a value function in dynamic programming – it allows us to express an infinite-period problem as if it were a two-date problem; if we’re careful.


· Now – if 
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 is quadratic, is 
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 quadratic?
The answer is that this is one special case in which this is true.  We can show this by first guessing that v(Wt+1) is quadratic with unknown parameters, then using the definition of v(Wt) and solving the two-date problem to find the optimal consumption choice.


· Then, we plug this optimal consumption back into the equation for v(Wt) – if the guess was right, we will get a quadratic function for v(Wt) and be able to determine the unknown parameters.


· Let 
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with 
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 and W* unknown


· The “two-date” problem for consumption choice (continue to submerge x since it won’t affect what we want to learn)
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subject to 
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· Substitute the constraint into the maximand and take the derivative with respect to ct.
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 at the optimum


· Let 
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 represent the optimum, so: 
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· Solve for 
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· Note: 
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 is linear in Wt so the value function using 
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showing that v(Wt) is a quadratic function of Wt and 
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 since a quadratic function of a linear function is quadratic.  Thus, the value function is indeed a quadratic function of Wt.  The complete solution of the problem solves for the unknown parameters 
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 and W*.


· This is, essentially, what Lucas does in a much more general framework and with much greater precision.
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