
Reviving Integer Programming Approaches for AI Planning:
A Branch-and-Cut Framework

Menkes van den Briel
Department of Industrial Engineering

Arizona State University
Tempe AZ, 85287-8809

menkes@asu.edu

Thomas Vossen
Leeds School of Business

University of Colorado at Boulder
Boulder CO, 80309-0419

vossen@colorado.edu

Subbarao Kambhampati∗
Department of Computer Science

Arizona State University
Tempe AZ, 85287-8809

rao@asu.edu

Abstract

The conventional wisdom in the planning community
is that planners based on integer programming (IP)
techniques cannot compete with satisfiability and con-
straint satisfaction based planners. In this paper we
challenge this perception of IP techniques by present-
ing novel formulations that outperform the most effi-
cient SAT-based planner that currently exists. We will
present a series of IP formulations that (1) use multi-
valued state variables that are represented by networks,
and that (2) control the encoding length by progres-
sively generalizing the notion of parallelism. The re-
sulting IP encodings are solved within a branch-and-
cut framework and yield impressive results.

Introduction
The use of integer programming (IP) to solve AI plan-
ning problems has an intuitive appeal, given its re-
markable successes in similar problem domains such as
scheduling, production planning and routing (Johnson,
Nemhauser, & Savelsbergh 2000). In addition, one po-
tential advantage is that IP techniques can provide a
natural way to incorporate several important aspects
of real-world planning problems, including numeric con-
straints and objective functions.

Nevertheless, the application of IP techniques to AI
planning has only received limited attention. The first
appears to have been Bylander (1997), who proposed
a linear programming (LP) formulation that could be
used as a heuristic in partial order planning. Vossen
et al. (1999) discuss the importance of developing
“strong” IP formulations, by comparing two formula-
tions for classical planning. While a straightforward
translation of sat-based encodings yields mediocre re-
sults, a less intuitive formulation based on the rep-
resentation of state transitions results in considerable
performance improvements. Dimopoulos (2001) dis-
cusses a number of ideas that further improve this IP
formulation. A somewhat different approach that re-
lies on domain-specific knowledge is proposed by Bock-
mayr and Dimopoulos (1998; 1999). The use of LP

∗We thank Malte Helmert for making available the trans-
lator of the Fast Downward planning system. This research
is supported in part by the NSF grant IIS-0308139.

and IP has also been explored for non-classical plan-
ning. Dimopoulos and Gerevini (2002) describe an IP
formulation for temporal planning and Wolfman and
Weld (1999) use LP formulations in combination with
a satisfiability-based planner to solve resource planning
problems. Kautz and Walser (1999) use IP formula-
tions for resource planning problems that incorporate
action costs and complex objectives.

So far, none of these IP approaches have been able
to produce a planner whose performance compares
with today’s most advanced satisfiability and constraint
satisfaction-based planners. Indeed, the current con-
ventional wisdom in the planning community is that IP
techniques are not competitive with these approaches.
In this paper we challenge this current perception by
presenting novel IP formulations that outperform the
best SAT-based planners. The formulations we propose
rely on two key innovations:

1. We model changes in individual state variables dur-
ing planning as flows in an appropriately defined net-
work. As a consequence, the resulting IP formula-
tions can be interpreted as a network flow problem
with additional side constraints. While this idea can
be used with any state variable representation, it is
particularly synergistic with multi-valued state vari-
ables. We thus adapt existing methods to automat-
ically convert PDDL domain encodings into multi-
valued domain encodings.

2. One difficulty in scaling IP encodings has been the
dependency between the size of the encoding and the
length of the solution plan. This dependency often
leads to encodings that are very large. To alleviate
this dependency, we separate causal considerations
from the action sequencing considerations, as in Re-
alPlan (Srivastava, Kambhampati, & Do 2001), by
generalizing the common notion of parallelism based
on planning graphs. Planning graphs suggest that it
should be possible to arrange parallel actions in any
order with exactly the same outcome (Blum & Furst
1995). By relaxing this condition, we develop new
concepts of parallelism that are similar yet strictly
more general and powerful than the relaxation pro-
posed by Cayrol et al. (2001) for the LCGP planner.

A naive encoding of this decoupling will not be effective
as the sequencing phase will add exponentially many or-
dering constraints. Instead, we propose and implement
a so-called branch-and-cut framework, in which certain
constraints are dynamically generated and added to the
formulation only when needed. This approach has been
extremely successful for a number of large-scale opti-
mization problems (Caprara & Fischetti 1997). We
show that the performance of the resulting planning
system is superior to Satplan04(Siege) (Kautz 2004),
which is currently the most efficient SAT-based ap-
proach to planning. This is a significant result in that it
forms the basis for other more advanced IP-based plan-
ning systems capable of handling numeric constraints
and non-uniform action costs.

The remainder of this paper is organized as follows.
In the next section, we introduce three progressively
more general IP formulations. Subsequently, we dis-
cuss the branch-and-cut framework that is used to solve
these formulations. After that, we provide experimental
results for this approach, as well as a comparison with
Satplan04(Siege). Finally, we conclude with a summary
and a discussion of avenues for future research.

