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Abstract: Modeling R&D as standard sequential search, we consider a monopolist who can implement a sequence of technolog-
ical discoveries during the technology search process: he earns revenue on his installed technology while he engages in R&D to
find improved technology. What is not standard is that he has a finite number of opportunities to introduce improved technology.
We show that his optimal policy is characterized by thresholds ξi(x): introduce the newly found technology if and only if it exceeds
ξi(x) when x is the state of the currently installed technology and i is the number of remaining introductions allowed. We also
analyze a nonstationary learning-by-doing model in which the monopolist’s experience in implementing new technologies imparts
increased capability in generating new technologies. Because this nonstationary model is not in the class of monotone stopping
problems, a number of surprising results hold and several seemingly obvious properties of the stationary model no longer hold.
© 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 578–594, 2011

Keywords: search; technological improvement; learning by doing

1. INTRODUCTION

The decision to release a new version of a product
involves a delicate balance between often conflicting forces.
Whereas, the increased quality (and therefore market posi-
tion) bestowed by a new product introduction improves the
firm’s profit stream, releasing a new product reduces the num-
ber of future product improvements that can be made. The
constraint of “product architecture” is most apparent in tech-
nology products. Each improvement to a software product
that maintains compatibility with extant users increases the
cost and complexity of supporting and maintaining the prod-
uct. Eventually, the product, though vastly improved from
multiple improving releases, becomes unwieldy and must be
rewritten and replaced. Similar considerations apply to dig-
ital hardware: adding features eventually forces the device
to be “re-engineered.” Combined with customer resistance
to a sequence of product introductions, architectural limita-
tions render a new product introduction opportunity a scarce
resource to be carefully managed.

This article focuses on two trade-offs. The first entails the
balance between immediately reaping the reward from an
improvement and deferring the reward in favor of an even
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bigger improvement (and concomitant reward) in the future.
The second trade-off balances the ongoing cost of R&D with
the anticipated rewards from R&D. When the prospects for
improvement are dim, it makes sense to stop searching for
the “new new thing”1.

The structure of this problem and the associated trade-
offs apply to any innovation-intensive endeavor in which a
sequence of improved versions can be introduced. In addi-
tion to improving software, the “introduce or wait” dilemma
applies to increasingly fast computers, increasingly com-
pact cellular phones, and increasingly sophisticated network
products. Process improvements are subject to the same
logic. An implement-each-improvement in factory configura-
tion or work environment approach fails to anticipate future
improvements that may surface: it fails to balance the first
trade-off.

We frame the decision problem as a multi-stage dynamic
optimization problem with sequential introductions under

1 Operating in a competitive environment introduces a third trade-
off: get to market early, perhaps with a minor innovation, to secure
a dominant position vs. waiting to secure a more substantial innova-
tion at the risk of being pre-empted by competitors. This trade-off
has been studied in a winner-take-all context by Lippman and
Mamer [18] and is not considered in this article.

© 2011 Wiley Periodicals, Inc.



Kornish, Lippman, and Mamer: Search and Introduction of Improved Technologies 579

uncertainty in which a firm can introduce up to N (addi-
tional) innovations. Finite N captures the essential constraint
on the number of improving introductions that can be made—
brought about by either the product architecture, the will-
ingness of customers to accept new versions, or even an
endogenously specified product life cycle.2 We model the
discovery of the sequence of technological innovations as a
compound Poisson process: the times between arrivals are
exponentially distributed random variables, and the size of
the innovations are independent random draws from a single
(unchanging) distribution. This compound Poisson process
captures uncertainty in both the timing and the size of the
innovations.

Our analysis addresses the two trade-offs: the conflict
between something good now and something better later
(now vs. later) and the balance between the potential for
improvement and the cost of finding it (continue vs. stop).
We show in Theorem 1 that, like other search models, the
optimal policy is characterized by thresholds: adopt the new
technology if and only if its value exceeds ξi(x), where x

is the state of the technology currently in place and i is the
number of remaining implementations allowed. The thresh-
old ξi(x) is the solution to the now vs. later trade-off: the
firm should wait to introduce a new product until a suffi-
ciently large improvement has been found. Theorems 2 and 3
demonstrate that these thresholds are increasing in the state x

of the most recently implemented innovation and decreasing
in the number i of possible introductions remaining.

Theorem 1 also shows that a single threshold solves the
continue vs. stop trade-off: there is an innovation level ξ such
that it is optimal for the firm to engage in R&D if and only
if the size x of the most recently implemented technology
is less than ξ . If the firm discovers an innovation above this
threshold at any point in time, no matter how many possible
introductions (out of the N ) are remaining, it is introduced
and search ends.

Based on the idea of learning-by-doing (a firm’s innov-
ative capability increases with the number of innovations it
has introduced), we extend the model by examining a learning
effect that takes place when the firm introduces an innovation.
The traditional learning curve is a relationship between mar-
ginal cost of production and cumulative production. In our
context, we relate the parameters that characterize the search
environment to experience with introductions. We examine
the effects on the optimal policy when the introduction of

2 Some of these features, for example increasing customer resistance
to successive product releases, could have been modeled with a fixed
cost of implementing that rises with each new release. This approach
would introduce a non-stationary element into the model with a con-
comitant increase in analytical complexity. Allowing a finite number
of new product releases captures the spirit of the product improve-
ment problem while at the same time allowing us to characterize
optimal policies.

a new technology improves future search. Like learning-by-
doing, experience improves R&D capability because the firm
has a chance to learn from mistakes and problems encoun-
tered in the introduction of new technological discoveries.
Theorems 5 and 6 show how an increase in the ability to gen-
erate technological discoveries impacts the optimal policy.
As generating ability increases, through some combination of
making innovations come faster, reducing the cost of search,
or improving the distribution of innovations, the threshold
ξi(x) decreases in x for i > 1 if the expected duration
of search in the last period also decreases. However, if the
increased generating ability increases the expected duration
of search (e.g., via a reduction in the cost of search per unit
time), then the current threshold can increase or decrease.

While our research is directed at the problem of technol-
ogy adoption, our search model has other applications. For
example, consider a professional worker who engages in “on-
the-job” search: while working, he continues to receive job
offers. If he switches jobs too often, he risks being labeled
a “job hopper”, tarnishing his reputation and reducing the
quality of future job offers. In this example, it is reasonable
to model the worker as limiting himself to a small number N

of job switches during his career.
A discussion of related literature and a formal presentation

of the model are given in Sections 2 and 3. We analyze the
stationary model in Section 4. Section 5 analyzes the non-
stationary model induced by learning. A few conclusions are
proffered in Section 6.

2. RELATED LITERATURE

The idea that technological change not only leads to eco-
nomic growth but also is the most important factor accounting
for economic growth is now a commonplace. According to
Mansfield [23; p. 4, 5, 7], the vast majority of the long-term
increase in output per capita in the United States is attributable
to technological change along with increased educational
levels:

“advance of knowledge” contributed about 40 percent
of the total increase in national income per person
employed during 1929–1957. … In most industries, new
products account for a significant share of the market.

The accepted notion that repeated innovation is a major
driving force in modern economies has roots in the writings
of Schumpeter [32] and Usher [34]. Schumpeter describes
the importance of the entrepreneur-led “gales of creative
destruction” for economic progress in a capitalist society. He
distinguished inventions (the flashes of insight) from inno-
vations (the improved ability to profit from the invention)
whereas Usher’s labels for these two modes of technologi-
cal improvement are “critical insight” and “critical revision.”
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Gomory [16] contrasts the high-profile process of turning
breakthrough scientific discoveries into commercial products
(Schumpeter’s invention) with the less dramatic and grueling
process of incremental product improvement (Schumpeter’s
innovation) and stresses the importance of the process of
refinement. But perhaps it is hindsight, and lack of his-
torical knowledge, that induces us to view the difference
between invention and innovation as so brightly illuminated.
For example, Scherer [31] discusses this process of revision
in the context of James Watt’s activities from 1765–1780
improving the steam engine; he writes (pp. 21–22), “Many
[improvements] were logical extensions of Watt’s original
idea, requiring relatively little new insight but considerable
trial and error. In other instances … a high level of creative
insight was revealed.” Providing a multitude of examples,
economic historian Rosenberg [29, p. 7] notes that

inventive activity is, itself, best described as a gradual
process of accretion, a cumulation of minor improve-
ments, modifications, and economies, a sequence of
events, where, in general, continuities are much more
important than discontinuities. …even the big techno-
logical breakthroughs which are associated with the
names of Darby, Watt, Cort, and Bessemer, usually
have much more gently declining slopes of cost reduc-
tion flowing from their technical contributions than the
historical literature would lead us to expect.

One consequence of the “accretion …of minor improve-
ments” is that all R&D effort does not lead to improvements;
some attempted improvements will not be fruitful. In our
model, R&D effort is synonymous with search; because these
efforts consist of independent draws from an unchanging
distribution (in which each technological improvement is
completely characterized by its level of profitability), the
spirit of our article is aligned with the incremental improve-
ments of Usherian revision. In this context, we contribute
to the literatures of technology choice and search theory by
exploring the case of repeated search for and adoption of
improved alternatives.

