Lecture 3: The General Portfolio Problem 

· Readings:

· Ingersoll – Chapter 3
· Huang & Litzenberger – Chapter 2

· Milgrom & Stokey – “Information, Trade and Common Knowledge,” Journal of Economic Theory, 1982

· Grossman – “On the Efficiency  of Competitive Stock Markets Where Traders Have Diverse Information,” Journal of Finance, 1976
The General Consumption Portfolio Problem:
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1′w = 1 (a scalar)



What are the constraints? – Technology & Budget
Why isn’t it generally possible to allow our agent unrestricted choice over consumption levels c0 and c1s?

We may alternatively write the technology constraint as a vector constraint:
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 if we write in terms of wealth at time 1.
Assuming a state independent von Newman-Morgenstern utility function of wealth (as is standard) we simplify the problem by substituting the technology constraint into the maximand:
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subject to:
1′w = 1

so
L = 
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We have a concave objective function with a linear constraint.

The First Order Conditions, which are necessary and sufficient given this structure, are written:

(1)
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(2)
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((2) is a vector of equations, one for each asset i ( 
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Now, rearrange some equations…

(2′)
premultiply (2) by w*′ and use (3)
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(1′)
from (1) and (2′)
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(1′) gives 
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 as proportional to expected marginal utility of current consumption and to the expected marginal utility of invested wealth or savings (i.e. (W0 – c0)).
The Message: consume from endowed wealth until the expected marginal utility of current consumption and savings (the second part of (1′) is the derivative of the Lagrangian with respect to (W0 – c0)) are equal (that’s (1′)), then allocate savings across the assets until each asset gives an equal contribution to expected marginal utility of future wealth (that’s the set of equations that make up (2)).

In the study of finance, we concentrate on the second problem of allocating after consumption wealth among assets and often assume the consumption decision can be made independently (or is taken as given), so the concentration is on versions of (2) – become familiar with it!
To simplify:  Consider a derived utility function over returns defined as 
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  by taking W0 and c0 as given we are isolating the investment or portfolio choice decision.  Then,
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Asset by asset, equation (2) becomes 
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 assets i – we might think of this as normalizing after consumption (date t = 0) wealth (savings) to 1.
Alternatively, the problem can be stated (using utility of returns):
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The FOCs are:
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(again, a vector of equations, one for each asset)

plus, 1′w* = 1 again


Each equation is:
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 assets i
This is an expression we will see again and again.
The expression says essentially that the expected return on any asset is related to the covariance of the marginal utility of the return of an optimal portfolio with the return on that asset:



[image: image26.wmf])

*),

(

(

]

[

*)]

(

[

]

*)

(

[

i

i

i

z

z

u

Cov

z

E

z

u

E

z

z

u

E

¢

+

¢

=

Þ

=

¢

f

f


This expression might already look familiar (from last our prior discussions).  Rewrite the equations:



[image: image27.wmf]f

=

¢

]

~

*)

~

(

[

i

z

z

u

E

  
[image: image28.wmf]"

  i 
by assuming a discrete number of states and writing out the expectation:
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or,
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this is a supporting price equation with…
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since each component is positive we can alternatively write
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(state price density), so we have seen the FOC before.

Or, write 
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 for another way to see that λ (the state price density) is proportional to marginal utility of return on an optimal portfolio (see the similar equation above) or equals the marginal rate of substitution between consumption at time 0 and consumption in state s if we can identify 
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 as before.
If there is a riskless asset, 
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and, 
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Example:  Risk neutral agent and there exists a riskless asset.  If u(·) is risk neutral (linear), u′(·) is a constant.  So, 
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.  The risk neutral probabilities equal the actual probabilities, so the true expected return on all assets must be R.  
This should not be too surprising.  From 
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  we can see that the FOC is, in this example, equivalent to 
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So, 
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 under the actual probabilities if there is a single risk neutral agent in the market (facing no trading restrictions: short sales constraints or position restrictions).  A risk neutral agent doesn’t require compensation for risk and buys or sells each asset until his FOC holds for each asset.  Note here, the behavior of the agents determines the relation between prices and payoffs.  Whereas before we examined the relation between given prices and payoffs considering only that this relation did not allow for arbitrage opportunities.
Now consider the state price density:

