Lecture 5: Generalized Risk and Return

· Readings:

· Ingersoll – Chapter 5 (also see chapters 8 and 9)
· LeRoy & Werner – Chapter 10

· Merton – Chapter 2
· Dybvig & Ross – “Portfolio Efficient Sets,” Econometrica, 1982

· Rothschild & Stiglitz – “Increasing Risk I: A Definition,” Journal of Economic Theory, 1970

· Rothschild & Stiglitz – “Increasing Risk II: Its Economic Consequence,” Journal of Economic Theory, 1971

· Dybvig – “Distributional Analysis of Portfolio Choice,” Journal of Business, 1988
· Dybvig & Ingersoll – “Mean-Variance Theory in Complete Markets,” Journal of Business, 1982

After having considered the special, well-known, and well (over?) used case of mean-variance analysis, let’s step back to the general problem again.

First, Risk:  The CAPM makes the assumption that the variance of the return on a portfolio measures its risk.

Consider the idea that risk is the combination of properties of a set of random outcomes that change the evaluation of 
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 for concave utility u( ).  Two aspects of this definition to highlight are: (1) that what alters this evaluation (or is, on net, “disliked”) is, of course, dependent upon the utility function used in the evaluation.  Thought of this way, risk is necessarily a property defined for a class of utility functions.  This definition of risk also (2) conveys only the notion of dispersion of outcomes.  This requires that we correct for the mean (location) when we talk about risk.  It also means that all other aspects (good and bad) of the distribution (beyond location) are lumped into “risk.”
More formally…

Definition:
If uncertain outcomes 
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 is strictly less risky if the inequality is strict for some u 
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For some restricted classes of utility functions (some U), this ordering is complete (i.e. for all pairs of random variables 
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Example:
Quadratic utility: as we have seen, variance is the measure of risk.  Any quadratic utility function can be written as:
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Expected utility (for any distribution for which mean and variance are defined) is written:
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So, for any 
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The completeness of this ordering is unfortunately not a common property across different (broader) classes of utility functions.  Consider the example introduced by Ingersoll:
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For these simple distributions we easily calculate that: 
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Thus, for any investor with quadratic utility,
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 provides higher expected utility.  Thus, for any class of utility function that includes both quadratic and square root utility, 
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Further, note that it is not the case that variance is the appropriate measure of risk whenever the ordering is complete.  Consider the class of cubic utility functions defined as 
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c > 0, where we restrict outcomes to be bounded between zero and 
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Expected utility is written (translating the non-central moment to the central moments):
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where 
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 is the third central moment 
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  that we examined before.  (Note that for this class of utility functions variance and skewness are both disliked.)
If 
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Thus, 
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 is the proper measure of risk for this class of utility functions.  So, even for classes of utility functions that imply a complete ordering of random variables, variance is not a universal measure of risk.

For the general class of all risk averse (concave) utility functions, the ordering is obviously incomplete.  We need to find a way to reduce the scope of the problem if we are to say more, i.e., restrictions on distributions or restrictions on utility functions (which are rarely thought to be particularly interesting or valuable).
Mean Preserving Spreads:
For illustration, let’s take a look at a particular relation between 
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 that allows a comparison for all u( ) in U (the class of all risk averse utility functions).
Intuitively, if we take 
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 and add mean zero noise to it we should wind up with something less attractive to risk averse agents.  It turns out it’s not quite that simple.  Why?
A random variable 
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) can be obtained from f(
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) by the application of a series of mean preserving spreads (MPS) (where f(·) and g(·) are density functions).
Definition:
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where:
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From a uniform distribution we might get the following:




So, we have four (non-overlapping) intervals of non-zero value with the middle two negative and the outside two positive.

Note that:
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so what is added is subtracted elsewhere


and,
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“mean” zero (really addition of s(x) doesn’t change mean)
Thus, if f(x) is a density function for x, then f(x) + s(x) is also a density function that gives the same expected value.  (As long as you don’t violate non-negativity for the resulting density.)
An exercise you should work through in Ingersoll’s text shows that if 
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 has density g(·) = f(·) + s(·), where s(·) is a mean preserving spread, then 
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 (whose density is f(·)) for the class of all concave utility functions.  The proof simply compares expected utility of 
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 for general concave utility functions (lots of Jensen’s inequality applications).  Transitivity implies this works for a series for MPS’s as well.
Rothschild & Stiglitz Theorems on Risk: 

The notion of 
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 differing from 
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 by the addition of a series of MPS’s, implying more risk is very intuitive, 
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 has a more disperse, “noisier” distribution than 
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.  This can be made more precise, more general, and less cumbersome to deal with.