In the standard search problem, the searcher can continue
taking independent draws from F , the unchanging distrib-
ution of the size of newly found technological innovations;
the size of an innovation is simply the per unit time rev-
enue associated with the innovation. On finding an acceptable
innovation, the monopolist implements the innovation and
ceases search. Lippman and McCall [19] describe many vari-
ations on this standard search problem. The closest variation
to the problem we study here is the on-the-job search model
(Lippman and McCall [19], pp. 179–181; Burdett [5]). In on-
the-job search, the decision maker chooses between working
only (and not searching), searching only (and not working),
and searching while working. Employed searchers accept any
offer that increases their wage and quit searching at very high

wage levels. This latter aspect of the solution is similar to the
resolution of the continue vs. stop trade-off in our model.
However, in contrast to our work, the focus in the on-the-job
search models is whether or not to search while working and
not which job offers (innovation sizes in our model) to accept.

Articles that explore this question of which innovations
to implement when facing a stream of improved innovations
include Balcer and Lippman [3], Cauley and Lippman [7],
and Farzin et al. [15].3 In these three articles as well as
this article, the optimal policy is characterized by one or
more thresholds: implement when the improved innovation
exceeds the threshold. The work of Balcer and Lippman [3] is
formulated as a repeated purchase decision problem, whereas
our model as well as the models in these other two articles
are couched in terms of a firm’s repeated decision of whether
or not to introduce a new technological discovery. Like this
work, the models in all three articles are set in an environment
of uncertainty, with uncertain time until innovation and uncer-
tain innovation size. In our model and the model of Farzin
et al., introduction of new innovations is discouraged due to
a limit on the number of introductions. The other two articles
do not impose a limit on the number of introductions; instead,
introduction of new innovations is discouraged by switching
costs.

The work of Cauley and Lippman [7] models endoge-
nously generated technological discoveries in which the level
of a firm’s currently installed technology affects the distrib-
ution of technological discoveries; moreover, the efficiency
of the R&D effort increases with the state of technology (as
could be generated with learning-by-doing). In the articles
by Balcer and Lippman and Farzin et al., the efficiency of
the R&D effort is unchanging both in time and in the state
of technology. In this article, however, the efficiency of the
R&D effort declines with time because the parameters of the
search process are stationary: search for technological inno-
vations is drawn from an unchanging offer distribution. The
case of non-stationary parameters is treated in the penultimate
section.

In these three articles, the search process produces a
sequence of strict improvements. This contrasts with our
work: the value of the technological discoveries, drawn from
the same distribution, can fall below the value of the technol-
ogy currently in place. Moreover, because the distribution of
innovations is time invariant, the economic return to search
decreases with the state of the technology currently in place
whence eventually the monopolist ceases search. The three
works cited above that model guaranteed improvements as

3 Also see the follow-up notes on Balcer and Lippman by Kornish
[17] and on Farzin et al. by Doraszelski [14]. Repeated technologi-
cal improvements are not unlike repeated tree-cutting models—for
example, see Miller and Voltaire [25, 26]—in which an improving
asset can be periodically harvested.
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a result of R&D effort fit Schumpeter’s invention setting
whereas technological improvement in our article is more
akin to Schumpeter’s innovation.

Gomory’s advocacy of the importance of product refine-
ment rests on a learning-by-doing premise. This premise
was advanced by Arrow [2] in the context of manufactur-
ing efficiencies that improve with cumulative production.
More recently, Cohen and Levinthal [11, 12] coined the
term “absorptive capacity” to refer to a firm’s ability to
assimilate and exploit knowledge created outside the firm.
Investment in absorptive capacity allows the firm to attain
a deeper understanding of new knowledge created in the
pertinent domain and also to better profit from it. In an exten-
sion of the basic model, we explicitly capture the notion
of absorptive capacity by modeling an increase in knowl-
edge that emanates from the monopolist’s implementation
of technological discoveries: implementation itself gener-
ates an increase in the monopolist’s future ability to uncover
profit improving innovations. In Section 5, we explore how
this aspect of learning-via-implementation impacts the firm’s
decisions.

3. MODEL

As is common in the literature, we model the R&D
process as sequential search. In this article, we are con-
cerned with a monopolist’s decisions regarding which of his
newly found innovations, equivalently discoveries, to imple-
ment. Although there is no limit on how often the monopolist
can sample the distribution of possible innovations, he is
limited to a finite number N of implementations. Because
N < ∞, the monopolist will not elect to implement each and
every improved technology he finds. Customer resistance and
engineering constraints are two important impediments to
frequent product changes. Additional motivation for a fixedN

of moderate size was given in the introduction: architectural
constraints or increasing complexity can hamper implement-
ing more than a few product improvements, or a limited
number of introductions can be imposed by management
fiat in order to protect the product identity, or to impose a
manageable discipline on the product introduction process4.

While engaged in R&D, the monopolist expends an
amount of money c ≥ 0 per unit time on R&D: the cost of
search is c per unit time. When the monopolist stops expend-
ing money on R&D, the discovery rate falls to 0. While

4 An alternative would be to propose a fixed cost for introducing
a new product. Necessarily, this fixed cost would have to change
with time to capture, for example the increasing complexity of the
modified product. We imagine the results of such a model would be
similar to those of this article; however, we believe that modeling the
constrained plasticity of a product as a finite number of introduction
opportunities best captures the product improvement situation.

pursuing R&D, technological discoveries arrive in accord
with a Poisson process with arrival rate λ, and the net revenue
flow per unit time of the newly discovered technologies (if
implemented) are independent with cumulative distribution
function F . To avoid unnecessary complexity, we assume that
F has a density f and that the set where f is positive is a
(possibly infinite) interval (a, b). All costs and revenues are
discounted at the continuous time rate α > 0. The time hori-
zon is infinite, and the monopolist’s goal is to maximize his
expected discounted stream of revenue net of search costs.

If the revenue generated by the technology currently in
place is x per unit time, we say that x is the state of the sys-
tem. If no technology has been implemented, then the state of
the system is 0. The monopolist’s cost per unit time is 0 if he
is not engaged in R&D, and it is c if he is engaged in R&D.
When N − i technologies have already been implemented,
so that the monopolist is allowed to implement at most i

additional technologies, we say that i periods remain or we
are in period i. If 0 periods remain, then no additional tech-
nologies can be implemented (and the monopolist necessarily
ceases search). Consequently, when 0 periods remain and the
state of the system is x, the monopolist’s future expected dis-
counted profit is simply x/α. The questions to be answered
are when to cease search and which technologies are worthy
of introduction.

Although it might be natural to require that any adopted
technology be a strict improvement over the one in place,
we do not impose this requirement; nevertheless, it falls
out of our analysis. Similarly, we allow recall of any previ-
ously discovered but not implemented technology to simplify
the presentation; again, recall of past discoveries is never
exercised.

4. ANALYSIS

In the standard continuous time infinite horizon economic
search problem with no discounting and Poisson arrival of
offers at rate λ, the searcher expends c per unit time until he
encounters an acceptable offer, say of value x. On accept-
ing this offer, he receives x and the problem terminates. The
optimal policy is characterized by a threshold ξ called the
reservation price: accept the first offer whose value is at least
ξ . The threshold ξ is the unique solution to (see Lippman and
McCall, [19])

c = λH(y) (1)

where

H(y) =
∫ ∞

y

(s − y)f (s)ds. (2)

Moreover, ξ is the value of the problem. In the classical
model, the optimal policy is “myopic”: the searcher stops

Naval Research Logistics DOI 10.1002/nav
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(optimally) when the incremental discounted expected value
of exactly one more observation falls below the discounted
expected cost of obtaining that observation.

Now presume that all costs and revenues are discounted at
rate α > 0. It is a trivial extension, but useful for our pur-
poses, to let an offer of x mean that if it were accepted, then
x per unit time would be received from that moment onward.
Equivalently, on accepting an offer of x, the searcher receives
a lump sum of x/α. If he were to continue search until the
next offer arrives, with the ability to recall the extant offer of
x, then his expected return would be

− c

α + λ
+ λ

α + λ

[
xF(x) +

∫ ∞

x

sf (s)ds

]/
α

= − c

α + λ
+ λ

α + λ
[x + H(x)]/α.

When y is the optimal threshold, the searcher is indifferent
between accepting y, earning y/α, and taking exactly one
more observation. Hence,

y

α
= −c

α + λ
+ λ

α + λ
[y + H(y)]/α (3)

which reduces to

y + c = λH(y)/α. (4)

The value of y which solves (4) is unique, and we denote it
by ξ . Clearly, ξ/α is the value of the problem.

In the standard search problem with discounting, the
monopolist is earning revenue 0 per unit time prior to his
first and only implementation of some technology. Suppose,
however, that he were earning x per unit time when N = 1—
prior to his first (and last) implementation of some yet to be
discovered technology.

