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Some experimental studies have posed repeated binary fixed dollar gambles, focused on short

vs. long run behavior. Results of those experimental designs may be misleading when used to in-

terpret short vs. long term investment behavior in analogous IID settings, where returns are more

realistically modelled as possible percentages, rather than possible dollar amounts. Prior psycho-

logical, educational, and marketing research has documented computational errors by individuals,

in situations where it is relevant to cumulate the effects of deterministic, sequential percentage

changes. The random sequence of percentage changes that characterizes the cumulative return

from an investment creates a possibility for additional errors. We substitute percentage gambles

for fixed dollar gambles to determine whether or not previous experimental results, and hypotheses

motivated by them, are robust to this substitution. Some are not. Did subjects act as if they

understood the important differences between cumulative long-run outcomes of fixed dollar gam-

bles and their (investment relevant) fixed percentage counterparts? Many did not – including some

expert authors in this research area.
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1 Introduction

Paul Samuelson (1963) [12] used simple binary fixed dollar gambles (i.e. in each gamble, one

either wins a fixed amount or loses a fixed amount) to illustrate a counterintuitive normative result

concerning the decision to accept or reject one gamble versus many such gambles. Benartzi and

Thaler (1999) [2] experimentally studied this and related phenomena, as did Klos, et al. (2005)

[8]. Researchers hope to interpret the experimental results in more general contexts of uncertain

choice. For example, Benartzi and Thaler (op.cit.) conducted additional experiments concerning

long-term asset allocation decisions characteristic of retirement fund choices. Klos, et al. (op.cit)

inferred from their experimental findings that “Computing, showing, and discussing aggregated

distributions may have the potential to avoid utility losses in asset allocation decisions or other

decisions involving repeated gambles.” This view reflects the seemingly sensible notion that the

cumulative, long-term outcome of asset allocation and/or other investment decisions are affected

by uncertain shocks to future returns, that are analogous to the successive coin-tosses in a repeated

binary fixed dollar gamble.

But there is an important qualitative difference between a repeated fixed dollar gamble and a

realistic investment, even when the investment’s returns/period are modelled to be binary and IID,

like the aforementioned fixed dollar gambles. In the former, one stands to make or lose fixed amounts

of money in each repetition, so the outcome of repeated gambles is the sum of the outcomes of

the separate gambles. But to more realistically model investments, most analysts follow Samuelson

(1965) [13] in assuming that one stands to make or lose fixed percentages of money, so the outcome

of investment over time (i.e. the cumulative return) is the product of the sequence of future gross

returns.
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There is good reason to believe that this distinction will result in important behavioral dif-

ferences. Chen and Rao (2007) [4] thoroughly document, in both an experimental and a market

setting, that people make simple arithmetic errors in situations where one percentage change follows

another. For example, they documented that many subjects overestimate the cumulative return

arising from a 40% increase in the value of a mutual fund over a six month period, followed by a

25% decrease over the next six month period. The actual cumulative gross return over the year is

1.40 × 0.75 = 1.05, i.e. a 5% net cumulative return. But Chen and Rao (op.cit.) reported that

“many participants made the computational error of adding up multiple percentages”, which in this

case resulted in the erroneous belief that the net return would be 40% − 25% = 15%, rather than

the actual 5% net return. They documented that errors of this sort also occurred when subjects

evaluated other patterns of multi-period percentage changes. For example, when told that one

mutual fund had a 62.5% return over a year, and that another mutual fund had a 30% return for

the first six months of that year followed by a 25% return over the next six months of the year,

more subjects preferred the former fund – despite the fact that both had the same cumulative

return over the year (1.3 × 1.25 = 1.625).2 Eisenstein and Hoch [6] documented the inability of

many subjects to approximately forecast – without use of electronic calculators – the cumulative

long-run return from a riskless asset growing at a constant percentage per year. Many subjects

acted as-if invested wealth grew linearly over time, rather than exponentially, i.e. compounded at

the fixed interest rate.

Moreover, ex-ante investment analysis embodies the additional complexity of random sequential

percentage changes, which determine the probability distribution of cumulative investment returns.

In the following section 2, we show that this creates significant differences, both quantitative and

qualitative, between repeated fixed dollar gambles and their closest investment analog, i.e. the
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standard textbook binomial fixed percentage price tree for an investment’s cumulative return. 3

In section 3, we substitute a binomial investment in otherwise identical experiments to determine

whether or not previous experimental results and hypotheses based on fixed dollar gambles are ro-

bust to this change, and whether or not the additional possibilities for error induced by stochastic

percentage returns occur. Survey responses indicated that many subjects answered questions as

if they were surprised by the cumulative return distributions resulting from binomial investments,

including some (otherwise anonymous) academics who have co-authored articles referenced in the

experimental literature concerning fixed dollar gambles. The findings suggest a particular modi-

fication to Benartzi and Thaler’s (op.cit.) Hypothesis 2 concerning fixed dollar gambles, which is

more consistent with the survey responses we observed. In addition, two behavioral phenomena

discussed (respectively) in Samuelson (1963) and Samuelson (1965) were not frequently observed

in our subject pool. Section 4 concludes.