Integer Programming Models

This section describes a series of IP formulations for
classical planning that progressively generalize the con-
ditions on parallelism. As stated in the introduction,
we use (multi-valued) state variables instead of the
(binary-valued) propositional variables that were used
in the formulations by Vossen et al. (1999). The use
of multi-valued state variables is based on the SAS+
planning formalism (Bäckström & Nebel 1995). SAS+
is a planning formalism that uses multi-valued state
variables instead of propositional atoms, and it uses a
prevail condition on top of the regular pre- and post-
conditions (pre-, add-, and delete-lists). A prevail is a
condition imposed by an action that specifies for one or
more state variables a specific value that must hold be-
fore and during the execution of that action. Another
way to look at a prevail is that it implies the persistence
of a specific value. To obtain a state variable description
from a PDDL description of a planning problem we use
the translator that is implemented in the planner Fast
(Diagonally) Downward (Helmert 2005). This trans-
lator is a general purpose algorithm that transforms
a classical planning problem into a multi-valued state
variable description. It provides an efficient ground-
ing that minimizes the state description length and is
based on the ideas presented by Edelkamp and Helmert
(1999).

We formalize the use of multi-valued state variables
using the following notation:

• C = {c1, ..., cn} is a set of state variables, where each
state variable c has an associated (finite) domain Dc

of possible values. A state s is a variable assignment
over C given by the function s such that s(c) ∈ Dc

for all c ∈ Dc. A partial variable assignment over

C is a function s(c) on some subset of C such that
s(c) ∈ Dc where s(c) is defined. The state I is called
the initial state, and the partial variable assignment
G is called the goal.

• A = {a1, ..., am} is a set of actions (operators),
where an action is a partial variable assignment pair
〈pre, eff〉 of preconditions and effects respectively.
For an action a ∈ A, the set of state changes SCa is
a set of partial variable assignment pairs (f, g) such
that there exists a c ∈ C with s(c) = f ∈ pre and
s(c) = g ∈ eff. Similarly, the set of prevails PRa is
a set of partial variable assignment pairs (f, f) such
that there exists a c ∈ C with s(c) = f ∈ pre and for
all g �= f we have s(c) = g /∈ eff.

Also, we will assume that actions have at most one
state change effect or prevail condition on each state
variable. In other words, for each a ∈ A and c ∈ C,
we have |SCa(c)| + |PRa(c)| ≤ 1, where SCa(c) and
PRa(c), respectively, represent the set of state changes
and prevails that an action a imposes on a specific state
variable c. Finally, we assume a given maximum plan
length T for each formulation.

To illustrate the use of multi-valued state variables,
consider the Blocksworld domain with actions of the
form MOV E(x, y, z). In a propositional representation
of this domain, the atoms are given by OT (x), CL(x),
and ON(x, y), which represent respectively that block x
is on the table, clear, or on block y. The preconditions
and effects of the MOV E action for moving a block
to another block in a propositional-based representa-
tion are given by pre = {ON(x, y), CL(x), CL(z)},
add = {ON(x, z), CL(y)}, and del = {ON(x, y)}.
Multi-valued state variables naturally capture some of
the mutual exclusion relations between actions, for ex-
ample, those that correspond to different configurations
of the same fluent. Therefore, one way to translate this
domain into a state description is by creating the fol-
lowing multi-valued state variables

BELOW (x) := {OT (x)} ∪
⋃

y

{ON(x, y)} for all x,

ONTOP (x) := {CL(x)} ∪
⋃

y

{ON(y, x)} for all x.

The effects of the MOV E(x, y, z) action for moving a
block to another block are now given by
BELOW (x): ON(x, y) → ON(x, z)
ONTOP (y): ON(x, y) → CL(y)
ONTOP (z): CL(z) → ON(x, z)
ONTOP (x): CL(x) → CL(x)
where the first three are state change effects and the
fourth a prevail condition. A possible initial state and
goal are given in Figure 1.

It is interesting to note that there may be several
ways to translate a propositional representation into a
multi-valued state variable representation. For exam-
ple, we could have obtained a different translation if

A
B
C A B C

Initial state Goal

BELOW(A): ON(A,B)
BELOW(B): ON(B,C)
BELOW(C): ON(C,T)
ONTOP(A): CL(A)
ONTOP(B): ON(A,B)
ONTOP(C): ON(B,C)

BELOW(A): ON(A,T)
BELOW(B): ON(B,T)
BELOW(C): ON(C,T)
ONTOP(A): CL(A)
ONTOP(B): CL(B)
ONTOP(C): CL(C)

Figure 1: A Blocksworld instance

we had used a single dummy atom ON(x, ∗) to replace
all the ON(x, y) atoms in each BELOW (x) state vari-
able. In that case, the dummy atom would simply rep-
resent a lifted version of the ON(x, y) atoms, that is,
it would represent that a block x is on some block y
without specifying y. While we currently use the trans-
lator based on the ideas by Edelkamp and Helmert 1999,
preliminary experiments indicate that the domain rep-
resentation choice may impact the overall performance.

In the remainder of this section we first propose an
IP formulation that uses multi-valued state variables
together with the concept of parallelism as defined in
Graphplan. Subsequently, we discuss two IP formu-
lations that also use the multi-valued state variables,
but in addition generalize Graphplan’s concept of par-
allelism.

Single State Change (1SC) Formulation
This formulation uses Graphplan’s parallelism and al-
lows at most one state change for each state variable
per plan step.