In anticipation of our full model, let V1(x, y) denote the
expected discounted return when at most N = 1 new inno-
vations can be introduced, the current flow rate of earn-
ings is x, and search continues until an innovation with
flow rate at least y is discovered and implemented. Using∫ ∞
y

xf (x)dx = H(y) + yF(y), we have

V1(x, y) =
{
x − c + λ

∫ ∞
y

s
α
f (s)ds

}
(α + λF(y))

= y

α
+ λH(y)/α − (c − x + y)

(α + λF(y))
. (5)

The first-order condition is

y + c − x = λH(y)/α. (6)

Of course, (6) is the same as (4) when x = 0. For x ≤ ξ ,
where ξ is the unique solution to c = λH(y)/α, let ξ1(x)

Figure 1. The Calculation of ξ1(0.1) when λ = 1, α = 0.25,
c = 0.15, F is uniform on (0, 1).

denote the unique solution to (6). Substituting y = ξ1(x)

into (5) and using (6) produces

V1(x) ≡ V1(x, ξ1(x)) = ξ1(x)/α.

As made evident in Fig. 1, ξ1(x) is strictly increasing in
x for x < ξ : as x increases the searcher becomes less will-
ing to implement any new technology. Also, ξ1(ξ) = ξ as
V1(x, y) < x/λ for all y if x > ξ : do not search when N = 1
and x ≥ ξ . This is the essence of what we find in the model
examined in this article: the threshold increases as the current
state x increases, and search ceases when the state reaches ξ .

We will demonstrate that it suffices to limit consideration
to threshold policies: every optimal policy is characterized
by thresholds. In particular, we let ξi(x) denote the opti-
mal threshold when x is the currently installed technology
and i implementations remain. See Fig. 2 for a numerical
illustration.

Before proceeding with this demonstration, we note four
standard facts which we use repeatedly. First, if τ is an expo-
nential random variable with parameter λ, then Ee−ατ =
λ/(α + λ). Second, if a flow rate c is received at each instant
of time for a period whose duration is an exponential amount
of time τ with parameter λ, the expected discounted value
of these payments is c/(α + λ). Third, if each arrival of a
Poisson process with parameter λ is recorded (independently
of the Poisson process and independently of each other) with
probability F(y), then the process of recorded arrivals is a
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Figure 2. Graph of ξ1(x), ξ2(x), and ξ3(x) when λ = 1, α =
0.25, c = 0.15, F is uniform on (0, 1).

Poisson process with parameter λF(y) (Ross 1970, p. 29).
Fourth, monotone stopping: Let S be the set of states such
that it is better to stop than to take exactly one more observa-
tion. If S is closed (i.e., once a state in S is reached, all future
states of the system also will be in S), then it is optimal to
stop at state x if and only if x is in S. Thus, if it is does not
pay to take exactly one more observation, then it does not
pay to continue sampling for an amount of time τ , where
τ is any stopping time for the strong Markov process.5 The
power of this result is that the complex decision of whether
or not to stop is reduced to a myopic calculation, stop ver-
sus take exactly one more obervation. This result applies to
a broad class of stopping problems. It is due to Derman and
Sacks [13] and to Chow and Robbins [8] and also can be
found in Chow et al. [9]. Also see Lippman and McCall [20,
pp. 223–225] for a less abstract treatment.

To ensure that engaging in R&D is a profitable undertaking
at the beginning, if not later on, we assume throughout this
article that

λE(X)/α ≥ c. (7)

5 Some boundedness conditions, such as uniform integrability, are
required. Application of the monotone stoppping theorem requires
verification that S is closed. This is easy to do in most search
problems when recall of previous offers is allowed.

4.1. Threshold Policies and Monotonicity of the
Optimal Return Function

Our first result states that the optimal policy is completely
characterized by thresholds and that there is a critical num-
ber ξ such that it is optimal for the monopolist to engage in
R&D if and only if the state x of the currently installed tech-
nology is less than ξ . Furthermore, the optimal threholds are
bounded below by the current state and above by the critical
number ξ .

Let Vi(x) denote the expected return under an optimal pol-
icy when i implementations remain and a technology of value
x has just been implemented, and define Vi(x, y) to be the
expected return to search when i implementations remain, x

is the state of the currently installed technology, the monop-
olist uses threshold y rather than ξi(x) in period i, and he
acts optimally when fewer than i implementations remain.
Clearly,

Vi(x) ≡ Vi(x, ξi(x)). (8)

LEMMA 1: When i ≥ 0 implementations remain and the
current state isx, the optimal returnVi(x) is strictly increasing
in x.

PROOF: When 0 implementations remain, V0(x) = x/α.
Suppose that i ≥ 1. Let τ be the time until technology x is
replaced when following an optimal policy and the state is
x when i periods remain, and let Yx be the magnitude of the
first replacement so that Vi(x) = E[(x − c)(1 − e−ατ )/α] +
E[e−ατVi−1(Yx)]. Let Ṽi(x

′) be the return when starting in
state x ′ when i periods remain, the first replacement occurs
at time τ , the new technology has magnitude Yx , and an
optimal policy is followed when i − 1 periods remain. Fix
x ′ > x so that Vi(x

′) ≥ Ṽi(x
′) = E[(x ′ − c)(1− e−ατ )/α]+

E[e−ατVi−1(Yx)] = E[(x ′ − x)(1 − e−ατ )/α] + Vi(x) >

Vi(x). Thus, Vi(·) is strictly increasing. �

THEOREM 1: When i ≥ 1 implementations remain and
the current state is x, there is a threshold ξi(x) such that an
innovation with value y should be implemented if and only
if y ≥ ξi(x). Moreover, x ≤ ξi(x) < ξ for x < ξ , where ξ

satisfies6

c = λ

α
H(x); (9)

ξ is the technology level which extinguishes search: for each
i ≥ 1, it is optimal to engage in R&D if and only if x < ξ .

6 If c > 0, then (9) has a unique solution and F(ξ) < 1. If c = 0,
then the existence of a solution to c = λ

α
H(x) requires that F(t) = 1

for some t < ∞. In this case set ξ = sup{t : F(t) < 1}. In either
case the density f is strictly positive on an interval of the form (a, ξ).
This latter fact is used in the proof of Theorem 2.

Naval Research Logistics DOI 10.1002/nav
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PROOF: To show that the optimal policy is characterized
by thresholds, suppose i implementations remain, the state is
x, the monopolist has discovered (but not yet implemented)
a technology y, and y ′ > y. If it is optimal to implement y,
then Vi−1(y

′) ≥ Vi−1(y) ≥ Vi(x) where the first inequal-
ity follows from monotonicity and the second from it being
optimal to implement y. Hence, it is optimal to implement
y ′. Thus, thresholds characterize the optimal policy.

To demonstrate that ξi(x) ≥ x, we will argue that imple-
menting a technology with value less than the one currently in
place can not be optimal. Suppose it were not true, then there
is an i and an x such that ξi(x) < x. Suppose further that the
value y of the next technology to arrive when i periods remain
and the state is x satisfies ξi(x) < y < x. By assumption, the
monopolist implements y. Consider the policy in which the
monopolist does not implement y but thereafter engages in
search and implements a new technological innovation if and
only if the optimal policy does. Then the net return of this
new policy is precisely that of the optimal policy except that
it exceeds that of the optimal policy by x − y per unit time
during the interval of time starting when the optimal policy
implements y and ending when the optimal policy imple-
ments a new technology (an interval of exponential length
with parameter λF(ξi−1(y))). In view of this contradiction,
it follows that ξi(x) ≥ x.

Having established that the optimal policy is characterized
by thresholds ξi(x) and that ξi(x) ≥ x, we now establish that
it is optimal to search only when x < ξ . Observe that

V1(x, y) =
[
x − c + λ

∫ ∞

y

(s/α)f (s)ds

]/
(α + λF(y)).

(10)

Differentiating, V1(x, y) with repect to y, we have

∂V1(x, y)

∂y
= λf (y)

(α + λF(y))2

[
−(x/α)(α + λF(y))

+ x − c + λ

∫ ∞

y

(s/α)f (s)ds

]

= λf (y)

(α + λF(y))2
[x − y + (λ/α)H(y) − c].

Fix y > x ≥ ξ . Because H(·) is a strictly decreasing function
on the support of F , (λ/α)H(y) − c < (λ/α)H(ξ) − c = 0
so that ∂V1(x, y)/∂x < 0 for y > x ≥ ξ whence, V1(x, y) <

V1(x, x). Similarly,

V1(x, y) < V1(x, x)

=
[
x − c + λ

∫ ∞

x

(u/α)f (u)du

]/
(α + λF(x))

= [x − c + (λ/α)xF (x) + (λ/α)H(x)]/(α + λF(x))

= x/α + [−c + (λ/α)H(x)]/(α + λF(x))

≤ x/α.

Thus, terminating search is preferred to searching when one
implementation opportunity remains and x ≥ ξ . Thus, we
have established that V1(x) = x/α for x ≥ ξ .

