
Finding Admissible Bounds for Over-subscription Planning Problems

J. Benton
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287, USA
j.benton@asu.edu

Menkes van den Briel
Dept. of Industrial Engineering

Arizona State University
Tempe, AZ 85287, USA

menkes@asu.edu

Subbarao Kambhampati
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287
rao@asu.edu

Abstract

When given a plan by a satisficing planner, it is usually not
intuitive as to how close it is to the optimal solution. How-
ever, real world planning problems often require some met-
ric on which to optimize, especially when goals are soft
and resource constraints are involved, as is the case in over-
subscribed planning problems. Unfortunately, little effort is
given to find how close any plan may be to an optimal solution
value. We set out to answer this shortcoming by providing a
way to encode a relaxed version of over-subscribed planning
problems in an integer program (IP) formulation. The solu-
tion to this formulation gives an admissible bound on the op-
timal solution value and can be further relaxed by dropping
its integer constraints for better scalability.

Introduction
Though often it is not intuitive as to how close a given plan
is to the optimal solution, the quality of solutions is of high
importance for most real world planning problems. This is
especially true when planning for problems in the presence
of resource constraints and soft goals. In these cases, choice
exists not only among the actions used to achieve goals, but
also on the goals themselves. Most of the current state-of-
the-art methods for solving these over-subscribed planning
(OSP) problems return suboptimal solutions that attempt to
minimize (or maximize) some quality objective. Such fea-
sible plans may end up being useful and good enough for
the task at hand. However, without information on the op-
timal plan quality value, we cannot know the “goodness”
of a plan–that is, the distance between the optimal quality
and the given plan. Though in general finding the optimal
solution value is impractical (as hard as planning), there are
other ways to assuage concerns of plan quality. In particular,
it would be helpful to have a bound on the optimal solution
value such that a user can make a more informed decision
as to whether to spend additional computational resources
to find a different plan.

A metric determining a plan’s quality is typically given
as part of the problem definition. Most widely studied over-
subscription planning models involve a single objective that
prioritizes goals. This is done in the partial satisfaction plan-
ning (PSP) model introduced in (Smith, 2004; van den Briel
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et al., 2004) and version 3 of the planning domain descrip-
tion language (PDDL3), which was used in the5th Inter-
national Planning Competition (IPC5) (Gerevini and Long,
2005).1 Despite the use of these metrics there have been lim-
ited efforts to find domain-independent methods for finding
a tight bound on the optimal solution in over-subscription
planning. Instead, satisficing planners are compared against
one another. And this is what was done in IPC5. While
this was acceptable in that setting, using several planners
for comparison can be infeasible in real world situations.
Also, it fails to address fundamental questions on plan qual-
ity (e.g., whether all of the available planners giving poor
solutions relative to optimal).

Consider the problem of scheduling travel to two cities,
Metropolis and Capital City. Following the PSP model,
reaching the cities is a soft goal and each is given a utility
value. We want to maximize the difference between the util-
ity given for reaching the cities and the travel cost, or a plan’s
net benefit. Capital City has a utility of 100 and Metropolis
a utility of 500. Say we are given a plan for reaching both
Metropolis and Capital City that costs 550, giving us a total
net benefitof 50. Clearly we are achieving both goals and at
first blush this appears to be a good plan. But the question
is: how close to the optimal quality is this plan? It may turn
out that visiting only Metropolis costs much less than visit-
ing both locations, but there is no way for the user to know
for sure. Using the current state-of-the-art planners a user
can either (1) accept the given plan (2) find a new plan using
a different planner or (3) in some planners, continue search-
ing for a better plan using the current planner (e.g., this is
possible in anytime planners like SPUDS (Doet al., 2007)
or HPlan-P (Baieret al., 2007)). Since in this case the user
has a maximization metric, it would be helpful to find some
reasonably tightupper boundon the optimal value.

A well-known feature of admissible heuristic functions is
that they can give a bound on potential plan quality.2 While
this observation is helpful, popular admissible heuristics for
classical and temporal planning, such as the suite of heuris-
tics used in HSP and its variants (Bonet and Geffner, 2001;
Haslum, 2006), do not handle the balancing of goal and ac-

1Note that multi-objective, qualitative metrics have also been
studied (Brafman and Chernyavsky, 2005).

