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ABSTRACT 

Selection processes are everywhere in business and society: new product development, college 

admissions, hiring, and even academic journal submissions. Information on candidates is 

typically combined in a subjective or holistic manner, making assessment of the quality of the 

process challenging. In this paper, we address the question, “how can we determine the 

effectiveness of a selection process?” We show that even if selection is subjective, we can 

evaluate the process by measuring an additional audit variable that is at least somewhat 

predictive of performance. This approach can be used either with or without observing eventual 

performance. We illustrate our methods with data from two commercial settings in which new 

product opportunities are selected.  
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Selection processes are everywhere in business and society. Selections happen in new 

product development, college admissions, hiring, and even academic journal submissions. A 

selection process is any situation in which there are many candidates and a decision maker is 

attempting to select the best ones. 

Rarely do organizations know the quality of their selection process. Even if the ideas that 

are developed, or the people hired, are tremendously successful, it could be that the remaining 

candidates would have been similarly successful, and running controlled experiments investing 

in randomly selected candidates would be prohibitively expensive. Assessing the quality of a 

selection process is inherently a difficult question. The very information that would be needed 

about candidates to determine the quality of the process—how well each one will perform—is 

exactly the information that the decision maker is already trying to tap in making the selection. 

There is a long stream of literature documenting the superior performance of 

“mechanical” (algorithmic or formulaic) over “clinical” (subjective or holistic) decisions (Meehl 

1957, Dawes, Faust, and Meehl 1989; Grove and Meehl 1996). Kuncel et al. (2013) performed a 

meta-analysis comparing mechanical and clinical approaches in hiring and academic admission 

selection decisions. Consistent with previous literature, they find that the mechanical decisions 

have much better predictive power. However, holistic decision approaches are entrenched, in 

spite of much research showing that they are inferior. Recent research shows that people will 

choose a human over an algorithm even when they see the algorithm outperform the human 

(Dietvorst, Simmons, and Massey 2015).  

The percentage of candidates selected—the nominal selectivity—expresses the intended 

exclusivity of the process:  selecting 1% of the candidates is of course “more selective” than 

selecting 10% of them. However, that nominal selection percentage ignores the uncertainty about 
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ultimate performance, so it isn’t a measure of the quality of the process. If there is any 

uncertainty in evaluations used, then when you select 1% of the candidates you are not actually 

picking the true top 1%. That disconnect raises a question of equivalence, “What top fraction, in 

terms of ultimate performance, are you actually getting?” For instance, perhaps the one percent 

you select is equivalent to a random selection from the top 10% of the population. We call that 

top fraction the equivalent selectivity, 10% in this example, and show that it can be drastically 

different from the nominal selection percentage.  

Equivalent selectivity is a useful way to communicate about the quality of a selection 

process, and we think it has any easier-to-understand interpretation than any other existing 

measures of the strength of an effect (like true positive, correlation, etc.). This paper contains 

proposals for calculating equivalent selectivity. Our interest is in subjective selection processes, 

ones that rest on human judgment. There may be quantitative measures as inputs (e.g., tests 

scores for admissions), but we assume that the final decisions combine the inputs in a holistic 

way, without a formula. 

In our proposal, we show how to use an observed, quantified measure of all the 

candidates—an audit measure—to assess the quality of the selection process. Of course if we had 

an audit measure that were a perfect predictor of performance, we wouldn’t need any special 

method, we’d just use the audit measure directly to assess the difference between the selected 

candidates and those that were not selected. But, in our method, the audit measure need not be 

perfect, merely somewhat correlated with performance. Table 1 lists several examples of 

selection contexts and possible audit measures.  
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TABLE 1: EXAMPLES OF SELECTION CONTEXTS 

Context Likely Implicit Inputs to Actual 
Subjective Selection Process 

Potential Audit Measures 

Product concept selection Judgments about technical feasibility 
and market attractiveness 

 Purchase intent survey results from 
consumers 

 Collaborator community votes on 
concepts 

 Independent evaluation by experts 

Primary school teacher hiring Years and nature of training and 
experience, letters from references, 
interviews 

 Results from standardized tests (e.g., 
Gallup’s TeacherInsight) 

 Independent review of files by an audit 
panel 

 Ratings of classroom observation 
videos 

School admissions Grades, test scores, extracurricular 
activities, letters from references 

 Formulaic combination of quantified 
attributes (e.g., grades, scores, number 
of leadership positions, years of 
participation in activities) 

 Independent review of files by an audit 
panel 

 Ratings from multiple alumni 
interviews 

Academic journal submissions Review team and editor assessments 
of contribution, correctness, and 
clarity 

 Assessments from a larger pool of 
reviewers reading an extended 
abstract 

 Independent review of files by an audit 
review team 

 Number of downloads of working 
paper 

 

Our recommendations for the audit measure and its use vary based on the other available 

information. First, we consider the case where performance measures (e.g., profit, employee 

productivity, student success, paper citations) are available for selected candidates and where the 

audit measure mimics the information and process of the original selection (e.g., review of 

candidates by similarly qualified people using similar information). Second, we consider the case 

where performance measures are available, but the audit measure is not assumed to mimic 

closely the original process. In that case, we show how two different audit measures identify 

selection quality. Third, we consider the most restrictive case, in which performance measures 

are not available. In that case, we require an assumption that the original process and the audit 
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measure have similar predictive power for performance. In each of these three cases, we derive a 

specialized formula for translating the available information to an estimate of selection quality, 

which we then express as the equivalent selectivity. 

Many selection processes have multiple stages, like a tournament (Terwiesch and Ulrich 

2009) or a funnel (Chao, Lichtendahl, Grushka-Cockayne 2014). Knowing the quality of a 

selection process is essential to making intelligent decisions about the shape of a funnel. The 

worse the initial selection process, the more ideas one should advance to the next stage. Knowing 

the quality of a selection process is also helpful in tracking the results of interventions designed 

to improve that quality (Krishnan and Loch 2005, Bendoly, Rosenzweig, Stratman 2007). 

We aspire to a practical method. Our emphasis is on what can realistically be measured to 

answer the question of how good a selection process is, given the inherent data limitations. The 

next section reviews the related literature. The subsequent section explains equivalent selectivity 

and its computation. After that, we present stages of a model with progressive assumptions about 

what can be observed and provide methods for estimating the quality of the selection process 

from each set of available information. We apply the methods to product concept selection at 

Quirky.com and design selection at Threadless.com. The final section concludes. 

 

RELATED LITERATURE 

Selection is a key decision in innovation. In a typical product development funnel, ideas 

are selected to advance to the next stage for further investment. Scholars have proposed and 

validated approaches for evaluating idea quality: Goldenberg, Mazursky, and Solomon 1999, 

Goldenberg, Lehmann, and Mazursky 2001, Åstebro and Elhedhli 2006, and Kornish and Ulrich 

2014. These studies measure how good the proposed approach is at predicting success of ideas 
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using data on market performance. Our focus in this paper is different: we devise a framework 

for evaluating any selection process, even ones lacking a formal model for evaluating the 

candidates or a process for measuring the ultimate performance of selected candidates. 