2 Binary Gambles vs. Binary Investments

Let WT denote the decision maker’s wealth after T repetitions of a gamble, and let Xt denote the

payoff from Samuelson’s (1963) binary gamble’s repetition t, i.e. either Xt = +200 with probability

1
2 or Xt = −100 with probability 1

2 . That is, the gambler either makes 200 dollars or loses 100

dollars with each repetition, depending on a fair coin toss. After T repetitions:

WT =
T∑

t=1

Xt

= (
1
T

T∑

t=1

Xt)T(1)
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The mathematical expectation E[ ] of wealth in (1) is

E[WT ] =
T∑

t=1

E[Xt]

IID= E[X1]T

= [
1
2
200 +

1
2
(−100)]T

= 50T(2)

We see that this gamble has a positive expected value of E[X1] = 50, and that its expected value

after T repetitions is 50T , which grows linearly to infinity as T (i.e. the number of repeated

gambles) increases. Because the outcome (1) depends on (T multiplied by) an average whose

distribution approaches normality (due to the Central Limit Theorem), the expectation (2) is close

to the Median[WT ] when T is suitably large. So (2) is a useful measure of the central tendency

in repeated binary fixed dollar gambles. For example, with T = 100 repeated gambles, as used

in the Benartzi and Thaler (op cit.) experiment, the expected value is E[W100] = 5000 and the

standard deviation is
√

V ar[W100] = 1500. Because the probability of a loss is more than three

standard deviations from the mean, Samuelson (1963, p.109) concluded that “By the usual binomial

calculation and normal approximation, this probability of making a gain is found to be very large,

P100 = .99+”. Moreover, Rabin and Thaler (2001, p.223) [10] note that W100:

...has an expected return of $5000, with only a 1
2,300 chance of losing any money and

merely a 1
62,000 chance of losing more than $1000. A good lawyer could have you declared

legally insane for turning down this gamble.

For (1) and other repeated gambles with positive expected value, Benartzi and Thaler (op cit.,

p. 370) formulated and tested their “Hypothesis 2” ,i.e.
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H2: Subjects will find repeated plays of a positive expected value gamble more accept-

able after they are presented with the distribution of final outcomes.

Benartzi and Thaler (op cit.) found experimental evidence that generally supported this hypoth-

esis, by posing Samuelson’s gamble and related gambles to a variety of students and coffee shop

customers.

But Samuelson (1963) argued that while “at first glance” the calculations above seem to be

a good reason to accept “a long sequence of favorable bets”, he believed it really wasn’t. He

formulated this as a theorem: a decision maker who acts as if she maximized an expected utility

that would lead her to decline the offer of a single one of these gambles no matter how much wealth

she has, also should decline the offer of any number of repeated gambles.

Samuelson’s result is true only under his maintained assumption that she would have rejected

a single gamble at any possible level of wealth achievable by repetition. This assumption is an

implicit but severe restriction on the form of the utility function. Ross [11, p.326] proves that “the

only utility functions that reject the same gambles at all wealth levels are the risk-neutral func-

tion and the exponential, i.e., the constant coefficient of absolute risk aversion utility functions ”.

This raises the possibility that a different utility function could lead someone to eventually accept

some number of repeated gambles, even if it leads to rejection of a single gamble. Indeed, Tversky

and Bar-Hillel (1983) [15] constructed an expected utility counterexample that rationalizes reject-

ing one gamble while accepting many (they note that their example violates the aforementioned

assumption maintained in Samuelson 1963). But they also devised a new, seemingly reasonable

pair of normative axioms that are violated by rejecting one gamble while accepting many. Despite

that normative claim, Chew and Epstein (1988) [5] argued that this behavior is not necessarily

inconsistent with some seemingly reasonable non-expected utility decision criteria.
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We do not attempt to shed additional light on this controversy, i.e. whether or not it is rational

in some sense to reject one parlor gamble while accepting many independent, identical gambles.

We restrict attention to whether or not it is typical behavior, formulated as hypothesis H1 below:

H1: Subjects are more likely to accept repeated plays of a positive expected return

gamble than a single play of it.

Benartzi and Thaler’s (op.cit.) evidence did not support H1, although more of their subjects were

willing to accept repeated plays after being shown the probability distribution of the outcomes of

repeated plays, consistent with their Hypothesis 2 (listed as H2 above).

But to model an investment, Samuelson (1965) argued that random percentage gains and losses

made more sense. When modeled in a particular way, this precludes the possibility of (nonsensical)

negative asset prices. The simplest implementation of this is the canonical investment textbook

model, called the binomial tree model. In that model, an asset’s price either goes up by some per-

centage with some probability, or goes down by some different percentage with the complementary

probability. The gain/loss percentages and their respective probabilities are repeated each period

that the investment is held. Hence, this model is analogous to a repeated fixed dollar gamble, after

replacing its fixed dollar amounts with fixed percentage amounts.