2In classical planning problems, this is a lower bound as the
metric usually involves minimizing either cost or the number of
actions used.



tion choice as required with soft goals. Instead, a more so-
phisticated approach is needed for finding bounds in OSP
problems. Indeed, though Doet al. (2007) discusses a way
of combining thehmax heuristic with an integer program in
an admissible heuristic calledhGAI

max , it does not detect the
action dependencies for achieving each goal. In contrast,
the heuristic proposed by Bonet and Geffner (2006) includes
some action interactions but ignores static mutual exclusion
between actions, which is important when there are action
dependencies on goal achievement.

In this paper, we present a technique that utilizes the in-
teger programming (IP) based heuristic introduced in Ben-
ton et al. (2007) and van den Brielet al. (2007) to calcu-
late bounds on over-subscribed problems. The encoding re-
laxes the original problem by ignoring the ordering of ac-
tions while maintaining some causal information and the
knowledge of negative effects that is encoded in SAS+ ac-
tions (B̈ackstr̈om, 1992). In contrast to many similar ap-
proaches for encoding planning problems (c.f., van den Briel
et al. (2005); Vossenet al. (1999)), this IP returns a value
that does not use a predetermined number of steps in the re-
sulting plan. Though integer programming is NP-complete
to compute in general, we will see that the given formulation
usually returns a reasonable bound on the optimal solution
of problem instance. Additionally, we compare this with
the encoding’s linear program (LP) relaxation. The encod-
ing is presented in the context of a generalized version of
PSP, calledPSPUD and we expect that with some work it
could be applied to PDDL3 temporal preferences and other
over-subscription planning models. After introducing the
encoding, we empirically show how well it scales by find-
ing bounds for progressively more difficult problems.

Problem Formulation
In partial satisfaction planning (PSP), actions are given cost
and goals are given utility values. Additionally, the require-
ment that all goals must be achieved is relaxed such that any
subset of the goals may be achieved for a plan to be valid.
By implication any sound plan is valid, including the empty
plan. When a goal is achieved, its utility value is added to
the quality of a plan and we want to maximize the difference
between the utility received for achieving goals and the cost
of the actions used in the plan, or thenet benefit. For this
work we use a generalization of PSP called partial satisfac-
tion planning with utility dependencies, orPSPUD (Do et
al., 2007). In this model, utility is assigned to sets of goals
usingk local utility functions,fu(Gk) ∈ R on Gk ⊆ G,
where any goal subsetG′ ⊆ G has an evaluated utility value
of u(G′) =

∑
Gk⊆G′ fu(Gk) as in thegeneral additive in-

dependencemodel (Bacchus and Grove, 1995). Addition-
ally, as in PSP, each actiona ∈ A has an associated cost
cost(a) such thatcost(a) ≥ 0.

Finding Bounds
Since the objective ofPSPUD is to maximizethe value of
net benefit, we find upper bounds on the optimal solution to
problems. In problems where the objective is tominimize
some quantity, we would find lower bounds.

We use the SAS+ representation of each planning prob-
lem and then encode the resulting values in an IP and add
the PSPUD properties (i.e., action cost and goal set utili-

ties) in the IP formulation. Solving an IP is NP-complete
in general, and so we can also find the LP relaxation of the
IP encoding to determine upper bounds on the optimal solu-
tion of the original planning problem. Given a problemP,
the IP solution value,IPP , the LP solution value,LPP , and
the optimal valueOPTP , when maximizing onPSPUD net
benefitwe will always have thatLPP ≥ IPP ≥ OPTP . On
minimization over-subscription planning problems the signs
would be reversed.

Our IP encoding of planning problems does not involve
the number of steps in the final plan. Because of this, we can
ensure cost optimality. Other formulations involve specify-
ing the number of steps for the encoding and arebounded-
length cost-optimalin that they are only optimal given a spe-
cific plan length. However, this is done at the expense of
finding a fully ordered plan. Instead, the IP that we will de-
scribe finds a set of actions.

