

Core-Based GRASP for Delay-Constrained Group Communications

Zrinka Lukač

Faculty of Economics and Business, University of Zagreb, Zagreb, Croatia
zrinka.lukac@zg.t-com.hr

Manuel Laguna

Leeds School of Business, University of Colorado Boulder, USA
laguna@colorado.edu

Abstract: The recent development in network multimedia technology has created numerous real-time

multimedia applications where the Quality-of-Service (QoS) requirements are quite rigorous. This has

made multicasting under QoS constraints one of the most prominent routing problems. We consider

the problem of the efficient delivery of data stream to receivers for multi-source communication groups.

Efficiency in this context means to minimize cost while meeting bounds on the end-to-end delay of the

application. We adopt the multi-core approach and utilize SPAN [10] —a core-based framework for

multi-source group applications— as the basis to develop greedy randomized adaptive search

procedures (GRASP) for the associated constrained cost minimization problem. The procedures are

tested in asymmetric networks and computational results show that they consistently outperform their

counterparts in the literature.

Keywords: multicasting; QoS; core-based approach; routing algorithms, GRASP

December 10, 2012

mailto:zrinka.lukac@zg.t-com.hr
mailto:laguna@colorado.edu

L u k a č a n d L a g u n a | 2

1. Introduction

The recent proliferation of different multimedia real-time applications over the internet —such as

Voice-over-IP (VoIP), videoconference, TV over the internet, radio over the internet, multipoint video

streaming, distance learning, games, etc.— has created the need for scalable and efficient network

support that is capable of providing the level of performance needed for these applications to function

properly. The real-time transmission of multimedia information over the internet is characterized by

large amount of data that have to be processed and transmitted simultaneously to multiple recipients

through underlying computer networks. The transmission must be done under rigorous Quality-of-

Service (QoS) constraints in order to ensure that audio and video data are delivered smoothly to the

intended recipients. For instance, according to the International Telecommunication Union one-way

transmission recommendations [8], data stream for video/audio conferencing with real-delivery of voice

data should be delivered within 400ms. Such delay is acceptable in most situations, though users often

start to become dissatisfied if the delay exceeds 200ms. Likewise, latency requirement for first-person

shooter games is 100ms [8]. Since most of the multimedia applications are delay-sensitive, the problem

of establishing the group communication with minimum cost while satisfying the delay constraints has

become one of the most relevant QoS problems.

Simultaneous transportation of information between one or many senders and multiple recipients is

implemented through a mechanism called multicasting, which avoids sending a copy of data stream to

each recipient. Multicasting protocols are implemented through either building source- or core-based

trees. In both of these protocols (i.e., source-based and core-based) each sender sends only one data

packet, which is then duplicated at branching points and forwarded to multiple recipients. The first

multicast protocols were source-based (DVMRP [20], MOSPF [14][15] and PIM-DM [3]). They establish

group communication by building a separate shortest-path tree from source to all of the receivers.

These protocols are suitable for small-scale applications only since they do not scale well. They tend to

produce large message overhead because one piece of the state information per source and per group is

kept in each router. They do not minimize the total cost of distribution and may fail if the underlying

unicast routing is asymmetric. On the other hand, the core-based protocols are such that they choose

one or more routers as cores and then build shortest-path trees from cores to all the multicast group

members. Hereby senders transmit data to the cores, which then forward it to all the recipients.

Depending on the number of cores the protocol is set to choose, they are classified as either single-core

or multi-core based protocols. The first core-based protocols were single-core (CBT [1][2] and PIM [4]).

Unlike source-based trees, single-core trees are scalable and much easier to maintain since state

information is stored one per group instead of one per source. Also, they offer better bandwidth

utilization and produce lower message overhead. They are suitable for sparsely distributed receivers

and are preferred to source-based trees in case of multiple sources in the multicast group [21].

However, single core-based trees have some serious flaws when compared to source-based trees. They

produce higher delay (since data has to travel from senders to the cores first), they suffer from traffic

concentration on links that converge towards the core and have poor fault tolerance in case of core

failure. The introduction of several independent cores in multi-core protocols (OCBT [17][18], “Sender-

To-Many” [23], “Members-To-Many” [23]) has significantly improved the performance of core-based

protocols, making them a viable alternative to source-based trees. Compared to single core-based

L u k a č a n d L a g u n a | 3

protocols, they result in less delay and incur in less total cost since nodes are more likely to locate

nearby cores. They operate in a broader solution space and therefore are able to provide a solution in

cases when a single-core solution does not exist. Moreover, they provide better fault tolerance in case

of core failure and result in less traffic concentration around the cores. In general, for QoS-constrained

applications with sparsely populated groups in a distributed routing environment the core-based

approach is the preferred method providing more efficient solutions [23]. An extensive classification

and comparative analysis of core-based multicast routing protocols can be found in [9].

We consider the problem of cost minimization of many-to-many multicast group communication in

a distributed, asymmetric environment under a hard end-to-end delay constraint. The most popular

approach for this QoS-constrained many-to-many problem is GREEDY, a procedure proposed by Salama

[16], which operates in a symmetric, centralized deployment. A major improvement to GREEDY is the

SPAN framework [10] and its extensions [11] proposed by Karaman and Hassanein, which has

consistently shown better perfromance than other approaches in the literature. SPAN is a generic core-

based framework for asymmetric, decentralized delay-constrained multicast routing in multi-source

groups that consists of core selection and tree construction modules. It operates in an extended

solution space for which a core is not necessarily serving all the sources in the group and where different

sources can send data stream to the same receiver through different cores.