Specifically, consider a risky investment that either increases 80% in value with probability 1
2 or

decreases in value by 50% with probability 1
2 , with those possibilities repeated in each subsequent

period the investment is held. The expected return is 1
280% + 1

2(−50%) = +15%. For example, if

$100 is invested, the expected value after one period is $115. Because this investment has a positive

expected value, a researcher might expect to observe behavior in accord with the aforementioned

Hypothesis 2 of Benartzi and Thaler (op.cit.).
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We now turn to a mathematical analysis of this investment. The single-period gross return Xt

from each dollar invested is either 1.80 with probability 1
2 or is 0.5 with probability 1

2 . Starting

from an initial investment denoted W0, (e.g. W0 = $100) the invested wealth after T periods is:

WT = W0

T∏

t=1

Xt.(3)

The mathematical expectation E[ ] of wealth in the IID process (3) is

E[WT ] I= W0

T∏

t=1

E[Xt]

ID= W0E[X1]T

= W0[
1
2
1.8 +

1
2
(0.5)]T

= W0[1.15]T(4)

Hence (4) shows that the expected value of wealth E[WT ] increases exponentially to infinity as

T increases, qualitatively similar but eventually outstripping the linear increase (2) of the fixed

dollar gamble’s expected cumulative value. But unlike (1), (3) does not depend on an average of

the IID random variables, so the Central Limit Theorem cannot be used to infer that it has an

approximate normal (and hence symmetric) distribution. In fact, the distribution of WT in (3)

becomes extremely positively skewed for large T , so E[WT ] in (4) is much higher than the median

value of wealth. In (3), the limited liability of typical (e.g. stock or bond) investments precludes

Xt < 0, so
∏

t Xt ≥ 0, and always WT ≥ 0. That is, you can’t lose more than your initial investment,

unlike what occurs in the repeated binary gambles (like Samuelson’s 1963 gamble) used in Benartzi

and Thaler (op.cit.) and Klos, et.al. (op.cit.). When investment returns per period are IID (as

our example is), the short mathematical appendix describes a good, large T approximation for the
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median invested wealth. Applying that approximation to our example yields:

Median[WT ]
IID≈ W0e

E[log X1]T

= W0e
[ 1
2

log 1.8+ 1
2

log 0.5]T

= W0e
−.0527T(5)

The approximation (5) shows that the median value depends on the expected logarithm of the gross

return (i.e. -5.27%), rather than the 15% expected net return. The expected log gross return is the

expected growth rate of invested wealth W . Comparing (4) and (5) shows that while the positive

expected value E[WT ] exponentially approaches infinity as T increases (due to the 15% expected

return per period), the smaller positive Median[WT ] exponentially decays toward zero, due to the

negative (-5.27%) expected log gross return (growth rate). For example, starting from an initial

investment of just W0 = $100, (4) shows that after T = 100 periods, the expected value of invested

wealth is $100(1.15)100 = $117, 431, 345, while (5) shows that the median wealth will be only about

$100e−5.27 ≈ $0.50! Results from 200 simulations, reported in the survey instrument’s Table 1

(see the appendix), are consistent with this; in 49% of the simulations, one’s initial investment of

$100 deteriorated to a mere fifty cents or less.4 This probability of almost-complete ruin grows

asymptotically toward 100% as T → ∞.

Yet decision theorists do not all agree that it would be irrational to accept an investment

opportunity like this (which after all, has a 15% expected return per period, leading to the gigantic

expected value of invested wealth computed above), despite the virtual certainty of almost-complete

ruin for suitably large T .5 No less an authority than Samuelson (1965, p.17) argued that:

This virtual certainty of almost-complete ruin bothers many writers. They forget, or

are not consoled by, the fact that the gains of those (increasingly few) people who are
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not ruined grow prodigiously large – in order to balance the complete ruin of the many

losers. 6

Simulations summarized in the survey instrument’s Table 1 (see the appendix) indicate that

there is indeed a small chance (6.5%) of winding up with more than $2500 (i.e. a multiple of 25

times the initial investment) after T = 100 periods, which might “console” subjects enough to

accept the opportunity, despite the near 90% probability of losing at least some of the initial $100

invested, and the near 50-50 chance of winding up with less than fifty cents.

Hence we also experimentally test the following hypothesis suggested by the aforementioned

quote from Samuelson (1965):

H3: Some subjects will still be willing to accept repeated plays of a negative expected

log gross return (fixed percentage) gamble after they are presented with the distribution

of final outcomes.

The final area investigated is the important, possibly counterintuitive, value of investment

diversification. The most common multi-period investment advice is to allocate savings across

assets that are not too highly correlated, periodically rebalancing the portfolio back to its original

asset weights. Indeed, a professor invested in TIAA-CREF can elect to have her/his pension

portfolio automatically rebalanced to weights of her/his choosing. Benartzi and Thaler (op cit.)

did a separate experiment, asking each subject to choose her/his preferred allocation weight on

a stock-like index, in a two-asset portfolio of the stock-like index with a bond-like index. But

these questions were not direct extensions of their repeated binary gamble questions, nor did they

present the outcome distribution of the portfolio selected by a subject; instead, they presented the

outcome distributions of the stock-like index and the bond-like index. Of course, financial theory
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holds that the portfolio’s outcome distribution is the relevant distribution, and that is a subject’s

weighted mixture of those two distributions. Benartzi and Thaler (op.cit.) did not show that to

their subjects.

Hence we added diversification questions to our survey, which were the simplest and most

transparent extensions of our prior questions concerning a single investment. We wished to see

whether or not subjects would choose to put half of their $100 initial stake in one asset, and

the other half in an identical second asset whose return in each period is independent of the

first asset’s return, with the provision that a computer will automatically continue to split the

invested wealth between the two before each subsequent repetition. Thus, this is an equally value-

weighted rebalanced “portfolio” of two independently and identically distributed assets. We asked

the subjects whether or not they would accept this, both before and after showing them the

portfolio’s outcome distribution.

