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Acommon approach to innovation, parallel search, is to identify a large number of opportunities and then to
select a subset for further development, with just a few coming to fruition. One potential weakness with

parallel search is that it permits repetition. The same, or a similar, idea might be generated multiple times,
because parallel exploration processes typically operate without information about the ideas that have already
been identified. In this paper we analyze repetition in five data sets comprising 1,368 opportunities and use
that analysis to address three questions: (1) When a large number of efforts to generate ideas are conducted
in parallel, how likely are the resulting ideas to be redundant? (2) How large are the opportunity spaces?
(3) Are the unique ideas more valuable than those similar to many others? The answer to the first question
is that although there is clearly some redundancy in the ideas generated by aggregating parallel efforts, this
redundancy is quite small in absolute terms in our data, even for a narrowly defined domain. For the second
question, we propose a method to extrapolate how many unique ideas would result from an unbounded effort
by an unlimited number of comparable idea generators. Applying that method, and for the settings we study,
the estimated total number of unique ideas is about one thousand for the most narrowly defined domain and
greater than two thousand for the more broadly defined domains. On the third question, we find a positive
relationship between the number of similar ideas and idea value: the ideas that are least similar to others are
not generally the most valuable ones.
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1. Introduction
A common approach to innovation is to identify a
large number of opportunities and then to select a
subset for further development, with just a few com-
ing to fruition. We define opportunity as an idea for an
innovation that may have value after further invest-
ment of resources. For example, in the movie industry
an opportunity is a script summary; in the pharmaceu-
tical industry, an opportunity is a newly discovered
chemical compound; for an entrepreneur, an opportu-
nity is an idea “for [a] potentially profitable new busi-
ness venture � � � �” (Baron and Ensley 2006, p. 1331).
Hundreds or thousands of opportunities may be

considered for every commercial success (Stevens and
Burley 1997). This process can be thought of as a tour-
nament of ideas (Terwiesch and Ulrich 2009), in which
many ideas are explored in parallel, with only the
best prevailing. The parallel-search tournament is one
of the standard approaches to exploring a space of
opportunities (Sommer and Loch 2004).

One potential weakness with parallel search is that
it permits repetition. The same, or a similar, idea
might be generated multiple times, because parallel
exploration processes typically operate without infor-
mation about the ideas that have already been iden-
tified. (For ease of exposition, we use the terms idea
and opportunity interchangeably.) In practice, repeti-
tion might be dismissed as an unavoidable nuisance.
In this paper we quantify the extent of repetition in
five data sets and show how the repetition provides
valuable clues about the size of the opportunity space.
To our knowledge, no prior research has mea-

sured or analyzed repetition in opportunity identifi-
cation. The existing literature either assumes that the
identified opportunities are each unique (e.g., Dahan
and Mendelson 2001) or focuses on search strate-
gies over stylized landscapes (e.g., the NK models).
In contrast, we explicitly allow for repetition, mea-
sure it empirically, and examine its implications. Our
goals are to answer fundamental scientific questions
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about opportunity identification and to inform man-
agerial practice. This research is motivated by three
key questions.
1. How much redundancy results from parallel

search? To the extent that there is redundancy,
the identification of the same idea multiple times,
investments in opportunity identification are wasted.
Answering this question is critical to deciding how
much to invest in parallel search.
2. How large are opportunity spaces? Once we

know the level of redundancy, we have a clue to the
effective size of the opportunity space, the total num-
ber of unique ideas. An innovator who has generated
50 unique opportunities would benefit from knowing
if there are 100 or 1,000 more opportunities to be dis-
covered.1 In this paper we develop a method for esti-
mating the size of opportunity spaces. This method
can be used to find the total number of unique ideas
or to find the total number of themes or “neighbor-
hoods” of ideas.
3. Are unique ideas, i.e., those that are similar to no

or few other ideas in the data set, more valuable than
ideas that are similar to many others? To answer this
question, first we establish that sets of generated ideas
do, in fact, show significant clustering, compared to
a random benchmark. Then, we test the hypothesis
that unique ideas or those found in smaller clusters
are more valuable than ideas found in larger clusters.
To address these questions, we analyze a total of

1,368 ideas from five data sets, each created by dif-
ferent groups of individuals who generated ideas in
parallel. Our results show that in the data sets we ana-
lyze, strict redundancy is not highly prevalent, which
suggests that the opportunity spaces are large, on the
order of thousands of opportunities. Although strict
redundancy is not widespread, we can clearly identify
clusters of similar ideas. Our results suggest that clus-
ter size is a positive indicator of the value of ideas.
Furthermore, identifying themes for clusters can itself
be a useful step in an innovation process, creating a
map of the innovation landscape.
This paper is organized as follows. First we dis-

cuss prior research in related areas. Then we present a
population model for estimating the size of an oppor-
tunity space. Next we describe our data and metrics.
Then we describe our analyses in detail and report
our results. Finally, we discuss the results and their
implications for practice, qualify our findings, and
provide concluding remarks.

1 One could argue that the number of ideas is infinite because a
detail can always be tweaked to make a new idea or because ideas
could be arbitrarily unrelated to the innovation charge. However,
the opportunity space can be thought of as finite if ideas that are
highly similar are counted together and if ideas that are highly “dis-
tant” are assumed to be very unlikely to be generated. We discuss
these issues in §5 of the paper.

2. Prior Work
This study intersects several rich streams of prior
research: (1) creativity and idea generation, (2) mod-
els of search strategies, and (3) process models of
innovation. Our research also relies on prior work in
wildlife ecology and in network analysis. However,
this reliance is more methodological than conceptual,
and so we discuss the literature related to our meth-
ods in the analysis section of the paper.

2.1. Creativity and Idea Generation
Creativity and idea generation have been exam-
ined both in the social psychology literature and
in the innovation management literature. The social
psychology literature on idea generation originates
with the development of brainstorming (Osborn 1957).
Diehl and Stroebe (1987) and Mullen et al. (1991) pro-
vide a detailed overview of this literature. Most stud-
ies have experimentally examined groups generating
ideas as teams or as individuals. The research has
unequivocally found that the number of ideas gen-
erated (i.e., productivity) is significantly higher when
individuals work by themselves and the average qual-
ity of ideas is no different between individual and
team processes. (All of these studies normalize for
total person-time invested to control for differences in
the numbers of participants and the duration of the
activity.) These studies have led to prescriptions that
idea generation for innovation should include signifi-
cant efforts by individuals working independently of
one other (Ulrich and Eppinger 2008). This literature
provides some of the justification for parallel search in
innovation; however, that literature does not explic-
itly address the possibility that parallel search might
lead to repetition, a question we address.
The innovation management literature contains

large-scale empirical studies of creativity in innova-
tion. Fleming and Mingo (2007) provide an excellent
synthesis of the concepts in this literature. These stud-
ies often use patent data (e.g., Singh and Fleming
2010, Fleming et al. 2007) and draw on citations and
patent classes to measure relationships among cre-
ative ideas (the patents). Fleming et al. (2007) investi-
gate the “size” of an inventor’s search space by using
a count of subclass combinations. The concept of sim-
ilarity of ideas is central to our work, and we rely
on human raters to make similarity judgments. Part
of our contribution is the application of a population
model from wildlife ecology to estimate the size of
the opportunity space based on the similarity of ideas
generated.

2.2. Models of Search Strategies
Search is a common paradigm for understanding
problem solving generally and innovation more speci-
fically. March and Simon (1958) were among the
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first to characterize problem solving as search (see
also Simon 1996). Subsequently, many scholars have
framed innovation as a search problem, including
Stuart and Polodny (1996), Martin and Mitchell (1998),
Perkins (2000), Rosenkopf and Nerkar (2001), Katila
and Ahuja (2002), Loch and Kavadias (2007), Knudsen
and Levinthal (2007), and Terwiesch (2008). Our work
treats innovation as a search over a landscape, with a
goal of analyzing—theoretically and empirically—the
underlying structure of the search space.
March (1991) and Kauffman (1993) each contribute

influential models of search spaces. These models are
multidimensional, abstract spaces. March (1991) uses
the complexity of the space to introduce the distinct
approaches of exploration (considering far-flung alter-
natives) and exploitation (refinement of existing alter-
natives). Kauffman (1993) introduced the NK model
of rugged fitness landscapes. This theory built from
evolutionary biology has been highly influential in
the academic field of management strategy, based
on an analogy between the fitness of an organism
and the success of an organization. See, for example,
work by Levinthal (1997), Koput (1997), Rivkin and
Siggelkow (2003, 2007), and Knudsen and Levinthal
(2007). The NK model is flexible, and it can portray
both smooth, unimodal landscapes (with an “inter-
connectedness” parameter, the K, of 0) and chaotic
sharp-peaked landscapes (high K�. An insight from
this literature is that landscapes characterized by high
K benefit from investments in parallel search. Sommer
and Loch (2004) further investigate search strategies
in different types of landscapes, comparing selection-
ism (pursuing several approaches independently) and
trial and error learning (an incremental, local search
strategy). Compared to March (1991) and Kauffman
(1993), their work is more directly related to inno-
vation as opposed to organizational problem solving
more generally.
However, to the best of our knowledge, this liter-

ature of search spaces and strategies has remained
theoretical, with few if any efforts to characterize
landscapes empirically. One exception is Fleming and
Sorenson (2004), an empirical analysis of the rugged-
ness of the patent space, which conceptualizes inven-
tion as search over a combinatorial space.
In our research, we focus on one of the standard

modes of search studied in this literature, parallel
exploration. Our contribution is to develop theory
about structural elements, such as size of the opportu-
nity space, redundancy of ideas, and clusters of sim-
ilar ideas, as well as to empirically measure these
elements.