We develop and compare several core-based routing procedures operating in a distributed and

asymmetric environment in which link weights are not necessarily equal in both directions. Each

procedure consists of a core selection and a tree construction module applied sequentially. Procedures

are created by different combinations of core selection and tree construction modules. Our core

selection module embeds the selection component of SPAN within a GRASP (greedy randomized

adaptive search procedures) framework. GRASP is a multi-start metaheuristic based on semi-greedy

solution constructions and local search [5][6]. We consider two different tree construction modules,

one of which is a modified version of the SMT algorithm [19] for the constrained problem. By combining

different components, we have created and tested the performance of 21 heuristics —18 GRASP based

heuristics and 3 variants of the SPAN framework obtained by modifying the tree construction module.

The computational results show that, in terms of cost and QoS, most of these heuristics consistently

outperform SPAN as well as alternative approaches known in the literature.

2. The SPAN Framework

SPAN operates on the local-distance information available at the routers and is the first distributed,

asymmetric framework in the literature that provides solutions for constrained, core-based multi-source

communication groups [10]. It chooses the set of cores and constructs multipoint trees so as to

minimize cost under a hard constraint that limits the end-to-end delay. The solutions are constructed

with the goal of optimizing the total hop-count, where the total hop-count measures the total number

of links on a group communication tree.

Figure 1 depicts how the choice of an objective function affects the structure of the multicast

transmission for a network with a total of 100 nodes, where each group of senders and receivers

consists of 5 nodes and the groups do not overlap. The squares denote senders, while triangles denote

receivers. Three minimization objective functions are considered in Figure 1: a) cost, b) maximum end-

L u k a č a n d L a g u n a | 4

to-end delay and c) hop-count. The solutions depicted in Figure 1 were obtained by solving with CPLEX

the mixed integer program shown in the Appendix.

— Figure 1 —

We now describe the SPAN framework and adopt the same terminology as presented in [10]. Multi-

core based protocols prior to SPAN explored solutions in what Karaman and Hassanein call singular

solution space where each core serves all sources in the group and uniquely defines the shared tree

rooted at that core. They introduce the extended solution space —non-singular solution space in their

terminology— in which a core is not necessarily serving all the sources and where each receiver can be

served by multiple cores for different sources in the group. Such a solution space extends the range of

potential solutions for constrained multicast problem and may produce solutions that are not feasible in

the singular solution space. Moreover, even if the singular solution space contains feasible solutions,

the space may not necessarily contain the optimal solution. This is why non-singular solution spaces are

preferred to singular solution spaces.

SPAN operates in non-singular solution spaces and contains core-selection and tree construction

modules. Since in a non-singular solution space a core is not necessarily serving all the sources in the

group, the framework must keep track of which cores serve which source-receiver pairs and then

construct and maintain core trees and source trees separately. Core trees and source trees may share

links. In order to describe the methodology, we adopt Karaman’s and Hassanein’s terminology [10]. Let

 denote the set of all receivers and let denote the set of all sources in the multicast group. A receiver

 is said to be dominated by a core for a source if there exists a path from to through which

does not violate the delay bound of the application. In that case we also say that a core serves . We

denote the set of all receivers dominated by the core for source as . Similarly,

denotes the set of all receivers dominated by the core for all sources from the subset of sources

 . If we examine the union of paths connecting each source in with receivers in through core

 , we obtain a tree structure where all sources in are connected to core and this core is connected

to all the receivers in . The tree which connects core with the set of receivers is also

referred to as a core tree rooted at . A multipoint tree is the union of trees corresponding to the sets

 for where is the subset of cores such that ⋃ . In such a union all the

receivers in are dominated by some of the cores in , where serves identically all the sources in

 . Within the multipoint tree, each source in is connected to each core in and each of these

cores is the root of the core tree spanning receivers in . Note that a multipoint tree does not

necessarily have a tree structure. However, for each source there is a distinct tree which connects it

with the receiver set. We now illustrate these concepts with the following example.

Example: Let us consider a network with 2 sources, , 5 receivers, and 3

cores, , such that , , ,

 , and . For each solution in a singular solution

space each core should serve all sources in the group. One such solution is determined by the choice of

domination sets , and and is depicted in Figure 2.

Figure 2a depicts the tree corresponding to ⋃ , i.e. it shows the paths along which source

L u k a č a n d L a g u n a | 5

sends data stream to the entire receiver set. Figure 2b depicts the tree corresponding to ⋃ ,

i.e. the tree for which source sends data to all the receivers. Dashed lines indicate unused links. The

multipoint tree corresponding to the overall solution, i.e. corresponding to ⋃ , is depicted in

Figure 2c. The multipoint tree contains two source-rooted trees, one for each source, and three core-

rooted trees, one for each core. Each source-rooted tree spans the entire set of cores, while each core-

rooted tree spans the receivers from the respective domination set . Each core tree identically

serves all sources in .

