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The Misuse of Expected Returns
1

Eric Hughson, Michael Stutzer, and Chris Yung

Much textbook emphasis is placed on the mathematical notion of expected return and its historical
estimate via an arithmetic average of past returns. But those wanting to forecast a typical future
cumulative return should be more interested in estimating the median future cumulative return
than in estimating the mathematical expected cumulative return. For that purpose, continuous
compounding of the mathematical expected log gross return is more relevant than ordinary
compounding of the mathematical expected gross retum.

Popular finance textbooks and other method-
ological treatises emphasize the relevance of
a portfolio's expected retum and the use of
time-averaged historical returns as an esti-

mate of it. For example, Bodie, Kane, and Marcus
(2004) state:

. . . if our focus is on future performance then
the arithmetic average is the statistic of interest
because it is an unbiased estimate of an asset's
future returns, (p. 865)

A more detailed procedure for using this average
is found in a respected researcher's survey article:

When returns are serially uncorrelated—that
is, when one year's retum is unrelated to the
next year's retum—the arithmetic average
represents the best forecast of future retum in
any randonUy selected year. For long holding
periods, the best return forecast is the arith-
metic average compounded up appropriately.
(Campbell 2001, p. 3)

For an illustration of the quoted concepts, con-
sider a hypothetical broad-based stock index with
returns that are corxsistent with the ubiquitous ran-
dom walk hypothesis. Annual gross (i.e., 1 plus net)
retums for each of the past 30 years from the hypo-
thetical index are given in the second column of
Table 1. The arithmetic average gross retum is
1.054 (i.e., the net retum averages 5.4 a year). The
last column provides the historical cumulative
retums. The fourth column of Table 1 shows the
cumulative retum forecasts calculated by follow-
ing the advice in the Campbell (2001) quotation—
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namely, compounding the arithmetic average to
produce cumulative retum forecasts at each future
horizon between 1 and 30 years. For example, the
forecasted cumulative retum after 1 year is 1.054̂
= 1.054, and after 30 years, it is 1.054̂ 0 = 4799. that
is, an initial investment of SI.00 is forecasted to
grow to about $4.80. But this retum forecast is far
higher than the 30-year historical cumulative
retum (3.005) shown at the bottom of the last col-
umn, which suggests that the arithmetic average-
based forecast in the fourth column may be too
high. We will now document that such overblown
forecasts are very likely to happen in practice.

The overoptimism inherent when the arith-
metic average retum is used to forecast is illus-
trated in Table 2 and Figure 1, which report the
results from a bootstrap simulation of one million
possible future cumulative retums derived from
the annual gross returns given in Table 1.̂  Both
Tabie 2 and Figure 1 clearly show that the mathe-
matical expected cumulative return is always
higher than the median cumulative retum (i.e., the
retum that has equal chances of being exceeded or
not) and that the gap between the two increases as
the time horizon lengthens and the cumulative
retum distribution becomes more highly skewed to
the right. For example, at the 10-year horizon, the
mathematical expected cumulative retum is 1.72,
which is 18 percent bugher than the median cumu-
lative return (1.46). At the 30-year horizon, the
mathematical expected cumulative retum is 67 per-
cent higher than the median cumulative retum. As
a result, the mathematical expected cumulative
return is less likely to be realized (i.e., met or
exceeded by the future cumulative retum) in the
future than the median retum, and this likelihood
is more pronounced for the long horizons used by
retirement planners. For example, there is a 38 per-
cent probability that the mathematical expected