2.3. Process Models of Innovation
The statistical view of innovation was first developed
by Dahan and Mendelson (2001). They model cre-
ation as a series of random draws from a distribution

followed by a selection from the generated ideas.
This approach is analogous to models of the eco-
nomics of search (e.g., Stigler 1961, Kohn and Shavell
1974, Rothschild 1974, Lippman and McCall 1976,
Weitzman 1979, Morgan and Manning 1985). Two
other recent papers use the statistical view. First,
Kavadias and Sommer (2009) model the idea gen-
eration process and look specifically at how process
design choices relate to underlying problem struc-
ture. Second, Girotra et al. (2010) develop the idea
of innovation as a search for extreme values, and
model innovation as independent draws from a qual-
ity distribution. Our approach also takes a statistical
perspective on the opportunity space. However, as
opposed to characterizing opportunities along a sin-
gle quality dimension, we also address the question
of coverage of the landscape of possibilities by the
search process.

3. Population Model for Size of an
Opportunity Space

Our approach to studying innovation also uses a pro-
cess model. We focus on the process of identifying
a set of opportunities, recognizing that there can be
repetition in the set. That repetition provides clues
to the size of the “total population” of opportuni-
ties. To understand our model, consider opportunity
identification as fishing in a lake. Each draw is a
catch, with the fish released back into the lake. Some-
times the same fish will be caught again. The more
frequently an individual fish is caught, the smaller
the estimate of the fish population. Laplace report-
edly used such a model to estimate the population of
France in 1802 (Cochran 1978); the technique, called
the capture-recapture method, has since been adapted
to wildlife ecology (e.g., Cormack 1964; Seber 1965,
1982; Amstrup et al. 2005). This type of model has
also been applied to problems outside of ecology, such
as estimating the size of the knowledge set in brand
recall, as in Hutchinson et al. (1994).
The capture-recapture method models a sequential

process in which the probability that the next idea
is unique (i.e., the fish has never been caught pre-
viously) is a decreasing function of the number of
ideas generated.2 That probability decay can be rep-
resented by an exponential function. We define p�n�
as the probability that the next idea is unique given n
ideas generated already:

p�n� = e−an� (1)

2 The sequential capture metaphor embodied in this model should
not be confused with sequential search in innovation, in which
the identification of one opportunity benefits from knowledge
gained from the identification of prior opportunities. In the capture-
recapture model, sequential draws are independent of each other
as in parallel search in innovation.
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The expected number of unique ideas out of n gener-
ated, u�n�, is the integral under this curve. (In using
the integral we are making a continuous approxima-
tion to the—obviously discrete—number of ideas.)

u�n� = �1/a��1− e−an�� (2)

This particular form of probability decay, the expo-
nential form, comes from a specific underlying pro-
cess, one in which there are T unique ideas total
(T fish in the population) and each is equally likely
to be drawn. This equally likely assumption is used
in the Lincoln-Peterson method (Lincoln 1930), the
standard model for estimating population size in the
wildlife ecology literature. Some authors have relaxed
this assumption (e.g., Sudman et al. 1988). We will
also relax this assumption in §5.
The decay parameter and the total T are linked:

T = 1/a. This model has only a single parameter, a,
and that parameter is the inverse of the very thing
we are interested in, the size of the opportunity space,
i.e., an estimate of the total number of unique ideas
that would result if an enormous number of ideas
were generated by an unlimited number of compara-
ble idea generators.
This capture-recapture model from wildlife ecology

can be used to answer one of our key questions. Given
a set of ideas generated, and given a count of the
number of ideas that are unique in that set, the model
can be used to calculate T , an estimate of the size of
the opportunity space.

4. Data
We report results for five different data sets, each com-
prised of several hundred ideas. These data sets were
all generated by groups of students as part of project
work they were doing for our courses on product
development or innovation. The characteristics of the
data sets are summarized in Table 1.

Table 1 Characteristics of the Five Data Sets

New Ventures Web-Based Products New Products I New Products II Classroom Technologies

Description Ventures that could be
explored and prototyped
in six weeks by a team of
MBA students

Web-based product or
service that could be
prototyped in a one-week
workshop

Physical products for
college student market
with retail price <$50

Physical products for
college student market
with retail price <$50

New technologies for use
in higher-education
classroom instruction

Year 2007 2009 2008 2009 2008

Sample size 232 249 290 286 311

Population 47 executive MBA students 53 executive and full-time
MBA students

58 undergraduate and
graduate students
in business and/or
engineering

58 undergraduate and
graduate students in
business and/or
engineering

63 undergraduate
business students

Quality metric How valuable is this
opportunity?

How appealing is this
opportunity to you as a
potential user?

How likely is it that pursuing
this opportunity will
result in a great product?

How attractive would a
product addressing this
opportunity be to you
personally?

How do you rate this
concept (Hate it/Love it)?

4.1. Ideas
All five data sets are quite similar in structure, in that
all were generated in response to a similar charge
to participants and all were submitted to the same
Web-based tool for managing ideas (http://www
.darwinator.com). Each idea in each data set was
described with a title and a paragraph of text. The
descriptions were not limited in length, but tended to
be a few sentences. An example of an idea (from the
New Ventures data set) is as follows:

Airplane Dating
“Airplane Dating” is a service that would help place
singles in a specified section of an airplane where other
singles have registered. A profile is created and recom-
mended matches are sent to the subscribers.

The students in these classes were studying inno-
vation. They were trained in idea generation meth-
ods, and many, if not all, intended to pursue careers
closely related to innovation. Two of the data sets
were generated largely by midcareer working pro-
fessionals participating in a weekend executive MBA
program. The alumni of these courses have an
impressive track record in pursuing new ventures
after graduation, often based on their class projects.
(See, for example, Terrapass.com, OfficeDrop.com,
DocASAP.com.) Thus, we believe these data are closer
to what might be derived from industrial field studies
than what might be generated in laboratory experi-
ments with untrained subjects.
There is no overlap in the participants across the

five data sets. Each individual typically contributed
five ideas, but individuals worked independently.
However, the ideas are not strictly independent for
two reasons. The first reason is within-person depen-
dence. The within-person effect could either be that
a single person will self-censor to avoid duplication
in the five ideas submitted, or the effect could be the
opposite, that a single person will generate ideas that
are variations on a theme. We examine both of these
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issues in our analysis (§§5 and 6). The second rea-
son is between-person dependence related to shared
experience. Our analysis assumes a particular generat-
ing process and attempts to estimate the size of the
opportunity space to which it has access. Different
processes would result in different sizes. For instance,
imagine that the process engaged elementary school
children in generating ideas for surgical instruments.
Surely this process would yield different results than
one that engaged engineers, or one that engaged sur-
geons, for instance. The ideas generated by a pro-
cess are not independent in the sense that they are
generated by a group of individuals who may share
some characteristics like geographic location, experi-
ence, training, age, and so forth. The ideas are only
independent in the sense that the generation of idea N
does not depend on an observation of ideas 1 through
N − 1. Indeed, these ideas can be thought of as par-
allel or simultaneous draws. This scenario is typical
of processes that collect ideas from a large number
of sources without feeding back to those sources the
results of the idea collection effort.
The methods and approach in the courses in which

the students were enrolled generally take a “market
pull” perspective on innovation. Most of the oppor-
tunities identified by the participants are therefore
articulated in terms of the problem or need to be
addressed. Very few of the opportunities are driven
purely by the availability of a technology.

4.2. Quality Measures
The Web-based submission tool used by the subjects
was also used for peer evaluation of the quality of the
ideas. We used the tool to aggregate 10–20 indepen-
dent judgments from participants on a 10-point scale
for the quality metric indicated in Table 1. The tool
does not gather judgments from the originator of an
idea. It is not possible to know the “true” quality of
all the ideas, which would require observing the eco-
nomic value created from each idea, good and bad,
from an optimal investment of development resources
under all the possible market and competitive sce-
narios which might play out. A set of 10–20 inde-
pendent subjective judgments have been shown by
Girotra et al. (2010) to be internally consistent and
highly correlated with purchase intent and other mea-
sures of idea quality, and we believe that these eval-
uations are the best practical indicator of the value of
the ideas.

4.3. Similarity Measures
Similarity of ideas is a central element of our concep-
tual framework. For our purposes, we need to mea-
sure the extent of similarity between every pair of
ideas within each data set. Our measurement tech-
nique was motivated by the enormity of this task.

Figure 1 Similarity Between Pairs of Ideas for the New Products I
Data Set

Notes. The degree of similarity is represented by gray levels in each cell of
a 290 by 290 matrix: cell �i� j� shows the similarity between ideas i and j . In
this data set, approximately 26% of the pairs have nonzero similarity.

