
Three Guys Win 2013 Sveriges Riksbank (a.k.a. Nobel) Prize 
in Economic Sciences: Who is the Best? 

 
I'll tell you who is the best of the three guys in a minute, but first let's be real about the 
whole business.  This prize is not like the prizes given to physical scientists.  Those prizes 
have a long history.  The prize for economics was created in 1968 by the Swedish Central 
Bank.  Because all Nobel Prizes must go to living people, they couldn't give them to the 
likes of Adam Smith or Leon Walras.  You likely have heard of the former but not the 
latter, because the latter employed higher mathematics in his work.  The same is true of 
the living Nobel Laureates; some are known to the public, but the more technocratic are 
not.   
 
Enter the three guys given prizes yesterday.  Eugene Fama is well-known by anyone who 
has suffered through enough business school finance courses.  He wrote papers and texts 
that have been widely adopted by business school faculty.  Perhaps he is best known for 
his work attempting to rigorously formulate notions of market efficiency.  He tried to do 
this by postulating links between the types of information that analysts, investors, and 
traders may have available to them, and the resulting stock, bond, and other assets' price 
movements that could result from that information flow.  He then proposed statistical 
ways to test whether or not these linkages hold.  His other best-known work is similar.  
For example, other professors proposed a linkage between the long-run average rate of 
return from a particular stock and the so-called :"market portfolio", the linkage mediated 
by the "beta coefficient".  This proposition is taught in all business school finance 
departments.   During the 1990s, Fama and colleagues challenged the relevance of this 
proposition, by proposing and implementing a statistical test that highlighted two 
statistics that seem anomalous from this perspective.  One is the relatively high long run 
average of rates of return to hypothetical portfolios composed of stocks with unusually 
high book (equity) value relative to their market values (which they dubbed  "value 
stocks") -- especially if one simultaneously shorts stocks on the other end of that 
spectrum.  The other seemingly anomalous statistic is the relatively high long run average 
rates of return to hypothetical portfolios composed of stocks with very low market 
capitalization ("small stocks") -- especially if one simultaneously shorts stocks on the 
other end of the size spectrum.   
 
Those with Ph.Ds in finance, economics, or statistics find Fama's work relatively easy to 
comprehend, and more importantly, relatively easy to extend by use of different statistical 
tests and/or data sets than he employed.  As a result, many now-tenured faculty 
established their own research credentials by publishing findings that call his work into 
question.  I hope that this will be his long-run impact on the profession, rather than the 
current emphasis textbook authors place on his findings.   
 
Robert Shiller has had a smaller impact on the finance curriculum, but has become well-
known by practitioners through his propensity to give media interviews, appear in 
advertising for Fidelity, etc.  His best-known academic work challenged the Fama-like, 
business school mantra that stock prices are most heavily influenced by the companies' 



stream of future payouts, e.g. dividends and stock repurchases.  He and colleagues 
proposed and implemented statistical tests that seemed to show that stock prices were 
more volatile than they should be if that were the case.1 This started a cottage industry of 
alternative ways to both formulate the question and to interpret the findings (e.g. is the 
phenomena due to time-varying risk aversion, or time-varying "discount rates" induced 
by time-varying risk aversion, etc.).  As often happens when someone receives acclaim 
for influential findings, others may have been slighted out of that acclaim for similar 
findings.  In Shiller's case, my former Univ. of Minnesota colleague Steve LeRoy is one 
of them.  In addition, he wrote at least one other well-cited article that challenged the 
legitimacy of some of Fama's influential papers.  Steve has a good career going, but 
deserves more visibility for the originality and depth of his work.   
 
Notwithstanding the reservations noted above, both Fama and Shiller did good technical 
work earlier in their careers that is less well-known.  For example, Fama took nascent 
steps to theorize about the market pricing of effects of fatter-than-normal tails in asset 
return distributions.  Such theorizing has come back into vogue following our unsettling 
severe market crashes.  And Shiller did earlier work in time-series econometrics on the 
estimation of autoregressive models.  Autoregessive models soon grew to challenge the 
large-scale  -- albeit intellectually bankrupt -- modeling orthodoxy promoted by Otto 
Eckstein's Data Resources Inc. and similar entrepreneurial faculty.  
 
We now turn to Lars Hansen, the least-publicly known co-winner of this year's Prize.  I 
went to grad school with Lars at the University of Minnesota's Economics Department.  It 
might surprise you to read that during my Minnesota years, I also studied from and/or 
worked with (either at the Minneapolis Fed and later as a University of Minnesota 
professor) four others who won that Prize: Leo Hurwicz, Ed Prescott, Tom Sargent, and 
Chris Sims.  Lars and the rest of them are truly great people and scholars who have been 
kind to me over the years.  When I was a student, I wasn't the best-behaved guy (but 
hopefully not the worst).  Hurwicz said I distracted him on occasion. Sargent summoned 
me to tell me that another Ph.D student wanted me banned from class (it isn't my fault 
that the guy wound up teaching somewhere in South America), and Sims got annoyed 
when I stood up at a large conference to challenge something that he asserted about 
nonlinear dynamics research (my challenge impressed enough of the audience to irk 
him).   But over the many years that followed, all of them have gone out of their way to 
speak and act favorably about my subsequent work.   
 