The central question in this paper is how to tell how good a selection process is. This 

question is closely related to a different question that has received a lot of attention in 

psychology and economics: how to measure the relationship between two variables in a sample 

shaped by selection. For example, how well does the LSAT predict grades in law school? Or 

how well do interviews predict on-the-job performance? The challenge in that question about the 

relationship between two variables is that grades and performance are only observed for a non-

random sample of the population. In other words, you only see what the selected candidates, but 

not the rejected candidates, achieve. 

If the LSAT or the interview were the only basis for admission or hiring, then the 

question of measuring the relationship in a systematically selected sample is the same question 

we study. However, real selection processes are usually not so mechanical. As Linn (1968) 

writes, “the true explicit selection variables are either unknown or unmeasurable.” Sackett and 

Yang (2000) concur and say that “[s]election may be on the basis of an unquantified subjective 

judgment.”  

Many authors have focused on the specific challenge of how to measure the relationships 

among variables when the selection variable is relevant to those variables but unmeasured. 

Sackett and Yang (2000) reference the work of Olson and Becker (1983) and Gross and 

McGanney (1987) for approaches to this challenge. In those works, the key recommendation is 

to use the technique from econometrics proposed by Heckman (1979). 
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The Heckman selection model has been shown to be a useful approach for measuring the 

relationship between variables when the sample is formed based on information about one or 

more of those variables. Heckman (1979) shows that the selection effect acts like an omitted 

variable in biasing the results and proposes a method for correcting that bias.  

Heckman’s approach was designed to help measure the relationship between an outcome 

and a predictor (e.g., wages and years of education). It could also be helpful in estimating the 

quality of a selection process, our central question. However, to be useful, we would need to 

have a measured variable that predicts selection but that does not also predict outcomes. In 

Heckman’s original study, the selection equation models women’s workforce participation and 

the outcome equation models wages. Women who would tend to have lower wages are less 

likely to be in the workforce, but there are other variables, such as the number of young children 

in the home, that predict selection but don’t impact the relationship between wages and 

education. The number of young children can serve as that extra variable that identifies the 

model. 

Strictly speaking, Heckman’s model could separately identify the selection effect from 

the overall relationship between the outcome and the focal variable, even without an extra 

variable in the selection equation. Without extra variables, the identification relies on the non-

linearity of the residual. However, in practice, the residual is close to linear over much of the 

relevant range. The high correlation between the predictor variable and the residual make it 

practically impossible to separately identify the two effects (Little, 1985). 

Heckman’s original application was not a centralized selection processes with a decision 

maker deliberately trying to select the women with the highest wage potential to participate in 

the workforce. However, his technique could potentially be relevant to deliberate selection 
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processes, that is, those in which there is a concerted effort to pick the best candidates. 

Unfortunately, in a deliberate selection process, it is likely impossible to have an extra variable 

that predicts selection but does not predict performance. The decision maker is trying to select 

the candidates with the best predicted performance, so if there is an available variable that 

predicts performance, the decision maker should already be using it. With no extra variable to 

include in the model of selection, it is not practical to use the Heckman selection model. That 

conundrum, about the difficulty of identifying variables to use the Heckman model, is our 

motivation for proposing methods to assess the quality of subjective selection processes. 

 

EQUIVALENT SELECTIVITY 

This paper is about assessing the quality of subjective selection processes. In a subjective 

selection process, the overall evaluation of each candidate is not quantified. We model an 

implicit score, or latent variable, that captures the unobserved evaluation. Selection quality is the 

strength of the relationship between that latent variable and ultimate performance. 

Equation (1) models that relationship. The variable Y is the performance measure. For 

example, with new products, Y is incremental profit, and for employees, Y is economic 

productivity. The decision maker is trying to select the candidates that will ultimately have the 

highest Y values. In a subjective selection process, the noisy assessment of Y, which we call A, 

is a latent variable. We assume the error ߝ is Normally distributed with mean 0. 

ܣ     ൌ ߙ  ଵܻߙ        (1)ߝ

Table 2 provides a summary of all the notation in this paper. 
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TABLE 2: NOTATION 

Notation Meaning 

Y Candidate ultimate performance (e.g., profit, productivity) 

A Implicit score or latent variable that captures the unobserved evaluation used in the selection decision 

 ଵ Intercept and slope of the relationship between A and Yߙ  andߙ

  Error in the relationship between A and Yߝ

B An audit measure: an observed measure taken on all candidates 

 ଵ Intercept and slope of the relationship between B and Yߚ  andߚ

  Error in the relationship between B and Yߝ

തܤ  and SB The mean value of B across all candidates and the standard deviation of B across all candidates 

 ത௦௧ௗ and sB The mean value of B across selected candidates and the standard deviation of B across selected candidatesܤ

d Standardized mean difference between B for selected candidates and for all candidates 

 represents the ߩ  Correlation between A and Y, and the correlation between B and Y. More generallyߩ  andߩ
correlation between the (possibly unobserved) variables in the subscript 

  Correlation in the observed samples of B and Y. More generally, r represents the correlation between theݎ
observed variables in the subscript 

C A second audit measure: an observed measure taken on all candidates 

 ଵ Intercept and slope of the relationship between C and Yߛ  andߛ

ߝ  Error in the relationship between C and Y 

k Relative marginal contribution to agreement of shared error compared to shared truth 

 

The correlation between the A and Y, ߩ,  gives a quantitative measure of how good the 

selection process is. A higher ߩ means a better, more accurate selection process. But the 

correlation alone doesn’t have a natural interpretation for selection. We propose a different 

metric, what we call the equivalent selectivity, with a more meaningful interpretation. The 

equivalent selectivity answers the question: the mean of what top fraction of performance is 

equal to the predicted average performance of candidates actually selected? In Appendix A1, we 

compare how equivalent selectivity is related to other, existing measures of classification 

accuracy. 
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Figure 1 shows how selection quality ߩ (on the horizontal axis) and nominal selection 

percentage (each curve in the figure) combine to generate the equivalent selectivity. For 

example, with a ߩ of 0.3 and a nominal selection percentage of 10% (selecting the perceived 

top 10% of the candidates), you are getting performance equivalent to randomly selecting from 

the top 67% of candidates. In other words, instead of actually getting the top 10% of candidates, 

the mean performance of the selected candidates is equal to the mean of the top two-thirds of the 

population of candidates.  