One might conjecture that no one should agree to split their money between two identical in-

vestments that, when considered separately as above, tend to lose money over time – aren’t two

half-losers equivalent to one whole loser? Calculation of the expected value of the diversified port-

folio seems to support that heuristic reasoning, because the equally-weighted rebalanced portfolio’s

expected return per period is 1
215% + 1

215% = 15%, i.e. the same expected value as each of the

separate investments. As a result, the portfolio will have the same enormous expected cumulative

return as the single investment, and one might guess that the portfolio’s outcome distribution will

also look similar.However, this heuristic reasoning frames the issue too narrowly; a quantitative

calculation of a typical (i.e. median) outcome results in a radically different conclusion than occurs
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for sole investment in either one of the investments. To see this, do the following simple math:

Median[WT ] ≈ W0e
E[log( 1

2
X1+ 1

2
X2)]T

= W0e
( 1
4

log 1.8+ 1
2

log 1.15+ 1
4

log 0.5)T

= W0e
+.0435T(6)

In contrast to the typical almost-complete ruin stemming from investment in a single asset for

large-T periods ( see (5)), (6) shows that an equally-weighted rebalanced portfolio of two of them

will typically make money as T increases. Starting from an initial investment of $100, (6) shows

that the diversified portfolio’s median value of wealth will be around $7750 after 100 periods, in

contrast to the $0.50 median value of wealth that occurs when investing everything in (either) single

asset used to form it. This is why the survey instrument’s Table 2 (see the appendix) shows that in

200 simulation runs for the rebalanced portfolio, 60% of the simulation runs ended with more than

$2500, while only 20.5% of the runs lost some of the initial $100 (and of course, none lost more

than the $100 initial investment). The mathematical reason for this obviously does not lie in the

portfolio’s expected return per period (which is the same 15% that characterizes sole investment

in a single asset), but in the reduction of return volatility. Instead of receiving either an 80% gain

or 50% loss each period with probability 1
2 , the diversified investor reduces the probability of each

of those extreme outcomes to 1
4 , in order to receive an intermediate gain of 15% with probability

1
2 (see the middle line in (6)). The stark qualitative difference between (5) (for a single losing

investment) and (6) (for a rebalanced portfolio of two identical losing investments) appears to be

the simplest example of what has been dubbed a Parrondo Paradox in more complex and artificial

situations.7
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Because of the paradoxically strong and positive effects of diversification on the central tendency

of the portfolio value distribution, we formulate the following hypothesis:

H4: When E[logW ] > 0 due to diversification, subjects are more likely to accept

diversification after they are presented with the distribution of final outcomes.

Subjects who reject the equally-weighted, rebalanced portfolio before examining Table 2, but

then accept the portfolio after examining Table 2, act in accord with H4 above. Their behavior

would confirm the conjecture of Klos, et. al. (op.cit., p. 1788) that “Computing, showing, and

discussing aggregated distributions may have the potential to avoid utility losses in asset allocation

decisions or other decisions involving repeated gambles.” Because of diversification, the narrowly

framed heuristic that ‘half of two identical losers is the same as one loser’ is extremely misleading.

The behavioral literature has identified many other examples of unfortunate behavior resulting

from such narrow framing (e.g. see Kahneman and Lovallo 1993 [7]), including a non-investment

“diversification” bias (Simonson and Winer 1992 [14]).

3 The Survey

We substituted the fixed percentage investment (analyzed in the previous section) for Samuelson’s

(1963) fixed dollar gamble that was used in the Benartzi and Thaler (op cit.) experimental protocol.

Question 1 of the survey instrument (see the appendix) models the decision to invest $100 in a

single-period investment. Question 2 models the decision to buy-and-hold that investment for

T = 100 “periods”. Care is taken to point out that a computer would determine the outcome

immediately – one would not have to wait an appreciable length of time for the outcome of T =

100 “periods”. The use of a $100 bet and 100 “periods” matches the initial bet and number of
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IID repetitions in the Samuelson (1963) binary fixed dollar experiment conducted by Benartzi

and Thaler (op.cit.). To help ensure that the subjects’ answers reflect their respective internal

decision processes in stochastic settings, rather than the influence of normative opinions from finance

professors, investment advisors and financial journalists, the phrases “investment” and “buy and

hold” were not used in the wording of the survey questions. Question 3 poses the same question,

after the subjects are shown the probability distribution of the cumulative outcome after 100

“periods” (Table 1 of the survey). Question 4 models the decision to invest in the equally-weighted,

diversified portfolio of two of these assets, when they are independently distributed. Again, we did

not use normative investment buzzwords, e.g. “diversified”, “portfolio” or “rebalanced”, in order

to avoid potential bias from prior normative investment advice subjects may have heard or read.

The question is somewhat longer than the others, because of the need to properly describe the

de-facto portfolio return generating and de-facto rebalancing processes. Question 5 poses the same

question, after the subjects are shown the probability distribution of the cumulative outcome after

100 “periods” (Table 2).

