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Abstract

When two competing and incompatible products coexist in a market, potential users face a choice between the two
products and the alternative of deferring the decision. This paper examines the choice between the two substitutes,
where each one is subject to a positive network effect. That is, a user of one of the products experiences an increase
in the value for each additional person using the same product. We examine this buy or wait problem, either for an
individual or a manager making the investment on behalf of a firm, by formulating and analyzing a decision-theoretic
model. To model the stochastic evolution of market share, we build on the generalized Polya urn of Arthur et al.
[European Journal of Operational Research, 30 (3) (1987) 294], allowing for composition of the market to affect not
just the relative market shares but also the absolute growth rate of the market. We show that the optimal strategy is
defined by a pair of market penetration thresholds that depend on the market composition. Looking at the effect of
the network effects on the optimal strategy, we find that more pronounced network effects can either raise or lower
the penetration thresholds.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we examine the choice between two competing and incompatible durable products. Each
product conforms to a format or standard which creates positive network effects for users of that product.
That is, a user experiences an increase in the value from using a product for each additional person using
the same one. Because of this network effect, a market in which two incompatible products coexist creates a
decision problem for a potential adopter regarding not only which product to choose, but whether or not to
wait to see what other potential adopters are doing. For example, a manager thinking about whether
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it is time to invest in an enterprise resource planning system not only asks himself ‘‘SAP or Peoplesoft?’’ but
also considers the option of waiting to see if one of those products will come to dominate the market.

With the advances in networked computing and telecommunications of the last decade, issues related to
positive network effects now feature prominently in business and personal technology decision making. For
example, decisions about which type of cellular phone and service to buy and which computer processor
and operating system to choose rely on assessments of the size of the group that has made or will make
the same choice. Users value larger networks because they provide both increased opportunities for com-
munication as well as increased availability of complementary products (Katz and Shapiro, 1994). Both the
direct communication and indirect complements network benefits are at the heart of positive feedback: the
more users in a network, the more attractive it is for any prospective user to join. Recent popular books
such as Shapiro and Varian�s (1999) Information Rules and Gladwell�s (2000) The Tipping Point have de-
scribed the pervasiveness of positive feedback in a variety of settings, from high tech markets to eradication
of crime in New York subways.

The classic example of the communication benefit is the fax machine. The more users there are to fax, the
more value the fax machine has. Examples of the complementary products benefit include computer hard-
ware and software, VCRs and rental tapes, and java and java programmers. David (1985) discusses this
issue with respect to the QWERTY format typewriter keyboard. The more popular that format became,
the more people decided to learn how to use it and the availability of trained operators made that format
more popular still.

Because of these self-reinforcing tendencies, expectations play an important role in the dynamics of net-
work populations. If potential adopters believe that a particular technology will catch on, then they will
adopt it, and, in fact, it will catch on. Alternatively, if potential adopters believe that it will not catch
on, no one will adopt it and that belief will also be fulfilled. While these self-fulfilling prophecies capture
the essential logic of positive feedback systems, this mode of analysis is not particularly helpful to the per-
son facing the choice. It captures neither the inherent uncertainty nor the process by which that uncertainty
is resolved. In this paper, we approach this decision problem as a sequential decision under uncertainty.

Using a simple market dynamic that allows for the gradual resolution of uncertainty about adoptions of
the products, we derive the structure of the optimal strategy and explore how the market environment af-
fects that rule. Arthur (1989) proposed a model of the evolution of market share in a market with compet-
ing technologies. The model formalizes the idea that new consumers are more likely to purchase the product
that has the higher proportion of the market. The generalized Polya urn introduced in Arthur et al. (1987) is
an intuitively appealing model of a market prone to domination by one standard that allows for an initial
period of uncertainty about the outcome: small events early in a process have big consequences later. We
further generalize this process to make it more consistent with empirical observations of new product adop-
tion. In particular, we allow for the rate of growth of the market to depend probabilistically on the current
market size and composition.

Using a decision-oriented point of view, we use a variation of the generalized Polya urn as our model of
stochastic market evolution to analyze the buy or wait decision in the face of competing and incompatible
technologies and positive network effects. This framework has a decision-analytic perspective, capturing the
fundamental uncertainty about the outcome of the market, the gradual resolution of that uncertainty over
time, and the self-reinforcing tendency of the market associated with network effects. We show that the
optimal strategy for this problem is a pair of thresholds that depends on the state of the system. The value
of waiting comes from two sources in this model. First, waiting allows some of the uncertainty as to which
technology will come to dominate the market to be resolved before the decision is made. Second, by wait-
ing, the potential user may join a bigger network. The wait moves the investment closer to a larger stream
of benefits, increasing the net value.

In addition, we examine the strength of the network effects (the ‘‘tippiness’’) of the market on the opti-
mal strategy. We offer a technical definition of the strength of the network effects: the more prominent the
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network effect in the value of product, the more quickly small market leads tend to grow to large market
leads, and the less stable is the market initially. In some cases, stronger network effects make waiting less
attractive because a small lead by one of the products serves as a strong indication that the market will
become dominated by that product. However, stronger network effects can also make waiting more attrac-
tive in the case in which the market is moving (probabilistically) towards the product that the decision ma-
ker finds less attractive overall.