— Figure 2 —

Let us now consider a solution in a non-singular solution space. One such solution is defined by

domination sets , , , ,

 , and . Figure 3a depicts how source serves the entire receiver set, i.e. it

depicts the tree related to ⋃ . Likewise, Figure 3b depicts the tree related to ⋃ ,

i.e. it depicts the way source sends data to receivers. Again, dashed lines indicate the unused links in

the tree. In a non-singular space, a receiver may be assigned to different cores for different sources.

For example, receiver is dominated by core for source , and at the same time, it is dominated by

core for source . Unlike in a singular solution space where there’s a unique core cluster serving all

the sources, here we have more than one core cluster for a single source. The overall solution relative

to ⋃ is depicted in Figure 3c. The links serving sources and are denoted by solid lines

and a thick solid line indicates that a link is serving both sources. For example, core is serving both

sources and for receiver . Note that in the combined multipoint tree the core trees are not

identically serving all the sources in the group. Since in a non-singular solution space the receiver

dominations are examined for each source separately, unlike in singular solution space where the

domination of a particular receiver is examined for the whole source set, the non-singular solution space

significantly expands the range of potential solutions and this is why it is preferred to singular solution

spaces.

— Figure 3 —

As mentioned above, SPAN explores solutions in both singular and non-singular solution spaces. It’s

core selection component is run first, followed by the construction of source trees and core trees. The

core selection procedure starts by creating a pool of potential cores, whereby a node is a potential

core only if there exists a source-receiver pair such that is dominated by node for source .

Each candidate core reports its domination information to the node designated as session coordinator,

which then runs the core selection algorithm. Additional terminology is necessary to describe this

procedure. We denote the core tree rooted at core to serve source for all receivers in as .

Also, we say that serves totally and we call its defining source. We say that serves source

partially if and . Cores are selected based on the higher

domination count, where a domination count of a core-source tuple is defined as:

 ∑| |

L u k a č a n d L a g u n a | 6

The domination count is simply the number of source-receiver pairs that is capable to serve when

the receiver set is limited to . A high domination count means high utilization of in terms of

number of sources it can serve partially or totally. It increases the link sharing across the sources and

reduces the hop-count, thus improving the overall multipoint path structure. SPAN iterates to select a

core-source pair with the highest domination count until the entire group is served by the selected

trees. Algorithm 1 shows a simplified pseudo-code of core-selection component of SPAN.

The tree construction part of SPAN is run on each source and on each core which acts as the tree

root. Source trees are obtained by connecting each source with relevant cores along the shortest paths,

thus leaving maximum delay-residue for the delay bounds on the core-trees. The delay bound is

computed for each receiver to be spanned on the core-trees within the core selection part of the

framework in the following manner. The serves totally the source and serves partially sources

from some set . Since source-based trees connect sources with the respective cores (leaves of the

source-based trees) along the shortest-delay paths, the delay bounds on the leafs (receivers) of the

are computed as the difference between the delay bound of the application and the maximum of the

delays along the shortest delay paths between sources from and . The delay bound for each leaf of

the core-based tree is computed individually.

1. find the set of

2.

3. compute domination counts

Repeat

4. select the core tree with the highest domination count

5.

6.

7. update delay bounds of each leaf of the tree (since is serving some sources

partially)

8. update the domination status for the selected core tree (exclude recently dominated

from the domination sets of the current candidate cores)

9. update domination counts accordingly

10. notify to construct the specified core tree

Until all the receivers are dominated for all sources

11. notify each source to construct the source tree

Algorithm 1. Core-selection component of SPAN

Core-trees are constructed by using incremental SMT heuristics [19] modified for construction of

constrained trees. The SMT heuristic can operate on local information available at the domain nodes

and is therefore feasible for distributed implementation. It is used for construction of both source-

rooted and core-rooted trees. It produces the required delay-bound core-based trees with the input

information consisting of the root of the tree, the set of leaves to be spanned and the delay-bounds to

be met for each leaf. For core-rooted trees the root is the core, the set of leaves is the corresponding

domination set and the delay bounds are computed within the core-selection component of the

framework. Source based trees are built along the shortest delay paths between the source and the

L u k a č a n d L a g u n a | 7

leaves, where the tree is the source and the set of leaves is the set of cores which serve that source for

at least one receiver. Figure 4 shows the sequence of core selection and tree construction algorithms

[10].

— Figure 4 —

Algorithm 2 shows a pseudo-code of the tree-construction component of SPAN.

1.

Repeat

2. Identify an unconnected that is closest to the tree

If within delay bound then

3. connect to using shortest cost path

Else connect it to along the shortest delay path

Until all leaves are connected to

Algorithm 2. Tree-construction component of SPAN

The details on these two algorithms, as well as their distributed implementation, can be found in [10].

In terms of cost and QoS efficiency, the SPAN framework consistently outperforms the alternative

procedures reported in the literature. We now proceed to the description of the algorithms that we

have developed.

3. GRASP-Based Algorithms

We have embedded the SPAN framework in a GRASP metaheuristic [6]. GRASP is an iterative

procedure for combinatorial optimization problems that in each iteration constructs a solution that is

then used as starting point for a local search. The construction is semi-greedy, based on controlled

randomization and a greedy function that depends on the context. In the original GRASP proposal, the

iterations are independent. That is, each construction is independent from the others and the local

searches are not linked. Variants include memory structures and searches that create dependencies

between GRASP iterations. Our proposals retain the same architectural design of SPAN in terms of

separating the core selection from the tree construction process. We build several variants with the

combination of basic components.