Consider, for example, the New Products I data set
comprised of 290 ideas. We would like to estimate
the level of similarity between each pair of differ-
ent ideas in the data set. To do this, we need to
make �290× 289�/2= 41�905 comparisons. Figure 1 is
a matrix showing the results of such estimates, with
each cell in the matrix representing a pair of ideas:
cell �i� j� represents the pair of ideas i and j . The
darker the cell, the more similar the pair. The fig-
ure illustrates the complexity of the estimation task.
Recall that we have five data sets, so in total we actu-
ally need to make about 200,000 comparisons. One
way to do this would be to present pairs of ideas
to judges and ask them to rate the level of similar-
ity. For robustness, we would want to average the
judgments of multiple raters for each pair. With three
raters for each pair, if each judgment took only 15 sec-
onds, this approach would require 2,500 hours of rater
effort, more than a full work year, which would be
prohibitively time consuming and costly.
Instead of that pair-by-pair approach, we devel-

oped a more efficient and less tedious method for
measuring similarity. In our approach, respondents
look at a list of ideas—titles plus descriptions—
and identify groups of similar ideas. Rao and Katz
(1971) document the challenges in assessing similar-
ity between the pairs of elements in large data sets;
our approach is most similar to the category of
approaches they call “picking.” Based on several
pretests, we learned that this task is manageable for
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lists of up to about 85 ideas, a quantity that can
be printed on three letter-size sheets of paper. (With
many more ideas than that, we observed that respon-
dents faced difficulty accurately recalling the ideas
well enough to identify similar groups. That limit of
85 ideas means that respondents could not be simply
given the entire list of ideas and be expected to accu-
rately identify similar groups.) Using this method, we
presented raters with three-page lists of ideas and
asked them to create groups of similar ideas. We then
asked the raters to reconsider the groups of similar
ideas and identify any subsets from these groups that
were identical or essentially identical. The exact instruc-
tions to the raters are in Appendix A.
We experimented with different types of questions,

including coding on multiple dimensions of similar-
ity, such as similarity of need, similarity of solution,
similarity of market, and similarity of function pro-
vided. However, the combinatorial complexity of the
similarity coding problem is immense, and even a
slight increase in the cognitive burden of the task
threatened feasibility. As a result, we deliberately
instructed the respondent to use his or her own notion
of overall similarity in constructing groups. Other
scholars reached the same conclusion about instruct-
ing participants on similarity. For example, Griffin
and Hauser (1993) also leave the definition of sim-
ilarity unspecified in their customer-sort procedure.
More broadly, procedures for creating affinity dia-
grams (e.g., Kawakita 1991) call for the grouping of
concepts according to the participants’ own notions of
similarity. Finally, Tversky (1977) advocates approach-
ing similarity holistically, showing that empirically,
similarity ratings do not correspond to underlying
multidimensional attribute models.
We devised a method to form 40–50 different lists

of about 80 ideas each from the 200–300 ideas in each
data set. We formed these lists such that each pair of
ideas appeared together on an average of about four
different lists. These lists reflected overlapping sam-
ples of the 200–300 ideas such that most pairs of ideas
appeared multiple times. The procedure for forming
these lists is detailed in Appendix B.
We used university student subjects in the behav-

ioral laboratory of one of our universities as raters.
A rater was assigned a list and asked to form similar-
ity groups. In total, we obtained 230 responses across
the five data sets. The sessions were not timed and
subjects were paid $10 for participating. Most sub-
jects required 30–50 minutes to complete the similar-
ity grouping task. As part of the protocol, we asked
subjects for feedback on the task after they were fin-
ished. Many reported that the task was interesting.
Some reported that the task was challenging. Very few
reported that the task was overwhelming.

The net result of the similarity coding was that
for each of the five data sets, we obtained a list of
groupings of “similar” and “identical or essentially
identical” ideas for each of 40–50 subjects and their
associated lists of ideas. These similarity groupings
are the raw data from which we compute various sim-
ilarity measures.
With the population model (Equation (2)) and the

three types of data—idea descriptions, idea quality
measures, and similarity ratings—we are now ready
to complete the analysis addressing the key questions.
Figure 2 gives a complete overview of our process:
the data, the analyses (to be described subsequently),
and paths to the three key questions.

5. Redundancy of Ideas
The first of our key questions is about the level of
redundancy in each of the data sets: How often is the
exact same idea repeated? In this section, we describe
how we used the raters’ assessments of identical
ideas to calculate redundancy. Then we show how we
applied the population model (Equation (2)) to esti-
mate the size of the opportunity space, the total num-
ber of unique ideas. Finally, we address several issues
related to the robustness of that estimate: confidence
intervals; relaxing the equally likely assumption of the
model; and controlling for the fact that each person
typically generated five ideas, which adds a sequen-
tial element to what is largely a parallel search.

5.1. Determining the Number of Unique Ideas
To measure redundancy, we identify clusters of “iden-
tical” ideas within each data set. For this analysis, we
use only the groupings of identical or essentially iden-
tical ideas provided by each rater. A pair of ideas is
defined as identical when enough raters who saw the
pair rate it as identical.
To ensure robustness, we apply two different

thresholds. The majority threshold is defined as 50% of
the raters on whose lists of ideas the pair appears.
The consensus threshold is defined as 70% of the raters
on whose lists the pair appears. Thus, for a pair to be
coded as identical under the majority threshold, 50%
or more of the raters exposed to the pair would have
grouped the pair together as identical, and for the
consensus threshold 70%. These are, of course, arbi-
trary cutoffs for the definition of identical, which is
why we report results for two different thresholds.
In applying these thresholds, we exclude from con-

sideration outliers, defined as any groupings of “iden-
tical” ideas that are larger than the 95th percentile
of group size for the data set in question. We do
this because one or two raters for each data set
constructed extremely large groups of “identical”
ideas. For example, one rater constructed a group of
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Figure 2 Analytical Framework and Approach
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Wildlife ecology model to estimate size of the opportunity space (Question 2)

Test whether clustering is more prevalent than in random matrix;
and whether isolated ideas are more valuable (Question 3)

Note. This analysis is performed for each of five independent data sets.

49 ideas, all rated as “identical or essentially identi-
cal” to one another, reflecting either a disregard for
instructions or a very unusual definition of identical.
Culling these outliers is important because otherwise
each of the 49 × 48/2 = 1�176 pairs of ideas would
count in the computation of the similarity metric.

Thus, very large groups of identical ideas are not
only implausible, but they disproportionately influ-
ence the metric.
Here we give an example of the outcome of this

analysis for one data set, New Products I. Then, we
summarize the results of the analyses in a table for
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Figure 3 Clusters of Identical Ideas for the New Products I Data Set Based on the Majority Threshold for the Definition of Identical
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Notes. The 197 singletons (i.e., ideas for which there are no identical counterparts) are not shown. The thickness of the links is proportional to the fraction of
raters identifying the pair as identical. The labels are the actual titles used by the originator of the idea, and so do not always summarize the description of the
actual opportunity precisely.

the other data sets. There are 290 ideas in the New
Products I data set. Of these, 197 are not identical to any
other idea using the majority threshold. That is, for
each of these 197 ideas, there is no other idea deemed
identical to that idea by half or more of the raters. The
remaining 93 ideas are clustered into the 24 network
components shown in Figure 3. (In network analysis, a
component is a group of nodes that are interconnected,
at least indirectly, and that are not connected to other
nodes; Scott 2000.) There are 11 pairs of ideas; 4 triples;
4 clusters of four; and so forth. The distribution of sizes
of network components for all five data sets is shown
in Table 2.

The distributions presented in Table 2 show that the
level of redundancy in the data sets is quite low. Even
at the majority threshold, which reflects a fairly loose
notion of what it means for two opportunities to be
identical, most ideas are not considered identical to
any other idea in four of the five sets, all but Classroom
Technologies. At the consensus threshold, 85%–90% of
the ideas in the first four data sets are not considered
identical to any other. And, even in Classroom Tech-
nologies, with the most narrowly defined scope, 68%
of the ideas are not considered identical to any other.
To apply our model to estimate the size of the

opportunity space, i.e., the total number of unique
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Table 2 Distribution of Network Component Sizes for Each Data Set and for Two Thresholds Defining Identical

New Ventures Web-Based Products New Products I New Products II Classroom Technologies

Fraction of Fraction of Fraction of Fraction of Fraction of
N ideas (%) N ideas (%) N ideas (%) N ideas (%) N ideas (%)

Panel A: Majority threshold for identical (≥50% of raters identify pair as identical)
Singletons 139 60 175 70 197 68 165 58 78 25
Pairs 30 13 40 16 22 8 40 14 6 2
Triples 12 5 12 5 12 4 27 9 6 2
Clusters of 4 12 5 12 5 16 6 4 1 0 0
Clusters of 5 0 0 10 4 5 2 5 2 0 0
Clusters >5 39 17 0 0 38 13 45 16 221 71

Panel B: Consensus threshold for identical (≥70% of raters identify pair as identical)
Singletons 206 89 224 90 247 85 243 85 213 68
Pairs 20 9 16 6 30 10 30 10 32 10
Triples 6 3 9 4 9 3 9 3 12 4
Clusters of 4 0 0 0 0 4 1 4 1 4 1
Clusters of 5 0 0 0 0 0 0 0 0 5 2
Clusters >5 0 0 0 0 0 0 0 0 45 15

Note. The value of N is the number of ideas in components of a given size (i.e., 15 clusters of 2 is shown as N = 30).

ideas, we need an estimate of the number of unique
ideas within each data set. Simply counting the num-
ber of components in the network would under-
state the number of unique ideas. Because of the
multidimensionality of similarity and the latitude in
the threshold, identical relationships are not fully
transitive. Therefore, not all ideas in every component
are identical. For example, the Backpack/Umbrella
appears in the same component (seen in the upper-left
corner of Figure 3) as the Hands Free Coffee Sleeve,
and yet clearly these are two different ideas. We use
the definition of a clique from network analysis to
count the number of unique ideas. A clique is a fully
connected set of nodes: every node in the set is directly
connected to every other node in the set (Scott 2000).
If a set of ideas is truly identical, then those ideas
should appear as cliques in the network.
We count the cliques from largest to smallest. First

we find the largest clique (fully connected set of
nodes), count that as a single idea, and remove it from
the network. Then we identify and remove the largest
clique in the remaining network, and so forth, until
there are only singletons left. Each singleton naturally
counts as a unique idea. We break ties by randomly
selecting a largest clique.
Finding the cliques in a network is an NP-hard

problem (Karp 1972). However, the identical matri-
ces are very sparse (i.e., most of the links are 0),
so we were able to complete the computations. This
approach has been used in network analysis appli-
cations such as identifying community structure (Yan
and Gregory 2009) and creating reduced forms of
large networks for visualization (Six and Tollis 2001).
The results of our count of number of unique ideas

for each data set are shown in Table 3.