We use action and flow variables, which we define as:
• xa,t ∈ {0, 1}, for a ∈ A, 1 ≤ t ≤ T ; xa,t is equal to 1 if

action a is executed at plan step t, and 0 otherwise.
• yc

f,g,t ∈ {0, 1}, for c ∈ C, f, g ∈ Dc, 1 ≤ t ≤ T ; yc
f,g,t

is equal to 1 if the state of state variable c transitions
from f to g at step t, and 0 otherwise.

Objective function
In classical planning it is sufficient to find a feasible
plan. Since the constraints guarantee feasibility we
could use a null objective, but when solving an IP en-
coding the choice of an objective function could signifi-
cantly influence the search performance as it determines
a search direction. Even though our objective function
can be any linear expression, we choose to minimize the
number of actions to guide the search.

MIN
∑

a∈A

xa,t

The constraints are separated into different con-
straint sets, which are given as follows.

yc
f,f,t

yc
f,g,t . . .

. . .

. . .

. . .

. . .

. . .

h

g

f

h

g

f

Period t–1
h

g

f

h

g

f

Period t+1

yc
f,f,t+1

yc
f,g,t+1

yc
f,f,t -1

yc
f,g,t -1

State variable c with Dc = { f, g, h }

Period t

Figure 2: State change flow network

State change flow constraints
In our formulation the state transitions of each
multi-valued state variable are represented by paths
in an appropriately defined network. In this network,
nodes appear in stages (levels) and correspond to the
possible values of the state variable at different plan
steps. If we set up an IP encoding with a maximum
plan length T , there will be T +1 stages in the network
(one stage for the initial state and T stages for the
number of succeeding plan steps). Arcs link nodes
between stages and correspond to state changes or
persistence of values. Over the course of a plan, state
variables transition from one value to the next. This
corresponds to a path in the network, where the source
node is a node in stage 0 (zero) that corresponds to
the state variable’s initial state. The sink node is a
node in stage T that corresponds to the goal, and in
case the goal is not defined for the state variable then
the sink node could be any of the nodes in stage T .

Figure 2 displays a network corresponding to the
state variable c with domain Dc = {f, g, h}. For each
allowable value transition there is an arc in the state
change network. The horizontal arcs, labeled by yc

f,f,t,
correspond to the persistence of value f within the state
variable c at plan step t. The diagonal arcs, labeled by
yc

f,g,t, correspond to the state change effects of an ac-
tion. In the network of Figure 2 there is no arc that con-
nects the value g to f between two consecutive stages,
so no action supports the state change (g, f) in c.

The resulting network flow constraints for each multi-
valued state variable c ∈ C are given as follows:

∑

g∈Dc

yc
f,g,1 = 1{f ∈ I} for f ∈ Dc, (1)

∑

h∈Dc

yc
g,h,t+1 =

∑

f∈Dc

yc
f,g,t for g ∈ Dc,

1 ≤ t ≤ T − 1 (2)
∑

f∈Dc

yc
f,g,T = 1 for g ∈ Dc ∩ G (3)

The state change flow constraints define the underlying
graph of the network. They ensure that (1) there is
a supply of one unit of flow at the source nodes, (2)

there is a balance of flow at all intermediate nodes,
and (3) there is a demand of one unit of flow at the
sink nodes if a goal is defined

State change implication constraints
Actions may introduce interactions between the state
variables. For instance, the effects of the MOV E
action in our Blocksworld example affect four different
state variables. Action interactions link state variables
to each other and must be represented by constraints.
For each c ∈ C, f, g ∈ Dc, f �= g, 1 ≤ t ≤ T we have
constraints linking all the actions state change effects
over the corresponding network arcs.

∑

a∈A:(f,g)∈SCa(c)

xa,t = yc
f,g,t (4)

The state change effects of an action are tied to the
flow variables. So, if an action xa,t with (f, g) ∈ SCa(c)
is executed then the source-sink path in the state
variable c must use the arc yc

f,g,t. Likewise, if we
choose to follow the arc yc

f,g,t in the source-sink path in
c then there must be an action xa,t that has the state
change (f, g) as one of its effects. The summation on
the left hand side prevents two or more actions from
interfering with each other, hence only one action may
cause the state change (f, g) in a state variable c at
step t.

Prevail implication constraints
Prevail conditions of an action link state variables
in a similar way as the state change effects of action
link them. For each c ∈ C, f ∈ Dc, a ∈ A, (f, f) ∈
PRa(c), 1 ≤ t ≤ T we have constraints linking the
all the action prevail conditions to the corresponding
network arcs.

xa,t ≤ yc
f,f,t (5)

In words, this constraint states that if action a is
executed at step t (xa,t = 1), then value f prevails
within the state variable c during step t (yc

f,f,t = 1).

Generalized Single State Change (g1SC)
Formulation
The formulation described above uses the concept of
parallelism as used in Graphplan (Blum & Furst 1995).
As stated in this paper, the basic idea in this approach
is that:

“several actions may be specified to occur at the
same time step so long as they do not interfere with
each other. Specifically, we say that two actions in-
terfere if one deletes a precondition or an addeffect
of the other. Thus, in an actual plan these inde-
pendent parallel actions could be arranged in any
order with exactly the same outcome.”
Here we will propose a set of alternative conditions

for parallel actions that will ultimately lead to smaller

encodings in terms of number of plan steps. We relax
the condition that parallel actions can be arranged in
any order by requiring a much weaker condition. In an
actual plan parallel actions could be arranged as long as
there exists a valid ordering. More specifically, within
a plan step a set of actions is feasible if (1) there exists
an ordering of the actions such that all preconditions
are satisfied, and (2) there is at most one state change
in each of the state variables.