Some of my published work (J. Econometrics 1995, Econometrica 1997, J. Econometrics 
2002) work, the latter two done in conjunction with (now) Yale Economics Professor 
Yuichi Kitamura, is intended to augment and extend the framework that Lars devised. So 
it is especially gratifying that he has been supportive.  I'll do my best to explain what Lars 
achieved, without using statistical theory (OY!).   
 
Let's start by considering a seemingly unrelated issue: how to measure the Earth's mass.  
In science class, all of us have placed something on a balance to measure its mass.  But 

                                                      
1 Here, as in my assertions about Fama's work, I am oversimplifying what he did, in order to make this 
missive more accessible to those of you who don't have Ph.Ds in finance, economics, or statistics.   



even the kids who skipped that day know that there isn't a balance big enough to hold the 
earth.  So how is it done?  The answer is to use a theory that relates the earth's mass to 
other quantities that can be measured, and then work backward to figure out the value of 
the earth's mass that the theory implies.  I used a websearch to immediately find that one 
such way is to drop a small object of some mass (dubbed "object mass"), and measure its 
acceleration while falling. Newton's 2nd Law of Motion relates these quantities to the 
gravitational force acting on it:  
 
F = object mass x its acceleration.   
 
Newton's Universal Law of Gravitation relates the same force to the Earth's Mass, the 
distance "r" from the object to the earth's center of gravity, the gravitational constant "G":  
 
F = (G/ r2) x Earth Mass x object mass  
 
Now subtract the two equations and divide through by the object mass to obtain the 
equation:  
 
(1)   acceleration of a small object - (G / r2)  x  Earth Mass  = 0  
 
A physicist might just plug-in an estimated value for the gravitational constant "G", an 
estimate for r2, and his/her measurement for the dropped object's acceleration.  The only 
number left is Earth Mass, so the physicist could solve the above equation to estimate: 
Earth Mass =acceleration of a small object x r2 / G.  Repeated dropping of the same small 
object, or perhaps other small objects, would result in (hopefully only slightly) different 
estimates of the Earth's Mass.  The slight differences could arise from the error in 
measuring r and/or G and/or the acceleration of what was dropped. The average or 
perhaps the median of those numbers could be adopted as the estimate of the Earth's 
Mass.  
 
But this procedure might only be as good as the estimate used for G / r2.  For most 
purposes that might not be a problem, but for others it might be.  Estimates of the earth's 
radius r have been made since Erastothenes in the 3rd Century B.C., and of course have 
been improved subsequently.  The gravitational constant "G" has a very long history of 
importance, yet the author of its Wikipedia entry notes that  
 
"G is quite difficult to measure, as gravity is much weaker than other fundamental forces, 
and an experimental apparatus cannot be separated from the gravitational influence of 
other bodies." 
 
The author mentions the original measurement technique Cavendish in 1798, and that 
attempts to improve on it persist to this day.   
 
So let's try to avoid the whole issue by defining a parameter   1 (the Greek letter theta) 
representing G / r2 , another parameter  2  representing the Earth's Mass, and posit  that 



over repeated measurements of a dropped small object or objects, the long-run average or 
"mathematical expectation" of (1) would equal  zero:  
 
(2) E[acceleration -  1  x   2] = 0.     
 
 
The observed data are the set of acceleration measurements on the same or different small 
objects.  Because the law of large numbers implies that a hypothetical infinite number of 
measurements would average to the above expected value E, the statistician with a finite 
amount of data might just look for a value of  1  x   2  that makes the  measured 
numbers' finite average equal zero, i.e. set  1  x   2 equal to the average acceleration.  
But that will only provide an estimate for  1  x   2 , which cannot as yet be decomposed 
to find the desired estimate for the Earth's Mass  2 .  In econometrics, this is called a 
problem of "underidentification".   
 
If a physicist could use theory to posit another expected value relationship, that like (2), 
depends at most on  1 and  2 , this would provide another "moment condition":  
 
(3) E[data;  1 ,  2] = 0   
 
Then, with an infinite amount of observation of both the acceleration of small objects 
from (2), and whatever observed data is needed for (3), the law of large numbers would 
imply that the "long-run" average of the expressions inside the brackets of (2) and (3) 
will both be zero when evaluated at the correct values for  1 and  2.  With a little luck, 
the two equations in those two unknowns will uniquely determine values for those two 
parameters, a property known as "exact identification".   But again, the real world only 
yields a finite amount of data, so the econometrician could specify a criterion function 
used to quantify the meaning of two finite averages both being close to zero. For 
example, one might just square the value of each average, add the squares together, and 
search of values of   1 and  2  that make this sum of squares as small as possible. These 
values are the econometrician's estimates of the parameters  1 and  2, with the latter 
(i.e. the Earth's Mass) the parameter of most interest --  recall that his was what we 
wanted to know in the first place!.     
 
