
Effective Approaches for Partial Satisfaction (Over-Subscription)Planning

Menkes van den Briel, Romeo Sanchez, Minh B. Do, and Subbarao Kambhampati∗
Department of Computer Science and Engineering
Arizona State University, Tempe AZ, 85287-5406
{menkes, rsanchez, binhminh, rao}@asu.edu

Abstract

In many real world planning scenarios, agents often do
not have enough resources to achieve all of their goals.
Consequently, they are forced to find plans that satisfy
only a subset of the goals. Solving such partial satisfac-
tion planning (PSP) problems poses several challenges,
including an increased emphasis on modeling and han-
dling plan quality (in terms of action costs and goal
utilities). Despite the ubiquity of such PSP problems,
very little attention has been paid to them in the plan-
ning community. In this paper, we start by describing
a spectrum of PSP problems and focus on one of the
more general PSP problems, termed PSP NET BEN-
EFIT. We develop three techniques, (i) one based on
integer programming, calledOptiPlan, (ii) the second
based on regression planning with reachability heuris-
tics, calledAltAlt ps , and (iii) the third based on any-
time heuristic search for a forward state-space heuris-
tic planner, calledSapaps . Our empirical studies with
these planners show that the heuristic planners generate
plans that are comparable to the quality of plans gener-
ated byOptiPlan, while incurring only a small fraction
of the cost.

Introduction
In classical planning the aim is to find a sequence of ac-
tions that transforms a given initial stateI to some goal state
G, whereG = g1 ∧ g2 ∧ ... ∧ gn is a conjunctive list of
goal fluents. Plan success for these planning problems is
measured in terms of whether or not all the conjuncts in
G are achieved. In many real world scenarios, however,
the agent may only be able to satisfy a subset of the goals.
The need for such partial satisfaction might arise in some
cases because the set of goal conjuncts may contain logi-
cally conflicting fluents, and in other cases there might just
not be enough time or resources to achieve all of the goal
conjuncts. Effective handling of partial satisfaction plan-
ning (PSP) problems poses several challenges, including an

∗This paper is the result of merging two separate efforts–one on
OptiPlanandAltAlt ps , and the other onSapaps . Authors names
are listed in the reverse order of seniority. We thank Will Cushing,
David Smith and the AAAI reviewers for many helpful comments.
This research is supported in part by the NSF grant IIS-0308139
and the NASA grants NCC2-1225 and NAG2-1461.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

added emphasis on the need to differentiate between feasible
and optimal plans. Indeed, for many classes of PSP prob-
lems, a trivially feasible, but decidedly non-optimal solution
would be the “null” plan.

Despite the ubiquity of PSP problems, surprisingly little
attention has been paid to the development of effective ap-
proaches in solving them. In this paper, we provide a sys-
tematic analysis of PSP problems. We will start by distin-
guishing several classes of PSP problems, and then focus
on one of the more general classes, PSP NET BENEFIT. In
this class, each goal conjunct has a fixed utility assigned to
it, and each ground action has a fixed cost associated with
it. The objective is to find a plan with the bestnet benefit
(cumulative utility minus cumulative cost).

We investigate three customized algorithms for solving
PSP NET BENEFIT. The first, called “OptiPlan”, solves the
problem by encoding it as an integer program (IP).OptiPlan
builds on the work of solving planning problems through
IP (Vossenet al, 1999), and uses a more involved objec-
tive function that directly captures the net benefit. The sec-
ond and third approaches, called “AltAlt ps ” and “Sapaps ”,
model PSP in terms of heuristic search with cost-sensitive
reachability heuristics.AltAlt ps builds on the AltAlt fam-
ily of planners (Nguyenet al, 2001; Sanchez & Kambham-
pati 2003) that derive reachability heuristics from planning
graphs. The main extension inAltAlt ps involves a novel
approach for heuristically selecting upfront a subset of goal
conjuncts that is likely to be most useful. Once a subset
of goal conjuncts is selected, they are solved by a regres-
sion search planner with cost sensitive heuristics.Sapaps is
an extension of the forward state-space plannerSapa(Do &
Kambhampati 2003). UnlikeAltAlt ps , Sapaps does not se-
lect a subset of goals up front but uses an anytime heuristic
search framework in which goals are treated as “soft con-
straints”. Any executable plan is considered a potential so-
lution, with the quality of the plan measured in terms of its
net benefit. The objective of the search is to find the plan
with the highest net benefit.Sapaps uses novel ways of esti-
mating theg andh values of partial solutions, and uses them
to guide an anytime A* search.

OptiPlangenerates plans that are optimal for a given plan
length. Sapaps andAltAlt ps , while capable of generating
globally optimal plans1, focus on effective but inadmissible

1In theory, bothAltAlt ps andSapaps can be made to generate



PLAN EXISTENCE

PLAN LENGTH

PSP GOAL LENGTH

PSP GOAL

PLAN COST PSP UTILITY

PSP UTILITY COST

PSP NET BENEFIT

Figure 1: Hierarchical overview of several types of complete
and partial satisfaction planning problems

heuristics for efficiency. Our empirical studies with these
planners demonstrate that the heuristic plannersAltAlt ps

andSapaps can generate plans that are comparable to the
quality of plans generated byOptiPlan, while incurring only
a small fraction of the cost. The rest of this paper is orga-
nized as follows. In the next section, we give a taxonomy of
PSP problems and discuss their complexity. In the following
section, we describe how PSP problems can be modeled in
OptiPlanthrough a more involved objective function. The
next part of the paper describes the heuristic approaches for
the PSP problem. We start with a discussion of cost-sensitive
reachability heuristics, and then describe how they are used
in qualitatively different ways inAltAlt ps andSapaps . We
then present an empirical study that compares the effective-
ness of the various approaches. We will end with a discus-
sion of the related work and conclusions.

