

New Heuristics and Adaptive Memory Procedures
for Boolean Optimization Problems

Lars M. Hvattum
Molde College, 6411 Molde, Norway.

 Lars.M.Hvattum@himolde.no

Arne Løkketangen
Molde College, 6411 Molde, Norway.

Arne.Lokketangen@himolde.no

Fred Glover
Leeds School of Business, UCB 419

 University of Colorado, Boulder, CO 80309, USA
Fred.Glover@Colorado.edu

Abstract

We describe new constructive and iterative search methods for Boolean
Optimization Problems. Extending previous work by the authors, we describe the
use of adaptive clause weights and probabilistic move acceptance for the adaptive
memory search. We also describe how the use of the concepts persistent
attractiveness measures and marginal conditional validity as search guidance
mechanisms lead to very good results. Computational tests on portfolios of
benchmark problems taken from the literature disclose that our method obtains
results that improve on those previously published.

1 Introduction

The Boolean Optimization Problem (BOOP) represents a large class of binary optimization
models, including weighted versions of Set Covering, Graph Stability, Set Partitioning and
Maximum Satisfiability problems. These problems are all NP-hard, and exact (provably
convergent) optimization methods encounter severe performance difficulties in these particular
applications, being dominated by heuristic search methods even for moderately sized instances.

Previous heuristic work on this problem is mainly by Davoine, Hammer and Vizvári (2003),
employing a greedy heuristic based on pseudo-boolean functions. Hvattum, Løkketangen and
Glover (2003) describe simple iterative heuristic methods for solving BOOP, starting from
random initial solutions. Although equipped with no long-term mechanism apart from a random
restart procedure, they obtain very good results compared to the work by Davoine, Hammer and

 2

Vizvári, and also by an even greater margin when compared to CPLEX and XPRESS/MP on the
larger instances.

The remainder of this paper is organized as follows. Section 2 provides BOOP problem
formulations and details of previous work. Section 3 describes new local search mechanisms,
designed to diversify the search, while Section 4 describes our new constructive methods. In
Section 5 we address the Weighted Maximum Satisfiability problem (W-MAX_SAT), and show
how to transform it into a BOOP formulation framework. Computational results are given in
Section 6, followed by the conclusions in Section 7.

2 Problem formulation and search basics

2.1 Problem formulation

The Boolean Optimization Problem (BOOP), first formulated in Davoine, Hammer and Vizvári
(2003), is based on logical expressions in prepositional, first-order logic, with an extra cost (or
profit) associated with the variables having a true (or false) value. One formulation can be
(assuming maximization)

1

(/)
N

i i
i

Maxz c x true false
=

= =∑

such that

where Φ(x) is the logical expression, and N the number of variables. The solution to this problem
is the set of truth value assignments to the x i variables that yields the highest objective function
value z, while satisfying the logical expression. The logical expression can in general be arbitrary,
but we restrict ourselves to formulations in conjunctive normal form, CNF. (The disjunctive
normal form can be obtained by a simple transformation.) Informally, a BOOP can be regarded as
a satisfiability problem (SAT) with an objective function added on. For more info on SAT, see
e.g. Cook (1971), and Du et al. (1997).

Applying simple transformations described in Hvattum, Løkketangen and Glover (2003), we get
the following model by splitting each x i into its true and false component yi and yi#:

∑
=

=
N

i
ii yczMax

1

s.t.

1() (,...,)N

true
x x x

false


Φ = Φ = 


 3

1Dy ≥

 # 1i iy y+ =

where D is the 0-1 matrix obtained by substituting the y’s for the xi’s. The last constraint is
handled implicitly in the search heuristics we introduce.

2.2 Local search basics

To better understand the mechanisms described in this paper, some background from previous
work is helpful. For fuller details, see Hvattum, Løkketangen and Glover (2003). The basic
strategy of this earlier work includes the following features.

• The starting solution (or starting point) is based on a random assignment to the variables.
This solution may be primally infeasible, and hence the search must be able to move in
infeasible space.

• A move is the flip of a variable by assigning the opposite value
(i.e. change 1 → 0 or 0 → 1).

• The search neighborhood is the full set of possible flips, with a neighborhood size of N ,
the number of variables.

• Move evaluation is based on both the change in objective function value, and the change
in amount of infeasibility.

• The move selection is greedy (i.e. take the best move according to the move evaluation).

• Simple randomized tabu tenure and a new best aspiration criterion are used.

• A random restart is applied after a certain number of moves, to diversify the search

• The stopping criterion is a simple time limit.

The manner in which we incorporate these features, and add new ones to our current method, is
sketched in the following sections.

2.3 Move evaluation function

The move evaluation function, FMi, has two components. The first is the change in objective
function value. The cost coefficients, ci, are initially normalized to lie in the range (0,1). This
means that the change in objective function value per move, ∆zi, is in the range (-1, +1).