Following Benartzi and Thaler (op.cit.), our subjects included both coffee shop customers and

students (University of Colorado). The students were nearing the end of an undergraduate in-

vestment course. Hence they had been exposed to typical undergraduate investment coursework

which surely includes use of percentage returns, expected returns, etc. Unlike Benartzi and Thaler

(op.cit.) and Klos, et.al. (op.cit.), we also surveyed a group of academic authors of very closely

related literature. The academic authors were drawn from (i) authors referenced in Benartzi and

Thaler (op.cit.) and (ii) authors who subsequently cited Benartzi and Thaler (op.cit.), and (iii)

the same two groups of authors generated from Klos, et.al. (op.cit.). We tasked a research assis-

tant to seek the email address of at least one co-author from each reference and citation source
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just described. 22 of the 72 authors identified did respond to our emailed request to complete

our online survey (a 30% response rate). A priori, we conjectured that subjects in this subsample

would be unlikely to change their responses upon observing the cumulative outcome distributions,

because they would anticipate the relevant features of the outcome distribution before seeing our

presentation of it and hence have no need to change their prior responses.

Note that all subjects were asked about their willingness to undertake the hypothetical invest-

ments, without having to actually do so, and without being rewarded proportionally to either the

median outcome or an actual, simulation-based outcome. Paying subjects proportional to the out-

comes of their decisions may be appealing, but it would complicate comparison of our results to

Benartzi and Thaler (op.cit.), who did not pay subjects in proportion to outcomes. Moreover, in

his survey of the literature, Camerer (1995, p. 599) [3] notes that “Psychologists do not always

motivate subjects financially – though many have and a few are adamant about doing so – because

incentives usually complicate instructions and psychologists presume subjects are cooperative and

intrinsically motivated to perform well.”

3.1 Experimental Results

Hypothesis H1 examines the frequency of behavior that bothered Samuelson (1963): were subjects

more likely to accept the result of T = 100 than T = 1, before seeing the distribution of outcomes?

The contingency table of the results from survey Questions 1 and 2 in our pooled sample are

presented in the following Figure 1.

Figure 1

Hypothesis H1: When E[W1] > 0, subjects are more likely to accept W100 then W1
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Pooled Samples Accept T = 100 Reject T = 100 Row Total
Accept T = 1 33 11 44
Reject T = 1 16 23 39
Column Total 49 34 83

While the fraction accepting T = 100 (i.e. 49/83) was higher than the fraction accepting T = 1

(i.e. 44/83), this could be due to sampling error. To formally test the null hypothesis that the

probabilities of accepting (rejecting) T = 1 and T = 100 are the same, we employ Liddell’s Exact

Test [1, p.127]. Under the null, one would expect each of the corresponding row and column totals

to be equal, but for sampling error. If the corresponding row and column totals are equal, then

simple algebra implies that the number of subjects who accepted T = 1 while rejecting T = 100

(i.e. 11) will equal the number who rejected T = 1 while accepting T = 100 (i.e. 16), but for

sampling error. But are they far enough apart to reject the null of equality in population? The

Liddell test statistic is the ratio 11/16 = 0.69, and its 95% confidence interval is computed from

Liddell’s formula to be [.29, 1.58]. Because the null hypothesis is that the population value of the

ratio equals one, which in this case is within the confidence interval of the test statistic, Liddell’s

Exact Test applied to the pooled samples fails to reject the null of equal probabilities of accepting

the T = 1 and T = 100 investments, at the 5% level of significance. As a result, Hypothesis H1

was not confirmed in the pooled sample.

Separate tests using the separate subsamples of coffee shop customers and students also failed

to reject the null of equality at the 5% level. Benartzi and Thaler (op.cit.) also failed to find typical

coffee shop customers and students behaving like Samuelson’s(1963) friend. So our results show

that those particular results of theirs are robust to our substitution of a binary fixed percentage

investment for the binary fixed dollar gamble used by them and Samuelson (1963). But Benartzi

and Thaler (op.cit.) did not survey an expert panel of academic authors of closely related literature.
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Applied to our academic subsample, we found that the Liddell test rejected the null of equality at

the 10% level, i.e. was marginally significant. The test statistic was 1/7, with a 90% confidence

interval [.006, .089] below the null hypothesized population value of 1. The contingency table is

shown in the following Figure 1A.

Figure 1A

Hypothesis H1: When E[W1] > 0, subjects are more likely to accept W100 then W1

Academic Subsample Accept T = 100 Reject T = 100 Row Total
Accept T = 1 9 1 10
Reject T = 1 7 5 12
Column Total 16 6 22

Note that the fraction of academicians accepting T = 100 (16/22 = 73%) was (marginally sig-

nificantly) higher than the fraction accepting T = 1 (10/22 = 45%), consistent with Samuelson’s

friend’s behavior in Hypothesis H1.

All the aforementioned results occurred before subjects were shown the probability distribution

of W100 for the T = 100 investment. So Hypothesis H2 examines the robustness of Benartzi

and Thaler’s (op.cit.) Hypothesis 2, i.e. did our subjects find the T = 100 investment (with its

gigantic expected cumulative return) more attractive after they were presented with the probability

distribution of outcomes, i.e. after they were shown the survey instrument’s Table 1 (see the

appendix)? Comparing responses to our Questions 2 and 3 shows that they did not find the

cumulative “buy-and hold” investment more attractive after seeing the distribution of outcomes.

Liddell’s test statistic for the pooled sample was 10.3 with a 95% confidence interval of [3.2, 52.8], so

the null of equality was rejected at the 5% level. But the following Figure 2 shows while 49/83 = 59%

of the pooled sample accepted the T = 100 investment before being shown the distribution of W100,
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only 21/83 = 25% did so after being shown that distribution. Hypothesis H2 is that the opposite

would happen! Many subjects acted as if they did not anticipate the negative expected growth

rate and its associated decay of the median cumulative return toward zero, which they did not like

– despite the huge expected cumulative return.