The contribution of this paper to the operations research/management science literature is to analyze the
competing standards decision problem from a decision-oriented perspective, using a stopping problem with
sequential resolution of uncertainty. Choice between competing standards has received much attention in
the economics literature, but the emphasis has been on the aggregation and efficiency of outcomes. We for-
mulate the decision problem using an intuitively appealing stochastic process which allows for positive feed-
back in the market, an important characteristic in many technology choice problems.

The paper is organized as follows. Section 2 reviews the related literature. Section 3.1 introduces the for-
mulation of a buy or wait problem and the stochastic process used to describe the market. Sections 3.2 and
3.3 present the two main results about the form of the optimal strategy and the strength of network effects.
Section 4 concludes.
2. Related literature

This work draws on decision-theoretic models of technology choice in the fields of operations research/
management science and economics. In addition, technology adoption models have strong links to work on
the diffusion of innovations from the marketing literature, models of group behavior in sociology, and to
work on standards adoption in the economics literature.

As a problem of technology choice with the option to defer purchase, our work is similar in orientation
to that of Jensen (1982) who looks at the decision regarding information collection about a new technology
and to that of McCardle (1985) who looks at the decision regarding information gathering vs. adoption or
dismissal of a new technology. In Jensen (1982), information about a new technology is costlessly observed,
and the decision maker can decide to adopt the new technology at any point in time. In McCardle (1985),
the decision maker can take costly observations on the new technology, and therefore may choose to reject
the technology and maintain the firm�s current practice. The decision maker in that model collects informa-
tion on a single new technology, but the fallback option makes the problem a choice between two technol-
ogies, like our formulation. However, in our work, the values of both technologies are uncertain, in the
work of McCardle (1985), only the value of the new technology is uncertain. Another, important difference
is our consideration of network effects: in our work, the value from adoption depends not only on the cur-
rent estimate of a technology�s stand-alone profitability but also on the number of current and future
adopters of the same product.

Other decision-theoretic models of technology choice have explicitly examined multiple technologies,
although the competing technologies have been sequential innovations, not simultaneously available
choices. Balcer and Lippman (1984), Hopp and Nair (1991), and Nair and Hopp (1992) consider keep
or replace problems in the face of improving technology. In Balcer and Lippman (1984), indefinitely many
new technologies are forecast and indefinitely many purchases are allowed. Both the timing and the size of
the innovations are uncertain. In Hopp and Nair (1991) and Nair and Hopp (1992), there is one technology
in use, a better one available, and an even better one not yet available. The appearance time of the ‘‘even
better’’ one is uncertain. An important difference between these three papers and our work is that in our
model, the stochastic description of the environment focuses on the evolution of market size and share
as opposed to the trajectory of technical development.
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Studies of technology adoption have natural links to the marketing literature on the diffusion of inno-
vations, spawned by the seminal work of Bass (1969). The basic idea of ‘‘word of mouth’’ or social conta-
gion is related to the idea of positive network effects, as both explain how larger groups of adopters attract
further adopters. The word of mouth mechanism operates through awareness that influences further adop-
tion, and the positive network effects mechanism operates through increases in value which make adoption
without delay a more attractive alternative. In this stream of diffusion research in marketing, the multi-
product diffusion model of Peterson and Mahajan (1978) is most relevant to our work in its application
to adoption trajectories of competing products. Most of the diffusion work (including Peterson and Maha-
jan) offers deterministic forecasts. This forecast orientation differs from our work�s choice orientation, and
the deterministic trajectory differs from our stochastic process describing the evolution of adoptions. How-
ever, we incorporate an important insight from these diffusion studies, that adoption rates depend on the
size of the installed base, in modeling the stochastic evolution of the market.

A related stream of work about social contagion can be found in the sociology literature. In the ‘‘thresh-
old models’’ such as Granovetter (1978) and Granovetter and Soong (1983), used to explain riots, fashions,
party departure, and other group behavior, exogenous participation thresholds give rise to deterministic
dynamic systems. Unlike those exogenous thresholds, the thresholds in our model are endogenous and dy-
namic; they change as the state changes.

Issues of new product adoption have also been written about extensively in the economics literature. A
group of scholars in economics has written about standards and technology adoption. Katz and Shapiro
(1985, 1986), Farrell and Saloner (1985, 1986), and Choi (1994) all consider versions of game-theoretic
models of technology choice. All of these papers model and solve simple decision problems, looking at
the welfare effects of aggregate behavior. The existence of multiple equilibria (e.g., Katz and Shapiro,
1985) and instantaneous resolution of the standards uncertainty (e.g., Farrell and Saloner, 1986) through
rational expectations diminish the usefulness of these models for decision support.

