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In this example, we assume the reader has a basic understanding of multiple regression 
analysis. 
 
A traditional conjoint analysis is really just a multiple regression problem.  The 
respondent’s ratings for the product concepts form the dependent variable.  The 
characteristics of the product (the attribute levels) are the independent (predictor) 
variables.  The estimated betas associated with the independent variables are the utilities 
(preference scores) for the levels.  The R-Square for the regression characterizes the 
internal consistency of the respondent. 
 
Consider a conjoint analysis problem with three attributes, each with levels as follows: 
 

Brand 
A 
B 
C 

 
Color 
Red 
Blue 

 
Price 
$50 
$100 
$150 

 
For simplicity, let’s consider a full-factorial experimental design.  A full-factorial design 
includes all possible combinations of the attributes.  There are (3)·(2)·(3) = 18 possible 
product concepts (commonly called cards) that can be created from these three attributes.  
Further assume that respondents rate each of the 18 product concepts on a score from 0 to 
10, where 10 represents the highest degree of preference. 
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Assume the data for one respondent are as follows (as if in an Excel spreadsheet): 
 

 A B C D E 
1 Card# Brand Color Price Preference 
2 1 1 1 1 5 
3 2 1 1 2 5 
4 3 1 1 3 0 
5 4 1 2 1 8 
6 5 1 2 2 5 
7 6 1 2 3 2 
8 7 2 1 1 7 
9 8 2 1 2 5 
10 9 2 1 3 3 
11 10 2 2 1 9 
12 11 2 2 2 6 
13 12 2 2 3 5 
14 13 3 1 1 10 
15 14 3 1 2 7 
16 15 3 1 3 5 
17 16 3 2 1 9 
18 17 3 2 2 7 
19 18 3 2 3 6 

 
The first card is made up of level 1 of each of the attributes, or (Brand A, Red, $50).  The 
respondent rated that card a “5” on the preference scale. 
 
After collecting the respondent data, the next step is to code the data in an appropriate 
manner for estimating utilities using multiple regression.  We use a procedure called 
dummy coding for the independent variables (the product characteristics).  In its simplest 
form, dummy coding uses a “1” to reflect the presence of a feature, and a “0” to represent 
its absence.  For example, we can code the Brand attribute as three separate columns. 
 

 Brand A Brand B Brand C 
If Brand is “A”, then dummy codes = 1 0 0 
If Brand is “B”, then dummy codes = 0 1 0 
If Brand is “C”, then dummy codes = 0 0 1 
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Applying dummy-coding for all attributes results in an array of columns as follows: 
 

 A B C D E F G H I J 
1 Card # A B C Red Blue $50 $100 $150 Preference
2 1 1 0 0 1 0 1 0 0 5 
3 2 1 0 0 1 0 0 1 0 5 
4 3 1 0 0 1 0 0 0 1 0 
5 4 1 0 0 0 1 1 0 0 8 
6 5 1 0 0 0 1 0 1 0 5 
7 6 1 0 0 0 1 0 0 1 2 
8 7 0 1 0 1 0 1 0 0 7 
9 8 0 1 0 1 0 0 1 0 5 
10 9 0 1 0 1 0 0 0 1 3 
11 10 0 1 0 0 1 1 0 0 9 
12 11 0 1 0 0 1 0 1 0 6 
13 12 0 1 0 0 1 0 0 1 5 
14 13 0 0 1 1 0 1 0 0 10 
15 14 0 0 1 1 0 0 1 0 7 
16 15 0 0 1 1 0 0 0 1 5 
17 16 0 0 1 0 1 1 0 0 9 
18 17 0 0 1 0 1 0 1 0 7 
19 18 0 0 1 0 1 0 0 1 6 

 
Again, we see that card 1 is defined as (Brand A, Red, $50), but we have expanded the 
layout to reflect dummy coding.   
 
To this point, the coding has been very straightforward.  But, there is one complication 
that must be resolved.  In multiple regression analysis, no independent variable may be 
perfectly predictable based on the state of any other independent variable or combination 
of independent variables.  If so, the regression procedure could not separate the effects of 
the confounded variables.  We have that problem with the data above, since, for example, 
we can perfectly predict the state of brand A based on the states for brands B and C.  This 
situation is termed linear dependency.   
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To resolve this linear dependency, we omit one column from each attribute.  It really 
doesn’t matter which column (level) we drop, and for this example we have excluded the 
first level for each attribute, to produce the modified data table below: 
 