The curves in Figure 1 are generated via simulation of candidate values A = Y + ߝ, 

where Y are true performance values and ߝ are errors, using Normal distributions. By varying 

the standard deviation of the error term, we simulate different values of ߩ. In each simulation, 

the candidates with the highest A values form the selected set, with the exact quantity in the set 

determined by the nominal selection percentage. We numerically solve for the percentile of the 

Y distribution that equates the mean of the upper tail of that distribution and the mean of the Y 

values in the selected set. The equivalent selectivity is the complement of that percentile. 

The equivalent selectivity is considerably less selective than the nominal selection 

percentage due to a winner’s curse: the top-rated ideas tend to be the ones whose values were 

most overoptimistically estimated. The top-rated ideas do tend to have higher performance than 

lower-rated ones, but the errors are systemically higher, too. That systematic bias makes the 

nominal selection percentage overstate the actual, or equivalent, selectivity, sometimes 

dramatically. 
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FIGURE 1: EQUIVALENT SELECTIVITY 

 

This figure shows the equivalent selectivity for a selection process of a certain 
validity (the horizontal axis, ߩ) and for different nominal selection percentages, 
ranging from 1% to 50%. The lighter dashed lines illustrate a finding from a 
personnel selection context: Schmidt and Hunter (1998) report that a measure of 
general mental ability combined with an evaluation of a work sample has a validity of 
0.63. If 10% of candidates are selected, the mean performance of the selected 
candidates is equal to the top third of the population of candidates.  
 

MODEL 

In selection, many candidates are considered and only the best ones are chosen.  We 

consider the situation where selection is ultimately made based on subjective judgment. We 

model that judgment with a latent variable, i.e., one that is implicit and unobserved, as 
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introduced in Equation (1). There may be elements of the selection process that are quantified 

and observed (e.g., standardized test scores in admissions or concept testing outcomes in new 

product funnels), but we allow for the typical practice of reliance on unquantified human 

judgment (Kuncel et al., 2013) in combining those elements. Although we don’t observe ratings 

of candidates, we do observe which candidates are selected and which ones are not.  

Clearly the observation of what was selected and what was not does not provide enough 

information to evaluate how well selections are being made. Therefore, our proposal includes 

collecting an audit measure—a measured variable thought to be related to performance, and 

therefore selection, for all candidates. The audit measure can be already available and recorded, 

captured as part of the candidate consideration process, or it can be obtained after the fact, as part 

of the investigation to find out how good the selection process is. Table 1 contains examples of 

such audit measures. 

We call the audit measure B. Similar to Equation (1), B is a noisy measure of Y 

(performance), linearly related to Y, with Normally distributed and mean-zero error ߝ.  

ܤ     ൌ ߚ  ଵܻߚ        (2)ߝ

The question we address in this work is how we can get a good estimate of the relationship 

between A and Y (ߩ) given that we don’t observe A at all and at best we only observe Y for 

candidates with the highest A. 

A linchpin in this analysis is a relationship among four correlations, as shown in the 

result below.  

Result 1. For the model in Equations (1) and (2), the relationship among the predictive validity 

of A, ߩ; the predictive validity of B, ߩ; the correlation between the errors,ߩఌಲఌಳ; and the 

correlation between A and B, ߩ, is 
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ߩ    ൌ ߩߩ  ఌಲఌಳඥ1ߩ െ ߩ
ଶ ඥ1 െ ߩ

ଶ    (3) 

We derived this equation from the definition of correlation and the formulas for the coefficients 

 .ଵ. See Appendix A2 for the derivationߚ ଵ andߙ

Equation (3) shows the key challenge in understanding how good a latent selection 

variable is by using a related observed audit measure. On the one hand, the latent variable and 

the audit measure may agree because they are both good predictors of future success of 

candidates, i.e., ߩ and ߩ are both positive. On the other hand, the two measures may agree 

because they are relying on the same limited set of information and drawing the same incorrect 

conclusions, i.e., ߩ and ߩ may be zero, but ߩఌಲఌಳ is positive.  

How can we make the most informed estimate of ߩ? If we knew the other three 

correlations in Equation (3), we could find the value of ߩ, but we do not know them. Our 

contribution in this paper is to explain how we can combine reasonable assumptions with 

observations to learn about ߩ, the variable we ultimately care about. 

First consider ߩ. This is a measure of the agreement of the latent selection variable and the 

observed audit measure. We do observe something that is useful for estimating ߩ. To measure 

agreement between A and B, we can calculate how different B is, on average, between the 

selected group and the whole population. We use the normalized difference between two groups 

(like Cohen’s d): 

     ݀ ൌ തೞିത

ௌಳ
,    

where ܤത௦௧ௗ is the mean value of B in the selected group,	ܤത  is the estimate of the mean value 

of B in the whole population, and ܵ is an estimate of the standard deviation of B for the whole 

population. Appendix A3 shows the exact formula to infer ߩ from d if we assume that A and B 

are Bivariate Normal; ߩ is the biserial correlation (Thorndike 1949). We use that relationship 
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in this paper. For more generality, one could simulate to derive the correspondence between d 

and ߩ for other distributional forms. 

In considering ߩ and ߩఌಲఌಳ, first, we examine the case in which Y is observed, and then 

we turn to the most restrictive case, in which Y is not observed.  

 

PROPOSED METHODS AND APPLICATION: OBSERVED PERFORMANCE  

In many cases, the measure of performance Y will be observed for the selected 

candidates. In this section, we show how to make use of that information to improve our estimate 

of ߩ. We present two different approaches: one in which the audit measure B mimics the 

original latent selection variable A, and one in which we do not require that. 

 

Observed Audit Measure B Mimics Original Selection Process 

The first way to use Y to estimate ߩ is to develop an audit measure B that has similar 

predictive power to A. One way to achieve this matching is to use a B that mimics A. Although 

A may not have been quantified or documented, some details about the information used and the 

process used for selection may be known. Using the same information and to the extent possible, 

the same process, quantify B. Then use that variable to estimate ߩ, which serves as an estimate 

of ߩ. 

Consulting Table 1, the examples of audit measures that involve independent reviews of 

the information in files by separate (and presumably equally, or nearly equally, qualified) people 

would meet the equal-predictive-power criterion. 

Note that we do not require that A and B agree (high ߩ), simply that they have similar 

predictive power. If they are both noisy signals, then we can have ߩ ൌ  .ߩ  but lowߩ
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If we do observe B and Y in the selected sample, how do we get an estimate of ߩ? 

Sackett and Yang (2000) review the approaches for correcting an observed correlation in a 

selected sample to estimate the correlation over the entire population of the two variables, 

referencing Thorndike (1949), and in turn Pearson (1903). As Sackett and Yang (2000) note, the 

Thorndike Case 2 correction is considered the standard correction. We show it in Equation (4), 

where ݎ is the correlation between B and Y in the observed sample, ܵ is the standard 

deviation of B in the whole population, and ݏ is the standard deviation of B in the selected 

sample. 