Definition and complexity
The following notation will be used:F is a finite set of flu-
ents andA is a finite set of actions, where each action con-
sists of a list of preconditions and a list of add and delete
effects.I ⊆ F is the set of fluents describing the initial state
andG ⊆ F is the set of goal conjuncts. Hence we define a
planning problem as a tupleP = (F,A, I,G). Having de-
fined a planning problem we can now describe the following
classical planning decision problems.

The problems of PLAN EXISTENCE and PLAN LENGTH
represent the decision problems of plan existence and
bounded plan existence respectively. They are probably the
most common planning problems studied in the literature.
We could say that PLAN EXISTENCE is the problem of de-
ciding whether there exists a sequence of actions that trans-
formsI into G, and PLAN LENGTH is the decision problem
that corresponds to the optimization problem of finding a
minimum sequence of action that transformsI into G.

The PSP counterparts of PLAN EXISTENCE and PLAN
LENGTH are PSP GOAL and PSP GOAL LENGTH respec-

globally optimal plans. In the case ofSapaps , this involves using
admissible heuristics, while forAltAlt ps , we need to do both an
exhaustive search over subgoal sets, and use admissible heuristics
during search.

Disneyland

San Jose

San Francisco

Las Vegas

G1: AAAI(SJ)
U(G1) = 300

G3: HaveFun(SF)
U(G3) = 100

G2: HaveFun(DL)
U(G2) = 100

C: 20

C: 70

C: 230

C: 80

C: 90

C: 200

C: 200

C: 100

San Diego

G4: SeeZoo(SD)
U(G4) = 50

C: 40

C: 110

Figure 2: The travel example

tively. Both of these decision problems require a minimum
number of goals that need to be satisfied for plan success.

Figure 1 gives a taxonomic overview of several types of
complete (planning problems that require all goals to be sat-
isfied) and partial satisfaction problems, with the most gen-
eral problems listed below. Complete satisfaction problems
are identified by names starting with PLAN and partial satis-
faction problems have names starting with PSP.

Some of the problems given in Figure 1 involve action
costs and/or goal utilities. Basically, PLAN COST corre-
sponds to the optimization problem of finding minimum cost
plans, and PSP UTILITY corresponds to the optimization
problem of finding plans that achieve maximum utility. The
problems of PSP NET BENEFIT is a combination of PLAN
COSTand PSP UTILITY , and PSP UTILITY COST is a gen-
eralization of PSP NET BENEFIT. Here we will formally
define the decision problem of PSP NET BENEFIT and an-
alyze its complexity. The corresponding optimization prob-
lem of finding a plan with maximum net benefit is the focus
of this paper.

Definition PSP NET BENEFIT: Given a planning problem
P = (F,A, I,G) and, for each action a “cost” Ca ≥ 0 and,
for each goal specificationf ∈ G a “utility” U f ≥ 0, and
a positive numberk. Is there a finite sequence of actions
∆ = 〈a1, ..., an〉 that starting fromI leads to a stateS that
has net benefit

∑
f∈(S∩G) Uf −

∑
a∈∆Ca ≥ k?

Example: Figure 2 illustrates a simple example in which
a student living in Las Vegas (LV) needs to go to San
Jose (SJ) to present a AAAI paper. The cost of travelling
is Ctravel(LV,SJ) = 230. We assume that if the student
arrives at San Jose, he automatically achieves the goal
g1 = Attended AAAI with utility Ug1

= 300. The
student also wants to go to Disneyland (DL) and San
Francisco (SF) to have some fun (g2 = HaveFun(DL),
g3 = HaveFun(SF )) and to San Diego (SD) to see the
zoo (g4 = SeeZoo(SD)). The utilities for having fun in
these places (Ug2

, Ug3
, Ug4

), and the travel cost of going
from one place to the other are given in Figure 2. The goal
of the student is to find a travel plan that gives him the best
cost-utility tradeoff. In this example, the best plan isP =
{travel(LV,DL), travel(DL,SJ), travel(SJ, SF )}
which achieves the goalsg1, g2 andg3, and ignoresg4.

Theorem 1 PSP NET BENEFIT is PSPACE-complete.

Proof We will show that PSP NET BENEFIT is in PSPACE
and we will polynomially transform it to PLAN EXISTENCE,



which is a PSPACE-hard problem (Bylander 1994).
PSP NET BENEFIT is in PSPACE follows from Bylan-

der (1994). PSP NET BENEFIT is PSPACE-hard because
we can restrict it to PLAN EXISTENCE by allowing only in-
stances having Uf = 0,∀f ∈ F , Ca = 1,∀a ∈ A, and
k = −2m. This restriction obtains

∑
a∈∆Ca ≤ 2m, which

is the condition for PLAN EXISTENCE.

Given that PLAN EXISTENCE and PSP NET BENEFIT
are PSPACE-hard problems, it should be clear that the other
problems given in Figure 1 also fall in this complexity class.
PSP NET BENEFIT does, however, foreground the need to
handle plan quality issues.