Assume Vk(x) = x/α for k = 1, . . . , n − 1 and x ≥ ξ .
Then for y > x ≥ ξ , we have

Vn(x, y) =
[
x − c + λ

∫ ∞

y

(s/α)f (s)ds

]/
(α + λF(y))

= V1(x, y) < x/α.

Hence, terminating search is preferred when x ≥ ξ .
Finally, we verify that ξi(x) < ξ for x < ξ . Fix x < ξ and

i ≥ 1, suppose ξi(x) ≥ ξ , and assume that the next arrival is
at time t and has value y with ξ ≤ y ≤ ξi(x). Discounting
revenues and costs back to time t , we claim that the return y/α

to implementing y at time t exceeds the return of the suppos-
edly optimal policy. Using

∫ ∞
w

sf (s)ds = H(w) + wF(w),
we see that the return of the optimal policy is given by

x − c

α + λF(ξi(x))
+ λF(ξi(x))

α + λF(ξi(x))

[
H(ξi(x))

αF (ξi(x))
+ ξi(x)

α

]

= x − c + ξi(x)λF (ξi(x))/α + λ
α
H(ξi(x))

α + λF(ξi(x))
.

Define � to be the difference between the returns of accept-
ing y immediately and the supposedly optimal policy. Using
(9) to substitute for c, we obtain (of course, y − x > 0 and
y ≥ ξ )

�
α

λ
(α + λF(ξi(x)))

= α

λ
(y − x)+F(ξi(x))[y−ξi(x)]+[H(ξ)−H(ξi(x))]

> [ξ − ξi(x)]F(ξi(x)) + [H(ξ) − H(ξi(x))]
= [H(ξ) + ξF (ξ)] − [H(ξi(x)) + ξi(x)F (ξi(x))]

− ξ [F(ξ) − F(ξi(x))]
=

∫ ∞

ξ

sf (s)ds −
∫ ∞

ξi (x)

sf (s)ds − ξ [F(ξ) − F(ξi(x))]

=
∫ ξi (x)

ξ

sf (s)ds − ξ [F(ξ) − F(ξi(x))]

≥ ξ

∫ ξi (x)

ξ

f (s)ds − ξ [F(ξ) − F(ξi(x))] = 0.

Thus, � > 0, the desired contradiction. Hence, ξi(x) <

ξ . �
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Clearly, ξ1(0) = ξ , where ξ is given in (4). Because search
ceases for x ≥ ξ and ξi(x) < ξ for x < ξ , we define
ξi(x) = x for x ≥ ξ .

THEOREM 2: When i implementations remain and the
current state isx, the optimal returnVi(x) is strictly increasing
in i for x < ξ̄ .

PROOF: Fixx < ξ and i ≥ 1. By Theorem 1, we know that
ξj (x) < ξ for j = 1, 2, . . . , i. Consequently, the fact that F is
strictly increasing on an interval of the form [a, ξ ] (see foot-
note 6) ensures P(X0 < ξ) > 0, where X0 is the state when
0 periods remain and x is the state when i periods remain.
Suppose i + 1 periods rather than i periods remain. Consider
the policy which when j +1 periods remain makes precisely
the same decision that is made by an optimal policy when j

periods remain, j = i, i − 1, . . . , 1. If X0 ≥ ξ , then this pol-
icy has the same return as the policy which is optimal when
i implementations remain. But if X0 < ξ , which happens
with positive probability, continue search until a technology
of value v with v > X0 is found. This induces a strict increase
beyond the optimal return when i implementations remain,
establishing Vi+1(x) > Vi(x). �

4.2. Representing Vi(x) as a Function of the Thresholds

The standard sequential search problem with search cost
c − x is precisely our problem in period 1 when the state
is x. The opening of Section 4 presents the correspondence
between the threshold ξ1(x) and the value of the standard
sequential search problem: V1(x) = ξ1(x)/α. Our gener-
alization of this result, given in (14), represents Vi as the
composition of ξ1, . . . , ξi divided by α. If x < ξ , then

Vi(x, y) =
[
x − c + λ

∫ ∞

y

Vi−1(s)f (s)ds

]/
(α + λF(y))

(11)

so that

∂Vi(x, y)

∂y
= λf (y)

(α + λF(y))2

[
−Vi−1(y)(α + λF(y))

+ x − c + λ

∫ ∞

y

Vi−1(s)f (s)ds

]
.

Consequently, setting dVi(x, y)/dy = 0, we see that ξi(x) is
the unique value of y that solves

Vi−1(y) =
[
x − c + λ

∫ ∞

y

Vi−1(s)f (s)ds

]/
(α + λF(y)).

(12)

From (12) and(11), we conclude that

Vi−1(ξi(x)) = Vi(x, ξi(x)) = Vi(x). (13)

COROLLARY 1: For x < ξ̄ , ξi(x) > x.

PROOF: If ξi(x) = x, then from (13) Vi(x) =
Vi−1(ξi(x)) = Vi−1(x), which contradicts Theorem 2. �

On reflection, the elegant equivalence between Vi(x) and
Vi−1(ξi(x)) is unsurprising. When i periods remain, the
monopolist is indifferent between implementing a technolog-
ical discovery of value ξi(x) and using up one of his imple-
mentation opportunities versus continuing with his R&D
efforts with all i opportunities remaining. Electing to continue
R&D has value Vi(x); electing to implement the discovery
increases the state to ξi(x) but diminishes the number of
implementations by 1.

The recursive formula given in (13) enables us to express
Vi in terms of ξ1, . . . , ξi . Because V0(x) = x/α, (13) asserts
that V1(x) = V0(ξ1(x)) = ξ1(x)/α. Substituting this expres-
sion into (13) produces V2(x) = V1(ξ2(x)) = ξ1 ◦ ξ2(x)/α.
Iterating this last result in (13) yields a simple relationship
between the optimal return Vi and the i thresholds ξ1, . . . , ξi :

Vi(x) = ξ1 ◦ ξ2 ◦ · · · ◦ ξi(x)/α. (14)

We now utilize the characterization of the optimal return
given in (14) to more elegantly verify ξi(x) > x for x < ξ .
We know from Theorem 1 that ξi(x) ≥ x. Suppose ξi(x) = x

for some pair i and x with i ≥ 1 and x < ξ . Employing (14),
we obtain

Vi(x) = ξ1 ◦ ξ2 ◦ · · · ◦ ξi−1(ξi(x))/α

= ξ1 ◦ ξ2 ◦ · · · ◦ ξi−1(x)/α = Vi−1(x).

But this contradicts Theorem 2.

4.3. Recursive Calculation of Thresholds

Next, we demonstrate that the threshold in each period is
strictly increasing in the level x of the technology currently in
place. Rearranging the first-order condition (12), with i ≥ 1,
we see that ξi(x) is the unique value of y that solves

αVi−1(y) = x − c + λ

∫ ∞

y

[Vi−1(s) − Vi−1(y)]f (s)ds.

(15)

THEOREM 3: For each i ≥ 1, the threshold ξi(x) is a
strictly increasing function of x for x < ξ .

PROOF: Notice that the right-hand side of (15) increases
in x. Because Vi−1(y) strictly increases in y by Lemma 1,
the right-hand side of (15) strictly decreases in y and the left-
hand side of (15) strictly increases in y. Thus, an increase in
x requires that y = ξi(x) increase. �
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The special case of i = 1 for Eq. (15) yields

αV0(y) = x − c + λ

∫ ∞

y

[V0(s) − V0(y)]f (s)ds. (16)

Because V0(s) = s/α, (16) produces

y + c = x + λH(y)/α. (17)

The y that solves (17) is ξ1(x). Of course, this is the same as
(6).

Theorem 3 states that the higher the level of the installed
technology, the higher the threshold. In particular, a small
increase ε in the value x of the current technology when
i ≥ 1 periods remain increases the optimal return Vi(x) by
approximately ε/(α + λF(ξi(x)) because the return per unit
time starting from state x + ε is ε larger for an exponential
length of time with parameter λF(ξi(x)). This approximation
is exact in the limit as ε → 0.

LEMMA 2: For i ≥ 1, the derivative of Vi(·) satisfies

dVi(x)/dx = 1/[α + λF(ξi(x))], for x < ξ . (18)

PROOF: Using y� = ξi(x) in (11), we have Vi(x) =
Vi(x, y�) so

dVi(x)

dx
= ∂Vi(x, y�)

∂x
+ ∂Vi(x, y�)

∂y�

∂y�

∂x
= ∂Vi(x, y�)

∂x

= 1/[α + λF(y�)],
as ∂Vi(x, y)/∂y |y=ξi (x)= 0. �

We use (18) to demonstrate the relationship between the
thresholds from one period to the next: for a given level of x,
the threshold increases when fewer opportunities for imple-
mentation remain. The monopolist is more selective when
fewer implementation opportunities remain.

THEOREM 4: For each x < ξ , the optimal threshold ξi(x)

is a strictly decreasing function of i.

PROOF: We begin by dealing with a minor technical-
ity. Because the set where the density f of F is positive
is the interval (a, b) we can assume without loss of gen-
erality that ξi(x) ≥ a. By footnote 6, a < ξ < b, and
ξi(x) < ξ ≤ b by Theorem 1. Hence, if ξi(x) < ξi−1(x),
then F(ξi(x)) > F(ξi−1(x)).