[image: image52.wmf]f

p

l

u

p

s

s

s

¢

=

=

  a constant, so,  for each state s, 
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.  We write 1 = E((zi) when ( is not a constant so this example again illustrates why λ is called a “stochastic discount factor.”
Example: 
Now, assume u(·) is quadratic:  u(z) = az + ½bz2   with b < 0 for concavity (we must also constrain the range of z to ensure monotonicity).  In this case, u′(z) = a + bz is linear.
The equation 
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Thus, the expected return on any asset is linearly related to its covariance with an optimal portfolio’s returns – here, wealth/return on an optimal portfolio is a sufficient statistic for marginal utility.  (There is a negative sign in the expected return, but recall that b < 0.)

If there is a riskless asset,  
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   since the riskless asset has zero covariance with all zi.
So, the expected return relation becomes 
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 which must hold for any asset or portfolio.  Thus it must hold for z* so we write: 
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.  Substituting this into the equation for the expected return on asset i we get
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Except for the * rather than an M (to indicate the “market” portfolio), this is the CAPM pricing relation.  We will see what allows the switch from * to M later.
More generally:
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Why is there a negative sign?
So, it is (the negative of) the covariance with marginal utility of return on an optimal portfolio that is important.

With a riskless asset:
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.  Again this must hold for z* so 
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and we can solve to find that 
[image: image69.wmf])

,

'

(

)

,

'

(

)

(

*

*

z

u

Cov

z

u

Cov

R

z

R

z

i

i

-

+

=

.  This illustrates one of the main challenges in deriving useful asset pricing equations.
When we consider the Capital Asset Pricing Model (“CAPM”), we will look at a full portfolio problem with many assets.  For now, let’s consider Properties of Simple Portfolios:
· 1 risky asset with return 
[image: image70.wmf]z
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 and one riskless asset with return R
Let w be the portfolio weight on the risky asset.
Define, for convenience, the excess return as 
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The investor’s problem is:
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  subject to 1′w  = 1 (i.e. the portfolio weights are w and 1 – w).


Substitute the budget constraint into the maximand to get:
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The FOC is:
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  just a simple version of the general FOC.
Evaluate this FOC at w = 0   (  
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  (since u((R) is a constant).  This is greater than or less than zero as E(x) is greater than or less than zero (or as E(z) is greater than or less than R).  We usually assume that E(z) > R so that the FOC is greater than zero at w = 0.  Examine the FOC, since u′ is a decreasing function of return, as w is increased above 0, the small realizations of x are weighted more heavily than the large realizations of x in the expectation, reducing the value of the FOC.  So, if E(x) > 0 at w = 0, then some w > 0 solves the FOC.  Therefore, all risk averse investors have demand for the risky asset of the same sign: positive if 
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Alternatively, the 2nd order condition is:     
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 for all risk averse investors, so the FOC is decreasing in w.  So, if at w = 0, the FOC is positive, it is zero at some w* > 0.

In the simple portfolio problem, we have full insurance available, so using the Arrow-Pratt measure of risk aversion is appropriate.  If agent A is more risk averse than agent B, how do you think they should behave towards holding the risky asset in this simple setting?

Consider uA and uB such that there exists some G with G′>0 and G″<0 and uA=G(uB).  So, A is more risk averse than B in the A-P sense.

The FOC for A is written:
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...evaluate this at 
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 - if G′ is a constant (G(uB) = g×uB+k) this FOC equals zero since 
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 (i.e. if uA if is an affine transformation of uB they represent the same preferences and so have the same optimum).

Since G″ < 0 (i.e. G′ is decreasing), low (negative) x and so low uB(wx+R) are weighted more heavily than are high x (relative to B’s FOC).  Thus, the FOC for A evaluated at 
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  The same reasoning as before this tells us that some 
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 sets A’s FOC to zero.  Thus, an investor who is more risk averse holds less of the risky asset.