Two papers that explicitly look at the adoption timing decision are Choi (1994) and Farrell and Saloner
(1985). Choi (1994) analyzes a two-period model in which the first consumer has the option to wait to buy
until the second person arrives in the second period. Choi analyzes the role and magnitude of the external-
ities associated with the decision. Farrell and Saloner (1985) model an adoption timing game between two
heterogenous players who both have the choice of switching to a new technology now or waiting until the
second period (and staying with the status quo in the current period). The authors describe the ‘‘band-
wagon effect’’ in which some types of players will wait until the second period, and then adopt only if a
bandwagon has formed, that is, if the other player has adopted. Farrell and Saloner (1985) note that their
model is ‘‘timeless’’ (p. 82) in that value from adoption is determined by how many adopt, but not when.
Farrell and Saloner (1985) followed up in their 1986 paper with a model that features valuation of a stream
of benefits over time; however, the results from their ‘‘Model with New Users’’ show that adoptions happen
either as soon as possible or never. Our emphasis is on the long term evolution of the market and the cor-
responding series of decisions under uncertainty.
3. Model and analysis

In this section, we first develop a model for a decision maker�s choice and then offer the two main results
of the paper.

This decision-theoretic model considers the optimal choice given a probabilistic description of the mar-
ket environment. We build on the generalized Polya urn model (see Arthur et al., 1987) to represent the
stochastic market evolution of two competing, incompatible technologies. This urn model captures the idea
that the market leader has momentum in gaining even more market share. In the basic Polya urn model
(Polya and Eggenberger, 1923; see also Feller, 1966), the urn has an initial endowment of two types of balls;
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we call them products X and Y. In each period, a ball is drawn from the urn and replaced along with an
additional ball of the same type. One interpretation of the basic Polya urn process is a word of mouth effect,
where new customers randomly encounter a person who has made a purchase and buy the same product
type as that person.

With the generalization of Arthur et al. (1987), the probability of drawing a type is not necessarily equal
to the proportion of that type in the urn, but is a function of the proportion. We add a further generaliza-
tion, allowing the rate of adoptions to vary with the composition of the market. In the Arthur et al. model,
one ball (i.e., user) is added each period. In our model, either one user or no users are added each period:
the larger the population of each type, the more likely that a user of that type is actually added.

3.1. Model

In our model of the market, each period a potential user either adopts X or Y or does not adopt (i.e.,
there are zero adoptions or one adoption each period). Each potential user is inclined to choose X or Y

with probability equal to a function q of the proportion of people already using that type. Instead of a guar-
anteed adoption each period, as in the Arthur et al. (1987) generalized Polya urn, the potential user adopts
the type he is inclined toward with probability equal to a function g of the users of that type. (He adopts
nothing with the complementary probability.) Of course, we assume throughout that q and g are increasing
functions. This model captures two types of feedback: a larger user group attracts more potential users and

makes it more likely that they will actually join the group by adopting.
The decisions of the population at large are not modeled explicitly, nor assumed to be optimal. Instead,

in this decision-theoretic view, we analyze a decision maker�s alternatives using a stochastic description of
the environment he faces. The decision maker can observe the market share evolution of the two incompat-
ible technologies; at any point in time, he can buy one of the products. To capture the positive network
externalities, the decision maker�s value of having either product in any period is increasing in the number
of users who have the same product in that period. The decision maker observes the evolution and can buy
only one of the products which he keeps forever. 1

We define V(x, y) as the value function when there are x X-users and y Y-users (t � x + y). The infinite
horizon value V(x, y) is the maximum value of three alternatives: buy X now, buy Y now, and wait. The
one-period discount factor is d, the cost of purchasing technology X is KX, and the cost of purchasing tech-
nology Y is KY. The probability q x

t

� �
that the next potential user is inclined toward X is an increasing func-

tion of the proportion x/t of X-users. The probability g(x) that the potential user adopts X given he is
inclined toward it is an increasing function of the number of X-users. 2 Hence,
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The expression VX(x, y) is the expected value of owning X when there are x Xs and y Ys,
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he extension allowing the buyer to switch products after a purchase is briefly discussed in the conclusion.
or simplicity, we use the same function g for the probability that a potential user inclined toward Y will adopt Y. The results we
t do not depend on this similarity.
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with f X(x) the per-period benefit of owning product X, as a function of the number x of other people who
own product X in the period. The expression for VX(x, y) is comprised of the immediate reward plus the
discounted future reward, and the latter value conditions on the outcome of the potential user in the next
period (VX(x, y)––he does not buy, VX(x + 1, y)––he buys X, or VX(x, y + 1)––he buys Y). The expression
for the value of waiting (the third element of V(x, y)) is built up in a similar fashion. The function f X can
have both network-size-independent and network-size-dependent parts. In order for f X to capture the
positive network externalities, we assume throughout that f X is increasing.

Similarly, we define VY(x, y) as the expected value of owning Y when there are x Xs and y Ys.
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The expressions for VX(x, y) and VY(x, y) hold for x < t. 3

3.2. Optimal strategy

In this section we show the structure of the optimal strategy. For any market size t, there are two thresh-
olds such that for a number of X-users below the lower threshold, the best alternative is to buy Y, for a
number of X-users above the higher threshold, the best alternative is to buy X, and in the middle, the best
alternative is to wait.

Fig. 1 shows the values of the three strategies for a numerical example.

Proposition 1. For each t, there exists a pair of numbers xU(t) and xL(t) with xU(t) P xL(t) such that if

x < xL(t), it is optimal to buy Y; if x P xU(t), it is optimal to buy X; otherwise, it is optimal to wait.