Table 3 Estimates of Number of Unique Ideas for Each Data Set Based
on Counting Cliques in the Identical Network, at the Majority
Threshold and Consensus Threshold

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Ideas in data set (N� 232 249 290 286 311
Number of unique 191 216 252 231 216
ideas (u� at
majority threshold

Percent unique (%) 82 87 87 81 69
Number of unique 220 238 271 267 271
ideas (u� at
consensus threshold

Percent unique (%) 95 96 93 93 87

5.2. Applying the Model to Estimate the
Size of the Opportunity Space

Using the tally of unique ideas, we can now esti-
mate the a parameter of the population model
(Equation (2)) for each data set. Each data set has a
size, N , and a number of unique ideas in that set, u.
These two numbers, (u, N�, produce an estimate of a
from a numerical solution3 to u = �1/a��1− e−aN �. The
expected total number of unique ideas is then calcu-
lated as T = 1/a. In Table 4, we show those values for
the consensus threshold on identical. (The T values
are rounded in the table.)
Figure 4 illustrates the relationship between the

number of unique ideas identified and the total num-
ber of ideas generated for two of the data sets. The
relationship is concave; it is increasingly difficult to
identify unique ideas as the number of ideas gener-

3 Dawkins (1991) gives an approximation to T as u2/�2�n − u��. For
the first four data sets, this approximation underestimates T by
about 10%; for the fifth one, it underestimates by nearly 20%.
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Table 4 Estimates of Total Number of Unique Ideas, T , in Each
Opportunity Space Based on Values for N and u for Each
Data Set

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Ideas in data set (N� 232 249 290 286 311
Number of unique 220 238 271 267 271
ideas (u� at
consensus
threshold

Parameter (a� 0.000462 0.000366 0.000473 0.000486 0.000907
estimate

Estimate of T , 2�165 2�735 2�115 2�056 1�103
total number of
unique ideas

Lower bound for T 1�205 1�493 1�333 1�299 806
(2.5th percentile)

Upper bound for T 3�704 4�762 3�333 3�226 1�493
(97.5th percentile)

ated increases. Different domains and generating pro-
cesses would exhibit different curves.
The notion of finite number of unique ideas needs

to be qualified. In a real sense, the number of ideas
is not finite. There is an arbitrarily large number
of attributes that can be used to characterize an
opportunity (e.g., focal user segment, performance
level, nuances of needs addressed, etc.). Within our
analytical framework, the identical threshold defines
a level of resolution beyond which two ideas are cat-
egorized as the same idea. This qualifies the defini-
tion of T as the total number of ideas that are distinct
enough from one another to exceed that threshold.

Figure 4 Number of Unique Ideas, u, Expected for a Given Number of Ideas Generated, N

T = 1,103

T/2 = 551

765 ideas required
to reach T /2

1,895 ideas required
to reach T /2

Number of ideas generated, N

4,000

Unique ideas, u

3,000

T/2 = 1,367

Web-Based Products

Classroom Technologies

Total number of unique ideas, T = 2,735

Note. Two domains are shown, Web-Based Products and Classroom Technologies.

With that qualification, we can reasonably consider
the size of the opportunity space to be finite.

5.3. Confidence Intervals
Using our model, we have derived point estimates of
the total number of unique ideas, T , for each data set.
Our model for the probability that the next idea is
unique (Equation (1)), dictates a stochastic process for
the number of unique ideas in any set. Using that
uncertainty, we can numerically approximate confi-
dence intervals around our estimates of T . The details
of how we do this are explained in Appendix C.
The results for the 95% confidence intervals are

shown in the last two rows of Table 4, rounded to
the nearest whole number. The confidence intervals
are wide, but appropriately so: they reflect the level
of uncertainty in the process.
We test whether the estimated sizes of the opportu-

nity spaces are statistically significantly different. We
find that the sizes of the first four opportunity spaces
are not statistically different from one another, and
the first four are all statistically significantly greater
than Classroom Technologies (with three of the four
at the 0.05 significance level and Web-Based Products
at the 0.01 level). Details are in Appendix D.
This test confirms the intuitive notion that the

Classroom Technologies space is a smaller or nar-
rower space. The innovation charge for the Class-
room Technologies domain cued both a “how”
(“technology”) and a setting (higher education class-
room), so there is a base level of similarity across
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Table 5 Estimates of the Total Number of Unique Ideas, T , Based on
Empirical Relative Frequency of Ideas

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

T assuming 2�165 2�735 2�115 2�056 1�103
each idea
equally likely

T assuming 2�268 2�839 2�334 2�205 1�192
empirical
frequency
distribution

Note. These estimates use the consensus threshold for identical, 1,000 simulation
trials, and a grid search interval of 15.

every single idea. In contrast, the innovation charges
for the other domains were more abstract, soliciting
ideas for general products and ventures.

5.4. Relaxing the Equally Likely Assumption
Now we return to one of the fundamental assump-
tions in landscape size estimation: What if the ideas
are not equally likely? A logical replacement for the
equally likely assumption is an empirical distribu-
tion based on the observed relative frequency of
the unique ideas in each data set. To construct that
relative frequency distribution, we use the clique sizes
for each of the unique ideas identified in each data set.
In considering different levels of T (total number of
unique ideas), we stretch (or shrink) the distribution
accordingly. Using a grid search, we find the T that
gives the best match with the observed data for each
set. Matches are determined by repeatedly simulating
N draws from a population of size T according to
the relative frequency distribution of clique sizes, and
looking for the value of T that results in u�N� unique
ideas (e.g., 271 for New Products I at the consensus
threshold). The estimates of T based on this approach
are shown in Table 5, along with the original esti-
mates based on the equally likely assumption. The
estimates of T do not change much with this analysis.
In every case, accounting for the nonuniform distri-
bution raises the estimate somewhat.

5.5. Robustness to Multiple Ideas per Person
Our model of unique idea generation captured in
Equation (2) is based on a process in which each idea
is a draw from a pool of T equally likely unique ideas.
We have already examined relaxing the equally likely
assumption. Now we examine another issue in light
of our data collection process, that of multiple ideas
per person.
In our idea generation assignments, each student

was asked to contribute five ideas. Conceptually, this
can raise an issue for our data analysis. Self-censoring
occurs such that a single person is highly unlikely to
submit two redundant ideas. Could this explain why

the level of redundancy that we find in the data sets
is so low?
We examine this possibility by simulating an idea

generation process in which each person generates
enough ideas to have five unique ideas. The predicted
number of unique ideas from Equation (2) based on
the larger N that would result from this process is vir-
tually identical to our reported results. Further details
from the simulation can be found in Appendix E. This
result makes sense, because the probability of encoun-
tering a redundant idea in just five draws is very low;
thus, the effect of censoring does not influence the
main result very much.

6. Clusters of Similar Ideas
In the previous section we analyzed redundancy, the
strict repetition of ideas. Now we turn our attention
to a looser sense of repetition, similarity among ideas.
The analysis we did for strict redundancy produced
an estimate of the total number of unique ideas. We
do the same analysis at a higher level of abstraction,
counting the number of idea clusters in each data set
and using the population model to estimate the total
number of clusters in the landscape. We also show
that clustering is a statistically significant feature of
the landscape as compared to a random benchmark.

6.1. Computing the Similarity of Each
Pair of Opportunities

Recall that we asked each of the 230 raters to group
separately the identical ideas and the similar ideas.
To construct clusters of similar opportunities for this
analysis, we compute a similarity measure for each
pair of opportunities within a data set. This similarity
measure is a weighted function of the identical group-
ings and the similar groupings of each respondent,
averaged over the respondents who had the pair on
their list.
Weighted similarity is a metric ranging from 0 to

10, defined as the average over all raters of the maxi-
mum of
• 10, if the rater identified the pair as identical; and
• 15/list length, where list length is the length of

the shortest list in which a rater included the pair.
As in our analysis of identical ratings, we

exclude the top 5% longest identical lists from these
calculations.
The extreme value of 10 occurs when all raters iden-

tify a pair as identical. The logic of the second term
in constructing the metric (i.e., 15/list length) is that
all else equal, the longer the list of similar ideas, the
more general the categorization of ideas. In previous
work, respondents have been given a specified list
length or a maximum list length (Rao and Katz 1971,
Methods 4 and 5). In our method, the respondent has
more control over the definition of similarity.
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Table 6 Variance in Similarity Ratings Across Raters for Each Data Set

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Average inter-rater variance 0.58 0.39 0.33 0.39 1.3
across all pairs of ideas

To illustrate the logic of controlling for list length,
consider dorm room storage. Lists of broad dorm
room storage solutions will be longer than lists of
easy-to-hang shelves. If the rater formed a group of
just two similar ideas, then the similarity score for
that rater and pair would be 15/2= 7�5. If that pair of
ideas were included in a group with one other idea,
then the similarity score would be 15/3= 5. We used
the value of 15 so that the highest score a pair of
ideas could receive from a similarity ranking, absent
an identical ranking, was 7.5.4 This is a scaling factor
that allows both groups of identical ideas and groups
of similar ideas to be used to compute a single simi-
larity metric. Our preliminary investigations revealed
that our results are not highly sensitive to this scaling
factor.5 When averaged across all raters, the weighted
similarity score exhibits a relatively smooth unimodal
distribution, skewed toward 0, and with a thin tail
stretching to the maximum value of 10.
The result of this computation is a similarity matrix

for each domain, of which Figure 1 is an example.
To evaluate how consistently different raters per-

ceived the pairs of ideas, we calculated the vari-
ance in ratings for each pair. For example, if a pair
appeared on five lists, and was rated identical (10) by
two raters, similar to one idea by one rater (15/2 =
7�5), similar to two ideas by another rater (15/3 = 5),
and not similar by the fifth rater, the variance in rat-
ing for that pair is the variance of �10�10�7�5�5�0� =
17�5. In each data set, we averaged the variances
across all pairs of ideas. The results are shown in
Table 6 and indicate an overall high level of agree-
ment across raters.