OptiPlan: An Integer Programming Approach
OptiPlanis a planning system that provides an extension to
the state change integer programming (IP) model by (Vossen
et al, 1999). The original state change model uses the com-
plete set of ground actions and fluents;OptiPlanon the other
hand eliminates many unnecessary variables simply by us-
ing Graphplan (Blum & Furst 1997). In addition,OptiPlan
has the ability to read in PDDL files. In this respect,Opti-
Planis very similar to the BlackBox (Kautz & Selman 1999)
and GP-CSP (Do & Kambhampati 2001) planners but in-
stead of using a SAT or CSP formulation, the planner uses
an IP formulation.

The state change formulation is built around the state
change variablesxadd

f,l , xpre−add
f,l , xpre−del

f,l , andxmaintain
f,l .

These variables are defined in order to express the possible
state changes of a fluent, withxmaintain

f,l representing the
propagation of a fluentf at levell. Besides the state change
variables the IP model contains variables for actions, with
ya,l = 1 if and only if actiona is executed in levell.

It is quite straightforward to model PSP NET BENEFIT in
OptiPlan, all we do is transfer goal satisfaction from the hard
constraints to the objective function. In the case of maximiz-
ing net benefit the objective becomes:

∑

f∈G

Uf (xadd
f,n + xpre−add

f,n + xmaintain
f,n ) −

∑

l∈L

∑

a∈A

Caya,l

(1)

whereL = 1, ..., n is the set of plan step levels,A is the set
of actions, andG the set of goal fluents.

OptiPlanwill find optimal solutions for a given parallel
lengthl, however, the global optimum may not be detected
as there might be solutions of better quality at higher values
of l.

Heuristic Approaches: Preliminaries
In this section we describeAltAlt ps andSapaps , the two
heuristic search planners capable of handling PSP problems.
Given that the quality of the plan for PSP problem depends
on both the utility of the goals achieved and the cost to
achieve them, these planners need heuristic guidance that
is sensitive to both action cost and goal utility. Because only
the execution costs of the actions and the achievement cost

time

Cost

t = 0 52.5 3.5

300

180

90

Travel(SJ,DL)

Travel(SF,DL)

Travel(LV,DL)

(a)

level

Cost

t = 0 21

230

100

Travel(SJ,LV)

Travel(SF,LV)

(b)

Figure 3: Cost function of goalAt(DL)

of propositions in the initial state (zero cost) are known, we
need to docost-propagationfrom the initial state through
actions to estimate the cost to achieve other propositions,
especially the top level goals. InAltAlt ps and Sapaps ,
this is done using the planning graph structure. In this sec-
tion, we will first describe the cost propagation procedure
over the planning graph as a basis for heuristic estimation
in AltAlt ps andSapaps . In subsequent sections, we discuss
howAltAlt ps andSapaps use this information.

Cost-propagation to Estimate the Goal
Achievement Costs
To estimate the overall benefit of achieving the goals, we
can use the planning graph structure to propagate the cost
of facts from the initial state through applicable actions until
we can estimate the lowest cost to achieve the goals. Fol-
lowing (Do & Kambhampati 2003), we use cost functions to
capture the way cost of achievement changes as the graph is
expanded. In the following, we briefly review the procedure.
(Note that the discussion below is done in the more general
context of temporal planning; to apply it to classical plan-
ning scenarios, we need only assume that all actions have
uniform durations).

The purpose of the cost-propagation process is to build
the cost functionsC(f, tf ) and C(a, ta) that estimate the
cheapest cost to achieve fluentf at time (level)tf and the
cost to execute actiona at levelta. At the beginning (t = 0),
let Sinit be the initial state and Ca be the cost of actiona
then2: C(f, 0) = 0 if f ∈ Sinit, C(f, 0) = ∞ otherwise;
∀a ∈ A : C(a, 0) = ∞. The propagation rules are as fol-
lows:

• C(f, t) = min{C(a, t − Dura)+ Ca) : f ∈ Eff(a)}

• Max-prop:C(a, t) = max{C(f, t) : f ∈ Prec(a)}

• Sum-prop:C(a, t) = Σ{C(f, t) : f ∈ Prec(a)}

The max-propagation rule will lead to an admissible
heuristic, while the sum-propagation rule does not. In our
travel example, assume that the student can only go toSJ
andSF from LV by airplane, which take respectively 1.0
and 1.5 hour. He can also travel by car fromLV , SJ , and
SF toDL in 5.0, 1.5 and 2.0 hours, respectively. Figure 3(a)
shows the cost function for goalg2 = At(DL), which indi-
cates that the earliest time to achieveg2 is at t = 2.5 with
the lowest cost of 300 (route:LV → SJ → DL). The
lowest cost to achieveg2 reduces to 180 att = 3.5 (route:

2Ca andC(a, t) are different. Ifa = Fly(SD, DL) then Ca is
the airfare cost andC(a, t) is the cost to achieve preconditions of
a at t, which is the cost incurred to be atSD at t.



LV → SF → DL) and again att = 5.0 to 90 (direct path:
LV → DL). For the levelled planning graph, where actions
are non-durative, Figure 3(b) shows the cost function for the
factAt(LV ) assuming that the student is atSJ in the initial
state. At level 1, she can be atLV by going directly from
SJ with cost 230. Then at level 2 she can at beLV with
cost 100, using routeSJ → SF → LV .