Theorem 1:
For the concave class of utility functions, outcome 
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Note that the law of iterated expectations tells us 
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Proof (sufficiency):
If 
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equivalence of distributions
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law of iterated expectations
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Jensen’s inequality
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fair game property

Given this result, we can easily see that variance is a valid measure of risk for the class of all concave utility functions when we restrict ourselves to normal random variables.

For any 
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stronger than the fair game property 
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We can also show the related result that if 
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 is riskier than 
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 we know it must have a larger variance – this must be true because the quadratic utility functions are members of the concave class and for quadratic utility functions variance measures risk.

Alternatively:
If 
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When location differs, we can correct by simply de-meaning and comparing 
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  This, however, shifts around the distributions and is itself somewhat cumbersome and even a little odd when our goal is to describe a risk/return tradeoff.
A closely related concept to riskier is second order stochastic dominance – “SSD”.  This concept incorporates the correction for location within the comparison.
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Theorem 2:
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Note:
SSD incorporates the correction for location, so the class of utility functions for which this holds must be narrower.

Proof (sufficiency):


Theorem 1 provides
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for all concave utility functions.


Because 
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 is non-positive, 1st order stochastic dominance provides that:
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· The relation between riskiness and SSD is strong but they are not identical.

If 
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However, if 
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The difference lies in the correction for location.  In SSD it is built in, we compare 
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· After a deviation to review the general portfolio problem and results on portfolio choice, where this is heading is a general study of the efficient set of portfolios.  SSD will play a large role.
Table: x and y are random variables defined on [a, b] (see Ingersoll pg 123)
	Concept:
	Utility Condition
	Random Variable Condition
	Distributional Condition
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	F(x), G(y) are distribution functions: G(t) ≥ F(t) 
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Now, Portfolio choice: To quickly review:
The general portfolio problem can be cast as: an agent chooses a portfolio to maximize his/her expected utility of returns:
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s.t.  
[image: image189.wmf]1

1

=

¢

w

  (i.e. 
[image: image190.wmf]1

=

å

i

w

)
Some other restrictions we might (but won’t) use include:

· 
[image: image191.wmf]0

³

w


- no short sales
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- limited liability for the primitive assets

· 
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- non-negative wealth constraint (bankruptcy)

Form the Lagrangian:
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FOCs:




[image: image195.wmf]f

=

¢

Þ

¶

¶

]

~

*)

~

(

[

z

z

u

E

w

L


with 
[image: image196.wmf]0

³

f

 and z* = z′w*


or, for each asset:
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The concavity of u(·) and linearity of the constraint implies that the FOCs are necessary and sufficient for a maximum.

The FOC must hold for the riskless asset, if it exists:
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So, we can subtract this from the general condition to find:
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in the presence of a riskless asset.  This will help us examine some results concerning portfolio formation in this general context.
Theorem:
If a solution w* exists for a strictly concave utility function and a set of assets Z then the probability distribution of its return is unique and if there are no redundant assets then the portfolio w* is unique as well.
Proof:

For each feasible w define new control variables 
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  and define the function v( ), a derived utility function over state returns:
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The portfolio choice problem can then be written:
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This is a standard convex optimization problem with an objective function that is concave in the choice variables (note that E(u(zw)) is not concave in w) and a set of linear constraints.  Thus, the optimum (θ*), if it exists, is unique.  The vector θ* describes the distribution of returns across the states, so write:


θ* = Zw*

If there are no redundant assets Z has a unique left inverse 
[image: image211.wmf]Z

Z

Z

L

¢

¢

=

-

1

)

(

 and 
[image: image212.wmf]*

*

q

L

w

=

 is then also unique.