Proof. See Appendix A. h

The result allows for the possibility that no matter what the market shares, it may not be optimal to buy
at a particular stage of the process. For a low total population of the market, it may be better to wait even if
nearly one hundred percent of the users have one type. But as the market grows, waiting can become sub-
optimal for any proportion of X: it is possible that xU(t) = xL(t). This case occurs for the following reasons.
First, there are enough other users such that the value from purchasing one of the technologies is high en-
ough to justify its cost. Second, when the user population is sufficiently large, an imbalance in favor of one
type serves as a strong signal that that type will have the majority of the market in the long run.

This result is similar in structure to the main result in McCardle (1985) in which information gathering
on a single new technology proceeds until the estimate of value surpasses an upper threshold or dips below
a lower threshold. In our model, the information (which comes in the form of adoptions of others) not only
updates the decision maker�s valuation of adopting each product but also affects the value through the po-
sitive network effect.

3.3. Effects of network strength

Now we look at the effect of an important market characteristic, the forcefulness of the positive feed-
back, on the optimal strategy. When the self-reinforcing effect in the market is very strong, the market will
quickly become dominated by one product, and the other will cease to be adopted further. Strong feedback
his formulation assumes that the decision maker�s own purchase does not affect the evolution of the market share. The effect of
ision maker�s purchase on the market evolution can be captured with a simple modification to the value function.
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Fig. 1. A simple example of a value function for t = 20. For x > 15, buy X; do not buy Y for any x. This example has
f X(x) = 1 + 0.2x, f Y(t � x) = 2 + 0.1 (t � x), KX = KY = 20, d = 0.8, q(x/t) = x/t, g(x) = g(y) = 1.
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makes for a ‘‘tippy’’ market which is highly susceptible to a winner-take-all logic: small leads grow to insur-
mountable leads quickly.

What makes some markets more tippy than others? This characteristic of the market is related to the
relative strength of the network-size-dependent benefits compared to the network-size-independent benefits
of the two products. For example, the more valuable are the file-sharing capabilities of handheld computers
relative to the stand-alone datebook features, the stronger the network effect. Similarly, the more costly it is
for a firm to deviate from its peers in its choice of order handling software because of the decreased avail-
ability of technical expertise or support, the stronger the network effect. Strong network effects initially
have a destabilizing effect on the market. When a product (e.g., a teleconferencing apparatus) has little
or no stand-alone value, but derives its value from the network it is a part of, the market will have a very
strong tendency to tip, that is, become dominated by one standard.

Because this is a decision-theoretic model, there is an asymmetry: the decision maker�s value and decision
are explicitly modeled; the value and behavior of the other market participants are summarized via the urn
model. The decision maker�s positive network effect is captured by using a value function that is increasing
in the number of people who use the same product. The strength of the network effect for the other market
participants is encoded in the q and g functions that govern the process. We now explore how changes in the
q function affect the decision maker�s optimal policy.

Functions that have an s-shape such as the q1 and q2 shown in Fig. 2 represent a market with a positive
feedback effect, or self-reinforcing tendency: when the proportion of X is low, the next potential user is less
likely than the proportion to be inclined toward X; when the proportion of X is high, the next potential user
is more likely than the proportion to be inclined toward X. In Fig. 2, for both q1 and q2, for proportions of
X below the fixed point p̂, the market is probabilistically moving toward Y, and for proportions of X above
p̂, the market is moving toward X. An s-shaped form of q is achieved by potential users randomly encoun-
tering a sample of existing users and being inclined toward the product type in the majority of their sample.
Any ‘‘at least j out of n’’ rule has a similar shape. Adoption processes that have an s-shaped relationship
between proportion and probability will be winner-take-all markets, that is, one of the technologies will
eventually become dominant and the other will cease to attract new adopters.

To look at the effect that the prominence of network effects has on the decision rule, we offer a technical
definition allowing us to say one q function implies a stronger network effect than another. We limit our
comparison to functions that have fixed points at 0 and 1 and share a fixed point p̂ in the interval (0, 1).
According to the definition below, in Fig. 2, q2 implies a stronger network effect than q1; q2 has a ‘‘steeper’’
s-shape than q1.



Probability
q(x/t)

0
Proportion p=x/t

q2

q1

p̂ 1

Fig. 2. Two s-shaped functions: q2 has stronger network effects than q1.
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Definition. Let functions q1 and q2 be such that q1(0) = q2(0) = 0, q1(1) = q2(1) = 1, and p̂ a shared fixed
point in (0, 1): q2ðp̂Þ ¼ q1ðp̂Þ ¼ p̂. If q01ðp̂Þ > 1 and q02ðp̂Þ > 1, and if for all 0 < p < p̂, q2(p) < q1(p) and for
all p̂ < p < 1, q2(p) > q1(p), then q2 implies a stronger network effect than q1.

Proposition 2 presents the effect on the optimal thresholds of a change in the strength of the network
effects in the market. We use the notation x iU(t) and x iL(t) to denote the upper and lower thresholds,
respectively, when the probability that the next user is inclined toward X is qiðxtÞ.