There are many ways to terminate the cost-propagation
process (Do & Kambhampati 2003): We can stop when
all the goals are achievable, when the cost of all the goals
are stabilized (i.e. guaranteed not to decrease anymore), or
lookahead several steps after the goals are achieved. For
classical planning, we can also stop propagating cost when
the graphlevels-off(Nguyenet al, 2001).3

Cost-sensitive heuristics
After building the planning graph with cost information,
bothAltAlt ps andSapaps use variations of the relaxed plan
extraction process (Hoffmann & Nebel 2001; Nguyenet al,
2001) guided by the cost-functions to estimate their heuristic
valuesh(S) (Do & Kambhampati 2003). The basic idea is to
compute the cost of the relaxed plans in terms of the costs of
the actions comprising them, and use such costs as heuristic
estimates. The general relaxed plan extraction process for
both AltAlt ps andSapaps works as follows: (i) start from
the goal setG containing the top level goals, remove a goal
g from G and select a lowest cost actionag (indicated by
C(g, t)) to supportg; (ii) regressG over actionag, setting
G = G ∪ Prec(ag)\Eff(ag). The process continues re-
cursively until each propositionq ∈ G is also in the initial
stateI. This regression accounts for the positive interac-
tions in the stateG given that by subtracting the effects of
ag, any other proposition that is co-achieved wheng is be-
ing supported is not counted in the cost computation. The
relaxed plan procedure indirectly extracts a sequence of ac-
tionsRP (the actionsag selected at each reduction), which
would have achieved the setG from the initial stateI if there
were no negative interactions. The summation of the costs
of the actionsag ∈ RP can be used to estimate the cost to
achieve all goals inG.

AltAlt ps : Heuristic Search and Goal Selection
AltAlt ps is a heuristic regression planner that can be seen
as a variant ofAltAlt (Nguyenet al, 2001) equipped with
cost sensitive heuristics usingMax-prop rules (see previ-
ous section). An obvious, if naive, way of solving the PSP
NET BENEFIT problem with such a planner is to consider all
plans for the2n subsets of ann-goalproblem, and see which
of them will wind up leading to the plan with the highest
net benefit. Since this is infeasible,AltAlt ps uses a greedy
approach to pick the goal subset up front. The approach
is sophisticated in the sense that it considers the net bene-
fit of covering a goal not in isolation, but in the context of

3Stopping the cost propagation when the graph levels-off (i.e.
no new facts or actions can be introduced into the graph) does not
guarantee that the cost-functions are stabilized. Actions introduced
in the last level still can reduce the cost of some facts and lead to the
re-activationchain reaction process that reduce the costs of other
propositions.

Procedurepartialize(G)
g ← getBestBenefitialGoal(G);
if (g = NULL)

return Failure;
G′ ← {g}; G ← G \ g;
R∗

P ← extractRelaxP lan(G′, ∅)
B∗

MAX ← getUtil(G′) − getCost(R∗

P );
BMAX ← B∗

MAX

while(BMAX > 0 ∧ G 6= ∅)
for (g ∈ G \ G′)

GP ← G′ ∪ g;
RP ← ExtractRelaxP lan(GP , R∗

P )
Bg ← getUtil(GP ) − getCost(RP );
if (Bg > B∗

MAX )
g∗ ← g; B∗

MAX ← Bg; R∗

g ← RP ;
else

BMAX ← Bg − B∗

MAX

end for
if (g∗ 6= NULL)

G′ ← G′ ∪ g∗; G ← G \ g∗; BMAX ← B∗

MAX ;
end while
return G′;

End partialize;

Figure 4: Goal set selection algorithm.

the potential (relaxed) plan for handling the already selected
goals (see below). Once a subset of goal conjuncts is se-
lected,AltAlt ps finds a plan that achieves such subset using
its regression search engine augmented with cost sensitive
heuristics. The goal set selection algorithm is described in
more detail below.

Goal set selection algorithm
The main idea of the goal set selection procedure in
AltAlt ps is to incrementally construct a new partial goal
setG′ from the top level goalsG such that the goals con-
sidered for inclusion increase the final net benefit, using the
goals utilities and costs of achievement. The process is com-
plicated by the fact that the net benefit offered by a goal
g depends on what other goals have already been selected.
Specifically, while the utility of a goalg remains constant,
the expected cost of achieving it will depend upon the other
selected goals (and the actions that will anyway be needed to
support them). To estimate the “residual cost” of a goalg in
the context of a set of already selected goalsG′, we compute
a relaxed planRP for supportingG′ + g, which is biased to
(re)use the actions in the relaxed planR′

P for supportingG′.
Figure 4 gives a description of the goal set selection al-

gorithm. The first block of instructions before the loop ini-
tializes our goal subsetG′,4 and finds an initial relaxed plan
R∗

P for it using the procedureextractRelaxPlan(G′,∅). No-
tice that two arguments are passed to the function. The first
one is the current partial goal set from where the relaxed
plan will be computed. The second parameter is the current
relaxed plan that will be used as a guidance for computing

4getBestBenefitialGoal(G) returns the subgoal with the
best benefit, Ug − C(g, t) tradeoff



the new relaxed plan. The idea is that we want to bias the
computation of the new relaxed plan to re-use the actions in
the relaxed plan from the previous iteration. Having found
the initial subsetG′ and its relaxed planR∗

P , we compute
the current best net benefitB∗

MAX by subtracting the costs
of the actions in the relaxed planR∗

P from the total utility of
the goals inG′. B∗

MAX will work as a threshold for our iter-
ative procedure. In other words, we would continue adding
subgoalsg ∈ G to G′ only if the overall net benefitB∗

MAX

increases. We consider one subgoal at a time, always com-
puting the benefit added by the subgoal in terms of the cost
of its relaxed planRP and goal utilityBg. We then pick the
subgoalg that maximizes the net benefit, updating the nec-
essary values for the next iteration. This iterative procedure
stops as soon as the net benefit does not increase, or when
there are no more subgoals to add, returning the new goal
subsetG′.