The core-selection component of our procedure is obtained by applying GRASP principals to the

core-selection of SPAN. In order to implement GRASP, we must be able to compare solutions according

to their total cost and feasibility (i.e., meeting the delay bound of the application). Our algorithm is

designed to operate in a distributed environment, namely in a unicast routing platform, where only

local-distance information is available to the routers. This information includes the length of the

minimum-distance paths —in different metrics such as cost, delay and hop count— from a router to any

other router in the domain as well as the next hop node on that minimum-distance path. This means

that the total cost of the multipoint path associated with a complete solution is not available until it is

actually constructed. Note that only centralized environments allow for the accurate computation of

L u k a č a n d L a g u n a | 8

the induced total cost without actually building the associated trees. Since the construction of a

multipoint path for every candidate solution would be computationally too expensive and would

produce large message overhead, we develop several total cost estimations which use available local

information only and do not require building a tree in order to assess and compare solutions.

Let denote the set of all leaves of the source tree rooted at , i.e. the set of all cores that

dominate at least one receiver for source . Let , , , denote the cost of the

minimum delay path from to . Furthermore, for each , , , let

 {
length o the minimum cost path rom to i delay bound met,
length o the minimum delay path rom to otherwise

By using local information sent to the coordinator node, after the completion of the core-selection

algorithm it is possible to compute the values of the following functions as the basis for estimating the

total cost of the resulting multipoint path, where is the domination set associated with the

solution:

 ∑ ∑ (
∑

| |
)

 ∑ ∑ (∑

)

| |

In order to allow greater delay residue for the core tree leafs, source trees are constructed by building

paths along the minimum-delay paths from source to corresponding cores from the set. Since the

lengths of such paths are contained in the local-distance information available to the router, it is

possible to compute the exact cost of each source tree. The source tree rooted at source spans

receivers from and its cost is given by ∑ . The cost of all source trees in the

multipoint path is given by ∑ ∑ . It remains to estimate the costs of core clusters

associated with each source. Let us consider the core tree defined by source and core . Its

leaf set consists of receivers from . We have to estimate its cost by using local-distance

information only. For each core-leaf pair we know the cost of the minimum-delay path and the cost of

the minimum-cost path that connects them. Though the actual core tree is not necessarily being built

along one of these two shortest paths, their associated costs may be used as estimates. If the minimum-

cost path between core and leaf satisfies the delay-bound, we use its cost to estimate the cost of the

portion of the core tree connecting and . If the path does not satisfy the bound then we estimate the

cost with the one associated with the minimum-delay path. This matches the definition of

 .

The value of is the sum of the exact costs of all the source trees and a cost estimate of all the

core trees. The average cost of a core tree is estimated as
∑

| |
. That is, the average is

the sum of estimated costs of all core-leaf pairs, ∑ , divided by number of leafs,

L u k a č a n d L a g u n a | 9

| |. When adding over all core-source pairs , , we obtain the estimated cost of all

core trees. Similarly, estimates the overall multipoint path cost as the sum of the exact cost of all

the source trees and the estimated cost of all the core-trees, where the cost estimate for a core-tree is

obtained as sum of the estimated core-leaf costs for each core-leaf pair in the tree. is obtained by

dividing by the number of receivers in the group.

Any of these cost estimates can serve as a criterion for comparing solutions within our GRASP

implementation. Let be the limit on the number of GRASP iterations, each consisting of selecting

the set of cores and estimating the cost of the corresponding multipoint path with one of the three cost

estimates described above. The output of the procedure is the set of cores upon which the tree-

construction component is then executed. Let denote the set of cores chosen in a given GRASP

iteration and let denote the core set with the best estimated cost. Algorithm 3 shows the

GRASP procedure for the core selection problem.

1.

Repeat

2. Construct

3. Improve with local search

If the estimated cost of is better than the estimated cost of then

4. Make equal to

Until number of iterations equals

Algorithm 3. Outline of GRASP for core selection

Step 2 of Algorithm 3 is performed following a semi-greedy scheme, typical of all GRASP

implementations. The criterion for selecting cores is the same as in SPAN, that is, preference is given to

core candidates for which their domination count is large. The pseudo code for the construction step is

shown as Algorithm 4, which assumes that and are the lower and upper bounds on the

domination count over the set of candidate cores for source-receiver pairs that have not been covered

by previous core selections.

1. Randomly generate

2.

Repeat

3. Construct |

4. Randomly select

5.

6. Update domination sets, domination counts, delays, leaf sets and information relative to

core-tree and source-tree construction as in SPAN

Until all receivers from all sources are covered

Algorithm 4. Semi-greedy construction (step 2 of Algorithm 3)

The algorithm starts by choosing a random number between 0 and 1. Initially, the set of selected
cores is empty (step 2). The set of candidate cores is determined in step 3. A node is a candidate if

L u k a č a n d L a g u n a | 10

there exists source such that completely serves and the corresponding domination count
 is within . Unlike SPAN that chooses the candidate
with the largest domination count (i.e., the one corresponding to), we select one whose domination
count is in the top of all candidates. The core tree for a selected node to be added to spans
the receivers in , where is completely served by . The core tree coincides with . Since c
may partially serve other sources, the delay bounds on the leaf set must be updated. Also, for each
source partially served by and , we must update , which is the set of leafs for the source
based tree rooted at . We update domination sets and domination counts by excluding pairs of
sources and receivers just covered by the last core selection. We also update all domination sets
to keep track of the cores that serve receivers for each source and therefore recover a solution at the
end of the construction step.