88 www.cfapubs.org ©2006, CFA Institute



The Misuse of Expected Returns

Table 1. Forecasts Based
Historical Period, T Gross
{years) Retum

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

16

17
18

19

21

22

23

24

2S

2£
27

28

29

30

Average

1.014

0.876

1.100

1084

1.269

1.375

0.764

1.024

1.250

0.901

0.956

0.823

0.804

0.916

0.944

0.772

0.974

0.998

1.082

1.004

1.010

1.003

1.297

1.047

1.031

0.982

1.426

1.208

1.515

0.961

1.054

on Historical
Lx)g Gross

Retum

0.014

-0.133

0.095

0.250

0.239

0.319

-0.269

0.024

0.223

-0.104

-0.045

-0.195

-0.218

-0.088

-0.057

-0.259

-0.026

-0.002

0.079

0.004

0.010

0.003

0.260

0.046

0.031

-0.018

0.355

0.189

0.415

-0.039

0.037

Arithmetic Average
T-Year Ctunulative

Retum Forecast

1.054

1.110

1.170

1.233

1.299

1.368

1.442

1.519

1.601

1.687

1.777

1.873

1.973

2.079

2.191

2.308

2.432

2.563

2.700

2.845

2.998

3.159

3.328

3.507

3.695

3.893

4.102

4.323

4.555

4.799

Returns
Historical

Cumulative Retum

1.014

0.888

0.976

1.254

1.592

2.189

1.673

1.713

2.141

1.929

1.845

1.518

1.221

1.118

1.056

0.815

0.794

0.792

0.857

0.861

0.869

0.872

1.131

1.184

1.221

1.199

1.709

2.064

3.126

3.005

Table 2. Forecasting the Mathematical Expected and Median T-Year
Cumulative Return

Horizon
(Tyears)

5

10

20

30

40

Mathematical
Expected Retum

1.31

1.72

3.01

5.15

9.0]

Compounded
Arithmetic

Average Retum

1.30''

1.69

2.86

4.84

8.20

Median Retum

1.20

1.46

2.18

3.09

4.72

Compotmded
Average

Log Retum

1.203*'

1.45

2.10

3.03

4.39
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Figure 1. Mathematical Expected Return vs. Median Cumuiative Return:
Bootstrap Simuiation of Table 1 Returns
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cumulative retum will be exceeded at the 10-year
horizon and only a 30 percent probability that it
will be exceeded at the 30-year horizon.

The third column in Table 1 contains the loga-
rithms of the historical gross retums. The average of
these logarithms is lower than the arithmetic aver-
age of the gross retums themselves. Table 2 con-
trasts forecasts that compound the arithmetic
average gross retum with those that (continuously)
compound the average hg gross retum (3.7 percent
from Table 1). It is also common for analysts to call
the number e^-^^'^ - 1 == 0.038 percent the geometric
average net retum, in which case the last column of
Table 2 is equivalently produced by ordinary com-
pounding of the geometric average gross retum (i.e.,
1.038'),^ Table 2 shows that the compounded aver-
age of the log gross retums is far closer to the simu-
lated median future cumulative retum than is the
compounded arithmetic average (1.054^), which in
tum, is far closer to the simulated mathematical
expected future cumulative return. At the relatively
long horizons that characterize retirement planning,
the unwarranted optimism inherent in the arith-
metic average-based forecasts will probably lead to
excessively high investment in stocks.

To confirm that these problems also occur
when actual monthly historical returns are used, we
applied the same bootstrap simulation technique to
the widely used 1926-2004 large-capitalization
stock monthly retums produced by CRSP. The
results, depicted in Figure 2 and Table 3, confirm
the previous problems. Moreover, a proof in
Appendix A shows that these phenomena are
generic, not simply the result of the specific data or
accuracy of the simulations.

These findings are important because some
investors do use the overly optimistic forecast pro-
cedure based on the historical arithmetic average.
For example, in 2001, the chief actuary of the U.S.
Social Security Admirustration described forecast
procedures used in the organization's study of indi-
vidual retirement account options that had been
proposed but notyet enacted. The actuary noted that

for individual account proposals, analysis of
expected benefit levels and money's worth
was aiso provided using a higher annual
equity yield assumption of about 9.6 percent.
This higher average yield reflected the arith-
metic mean, rather than the geometric mean
(which was 7 percent), of historical data for
annual yields. (Campbell 2001, pp. 55-56)

In other words, the actuary made separate forecasts
by compounding equity accounts at both the 9.6
percent historical arithmetic average retum and the
7 percent geometric average retum. We now exam-
ine possible reasons for compounding at the histor-
ical arithmetic average retum rate.

