Lecture 4: CAPM 

· Readings:

· Ingersoll – Chapter 4
· Huang & Litzenberger – Chapters 3, 4

· Roll – “A Critique of the Asset Pricing Theory’s Tests,” Journal of Financial Economics, 1977 – be sure and read the appendix
What we want to do here is build some intuitions by presenting a special case of more general future results on the risk/return relation.

Mean-Variance Analysis:
The basis for an equilibrium pricing relation known as the Capital Asset Pricing Model (“CAPM”) which relates a measure of the risk of an asset to the expected return of that asset.
Foundation:
The risk of a portfolio can be measured by the variance of that portfolio’s return.  The idea is that there is a derived utility function over mean return and variance of return so that these two parameters completely determine expected utility  –  
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  – where generally we think that v1 > 0 and v2 < 0.  This second condition is necessary for consistency with the maximization of expected utility, the first, in the absence of a riskless asset, is not.

Notation:
The matrix Z again represents our market: or we can use the random vector
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.  Note: if there exists a riskless asset, it is not included in Z, we keep track of it “on the side.” 
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 is a vector of expected returns and Σ is the variance-covariance matrix of Z.  For any portfolio w:

Expected Returns:
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Variance of return:
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Covariance Vector:
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Given our derived mean/variance utility function, our problem is to describe the mean-variance efficient set of portfolios: the set of portfolios with the largest mean for a given level of variance.  Any agent with such a utility function will choose a portfolio from this set.
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Mean-Variance Efficient Portfolios











[image: image10.wmf]2

s


We will find that it is easier to work with the larger set – the minimum-variance portfolios – the set of portfolios with the smallest variance (or std. dev.) for each given level of expected return.
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Minimum Variance Portfolios
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We first consider the problem of deriving the minimum variance set in the absence of a riskless asset.

To derive the minimum variance set we minimize (by choice of a portfolio w) portfolio variance (a quadratic function of w) subject to the linear (in w) constraints – that the portfolio’s expected return be at a given level and the budget constraint.  The problem is nicely behaved and the first-order conditions are necessary and sufficient due to this special structure.  Symbolically:


Minw ½ w′ Σ w
(objective is quadratic in w)



subject to
1′w = 1

(λ)
(budget constraint – linear in w)
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(γ)
(a fixed expected return – linear in w)


Lagrangian:



L = ½ 
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FOCs:
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Rewrite (1)…



(1′)
w* = 
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Now solve for λ(() and γ(() (the whole problem is based on a given ()


(2′)
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(3′)
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Define:
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     so, (2″)
1 = λA + γB

(3″)
μ = λB + γC





[image: image26.wmf]Þ



[image: image27.wmf]D

-

=

B

C

m

m

l

)

(





[image: image28.wmf]D

-

=

B

A

m

m

g

)

(


This lets us find the equation of the minimum variance set.
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Substituting for λ and γ and rearranging we find:
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This is the equation of a parabola in (σ², μ) space.  If we write this equation as μ is a function of σ, i.e. in (σ, μ) space, it is the equation of a hyperbola.
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Now we want to locate a specific portfolio or two.  We can locate the global minimum variance portfolio by noting that this portfolio solves the minimization problem with a slack return constraint:  γ = 0.

From w* = 
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If 
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So, we have:
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 EMBED Equation.3  [image: image49.wmf]1

1

1

1

1

1

1

-

-

-

å

¢

å

=

å

=

A

w

g

, 
[image: image50.wmf]A

B

g

=

m

, and 
[image: image51.wmf]A

g

1

2

=

s

   from wg′ Σ wg.
Alternatively, we take the derivative of the variance equation to find its unconstrained minimum:
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Then, 
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and, 
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as before.

Two Fund Separation:

From 
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 we can see that all minimum variance portfolios can be formed through portfolio combinations of 2 distinct portfolios.  Since wg corresponds to one of these portfolios, it is natural to look at the ‘other one’ implicit in the equation for w*.