We can say something specific about choices made by agents in this very general context but not much:

Theorem:
The optimal portfolio for a strictly risk averse, non-satiated investor will be the riskless security if and only if 
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Proof:
When a riskless asset exists, w* satisfies the FOC: 
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 will satisfy the FOC.  Since u(·) is strictly concave we know the probability distribution of the return is unique.  If there are no redundant assets the portfolio is unique.  (Strictly risk averse agents hold only risk free portfolios or the risk free asset.  We also see why the “strictly concave” is required for uniqueness of the solution in the theorem above.)

If 
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 from strictly monotone u(·), so if z*=R is optimal, it must be that 
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This generalizes our earlier two-asset (one risky, one riskless) result.  

Finally, Efficient portfolios: the efficient set of portfolios – those portfolios for which there are no other portfolios with the same or greater expected return and less risk.  Alternatively, those portfolios which are not second order stochastically dominated.
More specifically…
Definition:
A portfolio w is efficient if 
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i.e. if there exists a utility function 
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 (strictly monotone, concave class), for which w solves the investor’s problem:
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budget constraint
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w is a portfolio of the traded assets – a restriction whose strength is determined by the structure of Z
We use U, the strictly monotone, concave class, because if we the use monotone, concave class E is trivially all 
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 since this class allows a constant utility function, making it uninteresting and a useless definition.

The following theorem shows that:  Efficient portfolios are those for which there are no other portfolios with the same or greater expected return and less risk (those that are not SSDed).  But, not the set for which there is not a less risky portfolio with the same mean return – this set conceptually includes the lower limb of the CAPM hyperbola.

Theorem:
For some efficient portfolio k with returns given by 
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 (for any portfolio w), then 
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Note:
It is not true in general that 
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 since “riskier” is an incomplete ordering.

Proof:
If 
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 (by the definition of riskier).


If 
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But, this contradicts the assumption that 
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 is an efficient portfolio’s return, so it must 
be that 
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  holds.

From this, we get two corollaries:

· Corollary 1:
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 for all efficient portfolios since all efficient portfolios are weakly riskier than the risk free asset.

· Corollary 2:
The “riskier” is an efficient portfolio, the higher is its expected return.  In other words, there is a risk/return tradeoff.
Now let’s consider an alternative way to characterize the efficient set using a simple complete markets example with two states (so we can draw it). Since the market is complete, we can find a portfolio that has any distribution of wealth across the two states that we would like.  Therefore, we can make W1 and W2 (wealth in states 1 and 2: Woz1* and Woz2*) the choice variables.
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subject to: p1W1 + p2W2 = Wo  (budget constraint is written using the unique state prices)

L: = 
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The FOCs give:
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…just as we saw before.

Note:
Under risk neutrality, state prices are proportional to the actual probabilities (or the state price density is constant across the states).  Thus, again we see that a single risk neutral agent in the economy (who faces no restrictions on short sales or borrowing) trades to set prices in such a way that
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 is constant.  Any risk averse agents in the economy (in equilibrium) will then also trade so that 
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 is constant across all states.  Thus, their optimal choice must be to hold riskless positions.  Said another way: the risk neutral agent trades so that there is no reward for risk bearing (all assets have E(z)=R) so no risk averse agent bears any risk.

Examine the set of efficient (optimal) portfolios for this two state example:
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Simply assume:
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Line with slope = 
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 is a line of constant expected wealth

Draw an indifference curve for an arbitrary risk averse utility function.  How do we know that the constant expected wealth line is tangent to the indifference curve at the 45° line?  

It must be – from r outward on the line, you stay at the same expected wealth but add risk if you move in either direction.  Thus, the constant expected wealth line through r must be tangent as it must be below the indifference curve away from r on either side.

Which of the possible consumption bundles will be chosen by a rational agent?

· Consider point d in the picture.  By concavity of the utility function, d is no better than r (same expected wealth but more risk) and by strict monotonicity f is dominated by d since d has larger W1 and W2.  So, by analogy all points on the budget line below r are dominated by r, the riskless asset (they all give less expected wealth and more risk).

· Rational choices are above the point r on the budget line in this picture.  Thus, only choices with W2 ≥ W1 are optimal.  Moving in this direction gets more risk and higher (not lower) expected wealth.  Where will the indifference curve be tangent to the budget constraint?