The local search is loosely based on VNS (variable neighbourhood search) principles (see [13] and
[7]). In our implementation, neighbourhoods of different complexity are explored, where the size is

determined by the number of receivers that are reassigned at a time. Thus, the neighbourhood
 of solution (representing the multipath along which sources serve receivers) is obtained by
moving receivers from their current core to a different core within the set of selected cores. The
number of neighbourhoods to explore is determined by the parameter . Algorithm 5 shows the
pseudo-code of the local search that corresponds to step 3 of Algorithm 3.

1. Set initial solution as , and

Repeat

2. Obtain by random sampling

If is better than then

3. Set and update

4. and

else

5.

If then
6.

7.

While

8. Remove cores that are not connected to any source

Algorithm 5. Local search (step 3 of Algorithm 3)

The search initiates from the solution constructed in step 2 of Algorithm 3 and proceeds to explore

neighborhoods sequentially, starting from . The exploration consists of randomly choosing source-

receiver pairs and constructing a neighbor by reconnecting them through different cores. The

reconnection is done in such a way that the is minimized. The resulting neighbor solution

 is compared with the current solution on the basis of their cost, which is estimated with ,

 or . If has a lower cost than then it becomes the new current solution and the

neighborhood search is reset to . Also, the variable counting the number of iterations without

improvement, , is reset to zero. If, on the other hand, the chosen neighbor is not better

than the current solution, the counter is increased. The exploration remains in the same

neighborhood until the limit is reached. At this point, the search moves to a larger

L u k a č a n d L a g u n a | 11

neighborhood and the process continues. The local search ends when the largest neighborhood is

reached and no improvement at that level is possible within the specified search parameters. (Note that

the process may also terminate if the execution time limit is reached at any time during the exploration.)

As in SPAN, the source-trees are obtained by connecting the root with each leaf along the minimum-

cost path. In addition to using the SMT heuristic shown as Algorithm 2 for the core-tree construction

component, we also test a slight modification that we refer to as SMT-reverse. The only difference

between SMT and SMT-reverse is that, in step 2 of Algorithm 2, SMT-reverse chooses the unconnected

leaf that is farthest away from the existing tree instead of choosing the closest leaf, as SMT does. The

rationale behind reversing what SMT does is that faraway leafs are the most critical with respect to the

delay bound, so if they are the first ones to be connected to the tree the chance increases that the

minimum-cost path between that leaf and the tree will satisfy the delay bound of the application. In

that way, SMT-reverse might achieve a low cost while meeting the delay bound.

In the next section, we present the computational experiments associated with 18 different versions

of solutions procedures obtained by combining the components that we have described above. The

core selection based on GRASP may be configured in 9 different ways by choosing from three costs

estimates (i.e., , and) and three local searches: none, VNS and SPAN/ADJUST (as

proposed by Karaman and Hassanein in [11]). These core-selection procedures are then combined with

two ways of constructing the corresponding trees: SMT and SMT-reverse. This gives a total of 18

variants.

4. Computational Experiments

We have tested the performance of our proposed heuristics against GREEDY [16], the most

prominent algorithm for the QoS-constrained many-to-many problem in question, as well as against

SPAN [10] and its extensions SPAN/COST and SPAN/ADJUST [11], which to the best of our knowledge

offer the best performance in terms of cost metrics known in the literature. The test network was

created with the nem network topology generator [12] and Waxman model [22]. We have created 100

domains of size 60. The average node degree within the domains was taken from the interval [3, 5],

with a mean average node degrees equaling 4.085. We have tested the performance of the algorithms

on five groups of problem types with senders and receivers sparsely distributed throughout the

network. In the first type, the number of receivers is fixed to 16, with the number of senders set to 8,

10, 12, 14 and 18. The delay bound is set to the critical delay

where is the minimum delay-distance between nodes and . In other words, critical delay is

the smallest possible delay allowed for which it is possible to establish the group communication

satisfying that delay bound. In the second type, both the number of receivers (4, 8, 12,16, 20 and 24)

and the number of senders (2, 4, 6, 8, 10 and 12) vary, with the ratio of senders to receivers fixed at 1:2.

The delay bound is also set to the critical delay. Furthermore, the second type is divided into two

groups. In the first one, exactly half of the sources are also receivers, while in the second one all sources

are also receivers. In the third type, the delay bound is set to the critical delay and the senders are a

L u k a č a n d L a g u n a | 12

subset of the receivers. The third type also has two groups. In the first one, there are 12 receivers and

2, 4, 6, 8, 10 and 12 senders. In the second one, there are 24 receivers and 4, 8, 12, 16, 20 and 24

senders. The fourth type has 4, 6, 8, 10, 12 and 14 receivers and 2, 3, 4, 5, 6 and 7 senders, there is no

intersection between the two sets and there is a ratio of senders to receivers of 1:2. The delay bound is

the critical delay in the fourth group of instances. Finally, in the fifth type, the delay bound varies as

follows

with and

where is the delay bound for which any transmission will satisfy the delay bound of the

application. The first group of this type has 16 receivers and 4 senders with no intersection between the

two sets. The second group has also 16 receivers but 8 senders, of whom 4 are also receivers.

