Lecture 6:
Portfolio Separation Results

· Readings:

· Ingersoll – Chapter 6
· Ross, “Mutual Fund Separation and Financial Theory – The Separating Distributions,” Journal of Economic Theory, 1978

· Cass & Stiglitz, “The Structure of Investor Preferences and Asset Returns, and Separability in Portfolio Allocation,” Journal of Economic Theory, 1970
PORTFOLIO SEPARATION RESULTS
One Fund Separation – 1fs:
1fs:
Taste based separation – using utility of returns

· The necessary and sufficient condition for taste based one fund separation is that all investors have the same utility of return function up to a positive affine transformation


Sufficiency:

If all investors (k) have 
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, then the FOCs of all investors look alike:
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Note that the individual preference parameter does not affect the FOC so:
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i.e., the FOC is the same for all investors so all hold the same portfolio:  
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Necessity:

If all investors hold the same portfolio, regardless of how assets’ returns are distributed, then it must be that 
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  for all possible asset returns distributions.


If the assets’ have returns distributions that are dirac delta functions, then the FOC is:
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So, asset by asset we have:
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  for each investor k or j so 
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Thus it is necessary that there is some 
[image: image23.wmf]kj

g

 such that




[image: image24.wmf]*)

(

*)

(

z

u

z

u

j

kj

k

¢

=

¢

g


i.e., for this to hold for a unique z* (regardless of its mean), the marginal utility of z* can differ only by a multiplicative constant.  So, 
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.  Integrating gives:  
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Alternatively…For every investor to hold the same portfolio, regardless of the returns distribution, then we must have that for all returns z:
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i.e., all investors must have the same marginal rate of substitution across realizations of returns.  If this is true across all investors for all levels or return, z, we get 1fs.

Integrate:
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So ua is a positive affine transformation of ub – clearly all will hold the same portfolio the utility functions are all the same.

Now, look at a (complete) market with one riskless asset and one risky asset: 
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From a’s FOC:
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For simplicity, normalize ua so 
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Then, if the ratio of the marginal utilities is not the same for all investors, so 
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, the investors see different relative state prices and so choose different portfolios in this market.

Cass & Stiglitz worked this out considering utility of wealth – by considering utility of returns, we implicitly assumed initial wealth was the same for all investors.  The Cass & Stiglitz results hold for all 
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 and so all investors must have an affine transformation of one CRRA utility function.

· When does 
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  look the same for all 
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· If, for example:
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So, the optimal portfolio is independent of 
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1fs:
Distribution of Returns based:

The obvious example would be if the 
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 are i.i.d..  All (risk averse) investors (risk neutral investors are indifferent) set 
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, expected returns are equal and this minimizes risk.

iid returns are not necessary for 1fs.  One aspect of this example that is required is that all assets must have the same mean.  Why?
The necessary and sufficient conditions for 1fs are:

(1)
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and,

(2)
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· Sufficiency: with no redundant assets, wm is unique and 
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.  So, any holding other than wm has the same expected return and more risk than wm.  That is,
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Any other portfolio has returns of:
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Where, 
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So, all portfolios have the same expected return and zm is less risky than all other portfolios k, thus only wm will be held by an investor with concave utility.

· Necessity:
(Need to show 
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Let zm be the returns on the assumed optimal portfolio.  By leaving the ei unspecified, we can, without loss of generality, write 
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 must be true since if not some assets will have different expected returns and some investors will hold different portfolios, trading off risk and return in different ways.

The FOC of any investor, regardless of utility function, must hold for all zi and for zm.  So,
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Since zm must be optimal for all monotonic, concave utility functions, i.e. any positive, decreasing 
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, by the fair game lemma, this zero covariance implies 
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So, we have:




[image: image78.wmf]i

m

i

e

z

z

~

~

~

+

=

   
with  
[image: image79.wmf]0

]

[

=

m

i

z

e

E


Finally, we required, by construction, that the assumed optimal portfolio has no e-risk.  So, 
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The story is simply that there is a single source of systematic risk and all assets have the same exposure to it.  Only in this way is there no risk-return tradeoff (must be no such tradeoff so that only one portfolio will be held regardless of the utility function involved) and only with the fair game property do you get nice results on riskiness for the idiosyncratic component of returns.