ߩ ൌ
ሺௌಳ ௦ಳ⁄ ሻಳೊ

ටଵାಳೊ
మ ൫ௌಳ

మ ௦ಳ
మିଵൗ ൯

    (4) 

Unfortunately, Equation (4) is not an exact correction for our purposes because B is not 

the selection variable (and A, which is, is not observed). Even though the conditions for Case 2 

are not strictly met, our simulations reveal that the estimates are very good across all parts of the 

parameter space. Appendix A4 shows the results of the simulations: the simulated estimate of 

  . is very close to the true value across the whole parameter spaceߩ

In summary, we can obtain an estimate of ߩ if we can mimic the information and 

process implicit in A, but in the imitation, quantify and document it and create an audit measure 

B. Once we have done that, we measure the correlation of B and Y in the selected sample (ݎ) 

and use Equation (4) to infer the correlation of B and Y (ߩ) in the full population. The value of 

 .ߩ  serves as our estimate ofߩ

 

Selection Process is Too Opaque to be Properly Mimicked 

In the previous subsection, we show how to estimate the quality of a selection process 

 if B mimics A. More generally, though, there are selection processes that rely heavily on (ߩ)
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tacit subjective judgment, undocumented and opaque. It may be unclear what information was 

used in the selection process, or how it was applied. In those cases, it would be hard to create an 

audit measure B to mimic A, therefore, we would not want to assume that ߩ ൌ  . Droppingߩ

that assumption, we need an additional source of information, namely something to help us 

estimate ߩఌಲఌಳ. 

We still rely on an audit measure B, as in Equation (2). Unlike the previous approach, 

though, instead of attempting to have B be a replication of A, it should be the best attempt of a 

predictor of Y. The audit measure B, compared to A, may be a better or worse predictor of Y. In 

addition to B, we also need a second observed variable in the selected sample, which we call C: 

ܥ     ൌ ߛ  ଵܻߛ        (5)ߝ

As in Equations (1) and (2), we assume that ߝ is Normal with mean zero. In Table 1, we show 

multiple possible audit measures for each context. From each list, the one that is thought to be 

the best predictor of Y should serve as B, and the one that most closely replicates the original 

selection process should serve as C. For example, in new product concept selection, purchase 

intent survey results from consumers—which have been shown to be predictive of market 

behaviors (Kornish and Ulrich 2014)—are a good source for B. Many companies rely on a small 

group of insiders to screen the initial large set of ideas (dozens or hundreds) down to a much 

smaller set (Magnusson et al. 2016), so evaluations by a new set of experts are a good source for 

C. 

 The role of the second audit measure C is to provide information about error correlation. 

Observing B, C, and Y in the selected sample, we calculate the correlation between ߝ and ߝ in 

that sample (which we call ݎఌಳఌ). We are not relying on C being an exact reproduction of the 

original latent selection variable A, because we are not basing our estimate of ߩ directly on our 
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estimate of  ߩ. Rather, we have four quantities calculated from observed values: ߩ,	ݎ, ݎ, 

and ݎఌಳఌ, and we estimate ߩ from all four.  

It would be convenient if we could use Equation (3) to translate our observed values to 

 ఌಲఌಳ, and thenߩ ఌಳఌ forݎ , and usingߩ  or even a corrected version of it, forݎ —usingߩ

solving for ߩ. Our investigations revealed that such estimates are highly accurate in some 

regions of the parameter space, but not in others. Because we don’t know what region of the 

parameter space we are in, we did not find using Equation (3) to be a good solution for 

estimating ߩ. 

We believe a closed-form expression linking the five correlations, akin to Equation (3), 

does not exist. Thorndike’s (1949) Case 3 covers only a correction to ݎ for an observed A. 

Likewise, an expression for ݎ would be useful in the Heckman (1979) model, but no closed 

form exists for that model, either. 

Our approach to understanding the relationship among the five correlations is 

unapologetically practical. We reverse engineer the relationship between ߩ and ߩ,	ݎ, ݎ, 

and ݎఌಳఌ using a simulation covering the parameter space. For a given nominal selection 

percentage, we simulate one million trials of A, B, C, and Y at each point in the (ߩ, ߩ, ߩ, 

 ఌಲఌಳ) space, assuming that the error correlation between A and B is the same as that between Bߩ

and C. We use a grid in intervals of 0.1 over the range of 0.1 to 0.9 for all four parameters. We 

present results for nominal selection percentages of 1%, 10%, and 25%. At each point in the 

space, true values of the parameters produce observations of ߩ,	ݎ, ݎ, and ݎఌಳఌ. 

To successfully reverse engineer the relationship between ߩ and (ߩ,	ݎ, ݎ,  ,(ఌಳఌݎ

we first need to determine whether there is a unique ߩ for each combination of (ߩ,	ݎ, 
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,ݎ  ఌಳఌ). Regrettably, there is not a unique relationship. Appendix A5 illustrates aݎ

counterexample.  

Because there is not a one-to-one mapping from the other four parameters to ߩ, there 

can’t be an unambiguous relationship linking the observed quantities to ߩ. However, for much 

of the parameter space, there is a unique relationship between the four other parameters and ߩ. 

In other words, the iso-ߩ surfaces do not intersect. In addition, the surfaces, while not linear, 

appear to be monotonic, suggesting that approximations based on simple functional forms may 

be reasonable. The intersections happen in one corner of the space: low ݎ and high ݎఌಳఌ. We 

therefore study the relationship excluding that corner. Those restrictions make sense intuitively. 

We can’t expect to use B (the audit measure) to calibrate A (the latent variable representing the 

original selection process) if B itself has essentially no predictive power for performance. And 

we can’t expect to use B to calibrate A if the high error correlation makes the two measures 

indistinguishable. In the analysis below, we restricted the range based on observed values ݎ 

0.25 and ݎఌಳఌ 	 0.5. We chose these cut-offs recognizing that the tighter the restriction, the 

better the model will fit, but the lower the chance that we can use it. (The results are not highly 

sensitive to the exact cut-offs.) 