To illustrate the basic concept, let us again examine
the Blocksworld instance given in Figure 1. The obvi-
ous solution is to first execute action MOV E(A,B, T)
and then MOV E(B,C, T). Clearly, this is not a solu-
tion that would be allowed within a single step under
Graphplan’s parallelism, since we cannot execute the
actions in an arbitrary order (that is, MOV E(B,C, T)
cannot be executed unless MOV E(A,B, T) is executed
first). Yet, the number of state changes within any state
variable is at most one, and while the two actions can-
not be arranged in any order with exactly the same
outcome, there does exists some ordering that is feasi-
ble. The key idea behind this example should be clear:
while it may not be possible to find a set of actions that
can be linearized in any order, there may nevertheless
be an ordering of the actions that is viable. The ques-
tion is, of course, how to incorporate this idea into an
IP formulation.

This example illustrates that we are looking for a set
of conditions that allow, within each plan step, those
sets of actions for which:
• All the actions’ preconditions are met,
• There exists an ordering of actions at each plan step

that is feasible, and
• Within each state variable, the value is changed at

most once.
The incorporation of these ideas only requires minor

modifications to the single state change formulation.
Specifically, we need to change the prevail implication
constraints and add a new set of constraints which we
call the cycle elimination constraints.

Prevail implication constraints
To incorporate the new set of alternative conditions
on parallelism, we relax the prevail implication
constraints. In particular, we need to ensure that for
each state variable c, the value f ∈ Dc holds if it is
required by the prevail condition of action a at plan
step t. There are three possibilities: (1) The value
f holds for c throughout the period. (2) The value
f holds initially for c, but the value is changed to a
value other than f by another action. (3) The value f
does not hold initially for c, but the value is changed
to f by another action. In either of the three cases
the value f holds at some point in step t so that the
prevail condition for action a can be satisfied. In
words, we can prevail a value f implicitly as long as
there is a state change that includes f . As before, the
prevail implication constraints link the action prevail

h

g

f

h

g

f

State variable c with Dc = { f, g, h }

Period t

Figure 3: Generalized state change

conditions to the corresponding network arcs. For each
c ∈ C, f ∈ Dc, a ∈ A, (f, f) ∈ PRa(c), 1 ≤ t ≤ T we
have:

xa,t ≤ yc
f,f,t +

∑

g∈Dc,g �=f

yc
f,g,t +

∑

g∈Dc,g �=f

yc
g,f,t (6)

The interpretation of these constraints is that in
each plan step we can prevail a value, change the value,
and prevail the new value as shown in Figure 3, where
the implicit prevails are indicated by the dashed lines.

Cycle elimination constraints
Figure 3 also indicates that there are implied orderings
between actions. Actions that prevail the value f
must be executed before the action that changes f
into g. Likewise, the action that changes f into g
must be executed before actions that prevail g. Hence,
these prevail implication constraints ensure that
actions can be linearized into some ordering. We just
need to make sure that the actions can be linearized
into a feasible ordering. The constraints outlined
above indicate that there is an ordering between the
actions, but this ordering could be cyclic and therefore
infeasible. To make sure that an ordering is acyclic we
start by creating a directed implied precedence graph
G = (V,E). In this graph the nodes a ∈ V correspond
to the actions, that is, V = A. We create an arc, an
ordering, between two actions (a, b) ∈ E if action a has
to be executed before action b in time step t, or if b
has to be executed after a. In particular, we have

E =
⋃

a,b∈A,c∈C,f,g∈Dc,g �=f :
(f,f)∈PRa(c)∧(f,g)∈SCb(c)

(a, b)

∪
⋃

a,b∈A,c∈C,f,g∈Dc,g �=f :
(f,g)∈SCa(c)∧(g,g)∈PRb(c)

(a, b)

The cycle elimination constraints ensure that the ac-
tions in the final solution can be linearized. They basi-
cally involve putting an n-ary mutex relation between
the actions that are involved in each cycle. They are
stated as follows. For each 1 ≤ t ≤ T we have:

∑

a∈V (∆)

xa,t ≤ |V (∆)| − 1 for all cycles ∆ ∈ G (7)

A
B
C

A

B
C

Initial state Goal

BELOW(A): ON(A,B)
BELOW(B): ON(B,C)
BELOW(C): ON(C,T)
ONTOP(A): CL(A)
ONTOP(B): ON(A,B)
ONTOP(C): ON(B,C)

BELOW(A): ON(A,C)
BELOW(B): ON(B,T)
BELOW(C): ON(C,B)
ONTOP(A): CL(A)
ONTOP(B): ON(C,B)
ONTOP(C): ON(A,C)

Figure 4: Another Blocksworld instance

Observe that the number of cycle elimination con-
straints grows exponentially in the number of actions.
As a result, it will be impossible to solve the result-
ing formulation using standard approaches. We address
this complication by implementing a branch-and-cut
framework in which the cycle elimination constraints
are added dynamically; this is discussed in the next
section.

State Change Path (kSC) Formulation
Now, we further generalize the g1SC formulation by
allowing more than one state change in each state vari-
able. Our aim is to potentially further reduce the num-
ber of plan steps needed to execute the plan. To illus-
trate this idea we consider another Blocksworld exam-
ple with the MOV E(x, y, z) actions depicted in Figure
4.