· Depends on u but we know it will be above point r because we assumed the budget line had a steeper slope than the constant expected value line (that is, 
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· Thus, the state price per unity probability of wealth in state one is greater than in state 2.  Choosing W2 ≥ W1 is, in this sense, a cost minimizing choice (for a given distribution of wealth, choosing W2 ≥ W1 has lower cost than the reverse).  Given state independent vN-M utility we will show later that cost minimization in this way is really the only restriction imposed by maximizing behavior.

We can also find the result: if 
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2 then W2 ≥ W1 from the FOC of the investor’s decision problem in this example:
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We can generalize this two state example:
Theorem (Dybvig J of B ‘88):  Assume a complete market and equally probable states.  For the strictly monotone, concave class of utility functions U, w is an efficient portfolio if and only if, for all states r, s:
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Proof (sketch):

Suppose w is an efficient portfolio, then it follows from the FOC (
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 (the 2nd inequality is weak since we don’t require strict concavity).  The contra-positive of this is: 
[image: image283.wmf]s

r

s

r

Zw

Zw

£

Þ

>

l

l

.  Now suppose that 
[image: image284.wmf]s

r

s

r

Zw

Zw

£

Þ

>

l

l

 or equivalently 
[image: image285.wmf]r

s

s

r

Zw

Zw

l

l

³

Þ

>

.  Graphically this says:

                     
[image: image286.wmf]l


















       Zw
Choose any function g(·) which has g(Zws)=
[image: image287.wmf]l

s for 
[image: image288.wmf]l

s > 0.  We know that this function is positive and weakly decreasing so re-label it 
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Integrate this function and you get a strictly monotone concave function u(·) such that it satisfies the FOC at the candidate w.  Note that we have found a u(·) scaled so that the Lagrange multiplier 
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 equals 1.  But, we can always do this since u(·) is unique only up to a positive affine transformation.  The constant of integration from the step 
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 is the “rest” of this transformation.  This is the equivalence between maximizing behavior and cost minimization.

Problem:
Look back to the two state complete markets example.  Prove that if state prices are proportional to the actual probabilities then any choice not on the 45° line is riskier than a bundle on the 45° line.
Instead of the formal proof of sufficiency for the last theorem, to provide a little intuition, look at the situation of a complete market where 
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s=1,…,S (an unnecessary simplification).  Now, since there are S states, there are S! ways to order or assign the lottery outcomes to states (which state generates greater wealth than which).  This means that there is some cheapest way to order the lottery.  Suppose that one of the cheapest ways does not assign outcomes in reverse order to the state price density.  Then 
[image: image294.wmf]$

 states r, s such that 
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.  Now, switch the outcomes for states r and s.  The change in cost is:
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which is a negative number – implying a cost decrease with no change in expected utility for state independent utility of wealth – and so a contradiction.
Example – Verifying the efficiency of a given portfolio:

The last theorem can be generalized and Ingersoll uses the general result to build a numerical example illustrating the idea that verifying the efficiency of a given portfolio requires only that we check the ordering of returns it assigns across states.  It is, therefore, also true that all portfolios which impose the same orderings on their returns as that of an efficient portfolio are efficient, i.e., some strictly increasing concave utility function sees that portfolio as optimal.
If the matrix Z has no redundant assets then the rank of Z is N
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When N = S the market is complete and thus there is a unique vector 
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 that supports Z.  Thus there is only one ordering of the state contingent payoffs that can represent an efficient portfolio.

If N < S, the market is incomplete, 
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 is not unique (there are N equations in S unknowns in the supporting equation) so not all efficient portfolios need have the same orderings of returns.  An example from the text will help illustrate this – here it has been changed by putting things in terms of the
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s where the book uses marginal utilities – see the FOC for the translation:
Consider the market characterized by: 
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  where 
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 3! or 6 potential orderings of returns.  With 2 assets, only 4 orderings are feasible.

The feasible set is:
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[image: image306.wmf]Market possibilities – state with lowest return is 1st 
(Write returns in each state as a function of w1 and 1 – w1 then graph Zws s = 1, 2, 3 against w1.)
Now look at an optimizing investor’s FOC to consider efficiency:
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for i=1, 2 
Let 
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Here, these two equations are:
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This has solutions of:
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These represent efficient portfolios.
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Graph these three lines:
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Thus, four orderings are efficient.