6.2. Clustering Similar Opportunities
Once we built the similarity matrices for each data set,
we used them to find clusters of similar ideas. To
identify clusters, we used a hierarchical clustering
analysis, implemented in Mathematica. The clustering
analysis iteratively groups the closest ideas, and then
sets of ideas, using the average proximity (in our case
the similarity score) of items in sets. The output of
that analysis is a dendrogram, a tree, that displays the

4 Note that raters were instructed that ideas can appear on multiple
lists. The similarity score for a pair of ideas comes from the shortest
list on which a rater included the pair.
5 Table 8 refers to more details of this sensitivity analysis.

most similar ideas together and indicates by branches
how similar the ideas are. As an example, a portion
of a dendrogram for the New Products I data set is
shown in Figure 5. Uses of this clustering technique
are described in Punj and Stewart (1983), Girvan and
Newman (2002), and Gulbahce and Lehmann (2008).
We then apply the ordering of the opportunities in

the dendrogram to the order of the rows and columns
in the similarity matrix, which results in clusters of
opportunities appearing visually as blocks along the
diagonal of the matrix, as shown in Figure 6. We have
labeled some of these blocks according to the oppor-
tunities they contain.
We observe that the themes that characterize the

clusters in the two New Products data sets are, as
one would expect, quite similar. These data sets were
created by successive offerings of the same course
using the same innovation charter. Both have clus-
ters of ideas around general areas like dirty dishes,
bathrooms, food and beverage, alarm clocks, school
supplies, and dorm room storage. Also, both have
clusters of ideas around more specific needs like
transporting small items such as keys and IDs, man-
aging messes of cords and wires, and locating lost
objects. For many of these clusters, not only are the
idea groupings similar across the two data sets, but
the relative proportions of the ideas in the data set
are too. For example, both have about 5% of the
ideas related to the bathroom, about 10%–15% related
to food and beverages, and about 2%–3% related to
transporting small items.
Despite substantial overlap in the clusters, there

are still differences in the data sets. For example,
New Products I contains many ideas related to bicy-
cling, and New Products II contains almost none.
These cross-set observations echo our findings that we
should expect both similarity and uniqueness in idea
generation.

6.3. Dendrogram Slicing and Estimating the
Total Number of Clusters in the Landscape

By making a vertical “slice” through the dendrogram,
we identify the different clusters (or branches) of the
tree. If the cut is made very near the leaves of the tree
(the left side of the tree in Figure 5), then the number
of clusters will be high, approximating the number of
unique ideas counted using cliques. If the vertical cut
is made near the root of the tree, then the tree will
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Figure 5 A Portion of the Dendrogram for the New Products I Data Set
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be divided into a few large clusters. The location of
the cut determines the level of abstraction at which
clusters are defined, and is a decision variable in the
analysis to be performed.
For our data sets, we report on clusters at two dif-

ferent levels of abstraction, 1/5 of the distance from
the root to the leaves and 1/10 of that distance. Slic-
ing a dendrogram at the 1/5 distance yields clusters
defined by a fairly specific shared need. For exam-
ple, from Figure 5, a slice at the 1/5 mark clusters
together Travel Jewelry Case and Compact Traveler’s
Kit—both solutions for carrying specific items while
traveling—but separates those two from a clustered
pair of other travel-related ideas, Suitcase Packing

Figure 6 Reordered Matrices of Opportunities for New Products I (Left) and Classroom Technologies Showing Labeled Blocks Along the Diagonal
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and Suitcase/Luggage Handle—which relate more
to the logistics of the travel bags themselves. This
level of abstraction is somewhere between the very
strict redundancy measures used to count number of
unique ideas and looser category levels.
Slicing a dendrogram at the 1/10 distance yields

more general categories or clusters. At this level, the
clusters relate to a more general category (e.g., travel)
or purpose (e.g., carrying small items). Because the
slice distance is a decision variable in the analysis,
any conclusions about clustering must be accompa-
nied by a specification of the slice distance used to
define that clustering. In Figure 6, most labels cor-
respond to selected clusters at the 1/10-slice level,
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Table 7 Estimated Total Number of Clusters in the Landscape for the Five Domains at Two Levels

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Ideas in data set (N� 232 249 290 286 311

Shared-need slice level (1/5)
Number of clusters in data set (u� 110 133 147 147 99
Estimate of total number of clusters 158 201 225 228 116

in the landscape (T �

Shared-category slice level (1/10)
Number of clusters in data set �u� 69 84 88 98 62
Estimate of total number of clusters 82 100 103 112 69

in the landscape �T �

Table 8 Comparison of Number of Clusters in Actual Similarity Matrices with Random Matrices

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Shared-need slice level (1/5)
Number of clusters, actual 110 133 147 147 99
Number of clusters, random 121 139 160 152 126

(average over 50 samples)
T -statistic 4.24∗∗∗ 2.11∗∗ 3.75∗∗∗ 1.73∗ 9.29∗∗∗

Shared-category slice level (1/10)
Number of clusters, actual 69 84 88 98 62
Number of clusters, random 82 95 109 105 76

(average over 50 samples)
T -statistic 4.49∗∗∗ 3.91∗∗∗ 8.07∗∗∗ 2.54∗∗ 5.76∗∗∗

Notes. The T -statistic compares the observed number of clusters to the distribution of clusters observed for
50 randomly generated matrices with the same values of interidea similarity as found in the data. In Appendix G,
we show results of a sensitivity analysis to the similarity metric.

∗p < 0�10; ∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).

chosen for their notable visual presence in the matrix.
The italicized labels for New Products I in that figure
show supersets at the 1/50-slice level.
Table 7 shows the number of clusters in the

data sets at these two levels of abstraction and
includes an estimate of T , the total number of clusters
in the landscape. This value of T is estimated from the
number of ideas generated, N , considering the num-
ber of clusters as u, and adjusting for the empirical
relative frequency of the ideas as explained in §5. In
other words, in this analysis multiple ideas appear-
ing in a cluster correspond to repeated “capture” of
that cluster. At the shared-need level (1/5), there is
still quite a bit of undiscovered territory (T −u� in all
the data sets, but at the category level (1/10) most of
the categories have been identified in all the data sets,
and especially in Classroom Technologies.

6.4. Clustering as a Significant Feature of the
Landscape

There are clearly clusters in the data as shown in
the dendrogram. However, there would be clusters
in random data as well. To support the idea that
clusters represent real underlying themes in the idea

generation effort, we show evidence that the oppor-
tunities are more tightly clustered than one would
expect from a random sample. We address this ques-
tion by comparing the clustering of the opportunities
from our data sets with that which we observe on
average in 50 randomly generated similarity matrices.
The random matrices are generated to have the exact
same cell values as the similarity matrix for a data set,
but in a randomized order.6 We can then compare
the clustering in these randomly generated matrices
with the clustering observed for our data sets. More
formally stated, we test the hypothesis that opportu-
nities in the data sets are more clustered than ran-
dom opportunities with the same degree of similarity.
Table 8 reports the results of this hypothesis test in
the form of a T -test.
We find strong support for the clustering hypoth-

esis. In every case, the number of clusters in the
data sets is lower than the average number of clusters
in the random benchmarks. Therefore, we conclude
that opportunities generated in practice are clustered,

6 We also analyzed random benchmarks that treat within-person
and between-people pairs separately. See Appendix F.
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Table 9 Summary Statistics for Variables

New Ventures Web-Based Products New Products I New Products II Classroom Technologies

How likely is it How attractive would
How appealing is this that pursuing this a product addressing

How valuable is opportunity to you opportunity will result this opportunity be How do you rate this
Question for assessing value: this opportunity? as a potential user? in a great product? to you personally? concept (Hate it/Love it)?

Mean—estimated value 5�24 4�64 5�36 4�37 5�62
SD—estimated value 2�27 2�70 2�35 2�74 2�30
Mean—cluster size 2�86 2�52 2�95 2�79 6�08
(shared need, 1/5 level)

SD—cluster size 1�60 1�52 2�01 1�76 5�83
(shared need, 1/5 level)

Mean—cluster size 4�68 4�30 5�16 4�66 10�07
(shared category, 1/10 level)

SD—cluster size 2�44 2�82 3�28 3�13 7�40
(shared category, 1/10 level)

Pearson correlation value � cluster size 0�023 −0�018 0�042 0�055 0�024
(shared need, 1/5)

Pearson correlation value � cluster size 0�030 −0�010 0�021 0�064 0�039
(shared category, 1/10)

as opposed to randomly or uniformly distributed.
This is especially true at the category level. This
finding suggests that there are significant underlying
themes driving idea generation and that the cluster-
ing approach can usefully identify those themes.