The proof is by induction. Assume ξi(x) < ξi−1(x) for all
x < ξ . In view of the formula for V ′

i (x) given in (18), the
induction hypothesis implies

V ′
i (x) < V ′

i−1(x) for all x < ξ . (19)

Consequently, (19) implies

∫ ∞

y

[Vi(s) − Vi(y)]f (s)ds =
∫ ∞

y

[∫ s

y

V ′
i (t)dt

]
f (s)ds

<

∫ ∞

y

[∫ s

y

V ′
i−1(t)dt

]
f (s)ds

=
∫ ∞

y

[Vi−1(s)−Vi−1(y)]f (s)ds.

Thus, for each y, the right-hand side of (15) decreases in
i. Also, Vi−1(x) is strictly increasing in i for x < ξ . Hence,
ξi+1(x) < ξi(x) for all x < ξ . This verifies the induction
hypothesis.

It only remains to show that ξ2(x) < ξ1(x) for all x < ξ . If
there is an x < ξ such that ξ2(x) ≥ ξ1(x), then [immediately
below we supply a reason for each comparison]

ξ2(x) < ξ1(ξ2(x)) = αV1(ξ2(x))

= x − c + λ

∫ ∞

ξ2(x)

[V1(s) − V1(ξ2(x))]f (s)ds

= x − c + λ

α

∫ ∞

ξ2(x)

[∫ s

ξ2(x)

αV ′
1(t)dt

]
f (s)ds

< x − c + λ

α

∫ ∞

ξ2(x)

[s − ξ2(x)]f (s)ds

= x − c + λ

α
H(ξ2(x))

= x − c + λ

α
H(ξ1(x)) + λ

α
[H(ξ2(x)) − H(ξ1(x))]

= ξ1(x) + λ

α
[H(ξ2(x)) − H(ξ1(x))]

≤ ξ1(x),

where we use, in order, ξ1(x) is strictly increasing (see
Theorem 1); (14); (15); Fundamental Theorem of Calculus;
αV ′

i (x) < 1 by (18) and F(ξi(x)) > F(ξ) > 0; definition of
H ; adding and subtracting the same quantity; the first-order
condition (17) for ξ1(x); and H strictly decreasing and the
assumption ξ2(x) ≥ ξ1(x). This contradicts our assumption
that ξ2(x) ≥ ξ1(x) for some x < ξ . Hence, ξ2(x) < ξ1(x) for
all x < ξ , thereby completing the induction argument. �

Theorems 1, 3, and 4 establish the structure of the optimal
policy: the threshold increases in the incumbent technology
and in the number of implementation opportunities remain-
ing. Figure 2 gives a graphical representations of the opti-
mal policy. Theorem 4 also establishes decreasing returns to
additional opportunities to implement.

COROLLARY 2: If x < ξ , then Vi+1(x) − Vi(x) <

Vi(x) − Vi−1(x).
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PROOF: By (13) Vi(x) = Vi−1(ξi(x)). Hence,

Vi+1(x) − Vi(x) = Vi(ξi+1(x)) − Vi(x)

=
∫ ξi+1(x)

x

V ′
i (u)du <

∫ ξi+1(x)

x

V ′
i−1(u)du

<

∫ ξi (x)

x

V ′
i−1(u)du

= Vi−1(ξi(x)) − Vi−1(x)

= Vi(x) − Vi−1(x),

where the second equality follows from ξi+1(x) > x; the
first inequality follows from (19); the second inequality fol-
lows from V ′ > 0, Theorem 4, and ξ(x) > x; and the last two
equalities follow from the Fundamental Theorem of Calculus
and (13), respectively. �

Theorem 3 established that ξi(x) is strictly increasing in
x. We now augment this result and show that ξi(x) increases
more slowly than x.

Because dH(x)/dx = −F(x), differentiating the first-
order condition (16) produces

ξ ′
1(x) = (λ/α)H ′(ξ1(x))ξ ′

1(x) + 1

= −(λ/α)F (ξ1(x))ξ ′
1(x) + 1,

whence

ξ ′
1(x) = 1

1 + (λ/α)F (ξ1(x))
, for 0 ≤ x < ξ . (20)

so that

0 < ξ ′
1(x) < 1, for 0 ≤ x < ξ .

By (13), V ′
i (x) = ξ ′

i (x)V ′
i−1(ξi(x)) so that

ξ ′
i (x) = V ′

i (x)

Vi−1(ξi(x))

= α + λF(ξi−1(ξi(x))

α + λF(ξi(x))
, for x < ξ and i ≥ 2,

where the last equality follows from (18). Theorem 1 asserts
that z ≡ ξi−1(ξi(x)) > ξi(x) so F(z) < F(ξi(x)). Hence,
ξ ′
i (x) < 1. In summary, we have

0 < ξ ′
i (x) < 1 for x < ξ and i ≥ 1. (21)

While the period i threshold is increasing in x, it is not
increasing as fast as x: ξi(x) − x is strictly positive but
ξi(x) − x ↓ 0 as x → ξ .

5. INCREASED ABILITY TO GENERATE NEW
TECHNOLOGIES

The analysis in Section 4 addresses the monopolist’s search
for innovations in a stationary environment: the problem
parameters, including the search cost c, the arrival rate λ

of new technological discoveries, and the distribution F of
the size of technological discoveries, are neither functions of
time nor of the monopolist’s decisions. There is, however,
an enormous literature which unmistakably documents the
marked impact of learning-by-doing as regards technologi-
cal innovation. Just as practice leads to the improvement of
most skills, the introduction of product improvements and
the implementation of new technological discoveries leads
to improvements in a firm’s skill in generating new tech-
nological improvements. As noted by Mishina [27, p. 147],
“experience is the mother of improvement.”

In this regard, we are not referring to the learning curve7

wherein the production cost per unit drops as the gross
investment increases (see Arrow [2]) or as the cumulative
number of units produced of a product increases (see Spence
[33]).8 Instead, we are referring to the phenomenon in which
the firm’s R&D ability improves when it steers an innova-
tion through the complete cycle starting with discovery and
ending with market introduction.

In this section, we examine how the monopolist’s optimal
decisions change when adoption of a new and better technol-
ogy in and of itself leads to an increased ability to generate
new technologies. This increased ability is modeled either as
a decrease in the cost c of search, an increase in the arrival
rate λ, or an improvement (in the sense of first-order sto-
chastic dominance) in the distribution F . We do not alter
the discount rate α. This improvement occurs naturally if the
monopolist learns from the experience of bringing a product

7 The learning curve is given by the relationship y = axb, where
yt is the input—cost or, in the case of the B-17 heavy bomber,
direct labor hours—and xt is cumulative output (cumulative num-
ber of bombers manufactured). As explained by Mishina (p. 147),
“cumulative output makes sense as a proxy variable for some sort
of production-related experience”.
The Boston Consulting Group wrote on the subject in 1972, but
Wright [35], director of engineering at the Curtiss-Wright Corpora-
tion, had already written cogently on the subject, in the context of
building airframes.
8 In 1990, Argote et al. [1] brought the famous case of the WW
II Liberty Ships to the attention of Management Scientists. There
has been an intense debate about whether or not the learning curve
applies to the complexities of the Liberty Ships. But any potential
for debate regarding the application of the learning curve to the B-
17 heavy bomber (a.k.a. the Flying Fortress) is easily dispelled by
Kazuhiro Mishina’s fascinating article. He presents a compelling
argument that, “It is the system of production that embodies learn-
ing, not the direct workers.” Today, the study of the learning curve
has progressed and, for example, Bayesian approaches to estimating
the parameter b are considered (see Mazzola and McCardle [24]).
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(or process improvement) to market. Learning-by-doing ren-
ders the discovery process faster (higher λ), better (improved
F ), or cheaper (lower c). See Lippman and McCardle [22].

We think of the examination of this increased generat-
ing ability as a well motivated comparative statics analysis.
Though well motivated, effecting this particular comparative
statics analysis turns out to be quite complex. Furthermore, in
the process of carrying it out it became evident that extreme
care must be exercised in applying the analysis of Section 4.
Accordingly, we limited consideration to the case in which
the parameters c, λ, and F change (i.e., improve) only in the
very last period. As before, we say we are in period i when i

innovation opportunities remain.
The caveats above apply even to this simple non-stationary

(learning) environment. For example, it appears reason-
able and innocuous to require that each new technology
implemented improve on the currently installed technology.
Innocuous as this requirement appears, it has strong impli-
cations: increased generating ability in period 1 can not only
render recall crucial but also can scorch Theorem 1 by negat-
ing the optimality of thresholds (our fundamental structural
result) and turn things upside down. We address these two
issues in Examples 1 and 2. Example 1 provides a three period
problem in which use of recall is optimal whereas Example 2
provides a three period problem in which the optimal policy
lies in the class of reverse threshold rules. A reverse threshold
rule is a policy which, given the state x and the period i with
i ≥ 2, implements a technological discovery if and only if
it lies at or below a critical number ηi(x). That is, with this
seemingly innocuous requirement it can be sub-optimal to
implement an innovation that is good and optimal to imple-
ment an innovation that is bad. The reason is simple: if the
offer distribution F (or arrival rate λ) is fabulous in the last
period (called period 1), then implementing a technological
discovery with large value x when three periods remain can
lead to a very long delay in entering the last period. [Notably,
this issue never presents a problem in the penultimate period.]