From high 
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 to low (i.e. state with highest 
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 is listed first):

(2, 3, 1)
(2, 1, 3)
(1, 2, 3)
(1, 3, 2)

The reverse of the final ordering is not feasible (see above), we can’t find a portfolio of these two assets that gives returns that are lowest in state 1 and highest in state 2.  The first three represent all the portfolios with 
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.  So, any such portfolio is optimal for some agent.  Of the feasible orderings, only (3, 2, 1) (
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) isn’t efficient.  This isn’t a practical way to approach the issue but it helps us understand the next set of theorems and the discussion of systematic risk to come.
Homework problem:
Now change the probabilities to 
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Which portfolios are optimal portfolios? Does the resulting change in the answer make sense – i.e. explain the difference between the two cases using the characteristics of the two assets..  Relate this to the mean variance efficient portfolios.  Is this reasonable?
Convexity of the Efficient Set:
In studying the relation of the CAPM to the more general model it is interesting to ask: is the efficient set convex?  Why?  To answer this question we use the technology developed above.
· Again, label the set of efficient portfolios E and call the set of marketed assets M (the feasible set of portfolios).

· We define an Arrow-Debreu world, or complete market, as one in which the positive supporting state prices are unique.

In complete markets λ, and so the ordering of the λs’s across states, is unique.  Thus, we have:
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where a pair of states (r, s) is considered in these restrictions, (r, s) = (ri, si), for some i 
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 etc.  All these intersected with the set of marketed assets.  We then have the following:
Theorem:
If M is a complete market then E is a convex set.

Proof:
E is the intersection of convex sets and so is convex.

Theorem:
In a risk neutral market E=M so E is necessarily convex.

Proof:
In this case λs is constant across states.  Thus, all orderings of returns across states are efficient.  From the FOC we know 
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Thus, both orderings are efficient if 
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Alternatively: All assets have the same expected return and so all possible portfolios may be held by maximizing risk neutral agents.

In general, 
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  This second set is the union over all valid λs of 
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 where (r, s) = (rl, sl) for some l  
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 for a given
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.
In incomplete markets we must account for the multiple orderings possible because there are different valid 
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Two technical results are stated without proof:

1. For U and a finite state space, E is the union of a finite number of closed convex sets and hence is closed.
2.
E is connected – i.e. E cannot be represented as the union of two separate (disjoint) sets.

Definition:
A market is said to exhibit k-fund separation (“kfs”) if 
[image: image349.wmf]$
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i.e. the efficient set is contained in a set spanned by k “mutual funds”
Theorem:
E is convex whenever M exhibits two-fund separation (2fs).
Proof:
From 2fs, E is contained in a line, and since E is connected, E is convex since connectedness implies convexity in R1.
Thus, we now have three special cases where we know E is convex and so we know that the market portfolio is an efficient portfolio.  However, one is uninteresting from a risk-return perspective and the other two are actually incompatible (see Dybvig & Ingersoll).  Now, we present a counter-example from Dybvig & Ross that shows E is not convex in general.
Theorem:  The efficient set is not necessarily convex and kfs (with k 
[image: image352.wmf]³

 3) does not guarantee convexity.
Proof:
Shown by counter-example.  Assume 3 assets and 4 states.  We could have less trivial 3fs by splitting one state into many indistinguishable states and introducing fair gambles with respect to these new states as new primary assets.

Let 
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Let Z = 
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The valid set of price vectors is:
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We can divide by 8,088 or 6,648 respectively to get 
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Thus, we have two orderings on p and, since 
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Look at 
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Since 
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 has an opposite ordering to (1, 68, 40, 59) and
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 has an opposite ordering to (21, 28, 40, 39) both asset 1 and asset 2 are efficient “portfolios”.  
However, 
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 is not efficient since it isn’t in the opposite order to either valid p (
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Alternatively, consider
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.  Because vN-M agents view equally probable states symmetrically, we know that for every strictly monotone vN-M (state independent) utility function that:
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(strictly monotone utility)
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Thus, a convex combination of two efficient portfolios w1 and w2 is not an efficient portfolio since it is dominated by another portfolio for every monotone state independent utility agent.  Thus, E is not a convex set.
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Systematic & Non-Systematic Risk
· How do we understand these concepts using the Rothschild-Stiglitz notion of riskiness and our definition of efficiency?