Table 1 shows a summary of the types and groups of problem instances that we generated. The

“overlap” re ers to the percentage o senders that are also receivers. The delay bound is either “critical”

(i.e., given by) or “β” (i.e., given by). Since we generated 100 instances for each

combination o receiver set’s and senders set’s sizes within each type of problem, the total number of

instances is 3,700.

Type Instances (Receivers, Senders) Overlap Delay Bound

1 500 (16, 8) (16, 10) (16, 12) (16, 18) Critical

2 (a) 600 (4, 2) (8, 4) (12, 6) (16, 8) (20, 10) (24, 12) 50% Critical

2 (b) 600 (4, 2) (8, 4) (12, 6) (16, 8) (20, 10) (24, 12) 100% Critical

3 (a) 600 (12, 2) (12, 4) (12, 6) (12, 8) (12, 10) (12, 12) 100% Critical

3 (b) 600 (24, 2) (24, 4) (24, 6) (24, 8) (24, 10) (24, 12) 100% Critical

4 600 (4, 2) (6, 3) (8, 4) (10, 5) (12, 6) (14, 7) Critical

5 (a) 100 (16, 4) β

5 (b) 100 (16, 8) 50% β

Table 1. Summary of characteristics of problem instances used for experimentation

In the first set of experiments, we simply replace SMT with SMT-reverse and test the existing

procedures SPAN, SPAN/COST and SPAN/ADJUST with this modification. We compare their

performance with the original procedures (i.e., using SMT) and with GREEDY. For ease of comparison,

we normalize all values to the results obtained by SPAN, which is set to 1. Tables 2 and 3 show a

summary of results by problem type, where the “R” represents the modified version of the original

procedures in which we have replaced SMT with SMT-reverse. Table 2 shows average cost (relative to

SPAN) and Table 3 shows average hop count (relative to SPAN).

The results show that the reverse versions of the SPAN-based algorithms consistently outperform

their SPAN counterparts in terms of cost. However, the improvement in cost is achieved at the price of

L u k a č a n d L a g u n a | 13

a higher hop-count. In general, the best results for all the test groups in terms of cost were achieved by

SPAN/COST-R, followed by SPAN/ADJUST-R. Therefore, just by changing the way the trees are being

built we have achieved improvements over the existing algorithms. In general, the cost improvement

was of about 10%. Because of the way the trees are being built, the most significant improvement, up

to 45%, was achieved in test group 5 in which the delay bounds are relatively loose, allowing shortest

cost paths to be utilized.

Type SPAN
COST

SPAN
ADJUST

SPAN SPAN
COST-R

SPAN
ADJUST-R

GREEDY

1 0.973 1 1 0.879 0.909 1.342

2 (a) 0.983 1 1 0.891 0.922 1.347

2 (b) 0.994 1 1 0.898 0.911 1.342

3 (a) 0.969 1 1 0.929 0.973 1.381

3 (b) 0.996 1 1 0.884 0.906 1.361

4 0.945 1 1 0.920 0.981 1.308

5 (a) 0.924 1 1 0.726 0.779 1.402

5 (b) 0.921 1 1 0.686 0.782 1.554

Avg. 0.963 1 1 0.852 0.895 1.380

Table 2. Summary of cost relative to SPAN

Type SPAN
COST

SPAN
ADJUST

SPAN SPAN
COST-R

SPAN
ADJUST-R

GREEDY

1 1.149 1 1 1.194 1.046 1.355

2 (a) 1.115 1 1 1.161 1.050 1.322

2 (b) 1.149 1 1 1.196 1.047 1.321

3 (a) 1.194 1 1 1.229 1.042 1.307

3 (b) 1.140 1 1 1.192 1.045 1.343

4 1.085 1 1 1.117 1.043 1.259

5 (a) 1.032 1.001 1 1.148 1.126 1.131

5 (b) 1.013 1 1 1.136 1.126 1.124

Avg. 1.110 1 1 1.172 1.066 1.270

Table 3. Summary of hop count relative to SPAN

The second group of algorithms was created by combining —within the GRASP framework— the

building blocks associated with core selection and tree construction. As mentioned above, for the core

selection, we consider three choices of cost estimates and three choices of local search and we combine

them with two tree constructions, resulting in 18 different procedures. The procedures are identified as

 , where (corresponding to cost1, cost2 or cost3), (corresponding to

no local search, SPAN/ADJUST and VNS) and (corresponding to SMT and SMT-reverse). Since all

of these algorithmic variants include random elements, for these set of tests, each instance within a

problem type was run 20 times, resulting in a total of 20*3,700 = 74,000 runs.

L u k a č a n d L a g u n a | 14

Statistical pairwise comparisons of these 18 variants indicate that the best performance in terms of

cost (when considering all problem types) is achieved by . However, these results are

found at a computational cost that is 23 times of the one required by SPAN. Since this computational

effort is not practical, we turned our attention to and , which our

statistical tests showed to be the best among all of those variants that do not use the VNS-based local

search. Table 4 shows a summary of results associated with these procedures. For each procedure and

problem type, the table shows the average cost normalized to the SPAN results (see column labeled

Cost). It also shows the percentage of times (out of 20 runs) that the GRASP variants improved upon the

solutions found by SPAN/COST-R and SPAN/ADJUST-R, which proved to be the best among those tested

in our previous experiment. Those percentages appear in the columns labeled SPAN/COST-R and

SPAN/ADJUST-R under each of the GRASP variants.