EXAMPLE 1: Recall can be advantageous for the searcher.
Suppose that when i = 1 two offers are possible: either M

or 0 with probabilities pM and 1 − pM respectively. When
i > 1, the two possible values for the technology are m

and 0 with probabilities pm and 1 − pm respectively, with
m << M . Finally, suppose that N = 3, and the monop-
olist starts with no innovation implemented but having just
received an innovation of value m. Should the monopolist
implement the innovation now and move into period i = 2?
Or should the monopolist set the current innovation aside,
search again, accept (and implement) any arriving innova-
tion, search again when i = 2, and implement the previously
set aside implementation so as to enter period i = 1 after the
first arrival in period i = 2 with an installed innovation of

value m and thereby earn m while waiting for the high value
(M) innovation in period i = 1?

If the monopolist decides to implement the current inno-
vation, he will begin search in period i = 2, and he will
implement the next arrival (without regard to its value). With
probability 1−pm he will enter period i = 1 with an installed
innovation of value 0 and with probability pm of value m. His
expected discounted return will be

10 − c

α + λ
+ λ

α + λ

[
mpm − c

α + λpM

+ λpM

α + λpm

M

α

]
.

On the other hand, if the monopolist does not implement the
innovation, but immediately starts searching again (i remains
at 3), he pays a cost c until the next innovation arrives. He
implements that innovation (changing i to 2) and immedi-
ately begins search again. Upon the arrival of the very next
innovation, he recalls the initial innovation of value m and
implements it. He then enters the last period (i = 1) and con-
tinues searching until he encounters an innovation of value
M . The expected return for this strategy is

−c

α + λ
+ λ

α + λ

×
{

mpm − c

α + λ
+ λ

α + λ

[
m − c

α + λpM

+ λpM

α + λpM

M

α

]}
.

Set m = 10, M = 1000, pM = pm = 1/1000, c = 0,
λ = 10, and α = 1.0. In the former case, the discounted
return is

= 10

11
+ 10

11

[
(1/100)

1.01
+ (1/100)

1.01
1000

]
= 9.92.

In the latter case, the return is

= 10

11

[
0.01

11
+ 10

11

[
10

1.01
+ 10

1.01

]]
= 16.37.

Of course, the monopolist could implement the innovation of
value 10 when i = 3, search for another innovation of value
10 when i = 2, and then search for an innovation of value
1000 in the last period. A similar set of calculations reveals
that the expected return from this strategy is 10.10. Because
there are no other reasonable policies to consider, it is optimal
to reject the innovation of value 10 when i = 3 and recall it
after an arrival when i = 2. �

EXAMPLE 2: A reverse threshold rule can be optimal.
Throughout this example, we explicitly impose the restric-

tion that a technological discovery can be implemented only
if it is at least as good as the technology currently in place.
We will show that with this explicit restriction in an environ-
ment with increased generating ability, it is possible for the
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optimal return function V +
i (x) to be strictly decreasing in x

for x < L where L = inf {x : F(x) = 1} and i ≥ 2. We
begin with a remark.

REMARK: If V +
i (x) is strictly decreasing in x for x < L

and if i ≥ 2, then the optimal policy in period i + 1 is a
reverse threshold: there is a critical number ηi+1(x) such that
in period i + 1 it is optimal to implement a technology y if
and only if x ≤ y ≤ ηi+1(x).

In periods 1 and 2, the optimal policy is a threshold rule
and V +

1 (x) is strictly increasing in x. Fix i ≥ 2 and assume
V +

i (x) is decreasing in x for x < L. Let xi+1 be the state
in period i + 1. If it is optimal to implement a technology
of value y > xi+1 in period i + 1 and if y ′ < y, then
V +

i (y ′) > V +
i (y) ≥ V +

i+1(xi+1), where the strict inequality
follows the hypothesis that V +

i (s) is decreasing in s. Hence,
it is optimal to implement y ′. This completes the proof of the
remark.

We now set N = 3 and exhibit the parameter values to
produce an example in which a reverse threshold rule is opti-
mal in period 3. To begin, set the offer distribution in period
i to be a uniform random variable on (99,101) if i = 1 and a
uniform random variable on (0, 4) if i > 1. Set the discount
rate, the arrival rate, and the search cost per unit time to 1
so λ/(α + λ) = 1/(α + λ) = 1/2. It is easily verified that
starting from state 0, search is profitable in periods 1, 2, 3.

Of course, V +
0 (x) = x/α. Because the state cannot

exceed 4 at the beginning of period 1, in period 1 it is
optimal to take the first technology to arrive. Consequently,
V +

1 (x) = (x−1)/2+(100/2). The return V +
2 (x, y) when the

state is x and threshold y is employed satisfies V +
2 (x, y) =

(y2 + 198y − 16x − 792)/(4y − 32) which is decreasing in
y for each x ≤ 4 provided y < 4. If y ≥ 4, then V +

2 (x, y) =
(x−c)/α < x/α. In this case, it would be preferable to cease
search so indeed it suffices to only consider y < 4. Hence,
ξ2(x) = x and V +

2 (x) = [x2 + 182x − 792]/[4x − 32].
For 0 < x < 4, V +

2 (x) is decreasing in x. Consequently,
the Lemma above reveals that a reverse threshold policy is
optimal in period 3. �

Henceforth, we prohibit recall and invoke a “use-it-or-
lose-it” modeling mentality. Moreover, we drop the (implicit)
requirement that a technological discovery can be imple-
mented only if it is at least as good as the technology in
place, and we think of the implementation of a technology
inferior to the technology in place as an investment in learn-
ing. Just because an action is unprofitable in the short-run
does not mean that it is an unwise action; in the long-run, it
can engender future advantages.

The way out of this problem is to allow for the possibility
that the learning value of implementing a less profitable dis-
covery outweighs its immediate (short-run) economic loss.

With this flexibility, the proof of Theorem 1 provides for the
optimality of threshold policies.

Similar results (foregoing short-run profits for larger future
gains) have been obtained by Cabral and Riordan [6] in a
duopoly model with learning. In their model a firm can use the
leverage offered by learning to engage in predatory pricing so
as to drive competitors out of the market. Petrakis et al. [28]
analyze a two period competitive economy with learning in
the earlier period. They show that firms that choose not to
exit will price below marginal cost in the earlier period.

The nonstationarity induced by increased generating abil-
ity introduces additional unanticipated difficulties. For exam-
ple, there no longer exists a single threshold ξ which extin-
guishes search. Instead, for each period i there is a threshold
ξ i which extinguishes search in period i. This difficulty arises
because the non-stationary problem is not a monotone stop-
ping problem à la Chow and Robbins [8]: even though it does
not pay to take precisely one more observation, it can pay to
take several more observations. We can, however, show that
these search extinguishing thresholds ξ i are monotone (see
Theorem 5). A second surprising and disturbing fact is that,
contrary to Theorem 2, the return functions V +

i (x) are no
longer increasing in i on x < ξ . This result highlights the
difficulties brought about by the confluence of three aspects
of the model: costly search, discounting, and the dependence
of the technology quality on experience.

In the standard (single adoption) search problem, the usual
comparative statics analysis (in which one of these three
parameters changes) is straightforward: a reduced cost of
search, an increased arrival rate, or a better distribution (i.e.,
a stochastically larger distribution) induces an increase in
the threshold (see Lippman and McCardle [22]). Of course,
these results hold for period 1 because our one period prob-
lem starting in state x is simply the usual search problem with
search cost equal to c − x. The improved generating ability
unambiguously raises the thresholds; however, usually it is
not possible to sign its impact upon the expected duration
of search. This latter fact is important in our multi-period
environment with learning.

The dynamic, cross-period effects, due to the impact of the
monopolist’s increased ability to generate improvements in
period 1, are subtle. How does this increased generating abil-
ity in period 1 (the last period) change the optimal thresholds
in earlier periods? This question is especially relevant for a
firm that is investing in innovation capability.