That is, define 
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which verifies the proposition.  Note that varying ( ( (-(, () and observing that λ and γ are monotonic (linear) functions of μ also shows that all portfolio combinations of wg and wd are minimum variance portfolios.
We just saw that all min-var portfolios are portfolio combinations of wg and wd and all portfolio combinations of these portfolios are min-var portfolios.  If investors want to hold any min-var portfolio they don’t need access to all tradable assets; they only need access to 2 mutual funds, wg and wd.  
wg is the global minimum variance portfolio – can we similarly locate wd?

wd has expected return:
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wd has variance of return:
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We verify that wd is a min-var portfolio by checking that it satisfies the equation: 
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Further, we know that wd is on the upper limb of the hyperbola (in the “normal” case) since:
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We know that A & 
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 > 0

so 
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is positive if B > 0.  This is true if μg > 0 which is “normal.”
We may also use any two distinct min-var portfolios in place of wg and wd – they will “sketch out” or span the entire min-var set, i.e. the minimum variance set is derived from portfolio combinations of any two distinct minimum variance portfolios.

Let wa and wb be defined as:
wa = awg + (1-a)wd




wb = bwg + (1-b)wd
wa and wb are min-var portfolios since they are portfolio combinations of wg and wd by construction.

From w* = 
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by solving the equations for wa and wb for wg and wd and substituting these into the equation for w* and remembering that 
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Since the coefficients on wa and wb sum to one, the proposition is proved.

The portfolio weight of any asset is linear in 
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 along the min-var frontier.  So, as we increase 
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, the portfolio weight on any asset either linearly increases or decreases when we stay in the set of minimum variance portfolios.
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So,

wi*
= 
[image: image81.wmf])

(

)

(

2

ig

id

ig

w

w

B

AB

w

-

D

-

+

m


If B > 0 and since 
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, assets represented more heavily in wd than in wg are held in larger and larger amounts in min-var portfolios as we increase 
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Also note that for each asset there is one min-var portfolio in which it has zero weight.  In all portfolios below (above if wid-wig is negative) it is sold short.

Covariance Properties of the Min-Var Portfolios:

Consider wg: if wg has different covariances with 2 distinct portfolios, then some combination of the three will have a lower variance than does wg itself.  But, we know this can’t happen.  So, wg must therefore have the same covariance with every asset or portfolio.

Consider any portfolio, wp.  Then,


Cov(zwg, zwp) = 
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This is true for any asset or portfolio.  Note 1/A is also wg’s covariance with itself (i.e. its variance).
Consider any two min-var portfolios: wa = (1-a)wg + awd and wb = (1-b)wg + bwd (without loss of generality).  Let’s assume a
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This is the covariance between any two min-var portfolios, it is completely determined by the choice of a and b.

Fix any a
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wg) by choosing b we can get 
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or, 
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So, if a > 0 then b < 0, and if wa is on the upper limb of the hyperbola, then the min-var portfolio with a zero covariance with wa is on the lower limb and vice versa.

( Look at where wg and wd are and the weight on wd implied by a > 0 and b < 0.

In fact, it can easily be shown, by finding the slope of the frontier at a particular point and finding the interception of the tangent line with the 
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 axis, that the expected return on a portfolio with zero covariance with a frontier portfolio is located at this interception.


Try this for wd for homework.
The covariance of a min-var portfolio with any other asset or portfolio:

Cov(zm, zp) = ?
Let wm = mwg + (1-m)wd

wp is any asset or portfolio.  Then,…


Cov(zm, zp) 
= 
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Thus, the covariance of the return on any asset or portfolio 
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 is a function of the expected return on the arbitrary portfolio alone (and, of course, which min-var portfolio is chosen).  Picture!
Comes from (g = 
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(pd  = 
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.  The covariance of the return on any min-var portfolio and any other portfolio is some combination of these two covariances.
With a Riskless Asset:
When we assume that there is a riskless asset in the economy, we change the minimization problem in two ways: we express expected returns in terms of excess returns; and, it is also convenient to consider that there is no budget constraint for investment in the risky assets – the balance can always be made up of borrowing or lending via the riskless asset.

Write the Lagrangian as:

    
     L
= ½
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Note: no budget constraint for choice of w
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w* = 
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we also require wo* = 1-1′w*

Solve for 
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Then, 
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The equation of the min-var set is:
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So, 
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In (
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a pair of rays originating at R:
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        Mean-Variance Efficient Set





“Capital Market Line”
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Once again, all min-var portfolios are portfolio combinations of any 2 min-var portfolios.  One natural choice is, of course, the riskless asset, and for the other, use the frontier (min-var) portfolio that includes none of the riskless asset.  (How do we know that there is one and only one?  How would you prove this?)  This risky asset only portfolio on the min-var frontier is called the ‘tangency portfolio.’


wot = 0

so, wt =  
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The expected return and variance of return of this portfolio are:
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The interesting, but not surprising result, is that wt is also on the risky asset only frontier.  We can use 
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On the risky asset only frontier we know:
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wt is the portfolio on the risky asset frontier whose tangent line hits the 
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axis at R,

i.e. wt is in “both” min-var sets.
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This is the picture for the case 
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.  Why do we think this is natural?  If 
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, the tangency is between the lower limb of the hyperbola and the lower ray.  Agents hold the riskless asset and are long (short) wt if R < (>)
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Any portfolio on the pair of rays can be formed from portfolio combinations of the two portfolios wt and the risk free asset – called “2 fund money separation.”