{iid returns fit within this restriction, we see this as follows:


Define:


[image: image82.wmf]å

=

º

N

i

i

z

N

Y

1

~

1

 and 
[image: image83.wmf]Y

z

i

i

-

=

e


Since 
[image: image84.wmf]i

z

~

 are i.i.d. ( 

[image: image85.wmf])

(

]

[

Y

k

Y

E

i

=

e

  independent of i
So,



k(Y)

[image: image86.wmf]]

[

]

[

1

1

1

Y

Y

z

E

Y

E

i

N

N

i

i

N

-

å

=

=

å

=

e





[image: image87.wmf]0

]

~

~

[

]

[

1

=

-

=

-

å

=

Y

Y

Y

E

Y

Y

z

E

i

N


and, the other condition we need holds by construction.

}  

Pricing in equilibrium:
Taste Based
The one fund, from supply = demand, must be the market portfolio.  Thus, we know the market portfolio is efficient and pricing follows from 
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  and u′ is the common (base) utility function.

So we indeed simplify pricing but this level of investor homogeneity is extreme.
Pricing in equilibrium:
Distribution Based
It’s simple – all assets must have the same expected return:  
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, an uninteresting case.
Two Fund Separation – 2fs
2fs:
Taste Based:

An obvious sufficient condition is that all investors’ utility functions can be represented as a positive affine transformation of one of two “base” utility functions (if we use u(w) instead of u(z) the base utility needs to be CRRA class).  Agents then all hold one of two funds in a degenerate example of 2fs where portfolio combinations of the two funds are not held.

The only known class of utility functions that permits non-degenerate 2fs is the quadratic class.  Quadratic utility investors hold portfolio combinations of two efficient funds.

Two Fund Money Separation – Taste Based 
(This analysis restricts returns in that we assume there exists a riskless asset, minimal but still a restriction on the distribution of returns that accompanies the utility restriction.)
· Here we assume that the riskless asset is one of the two “funds” – usually label it Asset 0.  We can make this assumption without loss of generality as long as utility functions with infinite risk aversion are contained in the class of utility functions (U) we consider.


· Since the riskless asset is one of the funds, the other need include only risky assets and we, therefore, want to find classes of utility functions for which the risky assets are held in a fixed proportion.  i.e. find U for which 
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· In other words, we want all investors holding a levered position in the same (market) portfolio of risky assets.
· The investor’s FOC:  
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 for all i determines the optimal portfolio of risky assets.  
· A sufficient condition for this is that all utility functions are in the HARA (or LRT) class:
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Or,
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Where c is constant across investors and Bk, and c must have the same sign for concave utility.

U:  Recall that the class of utility functions includes the following.

(1)

[image: image98.wmf]g

g

)

ˆ

(

k

W

W

-

  with 
[image: image99.wmf]1

<

g

 
[image: image100.wmf])

0

(

¹

g

  
[image: image101.wmf]c

-

=

1

g

    
[image: image102.wmf]k

k

ok

k

B

A

W

W

-

=

ˆ





[image: image103.wmf]=

k

W

ˆ

 subsistence level of wealth

(2)

[image: image104.wmf]g

g

)

ˆ

(

W

W

k

-

-

  with 
[image: image105.wmf]1

>

g

   

[image: image106.wmf]=

k

W

ˆ

satiation level of wealth


(3)

[image: image107.wmf])

ˆ

(

k

W

W

Ln

-



[image: image108.wmf]0

=

g


  (c=1)

(4)

[image: image109.wmf])

exp(

W

k

d

-

-



[image: image110.wmf]¥

=

g


    
[image: image111.wmf])

(

-¥

=

c

 in this case Ak = 1, Bk = (k/c, and c ( -(
so the satiation level of wealth is infinite in this case.
Proof:

Under our assumption for u′, the FOC is:





[image: image112.wmf]0

)]

(

)

[(

0

=

-

å

+

-

R

z

z

w

B

A

E

i

c

i

ik

N

k

k



i=1,…,N

Case 1:

If 
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The optimal 
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 is clearly independent of Bk and depends only on c.  Thus, all investors hold the same 
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Case 2:

General – 


Consider that investor k first places an arbitrary amount, 1-ak, in the riskless asset and ak in a portfolio of all risky assets and the riskless asset.  This is without loss of generality since the second portfolio contains the riskless asset and there are no short sales restrictions.