The formulation requires as parameters:cost(a), the cost
of actiona; utility(v, f), the utility of achieving valuef
in variablev in the goal state; andutility(k), the utility
of achieving the goal utility dependency setGk in the goal
state. We also introduce the variables:action(a) ∈ Z+, the
number of times actiona ∈ A is executed;effect(a, v, e) ∈
Z+, the number of times that effecte in state variablev is
caused by actiona; prevail(a, v, f) ∈ Z+, the number of
times that the prevail conditionf in state variablev is re-
quired by actiona; endvalue(v, f) ∈ {0, 1}, a variable
equal to 1 if valuef in state variablev is achieved at the
end of the solution plan (0 otherwise);goaldep(k) ∈ {0, 1},
a variable equal to 1 if goal dependencyGk is satisfied (0
otherwise).

The objective function maximizes the difference between
the total utility given by the achieved goals and the total cost
from the actions in the plan.

MAX
∑

v∈V,f∈Dv

utility(v, f)endvalue(v, f)

+
∑
k∈K

utility(k)goaldep(k)−
∑
a∈A

cost(a)action(a)

• Action implication constraints for eacha ∈ A andv ∈ V .
The SAS+ formalism allows the pre-conditions of an ac-
tion to be undefined. We model this by using a separate
effect variable for each possible pre-condition that the ef-
fect may have in the state variable. We must ensure that
the number of times that an action is executed equals the
number of effects and prevail conditions that the action
imposes on each state variable.

action(a) =
∑

effects ofa in v

effect(a, v, e)

+
∑

prevails ofa in v

prevail(a, v, f)

• Effect implication constraints for eachv ∈ V , f ∈ Dv.
In order to execute an action effect its pre-condition must
be satisfied. Hence, if we want to execute an effect that
deletes some value multiple times, then we must ensure



Zenotravel hGAI
max LP Value IP Value Optimal hGAI

max % Diff. LP % Diff. IP % Diff.
1 33267.89 19599.4 19599.4 19599.4 69.739% 0% 0%
2 37768.83 21047.13 21047.13 21047.1379.449% 0% 0%
3 63417.52 56385.88 55304.18 54720.5715.893% 3.04% 1.055%
4 63618.81 55214.68 53954.49 47887.8 32.850% 15.3% 11.244%
5 24182.08 25502.49 22713.18 22338.578.252% 14.163% 1.649%

Satellite hGAI
max LP Value IP Value Optimal hGAI

max % Diff. LP % Diff. IP % Diff.
1 67042.48 67346.83 66979.51 66954.46 0.131% 0.586% 0.037%
3 109942.56 110142.67 109841.34 109820.970.102% 0.293% 0.009%
4 186576.17 186689.08 186348.1 186348.1 0.122% 0.183% 0%
6 166139.66 166263.28 165847.48 165798.030.206% 0.281% 0.03%
7 186363.20 186504.5 185949.23 185947.970.223% 0.300% 0.0007%

Rovers hGAI
max LP Value IP Value Optimal hGAI

max % Diff. LP % Diff. IP % Diff.
1 40356.57 43005.695 37771.96 37771.966.843% 13.856% 0%
2 43862.03 43914.074 42460.01 42460.013.302% 3.311% 0%
3 42108 44085.62 36855.59 36589.7515.081% 20.482% 0.726%
4 41864.34 43972.66 40189.09 40189.094.168% 8.604% 0%

Table 1: The upper bounds found on problems where the optimal solution is known.

that the value is added multiple times.

1{if f ∈ s0[v]}+
∑

effects that addf

effect(a, v, e) =

∑
effects that deletef

effect(a, v, e) + endvlaue(v, f)

• Prevail implication constraints for eacha ∈ A, v ∈ V ,
f ∈ Dv. In order to execute an action prevail condition it
must be satisfied. Hence, if there is a prevail condition on
some value, then that value must be added.