Figure 2

Hypothesis H2: When E[W1] > 0, subjects are more likely to accept W100 after they

are presented with the distribution of final outcomes.

Pooled Samples Accept T = 100 After Reject T = 100 After Row Total
Accept T = 100 Before 18 31 49
Reject T = 100 Before 3 31 34

Column Total 21 62 83

The subsamples all exhibited the same pattern of less frequent acceptance of T = 100 after

seeing the distribution of outcomes. 26% of coffee shop customers were willing to accept T = 100

before seeing the outcome distribution, while only 16% were willing to after seeing it. 83% of the

students were willing to accept T = 100 before seeing the outcome distribution, while only 23%

were willing to after seeing it. Our academic panel was no different; 73% were willing to accept

before, while only 41% were willing to do so after – a statistically significant difference at the 5%

level. The academic authors of closely related literature did not act as if they had anticipated the

relevant features of the cumulative outcome distribution before seeing it.

Hence our data show that Benartzi and Thaler’s Hypothesis 2 was not robust to the substitution

of a binary fixed percentage investment for their binary fixed dollar gamble, despite the fact that

both have very large expected cumulative values. Because (5) shows that the median value of

wealth is determined by the expected logarithm of the gross return per period – which is negative

in this case – we propose the following simple modification of Benartzi and Thaler’s Hypothesis 2:
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H2
′
: Subjects will find a long-term investment with a positive expected log gross return (i.e. a

positive expected growth rate) more attractive if they are presented with the distribution of final

outcomes.

This data also sheds light on Hypothesis H3. As we just concluded, most subjects acted as if

the near-zero median value of cumulative wealth after T = 100 was more relevant than the over

$117 million expected value of cumulative wealth – once they had access to the resulting probability

distribution of cumulative wealth. There was little tendency to risk $100, even when the risk was

hypothetical as it was here, for a small chance to earn what Samuelson (1965, p.17) would have

dubbed a gain that is “prodigiously large – in order to balance the complete ruin of the many

losers.” Still Hypothesis H3 is confirmed, in the sense that “some” subjects were willing to risk

$100 on this. But that behavior was not typical, despite Samuelson’s previously quoted opinion

that a very small chance to win a huge sum of money could compensate for the high probability of

“almost-complete ruin”. The results are summarized in the following Figure 3.

Figure 3

Hypothesis H3: When E[logW1] < 0, some subjects will accept W100 even after seeing

the distribution of final outcomes

Subsample Reject T = 100 After Accept T = 100 After
Coffee Shop 26 5

Students 23 7
Academics 13 9

Total 62 21

Hypothesis H4 examines whether subjects will be more likely to accept (the favorable effects

of) diversification after seeing the distribution of outcomes resulting from it, despite its having no

effect on the expected cumulative return. Our data show that this behavior was common. Liddell’s
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test statistic is .12 with the 95% confidence interval [.02, .39], well outside the null of equality’s

hypothesized population value of one. The data are depicted in the following Figure 4.
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Figure 4

When E[logW ] > 0 due to diversification, subjects are more likely to accept

diversification after they are presented with the distribution of final outcomes.

Pooled Samples Accept T = 100 After Reject T = 100 After Row Total
Accept T = 100 Before 43 3 46
Reject T = 100 Before 25 12 37

Column Total 68 15 83

Figure 4 shows 46/83 = 55% of the pooled sample accepted diversification before seeing the

distribution of outcomes resulting from it, rising to 82% after the subjects viewed the distribution

of outcomes in the survey instrument’s Table 2 (see the appendix). Note that the change in their

willingness to accept the portfolio occurred despite having already seen the distribution of outcomes

from the investment used to construct it (i.e they had seen the survey instrument’s Table 1) when

they answered the survey’s Question 3. This pattern is also consistent with our proposed Hypothesis

H2’, because the expected log gross return of the diversified portfolio is positive. But the effect was

concentrated among the coffee shop customers and students. There was no significant difference

in the before and after responses of the academicians, with 77% accepting diversification before,

rising just a bit to 86% after. The academics may have inferred the underlying math from their

study of the single investment’s outcome distribution (i.e. the survey instrument’s Table 1 used

in the survey’s Question 3). Alternatively, because the academicians previously were surprised by

the distribution of outcomes from the single investment, it is possible that they suspected another

surprise could be lurking with the diversified investment, and hesitated to employ the reasoning

that led them astray earlier. Moreover, the inherent complexity of the description of de-facto

rebalanced diversification may have contributed to a feeling that something counterintuitive was at
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work. Some if not most of them had experience constructing and/or reading about closely related

surveys.

While 19 of our 31 coffee shop customers rejected the portfolio before having access to its

outcome distribution, 11 of those 19 (i.e. 58% of them) changed their minds after receiving the

outcome distribution with its positive median value (and hence positive expected growth rate).8

While only 13 of our 30 undergraduate business students rejected the portfolio before seeing the

outcome distribution, 11 of those 13 (i.e. 85% of them) changed their minds when they saw it.

And while only 5 of our 22 academic respondents rejected the portfolio before having access to

its outcome distribution, 3 of those 5 went on to change their minds, while the other 2 answered

“No” to all five of the survey’s questions, i.e. they did not want to invest under any circumstances.