Proposition 2

(i) If q2 implies a stronger network effect than q1 and p̂ > ð<;¼Þ x1UðtÞ
t , then x2U(t) > (<,¼)x1U(t).

(ii) If q2 implies a stronger network effect than q1 and p̂ > ð<;¼Þ x1LðtÞ
t , then x2L(t) > (<,¼)x1L(t).

Proof. See Appendix A. h

Proposition 2 shows that network effects can either serve to increase or decrease the upper and lower
thresholds depending on the relative position of the threshold and the fixed point p̂ of the qi functions.
The results from Proposition 2 can be summarized in a single statement: Each threshold moves toward
the fixed point p̂ when the market has stronger network effects.

When the upper threshold is very high, stronger network effects move the threshold down: one needs a
smaller proportion of X-users for it to be optimal to buy X. For example, if at the beginning of the process,
it is always optimal to wait, a strong (enough) network effect will make buying X the best choice for very
high levels of X. In the extreme, for a very tippy market, one is virtually assured of making the right choice,
so uncertainty resolution becomes a less compelling reason for delaying purchase.

A special case of this configuration comes in a symmetric formulation with f X(x) = f Y(y) and a q func-
tion with p̂ ¼ 1

2
(which comes from a ‘‘majority of n’’ rule, for example). Strengthening the network effects

always decreases the upper threshold and increases the lower threshold; the ‘‘continuation region’’ shrinks
in this special, symmetric case.

When the upper threshold is lower than the fixed point p̂ of q, stronger network effects increase that
threshold. This relationship will occur when the benefits (stand-alone as well as marginal value of a network
member) of owning X are significantly greater than the benefits of owning Y. When the proportion of Xs
is below p̂, the process is moving (probabilistically) in the direction of becoming a Y-dominated market.
In this case, however, because of the relative attractiveness of X, it is optimal to buy X for some market
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proportions that indicate that Y will win eventually. The short-run benefits of X outweigh the long-term
prospects of Y. When the process becomes tippier, Proposition 2 informs us that both thresholds move
up (because the urn is tipping more forcefully toward Y) so ‘‘buy X ’’ is optimal over a smaller region
and ‘‘buy Y ’’ is optimal over a larger region.

To examine this result in the context of a current example, consider the recent developments with radio-
frequency identification (RFID) tags in applications that track the movement of goods through a supply
chain. The technology has been around for a decade, and while there exist pockets of adoption, the market
has not yet settled on standards for some of the technology�s attributes. In particular, for supply chain
applications, two main competing frequency ranges are available: high frequency (HF), 13.56 MHz, which
reads tags up to three feet, and ultra-high frequency (UHF), 300 MHz to 1 GHz, which reads tags at 10–
20 ft.

The popular press has many examples of firms� ‘‘buy or wait’’ deliberations. In a recent article in Elec-

tronic Business, Procter and Gamble (P & G) executives discuss the buy or wait question for RFID. So far,
waiting still makes sense for them, ‘‘We�re still in the investigating phase and not ready to make a sizable
commitment’’ (Stackpole, 2003). P & G plans to adopt RFID for their supply chain at some point in time,
but they will wait until more firms have adopted, allowing for the possibility that the market will have set-
tled on one of the frequency ranges, or at least have a stronger inclination to be moving in the direction of
one. In Baseline (Dignan, 2004), the manager at a California shipping facility states the dilemma bluntly.
‘‘One of the reasons [he] is less-than-enthusiastic about these systems is the lack of standards. �I�d have to
wait and see what shakes out....Standardization has to happen first.’’ The urn model is an apt metaphor for
thinking about the market�s evolution and the buy or wait decision.

This RFID example is also relevant to Proposition 2 because of the importance of complementary prod-
ucts that add value to the tracking capabilities of the technology, for example, ‘‘intelligent shelves’’ that
know when a product is out of stock or software applications that let supply chain partners share and ana-
lyze the data produced by the RFID tag system. The proliferation of complementary products increases the
prominence of network-size effects, making the market tippier. Proposition 2 implies that the wider the
availability of these complementary, value-adding products, the more the optimal strategy changes. If a
firm has no inherent preference for one frequency over the other, but cares solely about matching what
other market participants are doing (the special, symmetric case), then the stronger network effects shrink
the continuation region. In other words, the complementary products make waiting less attractive. If the
firm does have an inherent preference for the UHF product (and of course also cares about what other mar-
ket participants choose), then stronger network effects should make the firm more cautious in investing in
UHF, their preferred choice. The range of market penetration (UHF market share) for which the market is
moving toward HF yet it is still optimal for the firm to buy UHF is smaller in the tippier market.

In the different cases, the optimal strategy reacts differently to prominence of the positive feedback effects
in the market. The direction of the effect on the optimal strategy depends on the interaction between the
range of proportions of the market for which the market is ‘‘moving toward X ’’ vs. ‘‘moving toward
Y ’’ and the relative attractiveness to the decision maker, including network-size-dependent and network-
size-independent parts, of each of the products.
4. Conclusion

In this paper we have studied the decision problem facing a consumer or a manager with a choice be-
tween two incompatible competing technologies each subject to positive network benefits. While much
has been written about the economics of competing standards, most of the work on this subject in the eco-
nomics literature is motivated by efficiency and policy considerations. We study the problem from the point
of view of a decision maker who, uncertain about the future of the market, seeks insight into his problem.
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To do this, we built a decision theoretic model for the choice and used a stochastic process that captures
the dynamics of market share of two competing technologies. We characterized the optimal strategy to the
buy or wait problem as a pair of thresholds and analyzed the effect of the strength of network effects on
those thresholds.