In our running example the original subgoals are
{g1 = AttendedAAAI, g2 = HaveFun(DL), g3 =
HaveFun(SF ), g4 = SeeZoo(SD)}, with final
costs C(g, t) = {230, 90, 80, 40} and utilities U
= {300, 100, 100, 50} respectively. Following our al-
gorithm, our starting goalg would be g1 because it
returns the biggest benefit (e.g. 300 - 230). Then,G′

is set to g1, and its initial relaxed planR∗
P is com-

puted. Assume that the initial relaxed plan found is
R∗

P = {travel(LV,DL), travel(DL,SJ)}. We proceed
to compute the best net benefit usingR∗

P , which in our ex-
ample would beB∗

MAX = 300 − (200 + 90) = 10.
Having found our initial values, we continue iter-
ating on the remaining goalsG = {g2, g3, g4}.
On the first iteration we compute three different
set of values, they are: (i)GP1

= {g1 ∪ g2},
RP1

= {travel(LV,DL), travel(DL,SJ))}, and
Bgp1

= 110; (ii) GP2
= {g1 ∪ g3}, RP2

=

{travel(LV,DL), travel(DL,SJ), travel(LV, SF )},
and Bgp2

= 30; and (iii) GP3
= {g1 ∪ g4}, RP3

=
{travel(LV,DL), travel(DL,SJ), travel(LV, SD)},
andBgp3

= 20. Notice then that our net benefitB∗
MAX

could be improved most if we consider goalg2. So, we
updateG′ = g1 ∪ g2, R∗

P = RP1
, andB∗

MAX = 110.
The procedure keeps iterating until we consider goalg4,
which decreases the net benefit. The procedure returns
G′ = {g1, g2, g3} as our goal set. In this example, there
is also a plan that achieves the four goals with a positive
benefit, but it is not as good as the plan that achieves the
selectedG′.

Sapaps : Heuristic Search using Goals as Soft
Constraints

The advantage of theAltAlt ps approach for solving PSP
problems is that after committing to a subset of goals, the
overall problem is simplified to the planning problem of
finding the least cost plan to achieve all the goals. The dis-
advantage of this type of approach is that if the heuristics do
not select the right set of goals, then we can not switch to
another subset during search. In this section, we discuss an
alternative method which models the top-level goals as “soft
constraints.” All executable plans are considered potential

solutions, and the quality of a plan is measured in terms of
its net benefit. The objective of the search is then to find a
plan with the highest net benefit. To model this search prob-
lem in an A* framework, we need to first define theg and
h values of a partial plan. Theg value will need to capture
the current net benefit of the plan, while theh value needs
to estimate the net benefit that can be potentially accrued
by extending the plan to cover more goals. Once we have
these definitions, we need methods for efficiently estimating
the theh value. We will detail this process in he context
of Sapaps , which does forward (progression) search in the
space of states.

g value: In forward planners, applicable actions are exe-
cuted in the current state to generate new states. For a given
stateS, let partial planPP (S) be the plan leading from the
initial stateSinit to S, and the goal setG(S) be the set of
goals accomplished inS. The overall quality of the stateS
depends on the total utility of the goals inG(S) and the costs
of actions inPP (S). Theg value is thus defined as :

g(S) = U(G(S)) − C(PP (S))

Where U(G(S)) =
∑

g∈G(S) Ug is the total utility of the
goals inG(S), and C(PP (S)) =

∑
a∈PP (S) Ca is the to-

tal cost of actions inPP (S). In our ongoing example,
at the initial stateSinit = {at(LV )}. Applying action
a1 = travel(LV,DL) would leads to the stateS1 =
{at(DL), g2} and applying actiona2 = travel(DL,SF )
to S1 would lead to stateS2 = {at(SF ), g2, g3}. Thus, for
stateS2, the total utility and cost values are: U(G(S2)) =
Ug2

+ Ug3
= 100 + 100 = 200, and C(PP (S2)) = Ca1

+
Ca2

= 90 + 100 = 190.

h value: Theh value of a stateS should estimate how much
additional net benefit can be accrued by extending the par-
tial planPS to achieve additional goals beyondG(S). The
perfect heuristic functionh∗ would give the maximum net
benefit that can be accrued. Anyh function that is an upper
bound onh∗ will be admissible. Notice that we are consid-
ering the maximizing variant of A*. Before we go about in-
vestigating efficienth functions, it is instructive to pin down
the notion ofh∗ value of a stateS.