Why Use the Arithmetic Average
Return In Forecasting?
Two motives are put forth for using the arithmetic
average retum, but neither is convincing. The first
motive is somewhat complex. Recall that the mathe-
matical expectation of something is the probability-
weighted average of its possible values. The
quotations that began this article use this mathemat-
ical definition of expectation. When portfolio gross
retums K, are independently (I) and identically dis-
tributed (ID), the mathematical expected cumula-
tive retum (denoted by E) is the compounded value
of the expected gross retum per period—that is,

(0 ?• (ID)

{ ) Y l { )
t=]

where Wj denotes the (random) cumulative return
T periods in the future.

In addition, with the same IID assumption, the
arithmetic average of historical gross retums is a
commonly used estimate of the (unknown) con-
stant mathematical expected gross retum E{Ri) per
period, which becomes a more accurate estimate as
the calendar history of gross retums lengthens.
This argument is the typical motivation (as used in
the opening quotation) for substituting the arith-
metic average gross retum (i.e., 1.054 percent) for
the unobserved expected gross retum per period,
EiRx).^ But as Figures 1 and 2 and Tables 2 and 3
show, the mathematical expected cumulative
return, E{Wj), for a stock index is less likely to be
equaled or exceeded than the median cumulative
retum is. The situation becomes extreme in the long
run because, as proven in Appendix A,

pwb[Wj->E{Wj-)] = 0.

So, perhaps some long-term investors want to
forecast the expected cumulative retum because
they use the word "expected" in its dictionary
sense, rather than its mathematical sense. Accord-
ing to the Merriam-Webster Online Dictionary,
"expect" means "to anticipate or look forward to
the coming or occtirrence of" or "to consider prob-
able or certain." Long-term investors using this
sense of the word will want to forecast the median
cumulative retum rather tlian the mathematical
expected cumulative return because the unknown
future cumulative retum is more likely to equal or
exceed the median. Tables 2 and 3 suggest that such
investors should continuously compound the aver-
age log gross retum (or, equivalently, simply com-
pound the geometric average retum) when making
forecasts based solely on historical data.
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Figure 2. Mathematical Expected vs. Median Cumulative Return: Bootstrap
Simulation of (1926-2004) Large-Cap Stock Returns
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Table 3. Forecasting Based on Monthly (1926-2004) Large-Cap Returns

Horizon
(T years)