Some unaddressed issues bear mention. First, we have assumed that a purchase stops the search process,
without allowing switching at a later date. We conjecture that including the possibility of switching will re-
duce the hurdles for purchase (i.e., will shrink the continuation region). Second, we have taken a decision-
theoretic approach to this problem. There are many challenges in a similar game theoretic approach that we
have not pursued. For example, can the proposed stochastic process, or some variation of it, be derived
from the optimizing behavior of heterogeneous individuals? One challenging aspect of that line of inquiry
is handling the multiple coordination equilibria in the dynamic setting.
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Appendix A

A.1. Proof of Proposition 1

To prove this proposition, first we show that the value of owning X is increasing in x and decreasing in y

(Lemma 1) and that the difference between the optimal value and the value of owning X is decreasing in x

and increasing in y (Lemma 2). (‘‘Decreasing’’ does not imply strictly decreasing; we use it to mean non-
increasing. Likewise, increasing is used in the sense of nondecreasing.) The result follows directly from
the second lemma.

Lemma 1. If fX, g, and q are increasing, then VX(x, y) is increasing in x and decreasing in y.

Proof. Throughout these proofs, we use induction on the number of ‘‘decision epochs’’ remaining. Define
V iX(x, y) as the value of owning X when there are i periods to go in the process and there are x Xs and y Ys
(t � x + y). We define V 0X(x, y) � 0.

We have two inductive assumptions:

1. V nX(x + 1, y) P V nX(x, y), (V nX increasing in x) and
2. V nX(x, y) P V nX(x, y + 1) (V nX decreasing in y).

The relationship between V n+1X(x, y) and V nX(x, y) is
V nþ1X ðx; yÞ ¼ f X ðxÞ þ d q
x
t

� 	
ð1� gðxÞÞ þ 1� q

x
t

� 	� 	
ð1� gðyÞÞ

h i
V nX ðx; yÞ

n

þ q
x
t

� 	
gðxÞV nX ðxþ 1; yÞ þ 1� q

x
t

� 	� 	
gðyÞV nX ðx; y þ 1Þ

o
:

Both parts of the induction hypothesis hold for n = 1 because V 1X(x, y) = f X(x), which is increasing in x

and constant in y.
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What remains to be shown is that

1. V n+1X(x + 1, y) P V n+1X(x, y), (V n+1X increasing in x) and
2. V n+1X(x, y) P V n+1X(x, y + 1) (V n+1X decreasing in y).

Both of the induction hypotheses will be approached the same way. The expressions for the RHS and
LHS of the inequalities contain convex combinations of V nX terms. We establish the inequalities by
showing that the corresponding weighting schemes can be compared via first order stochastic dominance,
which in turn implies that the desired weighted value is higher.

First, we address the hypothesis that V n+1X is decreasing in y: V n+1X(x, y) P V n+1X(x, y + 1). The first
column of Table 1 contains the V nX terms that appear in the V n+1X expressions and the respective weights.
The terms appear in a particular order in the table: ascending value where the ranking is clear from the
assumptions, and ‘‘worst case’’ where there is not a clear ranking. Based on the inductive assumptions,
some of the terms can be ordered: V nX(x, y + 2) 6 V nX(x, y + 1) 6 V nX(x, y) 6 V nX(x + 1, y). Further, we
know that V nX(x, y + 1) 6 V nX(x + 1, y + 1) 6 V nX(x + 1, y). The terms V nX(x + 1, y + 1) and V nX(x, y)
cannot be compared. The order used in the table is the least favorable order for the desired inequality
(V n+1X(x, y) P V n+1X(x, y + 1)) to hold.

To show stochastic dominance of V n+1X(x, y) over V n+1X(x, y + 1), we need to show that the cumulative
probability distribution forV n+1X(x, y) lies below the distribution for V n+1X(x, y + 1). Both of the
distributions have only three points, so it suffices to show (1) that the low, middle, and high points in the
V n+1X(x, y) distribution are not lower than the low, middle, and high points respectively in the other
distribution, (2) that the weight on the lowest point in the V n+1X(x, y) distribution is lower than the weight
on the lowest point in the other distribution, and (3) that the weight on the highest point in the V n+1X(x, y)
distribution is higher than the weight on the highest point in the other distribution. The stochastic
dominance implies that the weighted sum of the V n+1X(x, y) terms is higher.