In this case, the obvious solution is to execute the
following sequence of actions, MOV E(A,B, T), then
MOV E(B,C, T), then MOV E(C, T,B), and lastly
MOV E(A, T,C). This solution would not be allowed
within a single step under Graphplan’s parallelism.
Moreover, it would also not be allowed within a sin-
gle step in the g1SC formulation. The reason for
this is that the number of state changes within the
ONTOP (A) state variable is two. First, it changes
from ON(A,B) to OT (A), and then it changes from
OT (A) to ON(A,C).

As before, however, there does exists an ordering of
the four actions that is feasible. The key idea behind
this example is to show that we can allow multiple state
changes in a single step. If we limit the state changes
in a state variable to paths, that is, in a single step
each value is visited at most once, then we can still use
implied precedences to determine the ordering restric-
tions.

This formulation uses both the action and flow vari-
ables that have been described earlier, respectively xa,t

and yc
f,g,t. In addition, it uses linking variables, which

are defined as:
• zc

f,t ∈ {0, 1}, for c ∈ C, f ∈ Dc, 1 ≤ t ≤ T − 1; zc
f,t

is equal to 1 if the value f links two consecutive plan
steps, and 0 otherwise.

. . .

. . .

. . .

. . .

. . .

. . .

h

g

f

h’

g’

f’

Period t
h

g

f

h’

g’

f’

Period t+1

yc
f,f,t+1

yc
f,g,t+1

yc
f,f,t

yc
f,g,t

State variable c with Dc = { f, g, h }

zc
f,t

Figure 5: State change flow network that allows multi-
ple state changes per period

The IP formulation of the kSC model is set up in a
similar way as the previous models. The objective is
still the minimization of the number of actions in the
plan, but the constraints are somewhat different and
stated below.

State change flow constraints
In this formulation we limit the number of state
transitions for each plan step to kc where kc = |Dc| − 1
for each c ∈ C. Again the state transitions of each
multi-valued state variable are represented by paths
in an appropriately defined network. In this network,
nodes appear in stages (levels) and correspond to
the values of the state variable. However, each stage
consists of two layers. If we set up an IP encoding with
a maximum plan length T then there will be T stages.
Arcs within a stage correspond to state changes or to
the persistence or no-op of values. Arcs between stages
just make sure that all stages are connected to each
other.

Figure 5 displays a network corresponding to the
state variable c with domain Dc = {f, g, h} that al-
lows multiple state changes per stage. The arcs going
rightwards and labeled by yc

f,f,t correspond to the per-
sistence or no-op of value f . The arcs going leftwards
and labeled by yc

f,g,t correspond to the state changes.
The arcs going rightwards and labeled zc

f,t connect two
consecutive stages. Note that with unit capacity on
the arcs, any path in the network can visit each node
at most once. The resulting network flow constraints
for each multi-valued state variable c ∈ C are given as
follows:

∑

g∈Dc:f �=g

yc
g,f,1 + 1{f ∈ I} = yc

f,f,1 (8)

yc
f,f,1 =

∑

g∈Dc:f �=g

yc
f,g,1 + zc

f,1 (9)

∑

g∈Dc:f �=g

yc
g,f,t + zc

f,t−1 = yc
f,f,t (10)

yc
f,f,t =

∑

g∈Dc:f �=g

yc
f,g,t + zc

f,t

for 1 ≤ t ≤ T − 1 (11)

∑

g∈Dc:f �=g

yc
g,f,T + zc

f,T−1 = yc
f,f,T (12)

yc
f,f,T =

∑

g∈Dc:f �=g

yc
f,g,T + 1

{f ∈ G} (13)

The state change flow constraints determine the
network structure. There is a supply of one unit of
flow at the source nodes (8), a demand of one unit of
flow at the sink nodes (13), and there is a balance of
flow at all the intermediate nodes (9) through (12).

State change and prevail Implications
The interactions that actions impose upon different
state variables are again represented by the state change
and prevail implication constraints that we defined for
the generalized single state change formulation (g1SC).
That is, for all c ∈ C, f, g ∈ Dc, f �= g, 1 ≤ t ≤ T , we
have: ∑

a∈A:(f,g)∈SCa(C)

xa,t = yc
f,g,t (14)

xa,t ≤ yc
f,f,t for c ∈ C, (f, f) ∈ PRa(C). (15)

Cycle elimination constraints
The implied precedence graph for this formulation is
given by G′ = (V,E′). It has an extra set of arcs to
incorporate the implied precedences that are introduced
when two actions imply a state change in the same class
c ∈ C. The nodes a ∈ V again correspond to actions,
and there is an arc (a, b) ∈ E′ if action a has to be
executed before action b in the same time step, or if b
has to be executed after a. More specifically, we have

E′ = E ∪
⋃

a,b∈A,c∈C,f,g,h∈Dc:
(f,g)∈SCa(c)∧(g,h)∈SCb(c)

(a, b)

As before, we need to ensure that the actions in the
solution plan can be linearized into a valid ordering,
and for each 1 ≤ t ≤ T we have:

∑

a∈V (∆)

xa,t ≤ |V (∆)| − 1 for all cycles ∆ ∈ G′(16)

Branch-and-Cut Framework
IP formulations are usually solved with an LP-based
branch-and-bound algorithm. The basic structure of
LP-based branch-and-bound involves an enumeration
tree, in which branches are pruned according to bounds
provided by the LP relaxation. A relatively large num-
ber of solvers is available (the best-known is proba-
bly CPLEX (ILO 2002)), and in the last few years
there have been significant improvements in their per-
formance (Bixby 2002).