To find the relationship between ߩ and ߩ,	ݎ, ݎ, and ݎఌಳఌ in the restricted range, 

we regress the simulated ߩ on the other terms and their two-way interactions. Table 3 shows 

the regression coefficients for three nominal selection percentages. The R2s are very high, above 

90% in all three cases. 
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TABLE 3: REGRESSION RESULTS FOR PREDICTING ߩ WITH OBSERVED B, C, and Y 

 Select 
Top 1% 

Select 
Top 10% 

Select 
Top 25% 

Variable 
 

Coefficients 
(Standard Error) 

Constant 
0.291*** 
(0.015) 

0.263*** 
(0.015) 

0.240*** 
(0.013) 

 *** 2.295ߩ
(0.032) 

2.565*** 
(0.032) 

2.714*** 
(0.030) 

 *** -0.239ݎ
(0.021) 

-0.216*** 
(0.021) 

-0.160*** 
(0.019) 

  -0.002ݎ
(0.017) 

-0.002 
(0.017) 

-0.028* 
(0.015) 

 ***ఌಳఌ -4.149ݎ
(0.061) 

-4.342*** 
(0.057) 

-4.403*** 
(0.050) 

 *** -1.609ݎߩ
(0.045) 

-1.940*** 
(0.044) 

-2.194*** 
(0.040) 

  0.023ݎߩ
(0.027) 

0.013 
(0.027) 

0.024 
(0.025) 

 ***ఌಳఌ 1.009ݎߩ
(0.057) 

1.075*** 
(0.056) 

1.302*** 
(0.051) 

 *** 0.084ݎݎ
(0.020) 

0.086*** 
(0.019) 

0.076*** 
(0.018) 

 ***ఌಳఌ 3.379ݎݎ
(0.065) 

3.658*** 
(0.060) 

3.660*** 
(0.054) 

 ***ఌಳఌ -0.288ݎݎ
(0.042) 

-0.269*** 
(0.039) 

-0.151*** 
(0.036) 

N 2844 2751 2679 

R2 0.93 0.94 0.95 

Adj. R2 0.93 0.94 0.95 

*** p < 0.01, ** p < 0.05, * p<0.1 

Notes: Regression results for translating observed values of (ߩ,	ݎ, ݎ,  ఌಳఌ), whenݎ
the restrictions are met (ݎ  0.25 and ݎఌಳఌ 	 0.5), into an estimate of ߩ, for a given 
nominal selection percentage. 

 

From these results, we notice that the largest simple effects come from ߩ, with a strong 

positive effect on ߩ; and ݎఌಳఌ, with a strong negative effect on ߩ. Of the six interaction 

terms, the largest effects are from ߩݎ (negative) and ݎݎఌಳఌ (positive). All the terms 

including ݎ are either not significant or show relatively weak impact compared to other terms 
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in the estimation. The variable C (the second audit measure) was introduced to provide some 

basis for estimating ߩఌಲఌಳ, and we do see strong effects of ݎఌಳఌ, as we would expect from 

Equation (3), but the ݎ doesn’t provide much information directly about ߩ. 

In summary, we can obtain an estimate of ߩ if we have an audit measure B with non-

negligible predictive power for Y ሺݎ greater than 0.25, or so) and a second audit measure C 

with substantial independent information from B (ݎఌಳఌ less than 0.5, or so). With those 

variables, we obtain estimates of the agreement of B with the original selection (ߩ), and 

measure correlations ݎ, ݎ,	and ݎఌಳఌ. We plug those measurements into the appropriate model 

from Table 3, based on the nominal selection percentage, to calculate the estimate of ߩ.	 We 

can translate the correlation ߩ into an equivalent selectivity—a top fraction of the distribution 

on performance—using the relationships expressed in Figure 1. 

 

Application 

We apply this method to data from the product-development company Quirky.com. 

Quirky had a website at which community members submitted ideas for household products, and 

some of the products were selected, developed, and sold in the online store. The Quirky products 

are used in different rooms of the house, for example kitchen appliances, bathroom organizers, 

and office gadgets. Our question is, “how good is Quirky at selecting concepts?” 

The key elements of the data set are as follows. 

 A random sample of 100 “raw ideas” submitted to the idea contests from the site. Raw 

ideas comprise short text descriptions, and in some cases, visual depictions. 

 A set of 149 raw ideas that were selected to be developed into products. This set 

comprises every product Quirky selected for commercialization as of February 2013. 
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 Purchase-intent measures from a survey of consumers we conducted for all 249 raw ideas 

in the random and selected sets. Each idea was rated by between 282 and 293 people. 

 Community rating scores for raw ideas. Quirky community members had the opportunity 

to casts votes for raw ideas on the site, and this score is the number of votes. The 

community vote was stated to influence Quirky’s selection, but it was not the sole factor. 

We observe the community score rating for 97 of the raw ideas in the random sample and 

39 of the developed ideas. (The incomplete observations arise from Quirky’s decisions 

about revealing data on the website combined with our data collection schedule, all 

unrelated to idea ratings.) 

 Estimated profit rates for all of the products in the store. The units sold and prices were 

posted on the site. We estimated product costs based on actual use of materials, number 

of components, and inferences about manufacturing processes. Because products were 

introduced at different times, we control for time by using the profit rate. 

Latent variable A is embodied in the actual selection process used by Quirky. Audit measure 

B is a linearly weighted purchase intent average (i.e., 0%, 25%, 50%, 75%, 100% for definitely 

not, probably not, might or might not, probably, and definitely, respectively). Audit measure C is 

the average number of community votes. Y is the profit rate. 

TABLE 4: SUMMARY MEASURES FOR B (PURCHASE INTENT) AND C 
(COMMUNITY SCORES) 

 Mean Standard 
Deviation 

N 

Purchase Intent Raw Idea 
(0-1), Developed Ideas 

.45 .08 149 

Purchase Intent Raw Idea 
(0-1), Random Ideas 

.40 .08 100 

Community Votes, 
Developed Ideas 

21.95 11.72 39 

Community Votes, 
Random Ideas 5.35 7.16 97 
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From Table 4, we derive the standardized mean difference between the selected group 

and the population, d =  (.45-.40)/.08 = .63. Quirky selected about 1% of the products submitted, 

so the implied ߩ is 0.24 (using the biserial correlation formula in Appendix A3). Using the 

performance measure (Y) as the natural log of the profit rate, we find the correlation ݎ between 

purchase intent score (B) and logged profit rate (Y) to be 0.27 in the observed sample. 

With the community scores as the second audit measure C, ݎ is 0.06 in the observed 

sample. We use C to help get an estimate of the error correlation between A and B; therefore, a 

good C is one that is strongly related to A in some way. With that criterion, the community 

scores are a good choice. Although not part of the model we are estimating, we observed that 

using C, the d (standardized mean difference between the selected group and the population) is 

2.32. That d implies a ߩ of 0.87 for a selection rate of 1% (using the biserial correlation 

formula in Appendix A3). Table 4 shows that that the standard deviation of the community 

scores for the selected ideas is higher than the standard deviation of the population. This supports 

the thought that the community score is not the explicit selection criterion; if it were, the 

standard deviation in the set of random ideas would most likely be bigger than the standard 

deviation in the set of developed ideas. However, the d of 2.32 tells us the community scores are 

an important part of the selection. 

Finally, the error correlation—the correlation between residuals from Equation (5) and 

those from Equation (2)— in the observed sample is ݎఌಳఌ ൌ 0.23. 

Using the model estimated for the nominal selection percentage of 1%, as shown in Table 

3, we estimate ߩ as -0.02, essentially zero. In other words, it is as if Quirky were randomly 

selecting ideas from its pool of submissions. Of course, this value of ߩ is a point estimate. 