The first condition can be seen by inspecting Table 1: the low, middle, and high points in the middle
column are higher than the respective points in the right column. The second and third conditions are met
because q and g are increasing:
Table
V n+1X

Term

V nX(x

V nX(x

V nX(x
V nX(x
V nX(x
1� q
x

t þ 1


 �
 �
gðy þ 1ÞP 1� q

x
t

� 	� 	
gðyÞ ð2Þ
and
q
x
t

� 	
gðxÞP q

x
t þ 1


 �
gðxÞ: ð3Þ
Finally, we note that V n+1X(x, y) and V n+1X(x, y + 1) each contain a f X(x) term which cancels out in the
comparison.
1
(x, y) P V n+1X(x, y + 1)

Probability (weight) in V n+1X(x, y) Probability (weight) in V n+1X(x, y + 1)

, y + 2) ð1� qð x
tþ1ÞÞgðy þ 1Þ

, y + 1) ð1� qðxtÞÞgðyÞ qð x
tþ1Þð1� gðxÞÞ þ ð1� qð x

tþ1ÞÞð1� gðy þ 1ÞÞ
, y) qðxtÞð1� gðxÞÞ þ ð1� qðxtÞÞð1� gðyÞÞ

+ 1, y + 1) qð x
tþ1ÞgðxÞ

+ 1, y) qðxtÞgðxÞ



Table 2
V n+1X(x + 1, y) P V n+1X(x, y)

Term Probability (weight) in V n+1X(x + 1, y) Probability (weight) in V n+1X(x, y)

V nX(x, y + 1) ð1� qðxtÞÞgðyÞ
V nX(x + 1, y + 1) ð1� qðxþ1

tþ1ÞÞgðyÞ
V nX(x, y) qðxtÞð1� gðxÞÞ þ ð1� qðxtÞÞð1� gðyÞÞ
V nX(x + 1, y) qðxþ1

tþ1Þð1� gðxþ 1ÞÞ þ ð1� qðxþ1
tþ1ÞÞð1� gðyÞÞ qðxtÞgðxÞ

V nX(x + 2, y) qðxþ1
tþ1Þgðxþ 1Þ
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Next we address the hypothesis that V n+1X(x + 1, y) P V n+1X(x, y). The terms and weights are
summarized in Table 2.

Based on the inductive assumptions, some of the terms can be ordered: V nX(x, y + 1) 6 V nX(x, y) 6
V nX(x + 1, y) 6 V nX(x + 2, y). Further, we know that V nX(x, y + 1) 6 V nX(x + 1, y + 1) 6 V nX(x + 1, y).
The terms V nX(x + 1, y + 1) and V nX(x, y) cannot be compared. The order used in the table is the least
favorable order for the desired inequality V n+1X(x + 1, y) P V n+1X(x, y) to hold.

Once again, all three conditions for stochastic dominance are satisfied: (1) the relative positions of the
points, (2) the relative weight on the lowest points:
1� q
x
t

� 	� 	
gðyÞP 1� q

xþ 1

t þ 1


 �
 �
gðyÞ ð4Þ
and (3) the relative weight on the highest points:
q
xþ 1

t þ 1


 �
gðxþ 1ÞP q

x
t

� 	
gðxÞ: ð5Þ
Finally, the f X(x + 1) term in V n+1X(x + 1, y) is greater than the f X(x) term in V n+1X(x, y).
Therefore, the inductive hypotheses hold and because for d < 1, limn !1 V nX(x, y)=VX(x, y),VX(x, y) is

increasing in x and decreasing in y. h

Lemma 2. If f X, q, and g are increasing, then A(x, y) = V(x, y) � VX(x, y) is decreasing in x and increasing

in y.

Proof. Again, we use induction on the number of periods left. Define Ai(x, y) = V i(x, y) � V iX(x, y), with
V iX(x, y) the value of owning X when there are i periods to go in the process and there are x Xs and y Ys.
We denote V i(x, y) as the value associated with making optimal choices when there are i periods to go in the
process. As above, V 0X(x, y) � 0 and we define V 0(x, y) � 0.

The relationship between An+1 and the V n and V nX terms is as follows.
Anþ1ðx; yÞ ¼ V nþ1ðx; yÞ � V nþ1X ðx; yÞ

¼ max

V nþ1X ðx; yÞ � KX ;

V nþ1Y ðx; yÞ � KY ;

d q x
t

� �
ð1� gðxÞÞ þ 1� q x

t
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ð1� gðyÞÞ

� �
V nðx; yÞ

�
þ q x

t

� �
gðxÞV nðxþ 1; yÞ þ 1� q x

t

� �� �
gðyÞV nðx; y þ 1Þ

�

8>>>><
>>>>:

9>>>>=
>>>>;
� V nþ1X ðx; yÞ:
First, show A1(x, y) = V1(x, y) � V1X(x, y) decreasing in x and increasing in y.
A1ðx; yÞ ¼ V 1ðx; yÞ � V 1X ðx; yÞ ¼ max f X ðxÞ � KX ; f Y ðyÞ � KY ; 0
� �

� f X ðxÞ: ð6Þ
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There are three cases: f X(x) � KX � f X(x) = �KX, fY(y) � KY � f X(x), and �f X(x). They are all decreas-
ing in x and increasing in y.

The inductive assumptions are that An(x, y) is decreasing in x and increasing in y. And we will show that
An+1(x, y) decreasing in x and increasing in y.