Mathematical
Expected Return

Compounded
Arithmetic

Average Return Median Return

Compounded
Average

Log Return

5
10
20

^ '
40

1.79

3.22

10.35

33.26

106.69

1.82^

3.30

10.89

35.95

118.65

1.64

2.68

7.16

19.08

50.83

1.62^

2.64

6.96

18.38

48.51

A second possible motive for interest in fore-
casting the mathematical expected cumulative
rehim arises from the statistical theory of best fore-
casts. This theory requires that the forecaster
choose a loss function that quantifies the loss
incurred by missing the forecast. Of course, the
forecast error is random, so the best forecast is the
one that minimizes a misforecasting "cost,"
defined to be the mathematical expected loss.
When the loss is proportional to the squared forecast
error, it is well known (see, for example, Zellner
1990) that the best forecast, m this sense ofthe word
"best," is the mathematical expected cumulative
return, despite the fact that it will be higher than
the median cumulative return. To understand why,
consider the loss associated with underforecasting
an unusually high cumulative return. The loss is
extremely high because it is found by squaring the
error between the high cumulative return and the
(lower) forecast. For example, suppose the forecast
error is +3. Then, the loss is 9, which is three times
the size of the forecast error itself. Now, because
cumulative returns are inherently positively
skewed, the chance of underforecasting by an
unusually large amount is greater than the chance
of overforecasting. As a result, to minimize the
chance of underforecasting by an unusually large
amount, the forecast that minimizes the mathemat-
ical expected squared forecast error will be higher
than the median. But this mathematical result is
merely an alternative way of characterizing the
behavior of someone who uses the expected cumu-
lative return as a forecast. It is not a recommenda-
tion that investors use the squared forecast error to
measure the loss from misforecasting. In fact, stat-
isticians have also shown that if investors use the
forecast error itself to measure the loss from mis-
forecasting, the median is the statistically best fore-
cast. After seeing the results in this article, we
believe that most long-term investors would con-
sider the median cumulative return to be a better
forecast than the expected cumulative return.

Hence, they act "as if" the forecast loss is the fore-
cast error itself, rather than the squared error.

Limitations of Historical Returns
Unfortunately, using a historical average to estimate
either the unknown expected gross return per year
or expected log gross return per year requires, even
under the ideal statistical circumstances embodied
in the IID assumption, a very long calendar history
of returns. Under the IID assumption, the estimate
becomes progressively more accurate as the number
of available past years' returns gets larger. But the
convergence to the unknown true number is typi-
cally slow. Measuring returns more frequently (e.g.,
monthly or daily instead of annually) does abso-
lutely no good."*

For an illustration of this point, note that the
hypothetical annual stock returns in Table 1 (and
used to produce Figure 1 and Table 2) were ran-
domly sampled from a lognormal distribution
with a volatility of 15 percent. Suppose we would
like to be 95 percent confident that the historical
average log gross annual return is within 400 bps
of the (unknown) expected log gross return per
year. Appendix A shows that we would need more
than 54 years of past log gross returns to ensure this
confidence level. And ±400 bps per year is probably
too wide an uncertainty band for many financial
planning purposes.

Moreover, even if we did have a long calendar
history of returns, how likely is it that those returns
would continue being generated by the same IID
process? If the probability distribution of the mea-
sured returns changes over time, the compounding
of historical averages will be very misleading, espe-
cially for short- or medium-term forecasts. Asness
(2005) noted:

When it comes to forecasting the future,
especially when valuations (and thus histori-
cai returns) are at extremes, the answers we
get from looking at simple historical averages
are bunk. (p. 37)
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This opinion may be excessively harsh, but we do
feel that using historical returns to implement non-
parametric forecast procedures (such as all the ones
mentioned in this article) does not solve all prob-
lems inherent in the difficult task of forecasting
cumuiative returns.

Conclusion
Textbooks and other methodological sources may
discuss the mathematical differences between his-
torical arithmetic average and geometric average
returns but may not adequately advise practitioners
about the proper use of these concepts when fore-
casting future cumulative returns. Under ideal sta-
tistical assumptions, the historical arithmetic
average gross return is an unbiased estimator of the
mathematical expected gross return per period. As
others have noted, compounding the mathematical
expected gross return (but not the historical arith-
metic average return) produces the mathematical
expected cumulative return. But because cumulative
returns are positively skewed, the mathematical
expected cumulative return substantially overstates
the future cumulative return that investors are
likely to realize, and the problem grows worse as
the horizon increases. Those seeking a more realistic
forecast procedure can approximate the median
cumulative return by continuously compounding
the mathematical expected log gross return per
period, using the historical average log gross return
to estimate the expected log gross return. Without a
hundred years or more of accurate returns to aver-
age, however, that procedure may still provide a
highly inaccurate estimate—even if the return dis-
tribution does not change over time.

Vie authors wish to acknowledge Gitlt Gur-Gershgorin
for assistance loith the simulations and Garland
Durimm for comments on the mathematics.

This article qualifies for 1 PD credit.