7. Quality and Similarity
In this section we address the third key question of
the paper: are unique ideas more valuable? On the
one hand, the existence of many similar ideas sug-
gests that an idea is not truly novel, perhaps even
obvious, and therefore not especially valuable. On the
other hand, the existence of similar ideas might indi-
cate that the idea addresses a widely held need, sug-
gestive of market acceptance of the innovation. Thus,
we have conflicting theoretical bases for hypothesiz-
ing the direction of a relationship between value and
similarity. To capture the alternative effects, we pose
the Uniqueness Hypothesis, that the estimated value of
an idea decreases with the number of similar ideas; and
the Popularity Hypothesis, that the estimated value of
an idea increases with the number of similar ideas. To
test these hypotheses, we regress the estimated value
of each opportunity against the size of the dendro-
gram cluster in which that opportunity resides.
The dependent variable for this regression is

the rating given by a specific rater to a specific
opportunity. This dependent variable is an integer
value between 1 and 10. Although strictly speaking,
the bounds on the dependent variable violate the
assumptions of ordinary least squares regression, in
practice, the dependent variable rarely takes on val-
ues of 1 or 10, and exhibits a unimodal distribution
well within the bounds of 1 and 10.

We control for the identity of each rater with a
dummy variable, because the raters typically use dif-
ferent parts of the 1–10 quality rating scale.
For the cluster-size variable, we show results for

two dendrogram slice levels, the shared-need level
(1/5 slice) and the shared-category level (1/10 slice).
The results are similar for a stricter definition of sim-
ilarity (e.g., 1/2 slice). The summary statistics for the
variables are in Table 9, and the results of the regres-
sions are in Table 10. Recall that the questions used to
assess the value of ideas were somewhat different for
each data set, although Girotra et al. (2010) show that
the responses to these questions are highly correlated.
Five out of the ten of these tests show support

for the Popularity Hypothesis, that value is increas-
ing in the number of similar ideas related to the
need or in the category. None of the remaining ones
show significant support for the Uniqueness Hypoth-
esis, that value is decreasing in the number of sim-
ilar ideas. In four of the five data sets, the cluster
sizes produced by at least one of the slice levels (1/5
or 1/10) is a significant, positive predictor of value.7

Even though not extremely consistent or compelling,
the best single model of these data would be that
value is increasing in similarity. Thus, we can reject
the Uniqueness Hypothesis. There is no support for
the theory that more novel ideas are considered more
valuable than those that are similar to others. We con-
sider the implications of these results in the discussion
section.

7 We also tested nonlinear models (e.g., including the square of the
cluster size). These models do not consistently offer more explana-
tory power.
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Table 10 Results of Regression of the Value Rating of an Opportunity on Cluster Size, Using Similarity Dendrogram Slice Levels of 1/5 and 1/10

New Ventures Web-Based Products New Products I New Products II Classroom Technologies

Constanta 3�98∗∗∗ 3�95∗∗∗ 6�16∗∗∗ 6�14∗∗∗ 3�29∗∗∗ 3�36∗∗∗ 2�51∗∗∗ 2�46∗∗∗ 7�83∗∗∗ 7�77∗∗∗

�19�13� �18�95� �7�88� �7�85� �11�06� �11�31� �5�89� �5�80� �26�23� �25�96�
Cluster size (shared need, 1/5) 0�025 −0�032 0�048∗∗∗ 0�064∗∗∗ 0�007

�1�36� �−1�31� �2�81� �2�99� �1�29�
Cluster size (shared category, 1/10) 0�022∗ −0�011 0�015 0�054∗∗∗ 0�013∗∗∗

�1�82� �−0�81� �1�410� �4�47� �2�86�
(+ controls for raters)

N 4,626 4,626 4,477 4,477 3,366 3,366 3,801 3,801 4,189 4,189
Adj. R2 0�22 0�22 0�17 0�17 0�30 0�30 0�28 0�29 0�17 0�17
F -statistic 28�36 28�40 17�44 17�42 24�23 24�10 26�17 26�43 10�72 10�82

Notes. Specific rater IDs are included as controls. T -statistics are in brackets.
aThe constant reported for each model is determined by which of the rater IDs serves as the baseline for the rater dummy, and so should not be interpreted

as a meaningful difference across the data sets relative to the hypotheses.
∗p < 0�10; ∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).

8. Discussion
To understand and characterize opportunity spaces,
we tackled three main questions in this paper:
(1) When a large number of independent efforts to
generate ideas are conducted in parallel, how likely
are the resulting ideas to be redundant? (2) Using
redundancy as a clue, how vast are the opportunity
spaces we study? (3) Are the less similar ideas more
valuable than ideas that are relatively common? The
answer to the first question is that although there
is clearly some redundancy in the ideas generated
by aggregating parallel efforts, this redundancy is
quite small in absolute terms, even for very narrowly
defined domains. For the second question, we find
that the estimated total number of unique ideas is
about 1,000 for one narrowly defined domain and
greater than 2,000 for the other more broadly defined
domains. On the third question, we find that ideas
that are more distinct from other ideas are not gener-
ally considered more valuable.
In addition to answering these key questions, we

have developed methods for measuring similarity,
defining unique ideas, estimating the sizes of oppor-
tunity spaces, and identifying clusters of ideas. These
methods have proven useful scientifically and offer
promise in practice as well.

8.1. Managerial Implications
In our five data sets of ideas, there is very little
redundancy. Of course, we cannot extrapolate that
result to all innovation efforts and claim that there
will never be much redundancy. However, the results
from our data sets do demonstrate the remarkable
breadth of ideas that can be produced by parallel idea
generation. Organizations have some control over the
breadth of ideas produced by setting the scope of the
innovation effort and by involving a diverse group
of people. With landscape sizes comparable to our

data sets, organizations can generate hundreds of
opportunities, and most will be unique.
The capture-recapture model offers promise for

managing the idea generation effort. Examining an
initial set of ideas for redundancy gives a clue to
how vast the opportunity space is, as defined by the
stated innovation charge and the idea-generating pro-
cess. Table 11 shows estimates of total number of
unique ideas (T � for different numbers of ideas gener-
ated (N� and the fraction of those that are unique (f �.
For example, if only 95% of the first 100 ideas are
unique, the estimate of the total is 966. In this sce-
nario, the team would probably benefit from substan-
tial further investment in idea generation, very little
of which would be wasted effort. We note that this
table uses the simplest assumptions: the ideas in the
opportunity space are generated independently, each
with equal probability. However, our estimates using
the empirical distribution of ideas showed that the
equally likely model underestimates the total number
of unique ideas (T �.
In posing the paper’s key questions, we noted that

the level of redundancy informs the decision about

Table 11 Estimate of the Total Number of Unique Ideas �T � for a
Given Number of Ideas Generated �N� and the Fraction of
Those Ideas That Are Unique �f �

F

N 65% 70% 75% 80% 85% 90% 95%

50 54 66 83 108 150 233 483
100 107 131 165 215 299 466 966
150 161 197 248 323 449 699 1�450
200 214 263 330 431 598 932 1�933
250 268 328 413 539 748 1�165 2�416
300 321 394 495 646 897 1�398 2�899
350 375 460 578 754 1�047 1�631 3�382
400 428 525 660 862 1�196 1�864 3�866
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how much to invest in parallel search. Dahan and
Mendelson (2001) focus directly on that question in a
context in which each concept is unique. Their esti-
mates are therefore an upper bound for the number of
ideas to generate when we allow for the redundancy
that is likely in industrial practice.
Although redundancy in our data is low, we did

find strong evidence of clustering. A description of
that clustering may be useful in practice: the den-
drogram clustering and the implied cluster labels (as
shown in Figure 6) organize several hundred ideas
into a few dozen themes. Clustering has implications
for the design of an innovation tournament (Terwi-
esch and Ulrich 2009). If each idea has to be evaluated
in isolation, efficiency must be favored over depth in
the evaluations. However, if clusters rather than indi-
vidual ideas can be evaluated, the depth of analysis
can be increased.
Our clustering analysis was originally motivated

by scientific inquiry. However, the resulting dendro-
grams and ordered matrices provide a valuable win-
dow into the innovation process. The clusters reveal
where most exploratory effort is being directed. The
degree to which clusters align with the innovator’s
strategic intent may provide an effective diagnosis of
problems in the opportunity identification processes
of the innovator. More broadly, the set of ideas taken
as a whole may contain information. The set structure
speaks to the relative salience of different needs. We
have used the clustering analysis with a major auto-
mobile manufacturer to explore the future of “elec-
tric mobility.” The innovation charter was loosely
defined in the sense that any ideas related to the
future of transportation and innovative technologies
were entertained. This laxity was daunting to the
company at first. However, the clustering analysis
revealed themes, making the structure of the oppor-
tunity space come into focus. The clusters then served
as a useful tool in framing the evaluation phase.
We observe that when generating ideas with prac-

ticing professionals, there appears to be an instinc-
tive positive response to unique ideas. This response
appears to be even more pronounced with novice
innovators, who often dismiss a cluster of ideas
because the similarity of those ideas means that
they do not seem sufficiently novel. Our data show
that this reaction may be at odds with the evidence
that unique ideas are not systematically valued more
highly than ideas that are similar to others. This result
implies that managers should pay closer attention to
the message that repetition in idea generation may be
signaling a strongly felt need.