Moreover, only one subject in each of our three sampled groups who had accepted the portfolio

before having access to the outcome distribution, decided to reject the portfolio after having access

to the outcome distribution.

Those many subjects who changed their minds acted as if they were surprised by the high

positive median cumulative return, associated with the positive expected log gross return (i.e.

growth rate) created by diversification among two assets that separately had near-zero median

cumulative returns.

4 Future Research

The survey results could vary with the win-loss parameters. The experiment used sizable percentage

gains and losses per “play”, characteristic of highly speculative investments. The results might also

be dependent on the particular wording of the survey questions. Also, more data is needed to test
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our Hypothesis H2’ that hypothesizes the primacy of the expected log gross return (rather than

the expected return itself) as an important determinant of long-run investment behavior after the

outcome distribution is known and understood. Are there interesting gender-specific differences in

the responses? Does it matter if subjects had prior investment experience? In future research, we

plan to analyze data from larger,Qualtrics survey panels to help address these issues.

5 Conclusions

Experiments that pose both one-shot and repeated binary, fixed dollar gambles are not the best

design for understanding aspects of short vs. long term investment behavior. Financial economists

believe that a better simplified model for investment returns utilizes repeated binary, fixed per-

centage gambles that cumulate multiplicatively rather than additively. This is standard textbook

pedagogy dubbed the binomial model. The central tendency of the cumulative wealth distribu-

tion resulting from the fixed dollar gambles used in previous studies is largely determined by the

expected return per gamble, but with the fixed percentage gambles of the binomial investment

model, it is the expected log gross return per gamble that determines the central tendency, i.e.

the median cumulative return. Our experiment confirmed (the finding of previous studies) that

behavior concerning long-run prospects often changes once the subjects are given access to the

probability distribution of long-run outcomes. Surprisingly, this also characterized subjects drawn

from the population of researchers engaged in closely related research, who presumably had much

better ability to grasp the relevant features of the outcome distribution before seeing it. But our

experiments did not generally confirm (the finding of previous studies) that a positive expected

return per gamble – even when unusually high – made subjects more likely to accept repeated
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percentage gambles once they saw the outcome distribution. In light of our results, we alterna-

tively hypothesized that a positive expected log gross return will do that. Subjects acted as if they

were surprised by the radically different performance of investments with extremely high expected

cumulative returns when the investments also had negative expected log gross returns. This held

for our relatively uninformed subsample of coffee shop customers, our somewhat better informed

subsample of college investment students, and (perhaps unique in this particular literature) for our

presumably best informed subsample comprised of authors of closely related papers.

The aforementioned difference between the role of expected return and expected log gross return

in determining the central tendency of the distribution of long-term cumulative outcomes can be so

stark that an investment with a high positive expected return can have a near-zero central tendency

(i.e. almost complete-ruin). In a different paper, Samuelson (1965) argued that it wouldn’t be

irrational to consider making a long-term investment like that. Some of our experimental subjects

did indeed do that, even after seeing the long-term outcome distribution, but this behavior was

atypical.

The role of diversification was also explored. Using survey questions that made no use of the

(now normative) term “diversified portfolio”, we posed an opportunity that modeled a long-term,

rebalanced portfolio of two uncorrelated investments, each of which was identical to the investment

used in the earlier survey questions (unlike previous studies cited herein). Taken separately, each

investment would have resulted in a near-zero median long-term cumulative value. But an equally

value-weighted portfolio of the two had a healthy positive median long-term cumulative value.

Subjects were still more likely to invest in this portfolio after having been shown its outcome

distribution, despite having previously seen the distribution of outcomes from the investments that

comprise it.
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Mathematical Appendix

This appendix contains the math to establish that the expected log gross return (a.k.a. the

expected growth rate) is the key determinant of the median long-run cumulative return, as asserted

before equation (5). Take the logarithm of both sides of (3) and then re-exponentiate both sides to

find:

WT = W0e
∑T

t=1
log Xt(7)

Because the exponential function is a monotone (increasing) function of
∑T

t=1 logXt,

Median [WT ] = W0e
Median

[∑T

t=1
logXt

]
(8)

When T is suitably large, Ethier (2004, p.1234) uses the following approximation:

Median [
T∑

t=1

logXt]
IID≈ E[logX1]T − E

[
(logX1 − E[logX1])3

]

6V ar [logX1]
(9)

In practice, the second term in (9) is quite small compared to the first term. So substituting the

first term of (9) into (8) yields :

Median [WT ] ≈ W0e
E[logX1]T(10)

which is the approximation used in formulae (5) and (6). Simulations used to compute the survey

instrument’s Tables 1 and 2 confirm the accuracy of the approximation for this purpose.
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Survey 
 

1.  Would you agree to spend $100 for a 50-50 (i.e. equal chances) opportunity to either 
earn 80% (i.e. wind up with $180) or lose 50% (i.e. wind up with $50)?                               
The outcome would be determined immediately, by a computer-simulated coin toss.  
 
Would you spend $100 for this opportunity?    
 