Appendix A. Derivation of
Mathematical Claims
Using Wj to denote the cumulative return in time
period T from a dollar invested initially and using
Rf to denote the gross return at time t {i.e., 1 plus
the net return), we express Wj- as

(I) T
l

(ID)
(A2)

which shows that compounding expected portfolio
gross returns produces the portfolio expected
cumulative return, a fact underlying the Campbell
(2001) quotation at the beginning of this article.

Representing Equation Al and Equation A2 a
bit differently will soon prove useful. To do so, we
take the logarithm of both sides of Equation A2 and
then reexponentiate to show that

,^r^iog£(fl) (A3)

Taking the logarithm of both sides of Equation Al,
dividing and multiplying by T, and then reexpo-
nentiating shows that

(A4)

We see from Equation A4 that it is the time-
averaged log gross returns that determine the evo-
lution of a portfolio's cumulative return, regardless
of whether or not the returns are IID. Because the
(nonlog) gross returns are never negative for stock
and/or bond investments, and raising something
normegative to a fixed power greater than 1 is a
monotone nondecreasing function. Equation A3
and Equation A4 imply that the probability of doing
at least as well as the expected cumulative return is

= proh
T

(A5)

When the gross return process is IID, the ma th-
ematical expectation (denoted by £) is

But by the law of large numbers for HD pro-
cesses, j

I r r ^ -
— ̂ log / ? , - E{\ogR). (A6)
^ f= i
So, from Equation A5 and Equation A6, we see

that the long-run behavior of the probability (Equa-
tion A5) is governed by the relationship between
£(log R) and log £(R). Because Jensen's inequality
implies that

E(\QgR)< \ogE[R), (A7)

Equations A5-A7 imply the distribution-free result
in the text; that is,

pToh[WT>E(Wjj\ = 0. (A8)

Erom Equation A8, we can clearly see that we
should not expect to earn a long-run cumulative
return that is greater than or equal to the expected
cumulative return! When a variable is not symmet-
rically distributed, its mathematical expectation is
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not generally a good indicator of the variable's
central tendency. Figures 1 and 2 show that the
cumulative return distribution is sharply skewed
to the right, so the expected cumulative return,
E{Wj), is higher than what will likely occur.

The horizon-dependent probabilities (Equa-
tion A5) are easily calculated when the returns are
lognormally distributed, as the hypothetical returns
used in Table 1 are. Substituting our notation for
that used by Hull (1993, p. 211), log Wj is normaUy
distributed with mean equal to (|i - a^/2)T and
variance equal to crT, where |i and CT are, respec-
tively, the annualized mean and volatility parame-
ters. Hull also showed that

(A9)

(that is, the compound value of the expected gross
return). Similarly,

E(\ogWT) = (\i-o-^/2)T. (A]0)

Because the logarithm is a monotone increas-
ing transformation.

= prob

= prob

Z> (All)

where Z denotes the standard normal density func-
tion. We see that prob[W7-> EiWj-)] approaches zero
as the horizon, T, approaches infinity, as proven for
the arbitrary distributions.

Fortunately, prob[W7- > Median{Wj)] = 1/2,
instead of approaching 0 for large T. When the Hull
(1993, p. 211) lognormal example is used, the
median cumulative return is (?(M-CT-/2)r. ^^i^^ jĝ  it
is produced by compounding the expected log
gross return per year. The percentage difference of
the expected and median cumulative returns is

-17"

(A12)

which is an increasing function of a and T.
A particularly stark example of the difference

between the expected and median cumulative
returns can be seen by considering a volatile invest-
ment (e.g., fi = 8 percent and a = 40 percent). Then,
the median cumulative return is

1 (A13)

for all horizons T (i.e., there would be no tendency
for the investment value to drift either up or down,
despite the seemingly high expected cumulative
return e^-^^^). An investment with a smaller ii
would result in negative drift (i.e., a tendency to
lose money). However, a more diversified portfolio
with a smaller return (|a < 8 percent) would tend to
make money if its volatility were low enough to