But there is nothing sacred about that particular criterion function.  For example, one 
might seek parameter values that make the sum of the absolute values of the two 
bracketed expressions' averages as close to zero as possible.   
 
Of course other physical theory could be brought to bear, resulting in additional moment 
conditions with the form (3). Then we would have more moment conditions than there 
are parameters, a situation dubbed "overidentification".  Again, a hypothetically infinite 
amount of data would then result in more equations than unknown parameters.  One 
might discover that there are no values of the two parameters that satisfy all the moment 
conditions, in which case we reject the underlying theory or theories that led to those 
moment conditions.  Presumably with an infinite amount data of the right kind, 
Einsteinian gravitational effects would cause this to be the case.   



 
The types of asset pricing theories that have captivated economists' attention are also 
overidentified.  While it is not taught this way outside of Ph.D programs, most "risk vs. 
return" type of theories predict some relationship between an individual asset's expected 
gross return  (denoted Ri for the ith asset whose gross return can be measured accurately) 
and an obscure quantity alternatively called a "stochastic discount factor" or "pricing 
kernel" m.  Different asset pricing theories lead to different pricing kernels, each of 
which is a function of some data (e.g. aggregate consumption in the economy, or the 
"market portfolio's" return) and some parameters (e.g. the "coefficient of risk aversion", 
the "rate of subjective time discount", the "elasticity of intertemporal substitution" and 
others).   
Hence each theory yields a different specification for the function m, which we write as  
 
(4) m(data;  1 ,  2  ,  3 ,…) 
 
Lars Hansen and others noticed that in such asset pricing theories, the moment conditions 
can be placed in the form:  
 
(5) E[Ri m(data;  1 ,  2  ,  3 ,…)-1] = 0 , i = 1, 2, 3,…..  
 
The immense database for the hordes of different assets' returns implies that there are a 
very large number of equations in (5) relative to the number of parameters in asset 
pricing theories. As such, the situation is inherently overidentified.   
 
Lars Hansen won the Nobel Prize in large part for his econometrically innovative 
approach to using finite data to estimate parameters subject to the moment conditions (5).  
He posited a general class of criterion functions used to measure closeness of the 
resulting group of averages to zero. He then derived a way to specify a particular criterion 
function in that class, dependent on the data and the posited moment conditions, that 
would lead to good parameter estimates when the moment conditions are true (i.e. the 
theory implying them is true). He also provided a statistical test for the latter, used in an 
attempt to settle the question of whether a posited theory holds water.   
 
All this was Lars Hansen's breakthrough, which he called the "Generalized Method of 
Moments".His GMM method was fairly rapidly adopted, in no small part due to 
computer software developed and made available by others, that permitted use of the 
method without deep understanding of it.  I doubt that the Great Gauss' own Method of 
Least Squares (i.e. "regression") estimator would be widely adopted if not for the same 
access to "user-friendly" software that does not require deep knowledge of the underlying 
statistical theory.  For evidence, just look at the bulk of misleading statistical work done 
in departments ranging from sociology to epidemiology.     
 
 
 
 



Considering the bulk of published finance studies using the GMM method, I am sad to 
report that most of this work has rejected the asset pricing theories still taught in Ph.D 
programs.  From this we learn that:  
 

Economics  Physics.  Ain't No Einstein Here. 
 
My work done in conjunction with Prof. Yuichi Kitamura (cited earlier here) devised and 
promoted a different way of addressing the same class of problems that he did -- i.e. 
problems requiring estimation of fewer parameters than the number of equations that the 
theory implied should equal zero.  When a subsequent researcher develops and promotes 
an approach that differs from an innovator, the innovator often engages in turf defense by 
denying the legitimacy of the proposed alternative.  But an intellectually honest and 
humble innovator will judge the proposed alternative solely on its merits.  That is what 
Lars Hansen did with our work. He doesn't view it as superior, but rather as an interesting 
alternative approach that has intrinsic merit, particularly via other, yet to be found 
applications of the same mathematics.  He has used some of that mathematics (i.e. the 
statistical theory of large deviations, and its entropic interpretation) in seemingly 
unrelated theories he has devised with Tom Sargent and with Jose Scheinkman.   
 
When I return home from work today, I plan to raise a chilled glass of akvavit to Lars 
Hansen, and to the Swedish Central Bank for funding the prize given to Lars.  Another 
student once told me that very long ago Lars said something to the effect that I would 
either win the Nobel Prize or never be heard from again.  He was correct there, too!   