Two opposing forces are at work. On the one hand, the
period 1 increase in generating ability pushes the period i

threshold down, i ≥ 2: because the future (i.e., period 1)
is more attractive than before, the period i threshold should
be reduced to hasten the arrival of (the now more attractive
future) period 1. On the other hand, because the period 1
thresholds increase, the duration of search in period 1 might
increase. In this case, the monopolist must endure the flow
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rate of revenues associated with the technology implemented
at the end of the penultimate period for a longer duration
than in the stationary no-learning problem. This concern for
“current” income might, and indeed often does, induce the
monopolist to raise the period 2 threshold so as to reap an
acceptable level of benefits during a longer duration of search
in period 1. Theorem 6 shows that increased generating ability
in period 1 does indeed induce a reduction in the thresh-
olds in earlier periods; however, this result requires that the
increased period 1 threshold not increase the expected dura-
tion of search in period 1. Absent a change in either F or λ, a
decrease in c necessarily increases the threshold in period 1
and hence the duration of search in period 1. Consequently,
the premise of Theorem 6 does not apply to a change in c

when there is no change in λ and no change in F .
We denote the improved period 1 parameters by c+ ≤ c,

λ+ ≥ λ, and F+ stochastically larger than F (i.e. F
+
(x) ≥

F(x)). Of course, one of these three improvements will be
strict. In the environment in which the period 1 parameters
improve, we denote the optimal return and the optimal thresh-
olds when i periods remain by appending a superscript + to
yield V +

i (x) and ξ+
i (x).

Because of the nonstationarity, the level of technology
which extinguishes search, label it ξ

+
i , depends upon the

period i: ξ
+
i ≡ sup{x : V +

i (x) > x/α}. Clearly, it behooves
the monopolist to continue search if the current state x is less
than ξ . That is, ξ

+
i ≥ ξ for i ≥ 1.

THEOREM 5: The search extinguishing thresholds are
non-increasing: ξ ≤ ξ

+
i+1 ≤ ξ

+
i .

PROOF: We start by establishing that V +
i (x) > x/α for

all x < ξ
+
i whence search is optimal if x < ξ

+
i . Fix i > 1

as our claim is clear from the analysis in Section 4 when
i = 1. The proof used to establish (18) serves to establish
dV +

i (x)/dx = 1/[α + λF(ξ
+
i (x))] ≤ 1/α Fix x < ξ

+
i and

suppose V +
i (x) = x/α. There is a y > x with V +

i (y) > y/α;

otherwise, ξ
+
i ≤ x. The mean value theorem asserts that there

is a point z in (x, y) such that

1/α ≥ V +′
i (z) =

[
V +

i (y) − V +
i (x)

]
(y − x)

>
[y/α − x/α]

(y − x)

= 1/α,

a contradiction. Thus, it is optimal to search if and only if the
state x is strictly less than ξ

+
i .

Suppose i ≥ 2 and ξ
+
i < ξ

+
i+1 so that V +

i+1(ξ
+
i ) > ξ

+
i /α

by the definition of ξ
+
i+1. Set z = ξ+

i+1(ξ
+
i ). Either z ≥ ξ

+
i or

z < ξ
+
i . We begin by assuming z ≥ ξ

+
i . We have

ξ
+
i /α < V +

i+1

(
ξ

+
i

) = ξ
+
i − c

α + λF(z)

+ λ

α + λF(z)

∫ ∞

z

V +
i (t)f (t)dt

= ξ
+
i − c

α + λF(z)
+ λ

α + λF(z)

∫ ∞

z

t

α
f (t)dt

=
{
ξ

+
i − c + λ

α
H(z) + λ

α
zF(z)

}/
[α + λF(z)].

Using (9) to substitute λ
α
H(ξ) for c, multiplying the above

inequality by α
λ
[α + λF(z)], and simplifying, we obtain

0 < −H(ξ) − ξ
+
i F (z) + H(z) + zF (z)

= −
∫ z

ξ

F (t)dt + F(z)
(
z − ξ

+
i

) ≤ 0

because
∫ z

ξ
F (t)dt ≥ ∫ z

ξ
F (z)dt = F(z)(z − ξ). This con-

tradiction shows that z ≥ ξ
+
i is not possible when ξ

+
i <

ξ
+
i+1.

Next, assume that z < ξ
+
i . In this case V +

i (t) < V +
i (ξ

+
i ) =

ξ
+
i /α for z < t < ξ

+
i whence

∫ ∞

z

V +
i (t)f (t)dt <

∫ ξ
+
i

z

ξ
+
i

α
f (t)dt +

∫ ∞

ξ
+
i

t

α
f (t)dt

= ξ
+
i

α

(
F

(
ξ

+
i

) − F(z)
) + H

(
ξ

+
i

)
/α + ξ

+
i

α
F

(
ξ

+
i

)
= ξ

+
i

α
F (z) + H

(
ξ

+
i

)
/α.

Continuing as in the case z ≥ ξ
+
i , we use the inequality

directly above, (9), and H non-increasing to produce

ξ
+
i /α < V +

i+1

(
ξ

+
i

)
<

ξ
+
i − c

α + λF(z)
+ λ

α + λF(z)

[
ξ

+
i

α
F (z) + H

(
ξ

+
i

)
/α

]

= ξ
+
i /α + λ

α

H
(
ξ

+
i

) − H(ξ)

α + λF(z)
≤ ξ

+
i /α,

whence this contradiction shows that z < ξ
+
i is not possible

when ξ
+
i < ξ

+
i+1. We have now established that ξ

+
i+1 ≤ ξ

+
i

for i ≥ 2. With one minor exception, the proof for the case
i = 1 is the same as above: the parameters become λ+, c+,
and F+ and necessarily ξ+

1 > ξ . �
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In fact, we can obtain a more general comparative statics
result. The proof mimics the proof of Theorem 5.

COROLLARY 3: If λi+1 ≤ λi , ci+1 ≥ ci , and F i(t) ≥
F i+1(t) for all t and i = 1, . . . , N − 1, then ξ ≤ ξ

+
i+1 ≤

ξ
+
i , i = 1, . . . , N .

THEOREM 6: Because of increased generating ability in
period 1, ξ+

1 (x) > ξ1(x) for x < ξ . If increased generating
ability in period 1 does not increase the expected duration of
search in period 1, then ξ+

i (x) < ξi(x) for i ≥ 2 and x < ξ .

PROOF: The proof is similar to the proof of Theorem 4.
From (11), we see that the parameters in (15) match those of
the threshold being obtained: when αV +

i−1(x) is on the left-
hand side of (15), the arrival rate and offer distribution are
those of period i. Thus, for i ≥ 2, the appropriate arrival rate
and offer distribution are λ and F . When i = 1, (15) reduces
to (16) so that these parameters become λ+ and F+ in the +
environment.

For i = 1, the improved generating ability strictly
increases the optimal return whence ξ+

1 (x)/α = V +
1 (x) >

V1(x) = ξ1(x)/α.
The duration of search in period 1 is an exponential random

variable with parameter λ+F
+
(ξ+

1 (x)) or λF(ξ1(x)), whence
the expected duration of search is the inverse of these quan-
tities. By hypothesis, in period 1 the expected duration of
search in the + environment is not greater than that in the no-
learning environment. That is, λ+F

+
(ξ+

1 (x)) ≥ λF(ξ1(x)).
Consequently, it follows from Lemma 1 that dV +

1 (x)/dx ≤
dV1(x)/dx so the right-hand side of (15) in the + environ-
ment is less than or equal to the right-hand side of (15) in the
no-learning environment. Using the fact that V +

2 (x) is strictly
greater than V2(x) for all x < ξ , it follows as per the proof
of Theorem 4 that ξ+

2 (x) < ξ2(x), as desired.
Assume that ξ+

i (x) < ξi(x) for some i. Coupling this
assumption with Lemma 1 and the fact that the arrival rate and
offer distribution in period i areλ andF in both environments,
it follows that dV +

i (x)/dx < dVi(x)/dx. The induction
argument now follows as per the proof of Theorem 4. �

Examples 3 and 4 below treat the case of a stochastically
larger distribution F and an increase in the arrival rate λ,
respectively. These examples supply “general” conditions
under which the increased generating ability in period 1 leads
to an increase in the acceptance rate of new arrivals and hence
a decrease in the expected duration of search in period 1. That
is, these examples satisfy the hypothesis of Theorem 5.

EXAMPLE 3: Reduction in the expected duration of
search due to a shift in F .

Suppose X+ = X + δ so that F+(t) = F(t − δ) ≤ F(t)

with δ > 0. We claim that

ξ1(x) < ξ+
1 (x) < ξ1(x) + δ.

Note that the period 1 thresholds ξ1(x) and ξ+
1 (x) in the

no-learning environment and the + environment solve (16).
Also note that the expected gain H+(x) satisfies H+(y) ≡∫ ∞
y

(s − y)f +(s)ds = H(y − δ) so that H+(y) > H(y)

because H is strictly decreasing (on the interval where f is
positive).

If ξ+
1 (x) ≥ ξ1(x) + δ, then by (17)

x + λ

α
H(ξ1(x)) − ξ1(x) = c = x + λ

α
H+(

ξ+
1 (x)

) − ξ+
1 (x)

= x + λ

α
H

(
ξ+

1 (x) − δ
) − ξ+

1 (x)

≤ x + λ

α
H(ξ1(x)) − ξ+

1 (x)

< x + λ

α
H(ξ1(x)) − ξ1(x),

where the two inequalities follow from H decreasing and
ξ+

1 (x) ≥ ξ1(x)+ δ and from ξ+
1 (x) > ξ1(x), a contradiction.