Type Cost SPAN

COST-R
SPAN

ADJUST-R
 Cost SPAN

COST-R
SPAN

ADJUST-R

1 0.668 87.75% 88.92% 0.683 84.85% 86.02%

2 (a) 0.692 86.97% 87.63% 0.706 83.23% 84.61%

2 (b) 0.693 89.11% 87.76% 0.707 85.23% 84.94%

3 (a) 0.722 84.94% 86.28% 0.721 84.92% 86.51%

3 (b) 0.686 88.82% 88.38% 0.701 84.54% 84.93%

4 0.706 84.91% 88.91% 0.705 85.00% 89.06%

5 (a) 0.657 66.01% 85.31% 0.664 64.27% 84.31%

5 (b) 0.704 22.81% 73.53% 0.708 21.88% 72.32%

Avg. 0.691 76.42% 85.84% 0.699 74.24% 84.09%

Table 4. Performance comparison between GRASP variants and SPAN variants

The results in Table 4 show that on average, the GRASP variants outperform SPAN. On average, the

solutions found by GRASP variants are less than 0.7 of the cost of the solutions found by SPAN. This

compares well with the average of 0.852 and 0.895 corresponding SPAN/COST-R and SPAN/ADJUST-R,

respectively (see Table 2). For all problem types except 5 (b), the best results were obtained with

 , with a close second. Due to the relaxed delay bounds, the best results

for 5 (b) instances were obtained by SPAN/COST-R, with an average normalized cost of 0.686. Note that

only about 22.8% of the solutions found by the GRASP variants were better than the solutions found by

SPAN/COST-R in this set of problem. The performance of in problem sets 1 to 4 is very

robust, with about 85% or more solutions being strictly better than SPAN/COST-R.

We analyzed further in order to gain additional understanding of its behavior and

the effect of the random elements within the procedure. Figure 5 shows box plots that summarize the

distribution of costs for each type of problem. The upper edge of the vertical lines in the graph denote

the maximum cost value attained, the upper box lines denote the third quartile of the distribution, the

lower box lines denote the first quartile of the distribution, while the lower edge of the vertical lines

denote the minimum cost value attained. The results were normalized by the cost performance of

SPAN. Also, the boxes include the median of the distributions.

L u k a č a n d L a g u n a | 15

— Figure 5 —

The box plots show that, for most data sets, three quarters of all solutions (i.e., the third quartile)

obtained by have an objective function value that is 0.8 of the SPAN objective function

value. The best results show cost improvements of more than 80% compared to SPAN and only in a

couple of instances (set 3(a) and 4) the cost was significantly larger than the SPAN cost. The fairly

narrow width of the boxes across all data sets shows the robustness of the procedure in the sense that it

is quite predictable the amount of cost savings that could expected over the benchmark cost

determined by SPAN. In terms of computing time, runs are completed, on the average,

in as little as a fraction of a second and as much as 5 seconds (on an Intel Xeon CPU X5670 @ 2.93 GHz

and 3GB of RAM). Although the longest GRASP execution times are an order of magnitude larger than

the SPAN times, they are still within the time required in practice. We are aware, however, that

additional efficiencies are possible with the implementation of advanced data structures and strategic

use of memory to minimize the number of calculations and updates from iteration to iteration.

5. Conclusions

We have presented several new core-based algorithms for the multicast routing under a stringent

end-to-end delay constraint which operate in a distributed, asymmetric environment. We have

suggested a modification of the standard tree-construction algorithm known as SMT and tested it by

incorporating it in the tree construction module of SPAN, SPAN/COST and SPAN/ADJUST. On average,

the proposed modification (SMT-reverse) improves the performance of the existing algorithms by 10%

(in terms of cost). The greatest improvement, up to 45%, was achieved for the case of relaxed delay

bounds. A new set of solution procedures was developed around a framework based on GRASP

principles. Altogether we created 18 new variants by combining building block associated with selection

of cores and construction of trees. Our extensive experimentation shows that the best variant of our

proposal is a significant improvement over the methods reported in the literature for the problem of

interest.

References

[1] Ballardie, A. (1997) “Core Based Trees (CBT version 2) Multicast Routing – Protocol Specification,”

RFC 2198, September 1997.

[2] Ballardie, A. (1997) “Core Based Trees (CBT) Multicast Routing Architecture,” RFC 2201,

September 1997.

[3] Deering, S., D. Estrin, D. Farinacci and V. Jacobson (1994) “Protocol Independent Multicasting

(PIM), Dense Mode Protocol Specification,” Technical Report, IETF-IDMR.

[4] Deering, S., D. L. Estrin, D. Farinacci, V. Jacobson, C. Liu and L. Wei (1996) “The PIM Architecture

for Wide-area Multicast Routing,” IEEE/ACM Transactions on Networking, vol. 4, no. 2, pp. 153–

162.

[5] Feo, T. A. and M. G. C. Resende (1989) “A Probabilistic Heuristic for a Computationally Difficult Set

Covering Problem,” Operations Research Letters, vol. 8, pp. 67-71.