Now, consider a single investor, so hold the utility function constant, but look at different wealth levels.  Why?  Because A(W0) depends on W0.  Do we get what we think we should?

Write final wealth as
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 (ignore current consumption).

Thus, to increase initial wealth we can increase W0 or equivalently increase z and R together: 
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 stays the same.  So, we can leave 
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 unchanged and increase R (i.e. a comparative static change in R leaving the distribution of 
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 fixed is equivalent to a change in W0).  We decrease the price of the safe asset and leave the reward for bearing risk the same (thus decreasing the price of the risky asset as well).
Look at our FOC – we normalized W0 to be equal to 1 – and do a comparative static change in R.
Think of 
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as a level set of the form F(w,R) = 0.

The implicit function theorem tells us that:
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…the denominator is negative, the numerator is negative or positive depending on whether A(·) is decreasing or increasing.  What if A(·) is constant?  Thus, decreasing absolute risk aversion is sufficient for the optimal amount of the risky asset, w*, to be increasing in initial wealth.  The economic interpretation…the wealth effect (driven by the dependence of A(.) on wealth) drives this move.  There is no substitution effect as both the price of the safe and risky assets have declined.

Now, suppose that we instead hold the distribution of z fixed.

What will an increase in R do?

There is still an increase in wealth, however, it will now also decrease the reward for risk bearing (introduce a substitution effect) and reduce the investor’s interest in holding the risky asset.


The FOC:
E[u′(wz + (1-w)R)(z-R)] = 0
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  + a negative term

Since the distribution of z remains fixed the wealth effect is not as powerful as when the distribution of x was held fixed and we now see opposing forces at work.  From above, if w* 
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 1 and A(·) is increasing, this entire expression is negative.  So, a sufficient condition for an increase in R (holding the distribution of z fixed) to decrease the demand for the risky asset is increasing absolute risk aversion.  The income and substitution effects work in the same direction.   There are no simple sufficient conditions for a positive reaction towards w* with a general utility function.  Intuitively, if A(·) is decreasing, since we have allowed the reward for risk bearing to decline, we would need A(·) to decrease fast enough to offset the substitution effect (that negative term) in order to get 
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Finally, consider a comparative static change in the expected return on the risky asset; shift the distribution by adding a constant.  Replace 
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The FOC is now:
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Evaluate this at 
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Since we know w* > 0 (if E(x) > 0), the first term in the numerator is negative iff A(·) is decreasing.  The 2nd term in the numerator and the denominator are negative.  So, decreasing absolute risk aversion is sufficient but not necessary for w* to be increasing in
[image: image112.wmf]m

.  We have increased the reward for risk bearing (decreased the price of the risky asset) so for decreasing absolute risk aversion investor, the income and substitution effects work together.  It is not necessary since we could allow for “slowly” increasing A(·) and still have w* increasing.

Example:
CARA Utility
u(z) = -e-Az with A > 0 (A is constant so there is no wealth effect)
The problem is:  
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  …so the budget constraint is in the maximand.

We have normalized W0 = 1

Let 
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~ N(a, b)  (note: b > 0 since it’s a variance and presume a > 0 as is common).
Given that 
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 is normally distributed (and so wx+R is normal), we can write the problem as:
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by using the moment generating function for normal random variables. ( Know this trick
Note: A(wa+R) is the mean of the random variable of interest and A2w2b is its variance.
Take minus the log of minus E[u(z)] (a monotonic transformation) and the problem becomes:
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The FOC is:
Aa – A2w*b = 0
or, 
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Note:
(1)
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(2) w* > 0 iff a > 0 (as before)

(3)
w* is independent of R (since A(·) is constant) and increasing in a
The amount of wealth w* in the risky asset depends on the mean and variance of excess returns (why?) and on preferences – parameterized by A(·), the measure of absolute risk aversion.
We see that 
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 which implies that the dollar amount invested in the risky asset is independent of initial wealth.  So, for all initial wealth levels the same dollar amount is put in the risky asset; the rest is made up of a (positive or negative) position in the riskless asset.