 A B C D E F G 
1 Card # B C Blue $100 $150 Preference 
2 1 0 0 0 0 0 5 
3 2 0 0 0 1 0 5 
4 3 0 0 0 0 1 0 
5 4 0 0 1 0 0 8 
6 5 0 0 1 1 0 5 
7 6 0 0 1 0 1 2 
8 7 1 0 0 0 0 7 
9 8 1 0 0 1 0 5 
10 9 1 0 0 0 1 3 
11 10 1 0 1 0 0 9 
12 11 1 0 1 1 0 6 
13 12 1 0 1 0 1 5 
14 13 0 1 0 0 0 10 
15 14 0 1 0 1 0 7 
16 15 0 1 0 0 1 5 
17 16 0 1 1 0 0 9 
18 17 0 1 1 1 0 7 
19 18 0 1 1 0 1 6 

 
Even though it appears that one level from each attribute is missing from the data, they 
are really implicitly included as reference levels for each attribute.  The explicitly coded 
levels are estimated as contrasts with respect to the omitted levels, which are defined as 
“0.”   
 
Microsoft ExcelTM (we have used Excel from Office 2000 in this example) offers a 
simple multiple regression tool, under Tools + Data Analysis + Regression (you must 
have installed the Analysis Toolpak add-in).  Using the tool, specify the preference score 
(column G) as the dependent variable (the Input Y Range) and the five dummy-coded 
attribute columns (columns B through F) as independent variables (the Input X range).  
You should also make sure a constant is estimated (this usually happens by default).   
 
The mathematical expression of the model is as follows: 
 
 Y = b1(Brand B) + b2(Brand C) + b3(Blue) + b4($100) + b5($150) + constant + e 
 
where: 
 Y = respondent’s preference for the product concept, 
 b1 through b5 are beta weights (utilities) for the features, 
 e is an error term, and 
 the reference levels are equal to “0.” 
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The solution minimizes the sum of squares of the errors over all observations.  A portion 
of the output from Excel is as follows: 
 
SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.948902        
R Square 0.900415        
Adjusted R 
Square 0.858921        
Standard Error 0.942809        
Observations 18        
         

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 5.833333 0.544331 10.71652 1.69E-07 4.647338 7.019329 4.647338 7.019329
X Variable 1 1.666667 0.544331 3.061862 0.009865 0.480671 2.852662 0.480671 2.852662
X Variable 2 3.166667 0.544331 5.817538 8.24E-05 1.980671 4.352662 1.980671 4.352662
X Variable 3 1.111111 0.444444 2.5 0.027915 0.14275 2.079472 0.14275 2.079472
X Variable 4 -2.16667 0.544331 -3.98042 0.001825 -3.35266 -0.98067 -3.35266 -0.98067
X Variable 5 -4.5 0.544331 -8.26703 2.68E-06 -5.686 -3.314 -5.686 -3.314
 
Using that output (after rounding to two decimals places of precision), the utilities 
(Coefficients) are: 
 

Brand 
A 0.00 
B 1.67 
C 3.17 

 
Color 
Red 0.00 
Blue 1.11 

 
Price 
$50 0.00 
$100 -2.17 
$150 -4.50 

 
The constant is 5.83, and the fit for this respondent (R-Square) is 0.90.  The fit ranges 
from a low of 0 to a high of 1.0.  The standard errors of the coefficients (betas) reflect 
how precisely we are able to estimate the betas with this design.  Lower standard errors 
are better.  The remaining statistics presented in Excel’s output are beyond the scope of 
this paper, and are generally not of much use when considering individual-level conjoint 
analysis problems. 
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Notes: 
 
One can easily generalize how many parameters (independent variables plus the constant) 
are involved in any conjoint analysis problem as #Levels - #Attributes + 1.  Most 
traditional conjoint analysis problems solve a separate regression equation for each 
respondent.  Therefore, to estimate utilities, the respondent must have evaluated at least 
as many cards as parameters to be estimated.  When the respondent answers the 
minimum number of conjoint cards to enable estimation, this is called a saturated design.  
While such a design is easiest on the respondent, it leaves no room for respondent error.  
It also always yields an R-square of 100, and therefore no ability to assess respondent 
consistency.   
 
Most good conjoint designs in practice include more observations than parameters to be 
estimated (usually 1.5 to 3 times more).  The design above has three times as many cards 
(observations) as parameters to be estimated.  These designs usually lead to more stable 
estimates of respondent utilities than saturated designs.   
 
Also note that in practice (except with the smallest problems), asking respondents to 
evaluate all possible combinations of the attribute levels is usually not practical.  Design 
catalogs and computer programs are available to find efficient fractional factorial 
designs.  Fractional factorial designs show just an efficient subset of the possible 
combinations, and still provide enough degrees of freedom to estimate utilities. 
 
The standard errors for the Color attribute are lower than for Brand and Price (recall that 
lower standard errors imply greater precision of the beta estimate).  Because Color only 
has two levels (as compared to three each for Brand and Price), each color level has more 
representation within the design.  Therefore, more information is provided for each color 
level than is provided for any level of the three-level attributes. 
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