For a given stateS, let PR be a plan segment that is
applicable inS, andS′ = Apply(PR, S) be the state re-
sulting from applyingPR to S. Like PP (S), the cost of
PR is the sum of the costs of all actions inPR. The util-
ity of the planPR according to stateS is defined as fol-
lows: U(Apply(PR, S) = U(G(S′)) − U(G(S)). For
a given stateS, the best beneficial remaining planPB

S

is a plan applicable inS such that there is no other plan
P applicable inS for which U(Apply(P, S)) − C(P ) >
U(Apply(PB

S , S)) − C(PB
S ). If we havePB

S , then we can
use it to define theh∗(S) value as follows:

h∗(S) = U(Apply(PB
S , S)) − C(PB

S ) (2)

In our ongoing example, from state S1,
the most beneficial plan turns out to be
PB

S1
= {travel(DL,SJ), travel(SJ, SF )}, and

U(Apply(PB
S1

, S1)) = U{g1,g2,g3} − U{g2} =



Disneyland

San Jose

San Francisco

Las Vegas G1(U:300)

G3(U:100)

G2(U:100)

A1(C=90)

[G1,G2,G3] A2(C=200)

[G1]

A3(C=100)

[G3]

Figure 5: A relaxed plan and goals supported by each action.

300 + 100 + 100− 100 = 400, C(PB
S1

) = 200 + 20 = 220,
and thush∗(S1) = 400 − 220 = 180.

Computingh∗(S) value directly is impractical as search-
ing for PB

S is as hard as solving the PSP problem optimally.
In the following, we will discuss a heuristic approach to ap-
proximate theh∗ value of a given search nodeS by essen-
tially approximatingPB

S using a relaxed plan fromS.

Heuristic Estimation in Sapaps

Like AltAlt ps , Sapaps also uses relaxed-plan heuristic ex-
tracted from the cost-sensitve planning graph (Do & Kamb-
hampati 2003). However, unlikeAltAlt ps , in the current im-
plementation ofSapaps we first build the relaxed plan sup-
porting all the goals, then we use the second scan through
the extracted relaxed plan to remove goals that are not ben-
eficial, along with the actions that contribute solely to the
achievement of those goals. For this purpose, we build the
supported-goalslist GS for each actiona and fluentf start-
ing from the top level goals as follows:

• GS(a) =
⋃

GS(f) : f ∈ Eff(a)

• GS(f) =
⋃

GS(a) : f ∈ Prec(a)

Assume that our algorithm extracts the relaxed plan
f = RP (Sinit) = {a1 : travel(LV,DL), a2 :
travel(DL,SJ), a3 : travel(DL,SF )} (shown in Fig-
ure 5 along with goals each action supports). For this re-
laxed plan, actiona2 and a3 support onlyg1 and g3 so
GS(a2) = {g1} andGS(a3) = {g3}. The precondition
of those two actions,At(DL), would in turn contribute to
both these goalsGS(At(DL)) = {g1, g3}. Finally, because
a1 supports bothg2 and At(DL), GS(a1) = GS(g2) ∪
GS(At(DL)) = {g1, g2, g3}.

Using the supported-goals sets, for each subsetSG of
goals, we can identify the subsetSA(SG) of actions that
contribute only to the goals inSG. If the cost of those ac-
tions exceeds the sum of utilities of goals inSG, then we
can removeSG andSA(SG) from the relaxed plan. In our
example, actiona3 is the only one that solely contributes to
the achievement ofg3. Since Ca3

≥ Ug3
, we can remove

a3 andg3 from consideration. The other two actionsa1, a2

and goalsg1, g2 all appear beneficial. In our current imple-
mentation, we consider all subsets of goals of size 1 or 2 for
possible removal. After removing non beneficial goals and
actions (solely) supporting them, the cost of the remaining
relaxed plan and the utility of the goals that it achieves will
be used to compute an effective but inadmissibleh value.

Search inSapaps

The complete search algorithm used bySapaps is described
in Figure 6. In this algorithm, search nodes are categorized
as follows:

State Queue:SQ={Sinit}
Best beneficial node:NB = ∅
Best benefit:BB = 0
while SQ6={}

S:= Dequeue(SQ)
if (g(S) > 0) ∧ (h(S) = 0) then

Terminate Search;
Nondeterministically selecta applicable inS

S’ := Apply(a,S)
if g(S′) > BB then

Print BestBeneficialNode(S′)
NB ← S′; BB ← g(S′)

if f(S) ≤ BB then
Discard(S)

elseEnqueue(S’,SQ)
end while;

Figure 6: Anytime A* search algorithm for PSP problems.

Beneficial Node:S is a beneficial node ifg(S) > 0.
Thus, beneficial nodesS are nodes that give positive

net benefit even if no more actions are applied toS. In
our ongoing example, both nodesS1, S2 are beneficial
nodes. If we decide to extendS1 by applying the ac-
tion a3 = travel(DL,LV ) then we will get stateS3 =
{at(LV ),HaveFun(DL)}, which is not a beneficial node
(g(S3) = Ug2

− C{a1,a3} = 100 − 180 = −80).

Termination Node:ST is a termination node if: (i)h(ST ) =
0, (ii) g(ST ) > 0, and (iii) ∀S : g(ST ) > f(S).

Termination nodeST is the bestbeneficial node in the
queue. Moreover, becauseh(ST ) = 0, there is no benefit of
extendingST and therefore we can terminate the search at
ST . Notice that if the heuristic isadmissible, then the set of
actions leading toST represents an optimal solution for the
PSP problem.