· Analogous to the CAPM and Beta, we have seen that the way in which the risk or variability of an asset’s returns affects the risk/expected return of an individual’s optimal portfolio is through its correlation with the state price density
[image: image376.wmf]l

 (rather than its correlation with Zm.) 

· Equivalently, the correlation between an investor’s marginal utility of the return on his/her optimal portfolio and any asset’s return.

· That is, if an asset’s returns have an inverse ordering across the states of nature as does the marginal utility of z* (λ) then it has a similar correlation with the marginal utility of z* as does z* itself and much of that asset’s variability contributes to the value of the portfolio – think of CAPM and correlation with the market return.


· Systematic risk is the notion of an individual asset’s contribution to the risk of an efficient portfolio (i.e. what portion of an asset’s risk is priced).

Consider marginal utility of returns as a random variable:  
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Now, consider a ‘conceptual’ regression:
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which defines the systematic risk and non-systematic risk of asset i with respect to efficient portfolio k and utility function u( ).

Consider 
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Normalize 
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 to remove any influence of the scale of the utility function we are using:  so define 
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 provides us with a measure of the systematic risk of asset i with respect to efficient portfolio k that is independent of the scale of the utility function, u(·).

· This measure possesses a portfolio property that the b of a portfolio is the weighted average of the b’s of the assets in the portfolio (using the portfolio weights)

· The ordering asset i is riskier than asset j by this measure is a complete ordering and the ordering is independent of the efficient portfolio chosen.  Therefore, if we can identify an efficient portfolio and measure marginal utility we could correct the problem we had before of an incomplete ordering on riskiness.


· If there is a riskless asset, we can write excess expected returns as being proportional to b.  Rearrange the FOC to write:
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  now rewrite the left hand side and rearrange the equation
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This holds for all assets, including 
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or, 
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And, since we know
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 is positively proportional to 
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Suppose there is no riskless asset – What is the equivalent of a zero-beta asset here?

The relation can come more quickly from the standard E[λ zi] = 1 for all assets i.

Our problem is b is in terms of
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, which is not something we can easily measure.  In order to see the generality of this result is let’s examine some special (familiar) cases.
· If utility is quadratic, 
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 is linear in 
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.  Then, all we need is the efficiency of the market portfolio.  We get that from the assumed quadratic utility since, as we have seen and will see again, it generates 2fs which implies E is convex.  So, the market portfolio is in E.

· If asset returns are multivariate normal – 
Stein’s lemma says 
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So, 
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 again becomes 
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 .  See comment above.  Normality also implies 2fs.

· The consumption CAPM (Breeden) spills out of this, as well.  What we are seeing is that it all depends on what is a sufficient statistic for marginal utility or λ.  With quadratic utility or multivariate normal returns, the return on an efficient portfolio is sufficient for
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Nonsystematic Risk:

Consider the 
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 from our conceptual regression.  
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 depends upon both the benchmark portfolio and the utility function chosen.  Thus, the 
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 we identified is not an unequivocal measure of nonsystematic risk that will be agreed upon by all investors.

The one exception is a complete market or an effectively complete market.  There we know that the marginal utilities of all investors are exactly proportional (λ is unique), thus for all efficient portfolios and all utility functions the 
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 for all investors.  (In a pareto efficient market all investors see the same state prices, so no valuable trades can be created.  Thus, the marginal utilities must all be proportional.)

Sufficient conditions for 
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-risk to be nonsystematic if it is uncorrelated with the market return (not true generally) are a pareto efficient market and that 
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· That is, if we write 
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· 
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 may be systematic, nonsystematic, or a combination of both types of risk.  The market is (effectively) complete so E is convex and the market portfolio is efficient.  There exists, therefore, a 
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 is the efficient portfolio and from the pareto efficiency of the market we know 
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 for all investors k.  Since ε is a fair game with respect to 
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  is therefore recognized as nonsystematic risk by all investors and will “have no price”.  
In particular models the notion of nonsystematic risk being risk that is uncorrelated with the state price density can be a handy representation.
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