The second component is the change in the number of violated clauses (or constraint rows), for
the flipping of each variable. This number, ∆Vi will usually be a small positive or negative
integer. For a different way to handle infeasible solutions, see Løkketangen and Glover (1996).

These two components are combined to balance the considerations of obtaining solutions that are
feasible and that have a good objective function value. The relative emphasis between the two

 4

components is changed dynamically to focus the search in the vicinity of the feasibility boundary,
using the following move evaluation function:

 iiMi zwVF ∆+∆= *

The value of w, the adaptive component, is initially set to 1. It is adjusted after each move so that:

• If the current solution is feasible: w = w + ∆winc

• If the current solution is not feasible, and w > 1: w = w - ∆wdec

The effect of this adaptation is to induce a strategic oscillation around the feasibility boundary. A
different approach appears in Glove r and Kochenberger (1996), where the oscillation is coupled
with the use of a critical event memory, forcing the search into new areas.

3 Local Search Improvements

The simple local search described in Hvattum, Løkketangen and Glover (2003) relies on a
sophisticated adaptive move evaluation scheme for achieving the type of balance between
feasibility and objective function quality previously described. From their computational results,
however, it is evident that for the larger test cases a better form of diversification than random
restart is needed to be able to explore larger parts of the search space.

The extra mechanisms come at a cost. There is a tradeoff between the gains provided by
improved search guidance or diversification, and the associated computational effort to perform
the extra calculations and to maintain the auxiliary data structures. In the current setting, the
additional mechanisms reduce the number of search iterations done in a given amount of
computational time.

We have implemented two processes for diversification: Adaptive Clause Weighting, and
Probabilistic Move Acceptance.

3.1 Adaptive Clause Weights

In the basic local search scheme, all violated clauses (i.e. constraint rows) contribute the same
amount to the move evaluation function, FMi, as described in section 2.3. However, some of the
clauses will be more difficult to satisfy than others, and should be given more emphasis. We
achieve this by attaching a separate weight, CW, to each clause. Previous work on adaptive clause
weights can be found in Løkketangen and Glover (1997).

All clauses start with CW = 1. The weight is updated only after iterations where a clause becomes
violated, at which point the weight of the newly violated clause is incremented by a small
amount, CW∆ . To prevent clause weights from growing prohibitively large, they are
renormalized by dividing all the clause weights by a constant CWDIV, whenever one weight
becomes grater than some CWLIM.

 5

Such a procedure constitutes a long-time learning approach. The move evaluation function drives
the search out of the feasible region to seek solutions with high objective function quality in
nearby infeasible space. Having adaptive clause weights helps the search to better adapt to the
infeasibility border of the search space, thus enabling the search to cross back over the border to
find different, and better, feasible solutions. As shown in Section 6.1, the tradeoff between the
extra time taken to update the weights, and the resulting improved search guidance pays the
greatest dividends for the larger problems.

3.2 Probabilistic Move Acceptance

Every iteration the search method generates a list that identifies a subset of possible moves to
execute, and the best move from this list is selected. Usually this best equates with best move
evaluation value. But the move evaluation function is rather myopic, only looking at the local
neighborhood, and we modify it by using recency and frequency measures as proposed in tabu
search. (See, e.g., Glover and Laguna, 1997, and Gendreau, 2003)

In a sorted list of possible moves, the presumably best moves will be at the front of the list, but
not necessarily in strict order. A simplified variant of this principle from Glover (1989) is also
employed in GRASP, where the chosen move is randomly selected among the top half of the
moves (see Feo and Resende, 1989).

We use this approach by selecting randomly from the top of the list, but in a way biased towards
the moves having the highest evaluations. This is called Probabilistic Move Acceptance, PMA, as
described in Løkketangen and Glover (1996). The selection method is as follows:

PMA:

1. Select a move acceptance probability, p.

2. Each iteration sort the admissible moves according to the move evaluation
function

3. Reject moves with probability (1 - p) until a move is accepted

4. Execute the selected move in the normal way

5. If not finished, go to 2 and start the next iteration

This can also be viewed as using randomness to diversify the search (as a substitute for
deterministic use of memory structures), but in a guided way.

In our local search setting, using PMA generally yields worse results than the deterministic
approach of always taking the best non-tabu move. This implies that the move evaluation
function is good, and that rejecting the top moves deteriorates the search.

The inclusion of PMA yields better results for the largest problems (with up to 1000 variables
and 10000 clauses). This indicates that the PMA introduces some necessary diversification that
the basic mechanisms lack.

