Lecture 10:
Option Pricing

· Readings:

· Cochrane – Chapter 17
· Ingersoll – Chapter 14
· Cox, Ross & Rubinstein, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, 1979

· Ross, “Options and Efficiency,” QJE, 1976

Background
· Options are side bets between investors concerning the future price level of an underlying asset (which we will refer to as a stock for simplicity) relative to a fixed benchmark.  Even more generally, a bet about the future realization of a random outcome (weather).  As they are created when two investors take opposite sides of the “bet,” they are in zero net supply.

· A call option is a financial security which gives its owner the right (but not the obligation) to buy an underlying asset (stock) for a pre-specified price (this is the fixed benchmark called the strike or exercise price, k) on (or before) the expiration date (T) of the option contract.  A “European” call option can be exercised only on the expiration date whereas an American call can be exercised at any time up to and including the expiration date.


· A put option gives its owner the right (but not the obligation) to sell an underlying asset at the strike price on or before the expiration of the put option contract.


· Given the transactional complexity (at least for the first time you discuss options) of a call option, we will first identify several relevant prices in the hopes of avoiding confusion (we will concentrate our discussion on call options):

c or ct is the current price/value of the call option 

cT is the payoff/value of the call at the expiration date

s or st is the current price/value of the underlying asset

sT is the price/value of the underlying asset at T

k is the contractually specified strike price

Similarly,

p or pt is the current price of the put option

pT is the payoff of the put at expiration


· The basic option pricing literature concentrates on finding ct as a function of st and other variables in a variety of circumstances.

Payoffs at Expiration
· A call option has value to its owner at T only if the price of the underlying asset sT is above the strike price k.  Thus buying a call is a bet the price will end up above this benchmark.  If it is, the payoff on the call is sT  - k; if not the payoff is not sT  - k (which is negative if sT  < k) but rather 0 (because the owner has a choice, an option).  The owner of the option simply lets it expire unexercised when the exercise value would be negative.  Note that the buyer of an option purchases a choice (right), the seller of an option incurs an obligation.


· We write the payoff of the call option as:
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Once again, the owner of a call option benefits if the price of the underlying asset ends up above the strike price at the expiration of the option.

Graphically, on the expiration date…


           Buy (Own)




Sell (Write)
  
cT




cT







  ct




k
        sT





sT

  -ct
      The dotted line is the “profit” of the position which was commonly but incorrectly examined.

· A put option works in the “opposite” way.  It allows you to sell for k.  So, you (the owner) are interested in (are betting on) states in which the true price is low (lower than k).  Note, however, that you do not have the same interest in a low price as does the seller of a call option.
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Put-Call Parity
· The law of one price allows us to find a particular relation between the current value of a put, the current value of a call, the current value of the underlying stock, and a risk free bond’s value.

· Consider the following two strategies:

(1) Buy a call and write (sell) a put on the same underlying, with the same strike price k, and the same expiration date T;

(2) Buy the underlying stock and borrow so you must payback k at time T.

· The time T payoffs of these 2 strategies as a function of the price of the underlying are:


(1)

Call



Put



Portfolio (sum)

                        k
     sT

           k
      sT 


 k                sT




    -k



      -k
(2)

Stock



Borrow


Portfolio (sum)

                        
     sT

           k
      sT 


 k                sT




    -k



      -k

· Now, since their future payoffs are equivalent, cT - pT = sT – k, in all states of nature (note that the only uncertainty for both positions concerns the future, time T, price of the underlying stock), their current prices must also be equal.
So, 
[image: image5.wmf]f

t

t

t

R

k

s

p

c

-

=

-


Thus, 
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so we can find pt if we know ct – hence our concentration, as is traditional, on call options.


Restrictions on Option Prices:

Ingersoll presents several results – the more intuitive of which are replicated here – these illustrate some important intuitions/features of option prices.

Proposition (1) – American and European put and call option prices are always at least weakly positive.  This comes from the limited liability of the payoff equations for options.

Proposition (2) – The final payoffs on options are weakly positive and as given above.  Options are never exercised out of the money as the exercise decision is a choice of the owner.
Proposition (3) – American calls and puts must always sell for at least their exercise values, 
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 (exercise “value” not “price”).  Otherwise an immediate arbitrage is available.

Proposition (4) – For two American calls (puts) written on the same underlying with the same strike price, the call (put) with the greater time to maturity is at least as valuable as the “shorter” contract.  With a “longer” American contract, the owner can do all she could with a shorter contract and more (i.e. exercise before, on, or after the expiration of the shorter contract), the current value of the extra right must be weakly positive.