Unpromising Node:S is a unpromising node iff(S) ≤ BB

with BB is theg value of a best beneficial state found so far.
The net benefit value of the best beneficial node (BB)

found during search can be used to set up the lower-bound
value and thus nodes that havef values smaller than that
lower-bound can be discarded.5

As described in Figure 6, the search algorithm starts with
the initial stateSinit and keeps dequeuing the best promising
nodeS (i.e. highestf value). IfS is a termination node, then
we stop the search. If not, then we extendS by applying
applicable actionsa to S. If the newly generated nodeS′ =
Apply(a, S) is a beneficial node and has a betterg(S′) value
than the best beneficial node visited so far, then we print
the plan leading fromSinit to S′. Finally, if S′ is not a
unpromising node, then we will put it in the search queue
SQ sorted in the decreasing order off values. Notice that
because we keep outputting the best beneficial nodes while
conducting search (until a terminal node is found), this is an
anytime algorithm. The benefit of this approach is that the

5Being aunpromising nodeis not equal to not being abeneficial
node. A given nodeS can have valueg(S) < 0 but f(S) =
g(S) + h(S) > BB and is still promising to be extended.



Zeno Travel (Quality)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13
Problem

B
e
n

e
fi

t

OptiPlan

AltAlt-PS

SapaPS

Satellite (Quality)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Problem

B
e

n
e

fi
t

OptiPlan

AltAltPS

SapaPS

DriverLog (Quality)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13
Problem

B
e
n

e
fi

t

OptiPlan

AltAltPS

SapaPS

ZenoTravel (Time)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13

Problem

T
im

e

OptiPlan

AltAltPS

SapaPS

Satellite (Time)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Problem

T
im

e
 (

s
e

c
)

OptiPlan

AltAltPS

SapaPS

DriverLog (Time)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13
Problem

T
im

e
 (

s
e

c
)

OptiPlan

AltAltPS

SapaPS

a) ZenoTravel domain b) Satellite domain c) DriverLog domain

Figure 7: Empirical evaluation

planner can return some plan with a positive net-benefit fast
and keep on returning plans with better net benefit, if given
more time to do more search.

Notice that the current heuristic used inSapaps is not ad-
missible, this is because: (i) a pruned unpromising nodes
may actually be promising (i.e. extendible to reach nodeS
with g(S) > BB); and (ii) a termination node may not be
the best beneficial node. In our implementation, even though
weightw = 1 is used in equationf = g+w∗h to sort nodes
in the queue, another valuew = 2 is used for pruning (un-
promising) nodes withf = g + w ∗ h ≤ BB . Thus, only
nodesS with estimated heuristic valueh(S) ≤ 1/w ∗h∗(S)
are pruned. For the second issue, we can continue the search
for a better beneficial nodes after a termination node is found
until some criteria are met (e.g. reached certain number of
search node limit).

Empirical Evaluation
In the foregoing, we have described several qualitatively dif-
ferent approaches for solving the PSP problem. Our aim in
this section is to get an empirical understanding of the cost-
quality tradeoffs offered by this spectrum of methods.

Since there are no benchmark PSP problems, we used ex-
isting STRIPS planning domains from the last International
Planning Competition (Long & Fox 2003). In particular, our
experiments include the domains of Driverlog, Satellite, and
Zenotravel. Utilities ranging from 100 to 600 were assigned
to each of the goals, and costs ranging from 10 to 800 were
assigned to each of the actions by taking into account some
of the characteristics of the problem. For example, in the
Driverlog domain, a driving action is assigned a higher cost
than a load action. Under this design, the planners achieved
around 60% of the goals on average over all the domains.

All three planners were run on a 2.67Ghz CPU ma-
chine with 1.0GB RAM. The IP encodings inOptiPlanwere

solved using ILOG CPLEX8.1 with default settings except
that the start algorithm was set to the dual problem, the vari-
able select rule was set to pseudo reduced cost, and a time
limit of 600 seconds was imposed. In case that the time limit
was reached, we denoted the best feasible solution asOpti-
Plan’s solution quality. Given thatOptiPlanreturns optimal
solutions up to a certain level, we set the level limit forOpti-
Planby post-processing the solutions ofAltAlt ps to get the
parallel length using techniques discussed in (Sanchez &
Kambhampati 2003).

Figure 7 shows the results from the three planners. It can
be observed that the two heuristic planners,AltAlt ps and
Sapaps , produce plans that are comparable toOptiPlan. In
some problems they even produce better plans thanOpti-
Plan. This happens whenOptiPlan reaches its time limit
and can not complete its search, or when the level given
to OptiPlanis not high enough. When comparing the two
heuristic planners,AltAlt ps is often faster, butSapaps usu-
ally returns better quality plans. The decrease on the perfor-
mance ofAltAlt ps could be due to the following reasons:
either the greedy goal set selection procedure ofAltAlt ps

picks a bad goal subset upfront, or its cost-sensitive search
requires better heuristics. A deeper inspection of the prob-
lems in which the solutions ofAltAlt ps are suboptimal re-
vealed that although both reasons play a role, the first reason
dominates more often. In fact, we found that the goal set se-
lection procedure tends to be a little bit conservative, select-
ing fewer subgoals in cases where the benefit gain is small,
which means that our relaxed plan cost is overestimating the
residual costs of the subgoals. To resolve this issue, we may
need to account for subgoal interactions more aggressively
in the goal set selection algorithm. The higher running time
of Sapaps is mostly due to the fact that it tries to search
for multiple (better) beneficial plans and thus have higher
number of search nodes. In many cases, it takes very short



time to find the first few solutions but much more to improve
the solution quality (even slightly). Moreover, the heuris-
tic used inSapaps seems to be misleading in some cases
(mostly in the Satellite domain) where the planner spends a
lot of time switching between different search branches at
the lower levels of the search tree before finding the promis-
ing one and go deeper.