Thus, F
+
(ξ+

1 (x)) = F(ξ+
1 (x) − δ) > F(ξ1(x)). Hence, the

expected duration of search in period 1 is strictly less in the
learning environment. �

EXAMPLE 4: Reduction in the expected duration of
search due to an increase in λ.

Suppose that λ+ > λ0 where λ+ and λ0 are the period
1 arrival rates in the + and the no-learning environments.
Further, suppose that the offer distribution F has hazard
rate function h that is non-decreasing. Of course, h(t) =
f (t)/F (t): both the exponential and uniform distributions
have a non-decreasing hazard rate function.

Let yλ denote the optimal threshold in the one period
problem when the arrival rate is λ. Thus, yλ is the unique
solution to (16): yλ = x − c + λ

α
H(yλ). Differentiating (16)

with respect to λ produces y ′
λ = H(yλ)/[α + λF(yλ)] <

H(yλ)/λF(yλ). Using the well-known equalities F(t) =
exp{− ∫ t

0 h(s)ds} and H(t) = ∫ ∞
s

F (s)ds, the inequality
above yields

0 < y ′
λ <

∫ ∞

yλ

F (s)ds/[λF(yλ)]

= 1

λ

∫ ∞

yλ

e
− ∫ s

yλ
h(t)dt

ds <
1

λ

∫ ∞

yλ

e−(s−yλ)h(yλ)ds

= 1

λh(yλ)
,
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whence

yλ+ − yλ0 =
∫ λ+

λ0

y ′
λdλ <

∫ λ+

λ0

1

λh(yλ)
dλ

≤ 1

h(yλ0)
· ln(λ+/λ0), (22)

where the last inequality follows from yλ increasing and h

non-decreasing. Use of (22) yields

dλF(yλ)

dλ
= F(yλ) − λf (yλ)y

′
λ > F(yλ) − λf (yλ)

λf (yλ)/F (yλ)

= 0.

This verifies that the period 1 expected duration of search in
the increased generating ability environment is strictly less
than in the no-learning environment. �

As shown in Examples 3 and 4, the increased generating
ability in period 1 reduces the expected duration of search
in period 1 whence the hypothesis of Theorem 6 is satisfied.
Some improvements in the monopolist’s generating ability
in period 1, however, do not reduce the expected duration of
search in period 1. For example, a reduction in the period
1 search cost necessarily increases the expected duration of
search. Furthermore, a period 1 improvement that increases
the expected duration of search might induce an increase in
thresholds for period i with i ≥ 2. Example 5 demonstrates
that this possibility can occur.

EXAMPLE 5: Reducing the search cost in period 1 induces
an increase in a period 2 threshold For simplicity, the offer
distribution F is discrete. Set c1 = c2 = 1.5 and c+

1 = 0.5,
and also set α = λ = 1, P(X = 1) = .1, P(X = 2) = .8,
and P(X = 7.99) = .1. Necessarily, the reduction in the
period 1 search cost increases the expected duration of search
in period 1.

With c1 = 1.5, search is profitable in period 1 only when
x = 0. This holds because when x = 1, it is better to stop
(and earn 1 per unit time) than to search (and, with a threshold
of 2, earn .99947). The same conclusions hold for period 2:
search only if x = 0.

When c+
1 = 0.5, search in period 1 is profitable provided

there are gains to be made (i.e., for any level of x < 7.99). In
period 2, search is profitable for x = 1, and the best threshold
is 2. Therefore, ξ+

2 (1) = 2 > 1 = ξ2(1). �

These examples, together with the results presented ear-
lier in this section, show how changes in period 1 parameters
have major consequences for both the optimal policy and the
nature of the return functions V +

i for i > 1. In particular,
unlike Vi , the return functions V +

i need not be increasing in
i. Examples 3 and 4 reveal that better (stochastically larger

offer distribution F ) and faster (larger λ), respectively, can
reduce the duration of search and therefore reduce the thresh-
olds at earlier times. On the other hand, as per Example 5, a
reduction in the period 1 search cost can lead to an increase in
the thresholds at earlier times. Thus, either of the two forces,
an increased incentive to get to period 1 quickly and utilize
the improved generating ability or an increased concern for
the magnitude of the state of the technology in place in period
1, can dominate.

6. CONCLUSION

Our contribution has been to model and analyze R&D
efforts in a search setting in which multiple discoveries
can be sequentially implemented and, quite importantly,
search becomes less rewarding as more discoveries are imple-
mented. Other work in the literature has allowed for sequen-
tial implementations, but it assumes that R&D effort neces-
sarily leads to improvement while our model captures the
realities of innovation refinement as discussed by economic
historians for many decades.

As in other search models, the optimal policy entails
thresholds. At any point in time there are two thresholds
of interest: if the next discovery exceeds the lower but not
the higher threshold, it is optimal to implement it and to
continue search; if the next discovery exceeds the higher
threshold, then it is optimal to implement it and to stop search-
ing entirely. While the lower of the two thresholds depends on
both the currently implemented technology and the maximum
number of implementations remaining, the higher threshold,
that which extinguishes search, is independent of these two
factors. Moreover, as the number i of innovations that can be
implemented increases, the threshold ξi(x) decreases. Thus,
the flexibility to introduce more versions of the product (sto-
chastically) reduces the average size of each improvement
brought to market. In this vein, we anticipate witnessing
many small innovations when the innovations require lit-
tle cognitive effort on the part of customers. For example,
updates to Microsoft’s Windows operating system, which
can be downloaded from the Internet, are frequent (some-
times weekly), and they constitute small changes. Because
adoption of these changes is nearly painless, consumers are
willing to tolerate many such small introductions (so N is
large), and each introduction is minor. In contrast, entirely
new versions of the operating system require considerably
more user involvement (including installing the new software
and dealing with the resultant compatibility issues). Because
these major introductions entail substantial user investment
of time and energy, they engender customer resistance. Con-
sequently, N is small, introductions are less frequent, and the
magnitude of the change from one introduction to the next is
much larger.
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However, the description of our model has been in terms
of a firm’s repeated introductions of product improvements,
the model and its results apply more broadly. As discussed
in Lippman and McCall [21], search should be viewed as a
broad paradigm, a flexible conceptual framework that applies
equally well to job search and R&D: “search has been effec-
tively employed in modeling directly productive activities
…. The productive efforts necessary to bring about techno-
logical change are often modeled mathematically as if the
effort were search activity.” Our model applies when the cru-
cial feature of the situation under study entails the repeated
decision to act now or delay. For example, a proposed but
imperfect resolution to a dispute can be acceptable to both
parties as “good enough for now” or preferable to “continue
to negotiate and expend more resources.” The current resolu-
tion may be adopted even as the parties continue to negotiate
and search for a better one. This dispute resolution exam-
ple illustrates how our analysis can be applied in contexts
far beyond technology: it applies not merely to some new
thing (i.e., technology) but also to any new way of doing
something. Our arguments apply to situations in which new
alternatives are yet to be generated and interim solutions can
be implemented, like climbing the rungs of a ladder.

A crucial feature of our model is the fact that N , the max-
imum number of new discoveries that can be implemented,
is finite. If N = ∞, then it is optimal to implement each
and every new discovery that improves on the current tech-
nology and search ceases only upon finding a technology of
value ξ or better. But the justification for N < ∞ is not
limited to mathematical necessity. Practical considerations
also suggest N < ∞. Each new implementation not only
further saturates the market but also induces consumers not
to purchase for at least two reasons. First, in the spirit of
the “durable goods monopoly” problem (see Coase [10] and
Bulow [4]), the new implementation suggests to consumers
that further improvements are just around the corner. Why
purchase now when a purchase can be made at a lower price
later.9 Second, just as too many cooks spoil the broth, a mul-
titude of product changes annoys consumers: after a small
number of new product introductions, consumers are resis-
tant to change. Having learned how to use some new product,
such as software, the advantage bestowed by a bevy of new
features can be outweighed by the cost of learning how to use
them: change exerts a toll. Additionally, many product modi-
fications or upgrades induce consumer confusion. Rather than
adopt each new innovation, a consumer (and employee too)
might elect to skip a few steps on the ladder of technological
improvement and later leap-frog onto a higher rung. Finally,

9 Once the high-valuation customers have purchased, it is optimal for
the monopolist to reduce the price; anticipating this price reduction
prompts high-valuation customers to postpone their purchase.

frequent modifications occlude the customer’s insight and
impede progress along the learning curve.

Section 5 formally addressed the issue of learning from
experience. If an implementation provides lessons that
improve the search environment—making discoveries arrive
faster, better, or cheaper—then it can be optimal for the firm
to relax it’s standards (i.e., lower the threshold) to learn the
lessons. However, we have shown that the opposite effect is
possible too: a future improvement in the search environment
can cause the firm to raise its current standards (if that future
improvement serves to increase the duration of search).

There are several extensions of this work that we have not
covered. Lippman and Mamer [18] model competitive search
for a single introduction. What happens to the decision rules
in an environment with competition and interim solutions?
Another avenue worth exploring is other effects of delay,
such as a deterioration of the profit potential of the market.
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