Proposition (5) – An American call (put) is worth at least as much as a European call (put) with the same characteristics.  Again, the added rights have value.  Here, the right is to exercise not only at maturity, but before T as well.

Proposition (6) – Call option values are non-increasing in the exercise price and put option values are non-decreasing in the exercise price
Consider calls – if you have two calls, one with a low exercise price and one with a high exercise price, then whenever the second can be profitably exercised, the first can also be profitably exercised and for a strictly greater payoff.  Also, the first can be profitably exercised in some states in which the second with the higher exercise price cannot be.  The first call must have a higher current value.
Early Exercise of American Call Options
· We can show that one should never exercise an American call option early if the underlying asset pays no dividends.

· From the payoff equation we know that at expiration 
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· Thus, the current price of the call must satisfy the restriction 
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.  Since the risk free rate is strictly positive (and thus Rf > 1) 
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 is often called the “option” value.  The added value from keeping the option alive rather than exercising it.  This result strengthens Proposition 3 above by making the inequality strict.)
· This says: what you get if you exercise the call early is strictly less than what you get if you sell the call.  This suggests that in simple situations, we can concentrate not only on calls but European calls.  CR&R consider American calls which leads to some of the complications.

Binomial Option Pricing Example (from CR&R): - The riskless hedge

· We could always proceed with 
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, but it is instructive to go through a more elaborate analysis.  In the end, of course, 
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 will hold.

· Suppose the distribution of the payoff on a stock over the next period is given by
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Also assume that Rf = 1.25, k = 50 (call is currently at the money), and T = 1.
The question of the day: What is c0?
To address this question we examine a portfolio formed by selling 3 calls, buying 2 shares of the underlying stock, and borrowing $40 now (so at T we pay back $50 = $40 x Rf).

    Payoff

Now

if s1 = 25

if s1 = 100

 Sell 3 calls

  3c0

      0


    -150


Buy 2 shares

-100

     50


      200


.   Borrow

  40

    -50

   
     -50         .

     Total
           3c0 - 60

      0


       0
Since, in “all” states of nature the payoff on the portfolio is zero (riskless hedge), its current price must be zero by the law of one price.  So 3c0 - 60 = $0, or c0 = $20.

Alternatively: A replicating portfolio:
Buy 2 shares and borrow $40 (to again payback $50) and compare this to buying 3 calls.


    Payoff

Now

if s1 = 25

if s1 = 100
 (1)
Buy 2 shares

-100

     50


      200


.   Borrow

  40

    -50

   
     -50         .

     Total
             -60

      0


      150

    Payoff

Now

if s1 = 25

if s1 = 100
(2)
  Buy 3 calls

 -3c0

      0


     150
The law of one price again says c0 = $20 (-3c0 = -$60) and here we see that an appropriately levered position in the underlying (1) replicates the payoff on the call option (2).  Replicating the payoff on the option is the approach used in the early option pricing literature.  This implies that the call option is redundant, i.e., is already in the asset span.  Ross (1976) looks at the usefulness of call options when this is not true.
The General Binomial Formula:

Assume: The price of the underlying stock follows a multiplicative binomial process over discrete periods.  The gross return on the stock can have one of two values – u (for up) with probability q and d (for down) with probability 1 - q.  So, if s is the current price of the stock, its distribution looks like:




  q

us




s



1-q

ds
Also, assume the periodic risk free rate is constant: Rf > 1

We require 
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One Period Analysis:

If the call expires in one period, then its price process looks like:
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Now, as in the numerical example, form a portfolio containing 
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 shares of stock and the (dollar) amount B in riskless bonds.  The initial cost is 
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Now, choose 
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 and B to replicate the payoff of the call:
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and,
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Solve the above to find:
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(explain)  
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With 
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 and B chosen this way, we have a replicating portfolio and c = 
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s+B as long as this is not less than s – k.  If this is less than s – k, then c = s – k (recall the American option can not sell for less than its exercise value or it would represent an arbitrage opportunity).
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(unless this is less than s - k)
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(again, or s - k)

This is a risk neutral pricing equation where the risk neutral probabilities are given by:
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Note that the risk neutral probabilities depend only on parameters of the stock price process and the risk free rate.  We could also represent the pricing equation using state prices or a state price density (or stochastic discount factor) by adjusting for the actual probabilities and taking an expectation: 
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.  Question: where is q?
Finally,         c 
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(or s - k)
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Note:
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>0 and B<0, so the replicating portfolio is again a levered position in the underlying.  
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 is referred to as the “delta” of the option – the change in option value for a given change in the price of the underlying stock.  The general form of the pricing formula is ( times the current price of the underlying less the amount borrowed (which we can represent as the present value of the exercise price times some factor) necessary to form the replicating portfolio.
The Two-Period Problem




u2s




cuu=Max(u2s-k, 0)
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cud=Max(uds-k, 0)
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 cd
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d2s
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Given what we have just derived and that, under our assumptions for Rf and the stock price process, the environment does not change from period to period, so we can automatically write:
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Careful, the forms are the same but not everything is.  For example, examine the Δ at each node of the tree using a numerical example.