Let the amount ak be split up as 
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The final portfolio weights are therefore written:
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The FOC is now written:
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Now since ak is arbitrary, choose something clever and set 
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So the FOC becomes:
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Thus, 
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This demonstrates that the same 
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 are optimally chosen by all investors with the same utility parameter c, the FOC holds, and the constraints 
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For the risky assets, 
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So, 
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  is independent of k for all investors k as was desired.


All investors hold the same portfolio of risky assets – thus it must be the market portfolio.


The individual utility parameters Ak and Bk simply determine the amount of leverage.
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Interpreting Utility (an aside):

For 
[image: image139.wmf]1

<

g

:

[image: image140.wmf]k

k

ok

k

B

A

W

W

-

=

ˆ

 is the subsistence level of wealth for “next period”.
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For 
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From 
[image: image149.wmf]ok

k

k

ok

a

a

w

a

+

-

=

1

,  
[image: image150.wmf]ik

k

ik

a

w

a

=

,



[image: image151.wmf]k

k

ok

k

B

A

W

W

-

=

ˆ




[image: image152.wmf]k

k

k

RB

A

a

+

=

1



We can find the dollar demand for the assets as:
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This holds for generalized power and generalized log utility agents.  Such investors place the present value of 
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[image: image159.wmf]o

a

,  
[image: image160.wmf]a

, where these weights are the optimal choice for an investors with utility 
[image: image161.wmf]g

g

W

W

u

=

)

(

 which depends only on 
[image: image162.wmf]g

 (or c).
Example:



[image: image163.wmf]2

)

ˆ

(

)

(

2

-

-

=

-

k

w

w

w

u


                                                     
[image: image164.wmf]k

w

ˆ

                                            W

for log utility let 
[image: image165.wmf]0

®

g

 in this equation.


i.e.

[image: image166.wmf]g

g

g

)

ˆ

(

lim

0

k

w

w

-

®



[image: image167.wmf]g

g

g

)

ˆ

(

0

lim

k

w

w

Log

e

-

®

=







[image: image168.wmf]1

)

ˆ

log(

lim

)

ˆ

(

0

l

w

w

Log

k

e

w

w

-

®

-

=

g

g







[image: image169.wmf])

ˆ

(

k

w

w

Log

-

=


For 
[image: image170.wmf]1

>

g



The demand is as given but these demand functions represent utility minimizing portfolios, we must bound wealth below 
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That is, the investor takes a short position in (
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For exponential utility:
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So, the investor’s demand for the risky assets is constant for all Wo.  The 
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 are optimal for an investor with absolute risk aversion parameter 
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, so there is unitary absolute risk aversion on utility of returns u(z) = –exp(-z ).
2fs – Distribution Based
The necessary and sufficient conditions for 2fs are:
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· There are two residual risk free portfolios that have distinct exposure to “Y” risk.  Without this last condition it would degenerate to 1fs.

· w1 and w2 are the two funds.
The systematic risk of any asset is given by 
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· This combination of conditions implies ε is idiosyncratic risk for all investors and that all desirable risk/return combinations can be achieved by trading in w1 and w2.

Example:
Normal returns with no riskless asset


Let 
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, then we get the familiar results:




ε is “diversified” away by holding portfolio combinations of Zm and X.
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Two Fund Money Separation
· The necessary and sufficient conditions are:
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· Introduce some notation:

Let 
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 denote the portfolios weights on what will be the market portfolio of risky assets

and,
Let  
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  denote the augmented vector of sensitivity levels to the single risk factor
For any portfolio w define 
[image: image209.wmf]b

b

w

m

l

¢

¢

º

 as the relative level of systematic risk of portfolio w (relative to the market portfolio).
Sufficiency:
The story is again that all desirable risk return tradeoffs can be achieved with R and Zm (both of which are devoid of ε-risk) and that nobody holds ε-risk.
Suppose that the portfolio w is optimal for some 
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(Or: by construction, 
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And, since we chose 
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 so that 
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· All risk-return tradeoffs can by accomplished with R and wm.