                              _________________                ___________________      
     YES, I WOULD SPEND       NO, I WOULD NOT SPEND  

 
 

2.   Instead, suppose you had to leave the money in this opportunity for 100 “periods”.  
The outcome would still be determined immediately, by 100 successive computer-
simulated toin tosses, so a “period” is just a tiny fraction of second.   In the first “period”, 
your $100 would either grow to $180 or shrink to $50, depending on the outcome of the 
first coin toss.  In the second period, that amount (either $180 or $50, depending on the 
outcome of the first coin toss) would again either grow by 80% or decline by 50%, 
dependent on the outcome of the second coin toss.  This process would continue until the 
100th coin is tossed.  It would take less than a second to find out how much money you 
wound up with.   
 
Would you spend $100 for this opportunity?   
 
                              _________________                ___________________      
     YES, I WOULD SPEND        NO, I WOULD NOT SPEND  
 
3.  Table 1 on page 3 tabulates the results of many computer simulations of the 
opportunity just described in Question 2.  After each simulation of 100 successive coin 
tosses, the computer calculated how much money you would have wound up with.  Table 
1 shows the percentage of simulation runs in which you wound up with various amounts 
of money.    
 
After studying Table 1, would you spend $100 for this opportunity (as described in 
Question 2)?   
 
                             _________________             ___________________      
                          YES, I WOULD SPEND      NO, I WOULD NOT SPEND  
 
 
 
 
 
 
 
 

 1



4.  Now suppose another university offers you another opportunity as described in 
Question 2, to be used in conjunction with our university’s opportunity.  Our university 
computer’s coin tosses will determine what happens here, while their university 
computer’s coin tosses will determine what happens there.  As you would guess, their 
computer tosses coins completely independently of our computer.   
 
To make matters concrete, suppose the two computers automatically keep your money 
split equally between the two places.  Here is how that would work.  To start, you would 
give $50 to our computer and $50 to their computer.  Then, our computer and their 
computer will each toss a fair coin.  Your $50 here will either grow by 80% (to $90) or 
decline by 50% (to $25).  Your $50 there will also either grow to $90 or decline to $25.   
 
In any event, the amounts in the two places will then be added together, half of which 
will be reallocated to each place.  For example, if after each computer tosses its coin, the 
total is $115, $57.50 will be reallocated to each computer.  Each computer will then toss 
its own coin again, again determining either an 80% gain or 50% loss of the money 
within it. The amounts in the two computers will again be totaled and split equally 
between the two computers. The process will continue like this until 100 coins are tossed 
in both places.  Due to the amazing speed of computers, it will again take less than a 
second to tell you how much money you wound up with.   
 
Would you spend $100 on this two-computer opportunity? 
 
                              _________________            ___________________      
     YES, I WOULD SPEND    NO, I WOULD NOT SPEND 
 
 
5.  Table 2 on page 3 tabulates the results of many computer simulations of the two-
computer opportunity just described in Question 4.  After each simulation of 100 
successive coin tosses by each computer, both computers calculated how much money 
you would have wound up with, to make sure no errors in calculation were made.  Table 
2 shows the percentage of simulation runs in which you wound up with various amounts 
of money.   
 
After studying Table 2, would you spend $100 in the two-computer opportunity 
described in Question 4?   
 
                             _________________             ___________________      
 
                        YES, I WOULD SPEND    NO, I WOULD NOT SPEND  
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TABLE 1 ( for Question 3 )   
 
AFTER STARTING WITH $100:  
 
Left After Percentage of  
100 Periods       Simulations  
  
0 - $0.50 49% 
$0.50 - $1.00    10.5% 
$1 - $10    15.5% 
$10 - $50    4% 
$50 - $100       6.5% 
$100 -$500    4% 
$500 - $1000    0% 
$1000 - $1500    4% 
$1500  - $2000    0% 
$2000 - $2500    0% 
$2500 -          6.5% 
 
TOTAL  100% 
 
 
TABLE 2 ( for Question 5)  
 
AFTER STARTING WITH $100:  
 
Left After  Percentage of  
100 Periods Simulations 
  
0 - $0.50    2.5% 
$0.50 - $1.00  1% 
$1 - $10      3.5% 
$10 - $50       8.5% 
$50 - $100   5% 
$100 -$500      6.5% 
$500 - $1000   6% 
$1000 - $1500     1.5% 
$1500  - $2000     2.5% 
$2000 - $2500  3% 
$2500 -    60% 
  
TOTAL  100% 
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Notes

1The authors acknowledge the value of comments from Profs. Ravi Jagannathan, Chris Yung

and Peter McGraw, as well as comments from participants at the SPXI conference in Vienna.

2Thanks are extended to Haipeng (“Allen”) Chen for providing this data. Readers interested in

the extensive literature documenting computational errors made by individuals faced with deter-

ministic, sequential percentage changes should see the thorough literature review in Chen and Rao

(op.cit.).

3The binomial tree model is exposited in most college investment or derivatives textbooks, and

can even be found in the internet Wikipedia, under its entry for the binomial option pricing model.

4The (finite) simulation was conducted on a spreadsheet.

5Unlike our example, Ross (op.cit.,sec.4) only analyzed investments that had positive expected

log gross returns, and hence a median cumulative return growing to infinity as T does. He proved

that anyone who had constant relative risk aversion less than one (i.e. less risk-averse than log

utility!) will accept those investments for some T .

6Thanks to Prof. Moshe Milevsky for providing this reference.

7See Parrondo, et al. (2000) [9].

8While 8 of those customers did not change their minds, all but one of them answered “No” to

all five questions, thus refusing to invest under any circumstances presented.
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