Using the equation for An+1(x, y) above, we can see that if V n+1(x, y) comes from the value of buy X or
from the value of buy Y, the desired result is immediate based on Lemma 1. The third possibility, that the
value of V n+1(x, y) comes from the value of waiting, is examined in more detail below:
Anþ1ðx; yÞ ¼ d q
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o
� f X ðxÞ:
At this point, the proof is exactly analogous to the proof for Lemma 1. The inequality
An+1(x, y) P An+1(x + 1, y) holds because the LHS and the RHS are weighted averages of three points
and the distribution for An+1(x, y) stochastically dominates the distribution for An+1(x + 1, y). Table 2
applies, with all the Vs changed to As. And the terms are shown in descending order, or, in cases in which
the inductive assumptions don�t provide a clear ordering, worst case ordering. The weighted averages have
an ordering consistent with An+1(x, y) P An+1(x + 1, y) and �f X(x + 1) < � f X(x). The weights for the
inequality An+1(x, y + 1) P An+1(x, y) can be found in Table 1 with the same substitution of A for V,
and terms in descending not ascending order.

The proposition follows directly from Lemma 2. If A(x, y) � V(x, y) � VX(x, y) is decreasing in x and
increasing in y, then
Aðxþ 1; t � x� 1Þ 6 Aðx; t � xÞ 6 Aðx� 1; t � xþ 1Þ:

For a given t, if at some point x, A(x, t � x) + KX = 0 (the point at which buy X becomes optimal), then

for any x 0 > x and t � x 0 < t � x, 0 P V(x 0, t � x 0) � VX(x 0, t � x 0) + KX. But we know by the definition
of V(x, y) that V(x, y) P VX(x, y) � KX for all x. So once buy X becomes optimal, it stays optimal for all
greater values of x. The upper cutoff xU(t) is the lowest x, if any, for which V(x, t � x) =
VX(x, t � x) � KX. The lower cutoff xL(t) is the highest x, if any, for which V(x, t �
x) = VY(x, t � x) � KY. If there is no x for which V(x, t � x) = VX(x, t � x) � KX or V(x, t �
x) = VY(x, t � x) � KY, then we assign xU(t) = 1 or xL(t) = � 1, respectively. h
A.2. Proof of Proposition 2

In the case where x1U(t) > x1L(t), x1U
t is the point of intersection of buy X and wait, i.e., the x such that
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Fig. 3. Figures used in proof of effect of strength of network effects on thresholds for the case of xU > xL.
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The quantity A(x, y) was defined in Lemma 2. From Lemma 2, we know that A(x, y) is decreasing in x and
increasing in y: A(x + 1, t � x) 6 A(x, t � x) 6 A(x, t � x + 1).

To understand the effect on the point of intersection of buy X and wait, we look at two effects: (a) Mak-
ing q tippier increases q above p̂ and decreases it below p̂. (b) An increase in q lowers the RHS of (7) (and a
decrease in q raises it).

Effect (a) follows directly from the definition of stronger network effects. Effect (b) is derived from the
following logic: an increase in q increases the weight qðxtÞgðxÞ on the lowest valued point A(x + 1, t � x)
and decreases the weight ð1� qðxtÞÞgðt � xÞ on the highest valued point A(x, t � x + 1). A three-point
weighted average will unambiguously decrease when the weight on the lowest point is increased and the
weight on the highest point is decreased. 4

Now consider the case in which p̂ > x1UðtÞ
t (see Fig. 3). Making q tippier rotates the RHS clockwise around

p̂t because below p̂t, q decreases, increasing the RHS of equation (7), and above p̂t, q increases, decreasing
the RHS of equation (7). Because the LHS is increasing in x, the RHS rotation increases the point of inter-
section. Likewise, if p̂ < x1UðtÞ

t , making q tippier rotates the RHS clockwise around p̂t. Because the LHS is
increasing in x, the RHS rotation decreases the point of intersection. For the special case in which p̂ ¼ x1UðtÞ

t ,
the RHS rotates around the point of intersection, so that point of intersection does not change.

In the case for which x1U
t ¼ x1LðtÞ ¼ x̂, x̂ is the point of intersection of buy X and buy Y, i.e., the x such

that
4 C
ð1� a1
V X ðx; t � xÞ � KX ¼ V Y ðx; t � xÞ � KY ;

KY � f Y ðt � xÞ � KX þ f X ðxÞ
d
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þ 1� q
x
t

� 	� 	
gðt � xÞ½V Y ðx; t � xþ 1Þ � V X ðx; t � xþ 1Þ�:
onsider a1x1 + (1 � a1 � a3)x2 + a3x3 with x1 6 x2 6 x3. If a01 ¼ a1 þ D1 and a03 ¼ a3 � D3, with D1, D3 P 0, then ½a1x1þ
� a3Þx2 þ a3x3� � ½a01x1 þ ð1� a01 � a03Þx2 þ a03x3� ¼ D1ðx2 � x1Þ þ D3ðx3 � x2ÞP 0.
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From Lemma 1, VX(x, y) is increasing in x and decreasing in y. By the same logic, VY(x, y) is decreasing
in x and increasing in y. Therefore, VY(x, y) � VX(x, y) is decreasing in x and increasing in y. If p̂ < x̂

t, then a
tippier q rotates the RHS clockwise around p̂t and reduces the point of intersection.
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