What if R = 
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Use w*
= 
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Look at 1′w*:
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Thus, 1′w* = 0 so wo* = 1.  We see agents holding the riskless asset and an arbitrage portfolio of the risky assets.

Covariance Properties of Min-Var Portfolios with a Riskless Asset
When there is a riskless asset the min-var portfolios are all levered positions in the portfolio wt, so all such portfolios wa = k wt for some constant k (recall 1' wa ≠1).  The covariance properties are simple in this case.  First note this implies that all the minimum variance portfolios are perfectly correlated.  Secondly, we see that (again) the covariance between any asset or portfolio and a min-var portfolio is determined by the expected return of the asset or portfolio in question:
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  for any wp such that 1’wp = 1.

Since in the presence of a riskless asset all the min-var portfolios are perfectly correlated, the same (scaled) result holds for them (substitute the relation wa = k wt).
Where does all this math get us?

The Expected Returns Relation:
When there is a riskless asset, it is straightforward to show that the expected excess return on any asset is proportional to its covariance with
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 the return on the tangency portfolio.  Let’s see how this works.
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 is the vector of covariances of the returns on the individual assets with the return 
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  since the covariance of a random variable with a weighted sum of random variables is the weighted sum of the individual covariances.

Substitute the equation for wt to see:
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Premultiply this by wt′ to find (note this says the variance of
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 is made up of the weighted sum of the covariances of
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Then:
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Or, for each asset:
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The story I always tell my MBA students goes like this:  The market pays you for two things (1) surrendering your capital (delaying consumption) for which you get the “rental rate” R and (2) taking a part of the total or aggregate risk that the market must distribute across all investors (in this model aggregate risk is measured by 
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, why?) for which you get a risk premium.  That’s what this equation says.  And in particular your risk premium is determined not by the risk you hold but rather you get paid for the portion of the aggregate risk you hold.  This is determined by the beta and the excess return on the tangency portfolio is the price per unit risk.
Because, when there exists a riskless asset, all min-var portfolios are perfectly correlated with the tangency portfolio (each is just a blend of the riskless asset and the tangency portfolio), exactly the same result holds for every min-var portfolio (any portfolio on the rays).

When there is no riskless asset, then we can use any min-var portfolio and a special companion for it to most simply express expected returns.


Recall:
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and,
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For any other portfolio wp (not-necessarily min-var, we require only that it be a positive investment portfolio, 1’wp = 1), we find the covariance:
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As we saw before, the correlation of any asset/portfolio’s (p) return with a frontier portfolio’s return is a function of the portfolio’s (p’s) expected return. Reversing this interpretation, this indicates that 
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’s covariance with any min-var portfolio.  
Solve the equations for
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Now, make a clever choice of p – make it a portfolio (could be the frontier portfolio although this is not necessary) with a zero covariance with a (i.e. 
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 = 0).  Then, the above simplifies to:



[image: image194.wmf])

(

1

)

(

1

2

z

a

a

z

z

a

a

a

z

z

z

z

z

z

z

z

-

+

=

-

+

=

b

s

s


the subscript z is for “zero beta” portfolio.
Thus, when there is no riskless asset, expected returns are linearly related to an asset’s beta with a reference portfolio if that reference portfolio is a minimum variance portfolio.
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This looks like the “Black CAPM” named for Fisher Black.

A special case is wd.  Since wd is located as it is (with
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), if wd is used as the reference portfolio (a = 1 above), it must be that
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Then,
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We have shown that if the reference portfolio is a min-var portfolio, the expected return on any asset is a linear function of the covariance between that asset’s return and the return on the reference portfolio.
Important point:  The linearity property of expected returns and beta or covariance holds only if the benchmark portfolio is in the min-var set.