· We need only show that:
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where 
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  ( i.e. no investor holds the arbitrage portfolio 
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· The two portfolios w and q have the same expected return since 
[image: image231.wmf]0

]

[

=

i

E

e

  
[image: image232.wmf]i

"

 so we simply need to show that 
[image: image233.wmf]e

a

¢

+

q

 is riskier than q.


i.e. show that 
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But, since knowing q implies knowing implies knowing Y and vice versa, this is equivalent to:
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 is riskier than q in a R-S sense, and no investor with a concave utility function holds the arbitrage portfolio 
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Necessity:

The general FOC is: 
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· If 
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· If separation holds, the maximization problem is
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i.e. just choose the balance between, R, wm
· The FOC of this problem is 
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This condition must imply, if separation holds, that 
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· Without loss of generality, write  
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We can always do this if we place no further restrictions on the e’s.
The conditions:


Is there a w with 
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Yes – by construction zm = Zwm has no e-risk.

So, wm is a/the well diversified portfolio of risky assets.
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The general FOC is:
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 and for all u(·) in the monotone concave class.
By the assumption of separation, the first term is zero, so it must be that 
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And so, by the fair game lemma,
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(all are informationally equivalent)

so the fair game property implies that the FOC (assuming separation) holding implies that the general FOC holds, which proves necessity.

Equilibrium with 2fs:
Taste Based – 
for quadratic utility, we know the result

For 2fms -
we also know that wm must, in equilibrium, be the market portfolio.  So, the market portfolio is efficient and our general pricing formulas can be applied using the restrictions on allowed utility functions and recognizing that z*=zm.
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2fms Distribution Based -
Again, the risky asset portfolio must be the market portfolio.  From our conditions 
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and that
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So, 2fms, if the variance of Y is defined, allows CAPM pricing.  This had to follow since all optimal portfolios, being combinations of R and wm, can be completely described by their means and variances alone.

From 2fs, we get the Black-CAPM pricing equation.

Without a riskless asset:


m is one portfolio


let portfolio “0” be the other portfolio
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Now, if “0” is a zero-beta portfolio, so 
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substitute this bo into the 
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Thus, the Black-CAPM equation occurs for the same reason as in the case of 2fms.
K-Fund Separation
Investors will hold combinations of no more than K risky mutual funds and the riskless asset if:

(1)
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(2)
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(3)(4)
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 for k=1,…,K such that 
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(5)
Rank(A) = K

where 
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l = 1,…,K   
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Each element of A is a portfolio weighted average of the b’s on one Yk for a given fund l.

i.e. alk is fund l’s factor loading on factor k (Yk).
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Condition (1) describes a K factor model of the returns generating process.  Y’s are factors and b’s are factor loadings.

Condition (2) says the ε’s are idiosyncratic risk that no investor wants to hold.
Conditions (3) and (4) say that each mutual fund is a well diversified portfolio and that there are K such funds.

Condition (5) says that we have K linearly independent (non-collinear) funds – thus, a rotation of the factors can set A to a diagonal matrix (i.e. there is one portfolio combination of the funds that creates a fund with no ε-risk and bi > 0 for only one i) and we can therefore get a portfolio with any combination of factor loadings by using the K funds (i.e. from any possible risk-return tradeoff using the funds).

Proof:
Basically the same as before – show that no one holds ε-risk and can accomplish any desired risk/return combination using the K funds.

Pricing Under kfs:
We know:
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for all assets i.

This must then hold for the K funds as well – use the “rotated factors” so that each of the funds has a non-zero factor loading on only one of the factors.

Let 
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 be the expected return on the mutual fund with a non-zero loading only on factor k.  And,

Let 
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Then,
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And, substituting for 
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Furthermore,



[image: image313.wmf])

(

)

(

)

(

)

,

(

2

k

k

k

k

k

k

i

k

i

Y

Var

b

z

Var

Y

Var

b

b

z

z

Cov

=

=


So, 
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Note – this pricing result is not dependent upon separation.

( 
The expected returns on assets whose common variation depends on K factors must be 
linearly related to the assets’ responses/loadings on the factors if just one risk-averse 
investor holds an ε-risk free portfolio.
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