For our formulations this standard approach is
largely ineffective due to the large number (exponen-
tial many) of cycle elimination constraints in (7) and

(16). While it is possible to reduce the number of con-
straints by introducing additional variables, the result-
ing formulations would still be intractable for all but the
smallest problem instances. Therefore, we solve the IP
formulations within a so-called branch-and-cut frame-
work which considers the cycle elimination constraints
implicitly. A branch-and-cut algorithm is a branch-and-
bound algorithm in which certain constraints are gen-
erated dynamically throughout the branch-and-bound
tree. If, after solving the LP relaxation, we are unable
to prune the node on the basis of the LP solution, the
branch-and-cut algorithm tries to find a violated cut,
that is, a constraint that is valid but not satisfied by
the current solution (this is also known as the separa-
tion problem). If one or more violated cuts are found,
the constraints are added to the formulation and the LP
is solved again. If none are found, the algorithm creates
a branch in the enumeration tree (if the current LP so-
lution is fractional) or generates a feasible solution (if
the current LP solution is integral). Branch-and-cut al-
gorithms have successfully been applied in solving hard
large-scale IP problems in a wide variety of applications
including scheduling, routing, graph partitioning, net-
work design, and facility location problems (Caprara &
Fischetti 1997).

In our implementation of the branch-and-cut algo-
rithm, we start with an LP relaxation in which the cycle
elimination constraints are omitted. Given a solution
to the current LP relaxation (which may be fractional),
the separation problem is then to determine whether
the current solution violates one of the omitted cycle
elimination constraints. If so, we identify one or more
violated constraints and add them to the formulation.
A separation problem involving cycle constraints oc-
curs in numerous applications, for example, the travel-
ing salesman problem (Padberg & Rinaldi 1991), and
has received considerable attention. Algorithms for sep-
arating cycle constraints are well-known, and the gen-
eral idea behind our approach is as follows:

1. Given a solution to the LP relaxation, determine the
subgraph Gt for plan step t consisting of all the nodes
a for which xa,t > 0.

2. For all the arcs (a, b) ∈ Gt, define the weights wa,b :=
xa,t + xb,t − 1.

3. Determine the shortest path distance da,b for all pairs
((a, b) ∈ Gt) based on arc weights w̄a,b := 1 − wa,b

(e.g. using the Floyd-Warshall all-pairs shortest path
algorithm).

4. If da,b−wb,a < 0 for some arc (a, b) ∈ Gt, there exists
a violated cycle constraint.

While the general principles behind branch-and-cut
algorithms are rather straightforward, there are a num-
ber of algorithmic and implementation issues that may
have a significant impact on overall performance. At
the heart of these issues is the trade-off between compu-
tation time spent at each node in the enumeration tree
and the number of nodes that are explored. One issue,

for example, is to decide when to generate violated cuts.
Another issue is which of the generated cuts (if any)
should be added to the LP relaxation, and whether and
when to delete constraints that were added to the LP
before. In our implementation, we have only addressed
these issues in a straightforward manner: cuts are gen-
erated at every node in the enumeration tree, the first
cut found by the algorithm is added, and constraints
are never deleted from the LP relaxation. Given the
potential impact of more advanced strategies that has
been observed in other application, however, we believe
there still may be considerable room for improvement.

Empirical Results
The various IP formulations resulted in three planning
systems: the single state change formulation (1SC),
the generalized single state change formulation (g1SC),
and the state change path formulation (kSC). To evalu-
ate the performance, we compared their results to Sat-
plan04(Siege) (SAT4), and Optiplan(Van den Briel &
Kambhampati 2004), an IP-based planner which uses
a direct Graphplan encoding. Since our results con-
sistently show that all our new IP encodings dominate
Optiplan, we restrict our attention to the comparisons
with SAT4. We use four domains: the Blocks and Lo-
gistics domain from the international planning competi-
tion 2000, and the Driverlog and the Zenotravel domain
from international planning competition 2002.

As a first step, we translated these domain instances
into a multi-valued state variable description using the
translator in the Fast (Diagonally) Downward planner
(Helmert 2005). The resulting state description pro-
vided the input for our IP formulations. Each IP formu-
lation started with a maximum plan length T equal to
1. If no plan was found, T was automatically increased
by one. The IP formulation is thus repeatedly solved
until the first feasible plan is found. The IP encodings
were solved using ILOG CPLEX 8.1 (ILO 2002), a com-
mercial LP/IP solver, and all tests were performed on
a 2.67GHz Linux machine with 1Gb of memory. Each
planning system was aborted if no solution had been
found after 30 minutes.