Proof:
Assume  
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  for an arbitrary portfolio p with 1′wp = 1


Then:
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Since 1′wp = 1, 
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and wp is a portfolio combination of wg and wd and so is in the min-var set.  So, the vector of expected returns is linear in the betas with a reference portfolio if and only if the reference portfolio is a minimum variance portfolio.  Roll critique.
Variance Decomposition

The expected returns relation is telling us that only a part of an individual asset’s variance (or risk) is priced, only that part that covaries with the return on a min-var portfolio.  It is instructive to decompose the variance of any asset or portfolio to see just how this happens.  For any portfolio wp let wm be the min-variance portfolio with the same expected return.  Write:
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where 
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 are arbitrage (zero-investment) portfolios.

The value of this decomposition is that the returns on these portfolios are orthogonal (mutually), i.e., the covariance between any pair is zero:
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since this is the difference between the covariance of 
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following the same logic as above.
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The second term is zero as above and the first is also zero since the covariance of any portfolio with wm (a min-var portfolio) is completely determined by that portfolio’s expected return and wm and wp have the same expected return by construction.
Thus, from 
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 and the mutual orthogonality of the terms we are able to decompose the variance of the portfolio p as follows:
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Labels:
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 = “unavoidable risk” – global min-var portfolio risk
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 = “systematic risk” – added risk that provides added compensation 
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 = “diversifiable risk” – due to being off the min-var frontier, added risk that 



brings no added expected return.

Thus, only 
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 can be large, small, or zero without affecting expected return.  Draw a picture and see! 
Alternatively:
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Recall, wm is chosen so 
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.  Let a be any min-var portfolio.  Then
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and,  
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Since 
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 it must be that Cov(za, zm) = Cov(za, zp).
Thus, 
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 must have zero covariance with any min-var portfolio (such as a).  This is the part of portfolio p’s return that doesn’t covary with the return on any min-var portfolio.  Expected returns are driven by covariances with min-var portfolios, since
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 does not contribute to wp’s covariance with wa, it does not contribute to expected return (you should remember this).
Equilibrium:  The Capital Asset Pricing Model – “CAPM”
To this point, this has been a standard minimization problem and the consequences of the solution – all math.

We can’t use the results so far to price assets since you recall to get here we started by assuming we knew the expected returns vector to find the min-var portfolios – a bit circular.

Also, even if investors are not mean-variance optimizers, the min-var portfolios exist (as long as mean and variance are well defined) and the absence of arbitrage provides the pricing results we just saw.  Thus, there is no economic content until we can identify one of the min-var portfolios.  This is really what the CAPM does.  The mutual fund theorem says if all investors are mean-variance optimizers we can, in equilibrium, identify a min-var portfolio.
Assume:

(1) Each investor chooses his/her portfolio to maximize a derived utility function over 
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 and 
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) where v2 < 0 and v1 > 0 and v is concave
(2) Investors have a common time horizon and homogenous beliefs about 
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 and 
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(3) Each asset is infinitely divisible

(4) Unconstrained trading in the riskless asset
These assumptions are sufficient for all investors to hold mean-variance efficient portfolios.  Think about what each says.
Assume a riskless asset exists:

The maximization problem for each investor is:
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FOC:
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So,
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Note that w* is proportional to the tangency portfolio and that it is chosen by each investor.  Thus, the aggregate demand for each risky asset is in proportion to its representation in wt.

The (positive or negative) remainder of each investor’s wealth is invested in R.  Since, in equilibrium, demand equals supply, it must be that the market portfolio of all risky assets wm is proportional to wt.  In other words, since all investors hold wt and R, the market portfolio – wm – the wealth weighted aggregate of all investor’s holdings must be some version of this.  Thus wm is a min-var portfolio.
If the riskless asset is in zero net supply, wt = wm.  If the riskless asset is in positive net supply, then the market portfolio is located to the left of wt on the capital market line.

We can now write: 
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 since the market portfolio wm is on the min-var frontier.  

Further, we can note something about the holdings of investors:

If a riskless asset is available, we know that the mutual fund theorem (all investors effectively hold only two assets) allows us to say that more risk averse investors hold less of wt or wm.
Indeed,  
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  says just this: as 
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 is smaller as the individual investor is more risk averse and this tells us how aggressively the investor holds wt.  