Using the standard error of the regression (0.064), the 95% confidence interval for ߩ is (-0.14, 
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0.11). Consulting Figure 1, the equivalent selectivity is at least 90%. The selection process is at 

best weakly predictive of success. 

Many of the ideas that Quirky developed were very successful. However, our analysis 

cautions us from attributing that success to their selection process. The low value of the 

correlation between community scores and performance that we observed (ݎ ൌ 0.06) didn’t 

automatically dictate that Quirky’s selection process was weak. In fact, if the selection process 

were highly accurate, then there could be severe attenuation of the relationship between C and Y 

due to restriction of range (Sackett and Yang 2000). However, we conclude that that severe 

attenuation is not at play here: instead, the low value of ݎ accurately reflects a selection process 

that is not highly predictive of profit performance. 

 

PROPOSED METHOD AND APPLICATION: UNOBSERVED PERFORMANCE  

In some cases, performance Y is not observed, even for the selected candidates. Why 

would Y be unobserved? In studies of the validity of admissions testing, the performance 

variable is often first-year GPA. Is this really the ultimate performance measure that one is 

hoping to maximize in a highly tuned admissions process? Probably not. Ultimate performance 

criteria like “student success” are hard to define and measure. In the case of product concept 

selection, profits associated with each new product would be a pretty good measure of 

performance. However, even in that straightforward case, true performance would be long-term 

incremental profit in the product portfolio. The ideal long-term time frame makes measurement 

hard and the idea of incremental profit makes it even harder.  

Admittedly, this minimal-data scenario is a very restrictive case. Our task in this setting is 

to make a reasonable estimate of ߩ having an observation-derived estimate of ߩ. We have 
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three unknowns (ߩ, ߩ, and ߩఌಲఌಳ) and only one equation, Equation (3), relating them. 

Clearly there isn’t a single solution to the equation. Our estimation proposal relies more on 

assumptions about the relative sizes of effects than the previous proposal with observed Y.  

 

Method 

To estimate ߩ, we want to use an audit measure B that is reasonable to assume has the 

same predictive power as A, ߩ ൌ  . We discussed that assumption earlier, in the first caseߩ

we presented. With equal predictive power, we simply need an assumption about the relative 

contribution to the observed agreement ߩ of shared error vs. shared truth.  

We examine the family of assumptions that the marginal contribution of shared error is k 

> 0 times that of shared truth. Solving for ߩ as a function of ߩ gives the following result 

(proven in Appendix A6). 

 

Result 2. For the model in Equations (1) and (2), if ߩ ൌ    andߩ
డఘಲಳ
డఘഄ

ൌ ݇ డఘಲಳ
డሺఘಲೊ∗ఘಳೊሻ

, then  

ߩ ൌ ට1 െ ඥ݇ሺ1 െ  ሻ    (6)ߩ

Figure 2 shows the relationship in Equation (6) for three different values of k. The middle 

solid line shows the relationship for k = 1, when the two contributions are equal. The top solid 

line in Figure 2 shows when the effect of shared error is half that of shared truth, and the bottom 

solid line shows the opposite, the effect of shared error is twice that of shared truth. 

The next step is to develop a reasonable range for k. Shared error comes from common 

elements of A and B that are unrelated to Y. Common elements can be response formats, 

misconceptions or surprises, or biases related to the way the information is presented. For 
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example, if a sketch of an idea from Quirky looks professional, that may bias the evaluation 

upward, compared to one that looks amateurish, in both the Quirky process and our consumer 

surveys.  

FIGURE 2: INFERRING ߩ FROM AGREEMENT BETWEEN A AND B WHEN Y IS 

UNOBSERVED 

 

Estimates of ߩ as a function of the observed agreement between A and B (expressed as 
the correlation ߩ), assuming ߩ ൌ  . The constant k captures the relative marginalߩ
contribution of shared error compared to shared truth.  

 

Starting with Campbell and Fiske (1959), many studies in marketing, management, and 

psychology quantify the magnitude of the “common methods bias.” Bagozzi and Yi (1991) 

examine methods for measuring it. More recently, Podsakoff et al. (2012) summarize the 

findings about the size of the bias. Their Table 1 shows the estimated percentage of variance 

explained by methods, “traits” (or truth, in our framework), and random error in five meta-
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analyses. The k values for the five studies cited in Podsakoff et al. (2012) range from 0.86 (for 

the Lance et al. 2010 paper, the one that is most skeptical about the severity of common method 

bias) to 1.33 (for Doty and Glick, 1998). Based on these studies, we conclude that 1 is a 

reasonable point estimate for k: the marginal effects of shared error and shared truth have been 

shown to carry approximately equal weight in generating agreement.  

In summary, we can obtain an estimate of ߩ if we can mimic the information and 

process implicit in A, but in the imitation, quantify and document it and create an audit measure 

B. For examples of such audit measures, see Table 1, where we show examples of measures that 

involve independent reviews of information by separate and similarly qualified people. We 

estimate the correlation between A and B from the standardized mean B difference between the 

selected candidates and the whole population. We use an estimate or a range to represent the 

relative marginal contribution (k) of shared error and shared truth and solve for ߩ from 

Equation (6). 

 

Application 

To illustrate the use of this proposed method, we collected data from the company 

Threadless.com. Threadless has a website at which community members submit designs, then 

some of the designs are selected, printed on t-shirts and other products such as cell-phone cases, 

and sold in the online store. Threadless runs regular, themed competitions for the designs, for 

example Greek and Roman Mythology, Original Comics, and Landscapes. King and Lakhani 

(2013) cite Threadless as an example of success of open innovation, in which the crowd 

generates the designs and also provides input on selection. 
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Our question is, “how good is Threadless at selecting designs?” by which we mean how 

effectively does the company select those designs that would have the highest sales if sold in 

their online store? As outsiders evaluating their process, we don’t observe their sales, thus this is 

an instance of an application in which Y is not observed. 

The key elements of the data set are as follows. 

 For each of 10 separate, themed contests or batches, we observe the complete set of 

winning designs, i.e., the ones selected to be printed on products and sold. Each contest 

had 1-3 winning designs.  

 We draw a random sample of 70 designs that were not selected as winners from each of 

the 10 contests. Each contests attracted between 160 and 575 submissions. The designs 

are all visual depictions. 

 We gather ratings, independent from the Threadless platform, from over 100 people for 

each of the 718 designs (the winning ones plus the random samples). These ratings use a 

scale of 1 to 3: unattractive, neither unattractive nor attractive, and attractive. We used 

Amazon’s Mechanical Turk platform to collect these ratings. 