The results are summarized in Figure 6. The leftmost
graphs in Figure 6 show the solution times for the differ-
ent domains, using a logarithmic scale. The rightmost
graphs show plan quality, that is, the number of actions
in the plan that was found. Overall, the g1SC formula-
tion exhibits the best performance; it consistently out-
performs SAT4 by at least one order of magnitude (and
oftentimes substantially more). The kSC formulation
also performs substantially better than SAT4, except
in the Zenotravel domain. In this domain, there are a
number of cases in which it fails to converge to a feasi-
ble plan within the allotted time. The performance of
the 1SC formulation which is using the same notion of
parallelism as Graphplan is competitive with SAT4. In
addition, both the g1SC and kSC formulations generate
plans with fewer actions than SAT4, even though the
IP formulations terminate as soon as the first feasible

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Problems (Blocksmove)

T
im

e
(s

ec
o

n
d

s)
SAT4

1SC

g1SC

kSC

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Problems (Blocksmove)

P
la

n
 le

n
g

th
 (

o

f
ac

ti
o

n
s)

SAT4

1SC

g1SC

kSC

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 1213 1415 16 17 18 1920 21 22 2324 2526 27 28

Problems (Logistics)

T
im

e
(s

ec
o

n
d

s)

SAT4

1SC

g1SC

kSC

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 1112 131415 16 1718 19 20 21 22 2324 25 2627 28

Problems (Logistics)

P
la

n
 le

n
g

th
 (

o

f
ac

ti
o

n
s)

SAT4

1SC

g1SC

kSC

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20

Problems (Driverlog)

T
im

e
(s

ec
o

n
d

s)

SAT4

1SC

g1SC

kSC

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problems (Driverlog)

P
la

n
 le

n
g

th
 (

o

f
ac

ti
o

n
s)

SAT4

1SC

g1SC

kSC

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 101112 1314 1516 1718 1920

Problems (Zenotravel)

T
im

e
(s

ec
o

n
d

s)

SAT4

1SC

g1SC

kSC

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problems (Zenotravel)

P
la

n
 le

n
g

th
 (

o

f
ac

ti
o

n
s)

SAT4

1SC

g1SC

kSC

Figure 6: Problem results

0

2

4

6

8

10

12

14

16

18

P
la

n
 s

te
p

s
SAT4

1SC

g1SC

kSC

Blocks Logistics Driverlog Zenotravel

Figure 7: Number of plan steps needed to find a plan

solution is found.
Figure 7 depicts the number of plan steps that are

needed to solve each problem. SAT4 and 1SC both
use the Graphplan concept of parallelism, and therefore
need the same number of plan steps to find a plan. The
g1SC and kSC formulations, on the other hand, require
significantly fewer plan steps, due to the relaxation of
the ordering conditions. In fact, the kSC formulation
usually needs only one or two steps (in only instance it
requires three steps). While the cycle constraints may
theoretically lead to huge formulations, an important
advantage of the increased parallelism is therefore an
actual reduction in the effective size of the resulting for-
mulations. This is illustrated in Table 1, which shows
the size of the IP formulations on selected problems af-
ter IP preprocessing (as performed by CPLEX). Table
1 also depicts the number of cuts needed by the kSC
formulation to find a feasible plan. It shows that only a
small fraction of the exponential many cycle constraints
are generated by the branch-and-cut procedure. Sur-
prisingly enough, however, no cuts were needed in the
g1SC formulation for any of these problems. In fact,
the g1SC formulation only required the generation of
violated cycle constraints in a few of the Driverlog in-
stances.

Overall, these initial results appear to indicate a
tradeoff between the benefits that relaxing parallelism
has on size, and the burden that generating additional
cycle elimination constraints will have. The 1SC formu-
lation presents one extreme, since Graphplan’s concept
of parallelism will never result in cycles. The kSC for-
mulation, on the other hand, significantly relaxes the
ordering conditions imposed under Graphplan. This,
however, may require the generation of large numbers
of violated cycle elimination constraints, which can be
time-intensive. As such, the g1SC formulation may be
viewed as a compromise between these extremes.

Related Work
For a planning formalism that supports multi-valued
state variables we refer to the work by Bäckström and
Nebel (1995). Planners that have successfully incor-
porated the use of multi-valued state variables include
Fast (Diagonally) Downward (Helmert 2005) and MIPS

1SC g1SC kSC

Problem rows cols rows cols rows cols cuts

blo05 403 667 109 127 137 192 19

blo10 1321 2511 25 40 311 610 372

blo15 1687 3546 29 47 426 738 85

blo20 5380 12891 124 189

blo25 6878 18200 346 366

blo30 299 240

blo35 158 152

log05 690 740 261 314 220 225 2

log10 929 990 193 254 217 215 14

log15 1897 2010 361 459 486 489 14

log20 4102 4322 1818 1954 861 880 89

log25 6974 7438 1789 2057 1675 1761 31

dri05 1324 1298 605 635 341 432 123

dri10 2901 2705 1165 1115 944 1243 43

dri15 1584 2326 448

zen05 540 1160 229 441 165 342 32

zen10 2253 5036 864 1726

Table 1: Encoding size in number of rows (constraints)
and number of columns (variables)

(Edelkamp & Helmert 2000).
The generalization of planning graph-based paral-

lelism and subsequent constraint generation was first
introduced by Dimopoulos et al. (1997) and used for ex-
perimentation by Rintanen (1998). Cayrol et al. (2001)
also allow more general notions of parallelism in their
planning system, called LCGP. Their approach, how-
ever, ensures that constraint generation is not needed
after a solution is found. Other approaches that use dy-
namic constraint generation during search, but do not
allow more parallelism, include RealPlan (Srivastava,
Kambhampati, & Do 2001) and LPSAT (Wolfman &
Weld 1999).

Both the use of multi-valued state variables and the
introduction of more general parallelism concepts have
received considerable attention. To the best of our
knowledge, however, our work is the first that shows
the potential benefits of combining the two.