Example:
CRRA utility  



We’ll use log utility for simplicity
Also, let 
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= h > 0 with probability p



= k < 0 with probability 1-p
(Why must k<0?)

And, writing utility of returns we have again normalized W0 = 1 to simplify the problem.

u(z) = Ln(wx + R)
so,
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The FOC is:

[image: image123.wmf]ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

x

R

x

w

E

*

1

 = 0

Write out the expectation (substitute in h and k for x) and rearrange
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or,



p(w*k + R)h + (1 - p)(w*h + R)k = 0



So,
w* = 
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 > 0 if 
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 > 0 as before.
Note that now w is not independent of initial wealth (here R), a general result for CRRA utility.
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 is in fact a constant, so the same proportion of initial wealth is put into the risky asset for all wealth levels.  Similarly, w* increases in R (since A(·) is decreasing) and 
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Stochastic Dominance – a bit of a tangent
One portfolio dominates another if it always outperforms the other – state by state.  To First Order Stochastically Dominate (“FOSD”) a second portfolio, a portfolio need not always outperform the second; rather, we require that the 1st portfolio’s probability of exceeding any given level of return is larger than that of the second portfolio.
That is…if f(z1) and g(z2) are the marginal density functions for the returns on portfolios 1 and 2, respectively, then portfolio 1 FOSD’s portfolio 2 if:
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or, F(x) 
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 G(x) 
[image: image135.wmf]"

x  using their cumulative distribution functions.

We can write this in terms of random variables as:
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  where 
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 is a non-positive random variable

Dominance would be written:
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  where 
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 is a non-positive random variable (these are realizations)
This requirement of equality of distributions illustrates the important difference between FOSD and dominance.  The probabilities of the states are irrelevant when considering dominance, yet they are crucial in FOSD (though the states themselves are not).
Consider two assets with returns {0, 2} and {0, 1}.
If   prob(z1=0) 
[image: image140.wmf]£

  prob(z2=0)  so that prob(z1=2) 
[image: image141.wmf]³

 prob(z2=1),  then asset 1 FOSD’s asset 2.  Only in the case that z1=2 and z2=1 in the same state of nature (i.e. they are perfectly correlated) does asset 1 dominate asset 2.

In other words, if 
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 represents the market returns, then asset 1 dominates asset 2 (also, 1 FOSD’s 2 – why?), so there is an arbitrage opportunity.

If  
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  represents the market, then there is no dominance or arbitrage.

However, if prob(state1) 
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 0.5, then asset 1 FOSD’s asset 2

Investors don’t disagree about dominance as long as they view the same set of states as possible.  They can, however, disagree about FOSD if they have different probability assessments.

An immediate result is that no non-satiated investor will ever hold all of his/her wealth in a/the risky asset, 
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, that is first order stochastically dominated.  This is because 
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by the non-positivity of 
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 and the strict monotonicity of u(·).
Think of 
[image: image150.wmf]x
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 as a vector of all zeros and a -$1 in one state – the idea is why take the chance of throwing away $1 when the two portfolios “cost” the same.

Alternatively, we can compare 2 “normal” distributions, where one is the other minus a constant:



Investors may hold FOSD’ed assets as part of their optimal portfolios (but will never hold FOSD’ed portfolios).  Recall dominated assets cannot exist or no investor has an optimal portfolio.

Why?  Think of our example 
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  when (prob(s1)) 
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 (prob(s2)) then asset 1 FOSDs asset 2.

Asset 2, however, is a hedge against the risk of asset 1.  It will be held in a positive amount by all strictly risk averse investors regardless of the probabilities of the states.  It is 2’s negative correlation with 1 that gives it value – however, if you had to choose between them, nobody would choose asset 2.

CAPM Example – negative beta assets are useful and held in portfolios, but you would never put all of your wealth in a negative beta portfolio.  Why?
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