The latent variable A represents the actual selection process used by Threadless. The audit 

measure B is our independent ratings of each design, obtained from a panel of potential 

consumers. In making our estimate, we are assuming that our process has about the same 

predictive power as Threadless’ process, ߩ ൌ  . Threadless uses some combination ofߩ

community input and managerial judgment to select their designs. On the one hand, they have 

more knowledge about their market than we use in our B (suggesting ߩ   ), but on theߩ

other hand, our B uses similar data but with a mechanical approach, which has been shown to be 

superior to a subjective decision (suggesting ߩ ൏  .(ߩ
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Table 5 shows the summary metrics for the ratings for each contest. Across the 18 winning 

designs, the mean rating is 2.18. Across all 3069 designs (winners and the entire population of 

non-winners, not just our sample of 718), we estimate the mean rating as 1.99 and the standard 

deviation as 0.284, resulting in a d (standardized mean difference between the selected and 

whole populations) of 0.67. With the overall selectivity of 18/3069, or 0.59%, a d of 0.67 implies 

a ߩ of 0.236 (Appendix A3).  

TABLE 5: RESULTS FROM 10 THREADLESS CONTESTS 

Contest Theme 
N  

Entries 
N 

Winners 

Mean 
Rating of 

Winner(s) 

Mean Rating 
of 70 Non-
Winners 

1. Mythology 229 2 2.09 1.95 

2. Massive Design 424 1 1.99 1.97 

3. Power Rangers 246 1 2.05 2.02 

4. Original Comics 214 1 2.11 1.96 

5. Landscapes 244 3 2.46 2.09 

6. Doodles 529 2 2.12 1.96 

7. B&W Photography 575 1 2.38 2.00 

8. Crests 216 3 2.17 2.02 

9. Original Cartoons 232 3 2.02 1.95 

10. Conspiracy Theories 160 1 2.36 1.96 

 

With an observed value of ߩ ൌ 0.236, the maximum possible value of k (relative 

marginal contribution of shared error and shared truth) is 1.31: at that value of k, the estimate of 

 . is  0 to 0.355ߩ  is 0. Using a range of k  from 1 to that maximum, our estimated range forߩ

To put that in context, even though Threadless is selecting less than 1% of the designs, the 

winning designs are as good, on average, as if they had been randomly selected from at best the 

top 40% (and at worst totally at random). That range is the range of equivalent selectivity. See 
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Figure 1. Given the uncertainty, the decision process is dramatically less selective than the 

nominal selection percentage of 0.59%. 

Although we do not have market results on the winning designs in this Threadless 

application, such information would be available to an insider. We use this application as an 

example of how to estimate selection quality when performance is unobserved for any reason. 

That reason may be that true performance is hard to define or measure, or that it plays out over a 

long time horizon. Industry analysts, investors, or competitors all may be interested in the quality 

of a selection process, and would naturally be unable to observe performance measures. 

We cover this most restrictive case of unobserved Y to show that even in this case, there 

is a reasonable process to follow to assess the quality of the selection process. 

 

CONCLUSIONS 

Estimating the quality of a selection process is an inherently challenging task. The 

decision maker is already exerting his best effort to evaluate the candidates. If he knew exactly 

how well he was doing, he could do the job perfectly. In this paper, we have proposed methods 

to use information outside of the original selection process to calibrate how well the process 

works. Table 6 summarizes those methods.  

Knowing the quality of a selection process is especially important when the selection is a 

first stage of a multi-stage funnel (Gross 1972, Bateson et al. 2014) or tournament (Dahan and 

Mendelson 2001, Terwiesch and Ulrich 2009), where a large set of candidates is winnowed 

down. In such settings, knowing the accuracy of the first stage dictates the optimal number of 

candidates to advance for further consideration. The optimal number of candidates to advance 

can be drastically different depending on the accuracy of the first stage. In Appendix A7, we 
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describe a scenario for which the optimal number of candidates to advance to the second stage 

drops from 28 when ߩ ൌ .02 to 19 when ߩ ൌ .24 to 12 when ߩ ൌ .45. 

 

TABLE 6: SUMMARY OF PROPOSED APPROACHES 
What is observed?  What is assumed? What to do? 

 Which candidates are selected 
 Audit measure B on all candidates 
 Performance Y for selected candidates 

 ߩ ൌ   and use use traditionalݎ  Calculateߩ
restriction of range correction, Equation 
(4). 

 Which candidates are selected 
 Audit measure B on all candidates 
 Audit measure C and performance Y for 

selected candidates 

 ߩఌಲఌಳ ൌ  ఌಳఌ useݎ , andݎ  ,ݎ ,ߩ	ఌಳఌ Calculateߩ
coefficients for appropriate model from 
Table 3. 

 Which candidates are selected 
 Audit measure B on all candidates 

 

 ߩ ൌ   ߩ
 estimate of k (relative marginal 

contribution to agreement of 
error vs. truth)  

Calculate ߩ and use Equation (6). 

 

As Van den Ende et al. (2015) note, “the quality of selection suffers because good ideas 

need attention and consideration, which becomes virtually impossible [with] high numbers” (p 

482). It is important to acknowledge the winner’s curse—that the candidates deemed best have 

the biggest overestimates—and not narrow the funnel too quickly. 

Our proposals progress from more observed data to less, with a trade-off between 

assumptions and data requirements. At each step, the methods are pragmatic about what data are 

available or can be collected. Studies like that of Dahan et al. (2010) and Dahan et al. (2011), 

that demonstrate the predictive power of new ways of forecasting the value of new product 

concepts, are a complement to our inquiry. 

Our approach is intended to be practical in its simplicity, but of course there are caveats 

in its application. The first caveat is that there may be omitted variables from Equations (1) and 

(2). This is particularly problematic if A and B both measure something related to performance Y 

but are orthogonal to each other. If Y is unobserved, our analysis will incorrectly show that A is 
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uncorrelated with performance. One would hope that a process (implicitly) governed by A 

doesn’t have a conspicuous and impactful omission. But if it does, then B should not be focused 

on that omission. Such a B would not be useful for assessing the quality of the selection process. 

A second caveat is that we have made specific distributional and functional assumptions. 

In particular, our analysis uses assumptions about normality and linearity. The central intuition 

that agreement between A and B comprises shared truth and shared error survives relaxation of 

the distributional assumptions, but the actual decomposition will be different for different 

assumptions. 

Finally, we note that our approaches are most relevant in contexts like innovation where 

there is no concern of “yield,” i.e., offers being accepted. In selection processes involving 

people, such hiring and admissions, selection might take on more of a matching perspective and 

less of the identify-the-best perspective that we analyze here. 
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APPENDICES 

A1: Comparing Equivalent Selectivity to Other Measures of Classification Accuracy 

Comparing equivalent selectivity to other measures of classification accuracy (Hand 

2012), we conclude that the correlation ߩ dictates not just equivalent selectivity, but also the 

overall correct classification rate and the true positive rate. Given those relationships, it follows 

that there exist mappings between overall correct classification rate and equivalent selectivity 

and between true positive rate and equivalent selectivity. The overall correct classification rate, 

however, is not a useful way to express the quality of a selection process when the nominal 

selection percentage is low. With a low nominal selection percentage, like 1%, the correct 

classification rate is close to 100% no matter how high or low the correlation is: almost every 

candidate is correctly classified as not among the best. The true positive rate is more 

discriminating, especially when the nominal selection percentage is low. However, we believe 

our proposed measure, the equivalent selectivity, has an easier interpretation than the true 

positive rate. The equivalent selectivity is a percentage of the whole candidate pool, making it 

comparable to the nominal selection percentage itself. In contrast, the true positive rate is a 

percentage of only the selected candidates. 