8.2. Limitations
There are four main limitations to this research. First,
these data are derived from a classroom setting.

Although about half of our subjects were midcareer
professionals and experienced innovators, they were
still working within an educational setting. It would
be interesting to do a similar analysis of a data set
arising naturally from commercial activity, as one
might find in the development organization of a con-
sumer products company. Of course, our estimates of
landscape size pertain specifically to the data sets we
collected. Just as the ideas themselves depend on who
is generating the ideas, so does the landscape size.
Second, the quality measure for our opportunities

is a subjective peer evaluation. It is possible that this
measure is poorly correlated with the expected value
of the eventual commercial success of an opportu-
nity if pursued. However, it is of course practically
impossible to get profit outcomes for hundreds of
opportunities, most of which do not warrant invest-
ment. Furthermore, even a profit outcome would
be just a particular realization of a stochastic pro-
cess dependent in part on exogenous factors. Prior
research shows that these peer evaluations are highly
correlated with purchase intent, which is reflective of
one of the main drivers of eventual success—market
acceptance.
Third, the similarity rating task is challenging to

execute perfectly. One of the issues with our approach
is that a pair of ideas might be judged to be more
or less similar based on the other ideas with which
they appear. Indeed, Ratneshwar et al. (2001) show
that similarity is somewhat context dependent.
Fourth, the innovation challenges from which our

data are derived were fundamentally needs-driven
endeavors. The participants possessed relatively
general capabilities as entrepreneurs and product
designers and were seeking out unmet market needs.
Although we believe that most successful innovation
is market driven, we would expect different patterns
of similarity and quality for opportunities that were
fundamentally technology or solution driven.

8.3. Future Work
The patterns we observe in large samples of innova-
tion opportunities are the result of both the nature
of the landscape and the nature of the search pro-
cess. To what extent can the search process be man-
aged to achieve different results? Hoffman et al. (2010)
suggest that it is certain customers, ones with an
“emergent nature” that should be tapped by idea gen-
eration. Are there strategies that improve the idea
generation performance of nonemergent customers?
For example, do some heuristics for idea genera-
tion result in less clustered outcomes? Dahl and
Moreau (2002) describe the positive effect of far analo-
gies on creativity and idea value. Would innovators
prompted with this knowledge produce less clustered
ideas? Toubia (2006) examines how incentive struc-
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ture affects creative output, another approach to man-
aging the process.
We have only begun to probe the phenomenon of

clustering. These questions seem promising for fur-
ther exploration:
• How do the patterns of opportunities compare

to the patterns of successful commercial innovations?
What do differences between the patterns of opportu-
nities and the patterns of existing successful products
reveal? We are struck in our project-based courses by
how some of the same opportunities have arisen for
many years (e.g., better wire and cord management).
Do these recurring gaps reveal technological limits
(i.e., a very hard problem for which no good solutions
have yet been developed)?
• The relationship between similarity and value is,

if anything, positive. This result is consistent with
there being a common driver of quality and clus-
tering, an underlying interest or attraction from the
idea-generating group.8 Further exploration of these
potential underlying factors would be interesting.
• Erat and Krishnan (2010) develop a model that

shows how clustering can be a consequence of a
group of innovators all trying to propose the best
idea. To what extent do incentives and competition
drive the clustering, either at the level of individ-
ual innovators or possibly at the level of innovating
firms?
• Are patterns in the opportunity landscape frac-

tal in nature? That is, would we observe similar pat-
terns of redundancy and clustering when examining
innovation opportunities at very different levels of
abstraction? These levels might extend from the level
of identifying potential new businesses down to the
level of identifying potential new design details on
individual products.
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Appendix A. Instructions for Similarity Coding
On the accompanying three paper sheets, you will find a
master list of “new ideas” generated as part of an innova-
tion effort.

In this task you will form groups of similar ideas from
this list.

First, read through the entire list to become generally
familiar with the ideas.

Then, complete two tasks. The first aims to identify simi-
lar ideas. The second aims to identify identical or essentially
identical ideas. The detailed instructions for these two tasks

8 We thank the associate editor for this suggestion.

are provided below. You will record the results of your work
in the spreadsheet you’ve been given.

Before you begin, record in the cells at the top of the
spreadsheet your “Lab ID,” the “Session Letter,” and “Ses-
sion #” printed at the top of your list. These cells are high-
lighted in light blue.

Similar Ideas
Consider the list of ideas. Identify groups of two or more ideas
that are similar to each other. You should base this grouping
on your own notion of similarity. We understand that peo-
ple think about similarity in their own way, which is fine.

Record the ID numbers for ideas that are similar in the
rows in the spreadsheet you’ve been given (labeled “Similar
Ideas”). So, for example, the first group would correspond
to Row 4, and the ideas in that group would be entered
along Row 4, in Columns B, C, etc. You may find it helpful
to give each group a descriptive label in Column A, but this
is optional. Feel free to mark up the paper sheet of ideas
if that is helpful, but only the information recorded in the
spreadsheet will be used in our analysis.

The ideas on your list are drawn randomly from a larger
sample, and so it is possible there could be few or many
groups of similar ideas.

It is okay to place an idea in more than one group if
you wish.

Identical or Essentially Identical Ideas
Consider again the list of ideas and your groups of similar
ideas. On the lower portion of the worksheet, identify groups
of two or more ideas that are identical or essentially identical.

Record the ID numbers for ideas that are identical
or essentially identical in the rows in the spreadsheet
you’ve been given (in the area labeled “Essentially Identical
Ideas”). Again, you may find it helpful to give each group
a descriptive label, but this is optional.

If ideas are essentially identical, then they are also simi-
lar, and so any ideas that appear together in an essentially
identical group will also appear together in one or more of
your similar groups.

The ideas on your list are drawn randomly from a larger
sample, and so it is possible that there could be no ideas on
your list that are identical or essentially identical.

Appendix B. Forming Lists of Ideas for Raters
To rate the similarity of ideas as described in Appendix A,
we provided subjects with lists of ideas. Ideally, each sub-
ject would rate the similarity of all the ideas in an entire
data set. However, each of the five data sets had a few hun-
dred ideas, approximately 12 pages of ideas. We saw that it
was too hard for people to reliably recall similar and iden-
tical ideas over that many ideas. To make the task manage-
able, we created lists of approximately 75 ideas, or 3 pages
of ideas. We used a process to create a set of lists so that
(1) every pair of ideas appeared on at least one list and
(2) pairs of ideas appeared together on lists an average of
about four times.

Our algorithm for creating these lists was as follows.
Consider every pair of ideas, in random order. If the pair
does not appear on any lists, find the shortest list that
contains one idea in the pair. Add the other idea to that list.
If neither idea appears on any list, add both ideas to the
shortest list.
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For the data sets with 232 and 249 ideas, we created 40
lists each. For the data sets with 286 to 311 ideas, we created
50 lists each. In total, we had 230 lists of between 68 and 85
ideas that subjects rated for similarity.

Appendix C. Confidence Intervals
In this appendix, we describe the details of how we com-
puted the confidence intervals on the estimate of the total
number of unique ideas, T . We use a Bayesian approach. As
such, we derive a posterior distribution p�a � u�, i.e., a dis-
tribution on the equation parameter (a� given the observed
data (the number of unique ideas u in the data set). To
do that, we need two components, the likelihood function
p�u � a� and the prior distribution p�a�.

The likelihood function p�u � a� gives the probability that
there are u unique ideas out of N ideas generated for a par-
ticular value of a. The value of p�u � a� is derived from the
stochastic process defined by Equation (1): the ith idea is
either unique (with probability p�i� = e−ai� or not (with prob-
ability 1 − p�i��. The total number of unique ideas out of
N ideas generated is therefore the sum of N Bernoulli (i.e.,
binary 0/1) random variables. Using a central limit theorem
(Kallenberg 1997), we approximate the sum of the Bernoulli
random variables as a Normal distribution with mean equal
to the expected number of unique ideas u�N� and the vari-
ance as the sum of the variances of the Bernoulli random
variables. The variance of a Bernoulli random variable with
parameter p is p�1− p�. We approximate this sum using the
integral

∫ N

0
e−an�1− e−an� dn = 1

2a
�1+ e−2aN − 2e−aN ��

The observation for each data set, the number of unique
ideas out of N , is a whole number. The Normal approxi-
mation to the sum of the Bernoulli random variables is a
continuous approximation. To find the probability that u
unique ideas appeared, we use the probability of the Nor-
mal random variable being between u − 0�5 and u + 0�5.

In Figure C.1 we show an example of a likelihood func-
tion for the New Products I data set, with 271 unique ideas
out of 290 generated (u�290� = 271). There are a few things to
note about the likelihood function. First, it is not a probabil-
ity distribution; it does not necessarily sum to 1. Second, it is
bell shaped. Values of the parameter (a) around 0.00047 yield
271 unique ideas out of 290 with greater likelihood than val-
ues of the parameter that are much lower or much higher.
Third, for values of a that are too low or too high, there is
essentially no chance that they yield 271 unique ideas out
of 290.

For the prior distribution on a, we use a “diffuse prior”
(Hays and Winkler 1971, pp. 482–484), representing the case
in which the observed information would receive much
more weight than the prior. A diffuse prior essentially
serves as a uniform distribution on a for which we do
not have to prespecify the range; the p�a� is treated as a
constant. In our calculations, the range of a is effectively
narrowed to values of a for which p�u � a� is nonzero. (In our
numerical analysis, we set the threshold to be 10−10.) (Note
that we also checked the case in which the diffuse prior is
placed on T rather than on a. The confidence intervals are
shifted up slightly, but are quite similar.)