Related Work
As we mentioned earlier, there has been very little work on
PSP in planning. One possible exception is the PYRRHUS
planning system (Williamson & Hanks 1994) which consid-
ers an interesting variant of the partial satisfaction planning
problem. In PYRRHUS, the quality of the plans is measured
by the utilities of the goals and the amount of resource con-
sumed. Utilities of goals decrease if they are achieved later
than the goals’ deadlines. Unlike the PSP problem discussed
in this paper, all the logical goals still need to be achievedby
PYRRHUS for the plan to be valid. It would be interesting
to extend the PSP model to consider degree of satisfaction
of the individual goals.

More recently, Smith (2003) motivated oversubscription
problems in terms of their applicability to the NASA plan-
ning problems. Smith (2004) also proposed a planner for
oversubscription in which the solution of the abstracted
planning problem is used to select the subset of goals and
the orders to achieve them. The abstract planning problem
is built by propagating the cost on the planning graph and
constructing theorienteeringproblem. The goals and their
orderings are then used to guide a POCL planner. In this
sense, this approach is similar toAltAlt ps ; however, the ori-
enteering problem needs to be constructed using domain-
knowledge for different planning domains.

Over-subscription issues have received relatively more
attention in the scheduling community. Earlier work in
scheduling over-subscription used greedy approaches, in
which tasks of higher priorities are scheduled first (Kramer
& Giuliano 1997; Potter & Gasch 1998). The approach
used byAltAlt ps is more sophisticated in that it considers
the residual cost of a subgoal in the context of an exisit-
ing partial plan for achieving other selected goals. More
recent efforts have used stochastic greedy search algorithms
on constraint-based intervals (Franket al, 2001), genetic al-
gorithms (Globuset al. 2003), and iterative repairing tech-
nique (Kramer & Smith 2003) to solve this problem more
effectively.

Conclusions and Future Work
In this paper, we investigated a generalization of the classi-
cal planning problem that allows partial satisfaction of goal
conjuncts. We motivated the need for such partial satisfac-
tion planning (PSP), and presented a spectrum of PSP prob-
lems. We then focused on one general PSP problem, called
PSP Net Benefit, and developed a spectrum of planners–Op-
tiPlan, AltAlt ps and Sapaps for it. Our empirical results
show that the heuristic approaches are able to generate plans
whose quality is comparable to the ones generated by the
optimizing approach, while incurring only a fraction of the
running time. The two types of heuristic planners can also

complement each other. The heuristic techniques used in
AltAlt ps can be employed inSapaps as an alternative to
its current approach of heuristic evaluation of each search
node. Our future work will extend our heuristic framework
to more complex PSP problems. Of particular interest to
us is handling partial satisfaction in metric temporal plan-
ning problems with resources.Sapaps , developed on top of
a temporal planner, is a promising candidate for this exten-
sion.

References
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis.Artificial Intelligence90:281–300.

Boutilier, C., Dean, T., and Hanks, S. 1999. Decision-Theoretic
Planning: Structural assumptions and computational leverage. In
JAIR 11 (p.1-94)

Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. InAIJ 69(1-2):165–204.

Do, M. and Kambhampati, S. 2003. Sapa: a multi-objective
metric temporal planer. InJAIR 20 (p.155-194)

Do, M. and Kambhampati, S. 2001. Planning as Constraint Satis-
faction: Solving the planning graph by compiling it into CSP. In
AIJ 132(2):151–182.

Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001. Planning
and scheduling for fleets of earth observing satellites. InSixth Int.
Symp. on Artificial Intelligence, Robotics, Automation & Space.

Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2003. Schedul-
ing earth observing sateliites with evolutionary algorithms. In
Proc. Int. Conf. on Space Mission Challenges for Infor. Tech..

Hoffmann, J. and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. InJAIR 14 (p.253-302).

Kautz, H., and Selman, B. 1999b. Blackbox: Unifying Sat-based
and Graph-based planning. InProc. of IJCAI-99.

Kramer, L. and Giuliano, M. 1997. Reasoning about and schedul-
ing linked HST observations with Spike. InProc. of Int. Workshop
on Planning and Scheduling for Space.

Kramer, L. A., and Smith, S. 2003. Maximizing flexibility: A
retraction heuristic for oversubscribed scheduling problems. In
Proc. of IJCAI-03.

Long, D., and Fox, M. 1999. Efficient implementation of the plan
graph in STAN. InJAIR10:87–115.

Long, D. and Fox, M. 2003. The 3rd International Planning
Competition: Results and analysis. InJAIR 20 (p.1-59).

Nguyen, X., Kambhampati, S., and Nigenda, R. 2001. Planning
graph as the basis for deriving heuristics for plan synthesis by
State Space and CSP search. InAIJ 135 (p.73-123).

Potter, W. and Gasch, J. 1998. A photo album of Earth: Schedul-
ing Landsat 7 mission daily activities. InProc. of SpaceOps.

Sanchez, R., and Kambhampati, S. 2003. Altalt-p: Online paral-
lelization of plans with heuristic state search. InJAIR 19 (p.631–
657).

Smith, D. 2003. The Mystery talk.Planet Summer School

Smith, D. 2004. Choosing objectives in Over-Subscription plan-
ning. InProc. of ICAPS-04.

Vossen, T., Ball, M., and Nau, D. 1999. On the use of integer
programming models in ai planning. InProc. of IJCAI-99

Williamson, M., and Hanks, S. 1994. Optimal planning with a
Goal-Directed utility model. InProc. of AIPS-94.