1{if f ∈ s0[v]}+
∑

effects that addf

effect(a, v, e) ≥

prevail(a, v, f)/M

• Goal dependency constraints for each goal dependencyk.
If all values of the goal dependency are achieved at the
end of the solution plan, then the goal dependency is sat-
isfied. Vice versa, if we want to satisfy the goal depen-
dency, then we must achieve all its values at the end of
the solution plan.3

goaldep(k) ≥
∑

f in dependencyk

endvalue(v, f)

− (|Gk| − 1)

goaldep(k) ≤ endvalue(v, f) ∀f in dependencyk

Results
To test our technique of finding bounds on the optimal solu-
tion values, several problem instances from domains in the
3rd International Planning Competition (IPC3) were modi-
fied to includePSPUD elements. Specifically, we made all
goals soft, added costs to actions and added utility to goal
sets in the STRIPSzenotravel, rovers, andsatellitedomains.

3Note that both formulas are necessary since we may have neg-
ative values on goal utility dependencies (for problems with only
positive values, the first formula would be redundant).

While we did this on all 60 problem instances (20 problems
× 3 domains), we had access to the optimal solution value
in 14 of these (found using the planner BBOP-LP (Benton
et al., 2007)).

We implemented the encoding and solved both the IP
and the LP relaxation of it using version 10 of the com-
mercial CPLEX solver on a Pentium D 3.2Ghz processor.
We compare this with the values found byhGAI

max (Do et al.,
2007). For each problem Table shows the upper bound val-
ues found fornet benefitat the initial state, as well as the op-
timal value. On these problems the upper bound value given
by the IP solution is closer to the optimal value as compared
with the other techniques. Figure 1 shows the time taken
to solve for the upper bound using the LP relaxation. Fig-
ure 2 shows the same for the original IP formulation of the
problem. As expected, the LP relaxation takes less time but
it also provides worst bounds. Interestingly, the scale-up is
quite good in both thesatelliteand roversdomains, but in
zenotravelproblems this is not the case.

To further examine the technique for finding bounds,
we modeled the “MetricSimplePreferences” version of the
Rovers domain from IPC5 in the IP encoding, the only “Sim-
plePreferences” domain that includes explicit action cost (on
the “navigate” action) and no disjunctive preferences.4 In
these problems the objective is a minimization (specified in
a PDDL3 metric) and so we want to findlower boundson
quality. Table shows the results from this investigation. The
bounds found using the IP formulation can be quite far from
the optimal value. However, they are better than those given
by hGAI

max . They also can be found quite quickly (at most 1.4
seconds on our system for the displayed problems). Note
that the LP relaxation returned a value of 0.0 in all of the
problems. Since the current encoding can allow mutual sat-
isfaction of constraints such thatflow in andflow out of a
value are equal it causesdisjoint flows(e.g., flow that is not
connected to the initial state). These disjoint flows will often
provide optimal paths, affecting the solution values. In the
modified IPC3 problems, disjoint flows occur less often.

4We thank Patrik Haslum, who created this domain, for provid-
ing the optimal solution values to these problems.



Rovers-SP hGAI
max IP Value Optimal hGAI

max % Diff. IP % Diff.
1 127.9 560.3 811.3 84.235% 30.938%
2 104.3 274.3 473.2 77.959% 42.033%
3 127.9 560.5 811.3 84.235% 30.938%
4 113.4 339.7 418.7 72.360% 18.868%
5 132.7 274.6 483.6 72.560% 43.218%
6 183.6 370.8 649.2 71.719% 42.884%
7 106.2 252.3 402.2 73.595% 37.27%

Table 2: The lower bounds found for some instances of the “MetricSimplePreferences” rovers domain from5th International
Planning Competition.
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Figure 1: The time taken to solve for the LP relaxation up-
per bound values for problems in thezenotravel, rovers, and
satellitedomains.
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Figure 2: The time taken to solve for the IP upper bound
values for problems in thezenotravel, rovers, andsatellite
domains.

Conclusion and Future Work

Many users of real-world planning systems want to know
how good their problem is, and providing a means to de-
termine this is of great benefit to them. We have presented
our work on finding bounds on over-subscription planning
problems, where plan quality is usually of particular inter-
est. Interestingly, this encoding is successfully used in the
planner BBOP-LP as a heuristic for solvingPSPUD prob-
lems (Bentonet al., 2007). Our investigation has uncovered
some problems it may vastly over (or under) estimate po-
tential plan quality. For our future work, we will put effort
in determining ways of improving our encoding by includ-
ing constraints that can help eliminate some of the issues we
found.
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