(more risk averse ( (-v2) is bigger)

If there is no riskless asset, the same intuitions hold.  Write:
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FOCs:
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So,
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Further, since 
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, w* is a portfolio combination of wd and wg.  Thus, all investors again hold a portfolio combination of wd and wg or min-var portfolios.  Aggregate demand is therefore a portfolio combination of wd and wg and so wm must be a min-var portfolio itself.
Thus, we can write:
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or, for each asset:  
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 is the expected return on a portfolio uncorrelated with the market portfolio and now this is the Black CAPM.

When there is no riskless asset, we would like to use the same idea as we did before and say that more risk averse investors (in the Arrow-Pratt sense) hold less of the market portfolio.  Because the holdings are in two risky assets, we can’t in general say this.  However,
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says that more risk averse investors ((-v2) is bigger) 
hold less of wd and so more of wg.  We cannot, however, say things about the market portfolio, individual assets, or other pairs of min-var portfolios.  
(Note: 
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  so  
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Note:  The CAPM has given us 2 measures of risk (1) the variance of a portfolio which determines the efficiency of a given portfolio (macro risk if you will) and (2) beta which measures the systematic risk of individual assets (micro level risk).
Note:
Mean-variance analysis generates the separation results and the pricing results.  The equilibrium analysis simply identifies the market portfolio as being a minimum variance portfolio.

Consistency of Mean-Variance Analysis and Expected Utility Maximization
(1)
Quadratic Utility

We can write, without loss of generality, 
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 (with b>0) since utility is unique only up to a positive affine transformation.

Expected Utility is then:



[image: image265.wmf])

,

(

)

(

2

)]

(

[

2

2

2

s

s

z

v

z

b

z

z

u

E

=

+

-

=






…a function of mean return and variance of returns alone.

There are two drawbacks to quadratic utility: 

(a) satiation – u(·) is decreasing in return after some point; and 

(b) increasing absolute risk aversion.  
Neither, we believe, is consistent with reality.

(2)
Multivariate Normal Returns for Assets

Portfolio combinations of normal random variables are normal and normal random variables are completely characterized by their means and variances.  Thus, each asset or portfolio is characterized by 
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 and
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.  Thus, for any u(z), E[u(z)] is characterized by 
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 and 
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There are (at least) two drawbacks to this approach as well: 

(a) limited liability; and 

(b) derivatives.

Both imply that a (joint) normal distribution for returns on all the assets is not a reasonable representation of reality.
The Three Moment Problem

Notation:
We consider the 3rd central moment: skewness 
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Co-skewness is defined as:  
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The skewness of a portfolio is given by:

[image: image272.wmf]å

å

å

=

=

=

=

N

i

N

j

ijk

k

j

N

k

i

p

m

w

w

w

m

1

1

1

3


We consider that investors have derived utility functions: 
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 - could come from a cubic utility of returns where 
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To solve this problem, we could try to hold 
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 and 
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 fixed and max 
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 (analogously to the CAPM approach), but this just gives a big mess.

Instead, start with an investor at his optimum 
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 (“o” for optimal) then consider perturbing him away from this optimum by having him sell some small amount (w) of his optimal portfolio and buy this amount of individual asset i.  The resulting portfolio p has:
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If we consider 
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 it should find a maximum at w = 0 by assumption.
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This must hold for any asset i ( 
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 depends only on covariance and co-skewness of asset i with the optimal portfolio (and some preference parameters which we will get rid of).

Note:  Only 
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 are not important since they provide no tradeoffs at the margin:  
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  so it is asset i’s contribution to the skewness of the optimal portfolio, just as 
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 implies asset i’s covariance with the optimal portfolio determines asset i’s contribution to portfolio variance.

Also note 
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If v3 > 0 (so positive skewness is liked), this term is negative so there is a substitution between 
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 at the optimum.

If a riskless asset exists, the relation must hold for it:
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and so we can write:
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Then,
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where  
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If some investor’s optimal portfolio is the market portfolio (by happenstance) then the 1st two terms duplicate the CAPM.

Finally, consider the asset with returns, 
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, that are uncorrelated with 
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 and that has the smallest variance of all such assets.

· Here we need the further identification since not all zero-beta assets have the same expected return as they did in the CAPM.  Then,
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We can then further develop the expected returns relation to:
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The intuition?

Any zero-beta asset will do – the difference will be accounted for by different values of 
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 and 
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.  Note, however, that we are still left with the need to identify some investor’s optimal portfolio if we were to try to apply this pricing relation.
Capital Market Line
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