L u k a č a n d L a g u n a | 16

[6] Feo, T. A. and M. G. C. Resende (1995) “Greedy Randomized Adaptive Search Procedures,” Journal

of Global Optimization, vol. 6, pp. 109-133.

[7] Hansen P. and N. Mladenović (2001) “Variable Neighborhood Search: Principles and Applications,”

European Journal of Operational Research, vol. 130, pp. 449–467.

[8] ITU-T Recommendation G.114 (2003) “One-way transmission time”, International

Telecommunication Union, Geneva, Switzerland.

[9] Karaman, A. and H. Hassanein (2006) “Core Selection Algorithms in Multicast Routing:

Comparative and Complexity Analysis,” Computer Communications, vol. 29, pp. 990-1014.

[10] Karaman, A. and H. Hassanein (2007) “An Extended Core-based Framework for Delay-constrained

Group Communication,” International Journal of Communication Systems, vol. 20, pp. 1179-1213.

[11] Karaman, A. and H. Hassanein (2007) “QoS-Constrained Core Selection for Group

Communication,” Computer Communication, vol. 30, pp. 1600-1612.

[12] D. Magoni (2002) “nem: A Software for Network Topology Analysis and Modeling,” Proceedings of

the 10th IEEE International Symposium on Modeling, Analysis, & Simulation of Computer &

Telecommunications Systems (MASCOTS.02), pp.1526-7539.

[13] Mladenović, N. and P. Hansen (1997) “Variable Neighborhood Search,” Computers and Operations

Research, vol. 24, pp. 1097–1100.

[14] Moy, J. (1994) “Multicast Extensions to OSPF”, RFC 1584, International Engineering Task Force.

[15] Moy, J. (a994) “Multicast Routing Extensions for OSPF,” Communications of the ACM, vol. 37, no.

8, pp. 61–114.

[16] Salama, H. F. (1996) “Multicast Routing for Real-time Communication on High-speed Networks,”

Ph.D., Thesis, Department of Electrical and Computer Engineering, North Caroline State University.

[17] Shields, C. (1996) “Ordered Core Based Trees,” MSc Thesis, University of California, Santa Cruz.

[18] Shields, C. and J. J. Garcia-Luna-Acevez (1997) “The Ordered Core-based Tree Protocol,”

Proceedings o INFOCOM’97, Sixteenth Annual Joint Con erence o the IEEE Computer and

Communications Societies, pp. 884-891.

[19] Takahashi, H. and A. Matsuyama (1980) “An Approximate Solution for the Steiner Problem in

Graphs,” Mathematica Japonica, vol. 24, pp. 573–577.

[20] Waitzman, D., C. Partridge and S. Deering (1988) “Distance Vector Multicast Routing Protocol”,

RFC 1075, International Engineering Task Force.

[21] Wei, L. and D. Estrin (1994) “The Trade-offs of Multicast Trees and Algorithms,” Proceedings of

ICCCN’94, San Francisco, CA, USA, Sep. 1994, pp. 902-926.

[22] Waxman, B. N. (1988) “Routing of Multipoint Connections,” IEEE Journal of Selected Areas in

Communication, vol. 6, no. 9, pp. 1617–1622.

[23] Zappala, D., A. Fabbri, and V. Lo (2002) “An Evaluation of Shared Multicast Trees with Multiple

Cores,” Journal of Telecommunication Systems, vol. 19, no. 3, pp. 461-479.

L u k a č a n d L a g u n a | 17

Appendix

The multicasting problem for a multi-source communication group may be formulated as mixed-integer

program. This is a generalization of the single-source multiple-receiver formulation in order to include

multiple receivers. The objective function may be to minimize total cost, to minimize the maximum

end-to-end delay or to minimize hop-count.

The problem has the following parameters:

 : set of nodes

 : set of links

 : set of senders

 : set of receivers

 : cost of link

 : delay of link

 : bandwidth of link

 : delay bound

The decision variables are as follows:

 {

 i link is used to connect sender with receiver
 otherwise

Note that by definition
 if and therefore those variables are not defined.

 {

 i link is included in the source tree rooted at
 otherwise

The cost minimization model is:

 ∑ ∑

Subject to

Conservation of flow at the sources

∑

 ∑

Conservation of flow at intermediate nodes

∑

 ∑

L u k a č a n d L a g u n a | 18

Conservation of flow at the receivers

∑

 ∑

Delay bound

∑

Source tree structure

∑

Variable restrictions

To formulate a hop-count minimization model, the following binary variables are defined:

 {
 i link is included in the solution
 otherwise

The objective function is changed to:

 ∑

And the following constraints are added to the model:

Finally, to formulate the minimization of the maximum delay, the parameter is turned into a

nonnegative continuous variable and the objective function is changed to:

 (a) (b) (c)

Figure 1. Optimal transmission for a multicast group with 5 senders and 5 receivers with the objective of

minimizing a) cost, b) maximum end-to-end delay and c) hop-count

 (a) tree serving receivers for source (b) tree serving all receivers for source

(c) combined multipoint tree

Figure 2. An example of a solution in a singular solution space

 (a) tree serving receivers for source (b) tree serving all receivers for source

(c) combined multipoint tree

Figure 3. An example of a solution in a non-singular solution space

Figure 4. An overview of multipoint construction

Figure 5. Box plot of distribution of costs obtained by

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
N

o
rm

al
iz

ed
 C

o
st

Data Set

q1

min

max

q3

mean