Conclusions

Despite the potential flexibility offered by IP encodings
for planning, in practice planners based on IP encod-
ings have not been competitive with those based on
CSP and SAT encodings. We believe that this state
of affairs is more a reflection on the type of encodings
that have been tried until now, rather than any inher-
ent shortcomings of IP as a combinatorial substrate for
planning. In this paper we introduced a sequence of
novel IP formulations whose performance scale up and
surpass that of state-of-the art SAT-based approaches
to planning. The success of our encodings is based on
three interleaved ideas: (1) modeling state changes in
individual (multi-valued) state variables as flows in an
appropriately defined network, (2) generalizing the no-
tion of action parallelism to loosen the dependency be-
tween encoding length and solution length, and (3) us-

ing a branch and cut framework (rather than a branch
and bound one), to allow for incremental addition of
constraints during the solving phase.

We believe that our results are significant in that
they could revive interest in IP encodings for plan-
ning. In the future, we intend to exploit the competitive
foundation provided by our framework to explore more
complex classes of planning problems that have natural
affinity to IP encodings, including handling of numeric
resource constraints and generation of cost sensitive
plans (in the context of non-uniform action costs). We
would also like to explore the interface between plan-
ning and scheduling by coupling IP-based schedulers
to our planner (using the same general branch-and-cut
framework). In the near term, we also plan to (1) im-
prove the engineering of our branch-and-cut framework,
(2) strengthen the IP formulations by taking into ac-
count mutexes (these will be different from Graphplan
mutexes due to the different notion of parallelism), (3)
further analyze the impact of more general notions of
parallelism, and (4) increase the scale of problems that
can be solved using column generation techniques.

References
Bäckström, C., and Nebel, B. 1995. Complexity re-
sults for SAS+ planning. Computational Intelligence
11(4):625–655.
Bixby, R. 2002. Solving real-world linear programs:
A decade and more of progress. Operations Research
50(1):3–15.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-95), 1636–1642.
Bockmayr, A., and Dimopoulos, Y. 1998. Mixed in-
teger programming models for planning problems. In
Working notes of the CP-98 Constraint Problem Re-
formulation Workshop.
Bockmayr, A., and Dimopoulos, Y. 1999. Integer pro-
grams and valid inequalities for planning problems. In
Proceedings of the European Conference on Planning
(ECP-99), 239–251. Springer-Verlag.
Bylander, T. 1997. A linear programming heuristic for
optimal planning. In AAAI-97/IAAI-97 Proceedings,
694–699.
Caprara, A., and Fischetti, M. 1997. Annotated Bibli-
ographies in Combinatorial Optimization. John Wiley
and Sons. chapter Branch and Cut Algorithms, 45–63.
Cayrol, M.; Régnier, P.; and Vidal, V. 2001. Least
commitment in graphplan. Artificial Intelligence
130(1):85–118.
Dimopoulos, Y., and Gerevini, A. 2002. Temporal
planning through mixed integer programming. In Pro-
ceeding of the AIPS Workshop on Planning for Tem-
poral Domains, 2–8.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997.
Encoding planning problems in nonmonotic logic pro-

grams. In Proceedings of the 4th European Conference
on Planning (ECP-97), 167–181.
Dimopoulos, Y. 2001. Improved integer program-
ming models and heuristic search for ai planning. In
Proceedings of the European Conference on Planning
(ECP-01), 301–313. Springer-Verlag.
Edelkamp, S., and Helmert, M. 1999. Exhibiting
knowledge in planning problems to minimize state en-
coding length. In Proceedings of the European Con-
ference on Planning (ECP-99), 135–147. Springer-
Verlag.
Edelkamp, S., and Helmert, M. 2000. On the im-
plementation of MIPS. In Proceedings of the ICAPS
Workshop on Model-Theoretic Approaches to Plan-
ning.
Helmert, M. 2005. The Fast Downward plan-
ning system. Technical Report 217, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik. (Sub-
mitted to JAIR).
ILOG Inc., Mountain View, CA. 2002. ILOG CPLEX
8.0 user’s manual.
Johnson, E.; Nemhauser, G.; and Savelsbergh, M.
2000. Progress in linear programming based branch-
and-bound algorithms: An exposition. INFORMS
Journal on Computing 12:2–23.
Kautz, H., and Walser, J. 1999. State-space plan-
ning by integer optimization. In AAAI-99/IAAI-99
Proceedings, 526–533.
Kautz, H. 2004. SATPLAN04: Planning as satisfiabil-
ity. In Working Notes on the International Planning
Competition (IPC-2004), 44–45.
Padberg, M., and Rinaldi, G. 1991. A branch-and-cut
algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM Review 33:60–100.
Rintanen, J. 1998. A planning algorithm not based on
directional search. In Proceedings of the Sixth Inter-
national Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-98), 617–624.
Srivastava, B.; Kambhampati, S.; and Do, M. 2001.
Planning the project management way: Efficient plan-
ning by effective integration of causal and resource rea-
soning in realplan. Artificial Intelligence 131(1-2):73–
134.
Van den Briel, M., and Kambhampati, S. 2004. Opti-
plan: Unifying IP-based and graph-based planning. In
Working Notes on the International Planning Compe-
tition (IPC-2004), 18–20.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On
the use of integer programming models in ai planning.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99), 304–309.
Wolfman, S., and Weld, D. 1999. The lpsat engine and
its applicationto resource planning. In Proceedings of
the 18th International Joint Conference on Artificial
Intelligence (IJCAI-99), 310–317.