 

A2: Derivation of Equation (3) in Result 1 

Using the model in Equations (1) and (2) we derive the correlation of ߝ and	ߝ,	 ߩఌ. 

ఌಲఌಳߩ ൌ ܣሺݎݎܥ െ ,ଵܻߙ ܤ െ  ଵܻሻߚ

ൌ ௩ሺିఈభ,ିఉభሻ

ඥሺିఈభሻඥሺିఉభሻ
ൌ ఘಲಳఙಲఙಳିఉభఘಲೊఙಲఙೊିఈభఘಳೊఙಳఙೊାఈభఉభఙೊ

మ

ටఙಲ
మାఈభమఙೊ

మିଶఈభ௩ሺ,ሻටఙಳ
మାఉభ

మఙೊ
మିଶ௩ሺ,ሻ

  

The formulas for the coefficients ߙଵ and ߚଵ are given below. 

ଵߙ  ൌ ,ܣሺݒܥ ܻሻ ⁄ሺܻሻݎܸܽ ൌ ߪߪߩ ߪ
ଶ ൌ⁄ ߪߩ ⁄ߪ . 
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ଵߚ  ൌ ,ܤሺݒܥ ܻሻ ⁄ሺܻሻݎܸܽ ൌ ߪߩ ⁄ߪ  

Plugging those in, ߩఌಲఌಳ ൌ
ܤߪܣߪܻܤߩܻܣߩെܤߪܣߪܤܣߩ

ටܣߪ
2൫1െܻܣߩ

2 ൯ටܤߪ
2൫1െܻܤߩ

2 ൯
ൌ

ܻܤߩܻܣߩെܤܣߩ

ට1െܻܣߩ
2 ට1െܻܤߩ

2
 

 

A3: Relationship between Standardized Mean Difference d and Biserial Correlation ࣋ 

If A and B are Bivariate Normal, the relationship between d and ߩ is 

ߩ ൌ
ௗ

ఝሺொ∗ሻ
, 

where q is the nominal selection percentage (i.e., the top q% are selected), φ is the density 

function of the standard Normal distribution, and Q* is the z-score (the number of standard 

deviations from the mean) for the qth [and, equivalently, the (1-q)th] percentile. 

 

A4: Simulation results showing estimates of ࢅ࣋	based on traditional correction to ࢅ࢘ 

The set of graphs in Figure A4-1 shows the results of our simulations evaluating the quality of 

the estimate of a correlation based on the “traditional” correction given in Equation (4). Each 

graph shows the corrections to observed ݎ on the vertical axis (“est. ߩ”) corresponding to a 

true value of ߩ (on the horizontal axis). The simulation at each plotted point is based on one 

million iterations at a point in the parameter space grid (ߩ between 0.1 and 0.9, in grid steps of 

0.1, setting ߩ ൌ  and nominal (ఌ for compactnessߩ labeled as) ఌಲఌಳ shown in the rowߩ , withߩ

selection percentage shown in the column). The dashed line in each plot represents a perfect 

estimate and the points represent the actual estimates.  
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FIGURE A4-1 

 

 

A5: Non-uniqueness ࢅ࣋ from observed quantities (,࣋	ࢅ࢘ ,ࢅ࢘,  (ࢿࢿ࢘

We present a graphic demonstration that there is not a unique ߩ from a set of observed 

quantities of (ߩ,	ݎ, ݎ, ߩ  surfaces, one forߩ-ఌಳఌ). Figure A5-1 shows two isoݎ ൌ 0.3 

and one for ߩ ൌ 0.9 , for observed values of (ߩ,	ݎ, ݎఌಳఌ) with a nominal selection 

percentage of 10%. (For this counterexample, we set	ߩ ൌ   so we can show the surfaces inߩ

three dimensions.) The two surfaces intersect, implying that the same pattern of observed 

 . The intersection appears as the ragged lineߩ can support different values of (ఌಳఌݎ,ݎ	,ߩ)

where the ߩ ൌ 0.3 surface disappears into the ߩ ൌ 0.9 surface. 

The results are based on one million simulations at each point in the grid of true (ߩ, ߩ, 

 .ఌಲఌಳ) space, at intervals of 0.1ߩ
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FIGURE A5-1 

 

 

A6: Derivation of Equation (6) in Result 2 

We define 

మߩ ≡ ߩ ∗      (A6-1)ߩ

Using the assumption that ߩ ൌ    and substituting Equation (A6-1) into Equation (3) yieldsߩ

ߩ ൌ మߩ  ఌಲఌಳሺ1ߩ െ 		.మሻߩ 	 ሺA6‐2ሻ	

The marginal contributions of shared error ߩఌಲఌಳand shared truth ߩమ to agreement ߩ  are 

డఘಲಳ
డఘഄಲഄಳ

ൌ 1 െ  మ andߩ
డఘಲಳ
డఘೊమ

ൌ 1 െ  ఌ. Assuming that the marginal contribution of shared error isߩ

k > 0 times that of shared truth,  
డఘಲಳ
డఘഄಲഄಳ

ൌ ݇ డఘಲಳ
డఘೊమ

, we can then solve Equation (A6-2) for ߩ as a 

function of ߩ, resulting in ߩ ൌ ට1 െ ඥ݇ሺ1 െ  .ሻߩ
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A7: Details of Two-Stage Selection Scenario 

The scenario is based on a simulation with the following structure and parameters. In the first 

round, 100 candidates are evaluated. Consistent with earlier notation, we denote the correlation 

between the latent selection variable and performance as ߩ. A subset of the candidates advance 

to the second round, where they are evaluated again, and the one deemed best is selected. In the 

scenario reported in the text, in the second stage, the correlation between the latent selection 

variable and performance is 0.71 (an R2 of 0.5). Finally, the cost of second-stage evaluation is 

1% of the standard deviation of Y (performance). A rough estimate of the standard deviation of 

Y comes from subtracting the value of a terrible candidate (bottom 5%) from the value of a great 

candidate (top 5%) and dividing by 3.29 (two times 1.645, the 95th percentile of a Normal 

distribution). All of the initial candidates are evaluated, so the first-round evaluation cost is 

fixed, and therefore it does not affect the optimal number of candidates to advance. 