Putting together the pieces with Bayes’ rule, we use
p�u � a� to find p�a � u�, the probability of a, given an

Figure C.1 An Example Likelihood Function, p�u = 271 � a� for
N = 290

0.0005 0.0010 0.0015 a

p (u |a)

0.04

0.08

Note. This figure shows how likely it is that there would be exactly 271
unique ideas out of 290 ideas generated (as in the New Products I data set)
for different values of the parameter a.

observed value of u:

p�a � u� = p�u � a�p�a�∑
a p�u � a�p�a�

�

which reduces to

p�a � u� = p�u � a�∑
a p�u � a�

because of our assumption that p�a� is constant.
For practical purposes, we discretize the a space, looking

at values of a in intervals of 10−5. For the New Products I
data set shown in Figure C.1, the relevant range for a is
0.00012 to 0.00171.

Finally, we use the range of a between the 2.5th and
97.5th percentiles of p�a � u� to deduce the corresponding
range on T .

Appendix D. Test for Statistically Significant
Difference of Estimates
To test for the statistical significance of the difference of the
estimates of the size of the opportunity space for any two
data sets, we compute the probability that that difference
would be at least as big as observed. The logic is that of a
t-test. However, we do not use the t-test per se, because we
are testing a difference in the medians of non-Normally dis-
tributed quantities, not a difference in means of Normally
distributed quantities (as in the t-test).

For each pair of data sets, we simulated 100,000 draws
from each median-centered distribution. The distributions
are those derived as described in the previous appendix
on confidence intervals, the p�a � u�. We use the median to
center because the point estimate for the model parame-
ter is approximately the median of the distribution. Then
we compute the fraction of the simulated pairs that have
a difference greater than or equal to the difference in the
observed parameter estimates. If very few of the simulated
differences are as big as the actual difference, we conclude
that it is unlikely that the point estimates (the medians) of
the distributions are the same.

Those fractions are shown in Table D.1 for each pair
of data sets, using the unique counts from the consensus
threshold (70% level of agreement).
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Table D.1 Fraction of 100,000 Simulated Draws That Are Greater Than
or Equal to the Observed Differences Between Data Sets

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

New Ventures
Web-Based 0�57
Products

New Products I 0�93 0�48
New Products II 0�89 0�43 0�92
Classroom 0�03∗∗ 0�01∗∗∗ 0�02∗∗ 0�03∗∗

Technologies

∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).

Table E.1 Comparison of Estimates of u Assuming Enough Ideas Are
Generated by Each Individual to Produce Five Unique Ideas

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

N , ideas in 232 249 290 286 311
data set

No. of simulated ideas, 230 250 290 285 310
5 Round[N/5]

Predicted u(5q� 218�20 238�91 271�00 266�13 270�25
from model

Average no. of unique 218�42 239�12 271�31 266�47 270�85
ideas in 10,000 trials

Appendix E. Multiple Ideas per Person
To examine the question of how much it matters that each
person generated five ideas, we run a simulation of the
five-unique-ideas-per-person format and see how that for-
mat changes the expected number of unique ideas in a
data set, compared to the predictions from our baseline
model, Equation (2).

For each data set, we simulated q people each generating
five ideas. The five ideas are modeled as five draws, with-
out replacement, from a set of T total unique ideas. The q is
set determined by Round[N/5]. (Note that there are slight
discrepancies with the data: for New Products II, 58 actual
participants generated 286 ideas. A few people did not com-
plete all five; therefore, we simulated 57 people and use the
benchmark u(285).) Table E.1 shows the results.

The comparison of the last two rows of Table E.1 shows
that the restriction that each individual will generate five
unique ideas has virtually no effect on the predictions of
the model.

Appendix F. Clustering Analysis Accounting for
Multiple Ideas per Person
In Table F.1, we address the issue of multiple ideas per
person in constructing random benchmarks, treating
within-person and between-people pairs separately. These
benchmarks replicate the actual number of individuals and
number of ideas per individual in each data set, and they
pull separately from the within-person similarity values and
between-people similarity values. We continue to see sup-
port for the hypothesis that opportunities in the data sets
are more clustered than random.

Table F.1 A Variation of Table 8 in Which the Random Benchmarks
Reproduce the Pattern of Multiple Ideas per Person Found
in the Data

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Shared-need slice level (1/5)
Number of clusters, 110 133 147 147 99
actual

Number of clusters, 122 140 159 153 126
random (average
over 50 samples)

T -statistic 4.96∗∗∗ 2.36∗∗ 3.66∗∗∗ 1.84∗ 8.76∗∗∗

Shared-category slice level (1/10)
Number of clusters, 69 84 88 98 62
actual

Number of clusters, 81 96 110 105 76
random (average
over 50 samples)

T -statistic 4.83∗∗∗ 4.76∗∗∗ 6.80∗∗∗ 2.17∗∗ 6.09∗∗∗

∗p < 0�10; ∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).

Appendix G. Sensitivity to Similarity Metric
In this appendix, we show results of a sensitivity analysis
to the similarity metric. In Table G.1, we examine sensitivity
to the scaling factor (15 in the base case). In Table G.2, we
examine sensitivity to the functional form of the metric: we
rerun the analysis of Table 8 for a similarity metric in which
we do not adjust for list length.

Table G.1 A Variation of Table 8, with Sensitivity Analysis to the
Scaling Factor in the Similarity Measure

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Shared-need slice level (1/5)
17.5 actual 106 124 132 131 98
17.5 random average 116 132 151 146 123
T -statistic 3.61∗∗∗ 2.94∗∗∗ 6.01∗∗∗ 4.13∗∗∗ 8.67∗∗∗
15 actual 110 133 147 147 99
15 random average 121 139 159 154 125
T -statistic 3.65∗∗∗ 1.70∗ 3.61∗∗∗ 2.27∗∗ 9.51∗∗∗
12.5 actual 114 135 157 151 103
12.5 random average 125 145 165 157 127
T -statistic 3.60∗∗∗ 3.28∗∗∗ 2.60∗∗ 1.92∗ 8.20∗∗∗
10 actual 122 150 170 159 103
10 random average 131 156 176 164 128
T -statistic 2.37∗∗ 1.60 1.64 1.31 9.18∗∗∗

Shared-category slice level (1/10)
17.5 actual 64 73 76 88 56
17.5 random average 77 89 102 99 74
T -statistic 6.37∗∗∗ 5.49∗∗∗ 10.16∗∗∗ 4.23∗∗∗ 7.07∗∗∗
15 actual 69 84 88 98 62
15 random average 81 95 110 106 77
T -statistic 5.72∗∗∗ 3.50∗∗∗ 7.68∗∗∗ 2.80∗∗∗ 6.46∗∗∗
12.5 actual 74 96 97 105 63
12.5 random average 86 102 117 109 78
T -statistic 4.04∗∗∗ 2.01∗ 6.12∗∗∗ 1.46 6.10∗∗∗
10 actual 89 104 111 112 70
10 random average 91 112 127 117 80
T -statistic 0.69 2.31∗∗ 5.22∗∗∗ 1.96∗ 3.99∗∗∗

Notes. The original value was 15; here we compare to 17.5, 12.5, and 10. We continue
to see support for the hypothesis that opportunities in the data sets are more clustered
than random, especially for the higher values of the scaling factor.

∗p < 0�10; ∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).
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Table G.2 A Variation of Table 8, with Sensitivity Analysis to the
Functional Form of the Similarity Measure

New Web-Based New New Classroom
Ventures Products Products I Products II Technologies

Shared-need slice level (1/5)
7 actual 68 68 76 89 63
7 random average 85 93 107 111 87
T -statistic 7.56∗∗∗ 10.24∗∗∗ 13.58∗∗∗ 7.75∗∗∗ 11.00∗∗∗
5 actual 83 98 99 107 78
5 random average 102 114 129 130 104
T -statistic 6.77∗∗∗ 5.75∗∗∗ 12.21∗∗∗ 9.05∗∗∗ 8.64∗∗∗
3 actual 118 143 155 150 96
3 random average 125 147 164 157 119
T -statistic 2.76∗∗∗ 1.16 2.46∗∗ 1.77∗ 7.12∗∗∗

Shared-category slice level (1/10)
7 actual 33 36 39 45 27
7 random average 49 54 62 65 40
T -statistic 7.48∗∗∗ 8.06∗∗∗ 11.30∗∗∗ 10.22∗∗∗ 7.96∗∗∗
5 actual 42 49 51 62 36
5 random average 62 70 79 82 54
T -statistic 9.90∗∗∗ 11.21∗∗∗ 14.20∗∗∗ 7.49∗∗∗ 7.90∗∗∗
3 actual 70 81 88 98 53
3 random average 82 98 110 107 69
T -statistic 5.24∗∗∗ 6.59∗∗∗ 8.17∗∗∗ 2.92∗∗∗ 7.29∗∗∗

Notes. In this analysis, we do not divide by list length: all pairs on any list are given the
same similarity value, except that the longest 5% of lists are excluded, as in the identical
analysis. We examined similarity values of 7, 5, and 3. We continue to see support for
the hypothesis that opportunities in the data sets are more clustered than random.

∗p < 0�10; ∗∗p < 0�05; ∗∗∗p < 0�01 (two-tailed tests).
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