But what about when log R is not normal? We
will now see why compovmding the average log
return produces a reasonable estimate of the
median cumulative return whether the IID distri-
bution of log R is normal or not. First, we rewrite
Equation A4 by canceling T to obtain

^ (A14)

Because the exponential function is a mono-
tone (increasing) function of T ^

Median (AIS)

When Tis suitably large, Ethier (2004) used the
following approximation:

Median] , = E{\ogR)T
)

6 var (log R)

In practice, the second term in Equation A16 is
quite small compared with the first term. So, sub-
stituting Equation A16 into Equation A15 yields

Median (A17)

It is easy to show the equivalence between
compounding the historical average log gross
return and compounding the historical geometric
average net return. Denote the actual historical
rehirns by R\ R'I^ and the historical cumula-
tive return by W'. Then, the historical geometric
average, R{g), is defined by

(A18)

(A19)

But W can also be computed by

Equation A18 and Equation A19 show that

i = e (A20)
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so raising either side of Equation A20 to the power
T produces the same T-period cumulative retum
forecast—a "plug-in" estimator of Equation A17. If
R, is used to denote a generic random historical
gross retum, a desirable property of this plug-in
estimator is that

Median = e
Median (A21)

which we dub "median unbiasedness." A more
complex procedure might provide a better estimator
of the median cumulative retum, but simplicity of
implementation and motivation are practitioners'
desiderata that would be implicitly ignored by those
(if any) who advocated a more complex procedure.

Unfortunately, historical arithmetic or geomet-
ric averages are inherently imprecise estimators—a
fact that is easily illustrated under lognormality.
The log of the one-year cumulative retum distribu-
tion has an expected value oi\i- cr/2. Suppose we

measure log retums I/At times per year {e.g.. At =
1/12 when retums are measured monthly). Then,
the log gross retum per measurement period has an
expected value of (^ - a^/2)Af, so a historical aver-
age of N s T/At log gross retums (i.e., T years of
history) will also be normally distributed with an
expected value equal to (fj - o^/2)A(. Hence, an
unbiased estimator of ^ - CT^/2 is the historical aver-
age log gross retum divided by Af. Because the log
gross retum per measurement period has a variance
of a^Af, the variance of the unbiased estimator is
<y^{Atf/T divided by {AO^ which equals a^/T and
is hence independent of the retum measurement
interval, Af. A 95 percent confidence interval for
the historical average will then have a width of
± 1.96o/ Jf. For that width to be +0.(K, T would have
to be 0^(1.96/0.04)2 ^^^^.^ SubsHtuting CT = 0.15
yields 54 years, no matter how frequently retums are
measured, as claimed near the end of the text.

Notes
T random draws from the annual gross retums in Table 1
were multiplied to produce a possible T-year cumulative
retum. Tbe procedure was repeated one million times to
produce eacb of the smootbed histograms in Figure 1,
whose means and medians are reported in Table 2.
See Appendix A for a derivation of this equivalence and the
other mathematical claims made later in the text.
Even this typical motivation is flawed. An interesting article
by Jacquier, Kane, and Marcus (2003) highlighted problems
resulting from compounding the historical arithmetic aver-
age to produce a data-based estimate of tbe unknown math-

ematical expected cumulative return, They added tbe
assumption that returns are lognormally distributed and
proposed better estimators of the unknown mathematical
expected cumulative retum. Our goal is different, however,
for we are highlighting flaws in the arguments used to justify
the relevance of estimating tbe mathematical expected
cumulative retum in the first place. We argue that estimat-
ing the median cumulative retum is a much more relevant
objective, regardless of whether the returns are lognormal.
See Luenberger (1998) for a simple exposition of this prob-
lem and Appendix A for a specific calculation.
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