At time 0 we could again form a portfolio of 
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 shares and B in bonds to replicate the call value cu if s ( us or cd if s ( ds.  Again, the forms of 
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 and B are unchanged but their values are not.
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Simply substitute the new cu and cd from above to get the 
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s+B representation for the current call price.  As before, c = Max(
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s+B, s-k).  
Alternatively, we can again write the current value of the call as:
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again, if this is greater than s-k or it will be s-k otherwise.

Substitution allows us to derive the risk neutral probability representation of the call price:

     c
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which we can see is always greater than s-k using the same process as was used above.

· The n period problem: By extension (of the last equation) we can write:
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· Now, let a be the smallest non-negative integer such that with a up moves and n-a down moves the option finishes in the money:
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· This can also be stated as a is the smallest non-negative integer greater than
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If a > n the option can never be in the money prior to its expiration and c=0.

If 0 ≤ a ≤ n then for all j < a, 
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 so we can simplify our formula as:
 c 
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Rewrite this as:



c
[image: image57.wmf](

)

ú

û

ù

ê

ë

é

-

÷

÷

ø

ö

ç

ç

è

æ

-

-

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

=

=

-

-

å

å

j

n

j

n

a

j

n

f

n

a

j

n

f

j

n

j

j

n

j

p

p

j

n

j

n

R

k

R

d

u

p

p

j

n

j

n

s

*)

1

(

*

)!

(

!

!

*)

1

(

*

)!

(

!

!


or,
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Where:
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Again, 
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’s are the complementary binomial distribution function – the probability of getting  a or more u’s in n tries if the probability of u is 
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The Continuous Time Limit:
· Here we let the “n” from the n-period problem get large.  In doing so, we want to let the length of a period of time go to zero.  We need to take some care in doing this so that we don’t wind up with ridiculous parameter values that say the stock price is expected to change by 20% over an instant in time rather than over a year’s time.

· Let h represent the elapsed time between successive stock price changes (this is what we will let go to zero), and let T be the fixed length of calendar time to expiration (fixed number of “units” of time), and n is the number of periods of length h prior to expiration
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· We first need to adjust Rf.  Rf is one plus the rate of interest over a “unit” of calendar time, so over T units, 
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· Denote by 
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 one plus the riskless rate over a period of length h.  Then, over the time to expiration there are n such periods.  So, 
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 is the total return until expiration (date T).

· We therefore require: 
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· We also need to adjust u and d for changing n as well.

· Over each discrete period, in the n period model we assumed the stock price would experience a one plus rate of return of u with probability q and d with probability 1-q.

· It’s easier to work with Ln(u) or Ln(d) which gives the continuously compounded rate of return over each period.  The continuously compounded return is a binomial random variable with realization Ln(u) with probability q and Ln(d) with probability (1-q) in each period.

· Over n periods – the continuously compounded return is additive:
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where j is the (random) number of up moves (an “up” is a 1) in the n periods until expiration.
· Then,
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and,
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· The expected outcome for each trial is q (the probability of an “up”), so in n trials 
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· Since the variance of the outcome of each trial is 
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Var(j)=nq(1-q)

· So,

[image: image78.wmf](

)

[

]

(

)

[

]

n

n

d

Ln

d

u

qLn

s

s

Ln

E

m

ˆ

)

(

*

º

+

=





[image: image79.wmf](

)

[

]

(

)

[

]

n

n

d

u

Ln

q

q

s

s

Ln

Var

2

2

ˆ

)

1

(

*

s

º

-

=


If 
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 are the empirical values of the stock’s expected return and variance over the time until expiration (T periods till expiration with ( as the expected return over each unit of time and (2 the variance over each unit of time), then we want:
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as 
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· These conditions will follow if we define:
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By substitution you can see that for any n,
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So, the mean is correct for all n and the variance converges in the limit (as 
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· Our n period option pricing formula is:
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· Since 
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which means the binomial model converges to the Black-Scholes model, which is written 
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And they do as shown by the central limit theorem results developed in the paper.  Note again that the option price can be expressed as delta times the stock price less the amount that must be borrowed to replicate the option.
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