 6

4 Constructive Methods

Constructive methods in the literature are mainly used for creating good, or feasible, starting
solutions for subsequent local search heuristics. We show how proper use of adaptive memory
structures can be used to create iterated constructive learning heuristics. These generate a series
of solutions, where the constructive guidance is modified by the outcome of the previous
searches. Our ideas are based on principles for exploiting adaptive memory to enhance multi-start
methods given in Glover (2000).

We focus in particular on implementing the principles embodied in the PAM (Persistent
Attractiveness Measure) and MCV (Marginal Conditional Validity) concepts. As is customary,
our methods also incorporate a short local search after each constructive phase.

4.1 PAM – Persistent Attractiveness Measure

The Persistent Attractiveness Measure, PAM, is a measure of how often a specific value
assignment to a variable is considered attractive, without actually being selected for inclusion in
the solution. It is reasonable to assume that early assignments in the construction phase should
have more importance than later assignments, and that good evaluations should be better than bad
ones. The attractiveness should also increase for a variable assignment that repeatedly is ranked
high without being chosen.

If we index the assignment steps with s, and the individual rankings in a step with r, we would
like the PAM to have the following properties:

PAM(r,s) is decreasing for increasing s (earlier steps are more important)

PAM(r,s) is decreasing for increasing r (higher rank is better)

We only calculate PAM for the top ranked moves.

The PAM evaluator can be formulated as E(s,r) = E’(s) + E’’(r), where, for BOOP, we set

 E’(s) = as* - as and
 E’’(r) = br* - br

where s* = N (number of variables) and r is a parameter. The constants a and b are determined
experimentally as subsequently described.

The PAM-values corresponding to a given assignment are summed over all the constructive
steps, and added (with exponential smoothing over the constructive runs) to yield an overall
measure of attractiveness for each possible assignment.

PAM values for several consecutive constructive runs can be accumulated in a measure of
attractiveness e.g. by exponential smoothing:

 New PAM = (Last PAM + Last Accumulated Total PAM)/2

 7

We thus expand the move evaluation indicated earlier to become:

F(yi(#)) = ? Vi(#) + w*(zi(#) + PAMi(#))

The values for the PAM-measure are limited to an interval [0,k], with k chosen to match w in
some way, again as specified later.

4.2 MCV – Marginal Conditional Validity

The choices made at the beginning of a constructive search are based on less information than
later choices, and are thus more likely to be bad. When later choices are made, the problem has
been reduced by the earlier choices, and better choices can be made (but in the context of the
earlier ones). Later decisions are thus likely to make earlier decisions look better. We call this the
Marginal Conditional Validity principle.

After the constructive phase we analyze the completed solution to find assignments that should
have been different. There are two cases that can be used as a foundation:

1. A variable is true, but there are unsatisfied rows where the negated variable is present.

2. A variable is false, but the negated variable is present only in rows that would be satisfied
even if the variable had been flipped.

In the first case the opposite value assignment to the variable would satisfy more rows, while in
the second case we would get an increase in the objective function value, without violating any
new constraints. These are then used as a start of the next iterat ion, with a probability p.

4.3 A Comparison with GRASP

The Greedy Randomized Adaptive Search Procedure, or GRASP, is a well known, memoryless,
constructive heuristic relying heavily on randomization (see Resende, Pitsoulis, and Pardalos,
1997). A constructive run can be followed by a short greedy local search.

We have adapted and implemented GRASP to work for BOOP, for comparison purposes. We use
the same basic objective function value as before, but without any adaptive memory or learning.
The only parameter required for GRASP is the proportion of moves to be considered for
execution in each constructive assignment, called α .

GRASP:

1. Start with all variables unassigned, rate all possible assignments.

2. Select an assignment randomly among those who are within α% of best evaluation

3. When all variables are assigned, possibly do a local search

4. Go to 1, if not finished

We use time as a stopping criterion, and try three versions of local search: No LS, complete LS or
“steepest ascent” LS.

 8

We also tried to augment GRASP with learning capabilities similar to the adaptive clause weights
outlined in section 3.1. After each GRASP run, the clause weights are updated analogous to the
iterative case. Computational results are in 6.4.

5 Weighted Maximum Satisfiability

To support the claim that BOOP can represent many different problem classes, this section
outlines how Weighted Maximum Satisfiability problems (W-MAX_SAT) can be easily
transformed to BOOP. Section 6.5 gives computational results for this case, without any effort to
specialize our procedure to handle the special structure of this problem.

A W-MAX_SAT instance can informally be regarded as an unsatisfiable instance of a SAT
problem that in addition has weights on the clauses (rows). The objective is then to find a truth
assignment that maximizes the sum of the weights on the satisfied clauses. This is similar to
BOOP, except that weights are attached to the clauses rather than the variables. A W-MAX-SAT
instance can be transformed to BOOP by adding a new variable to each clause to carry
information about weights. The clause weights are transformed to objective function value
coefficients, while the original n variables will have objective function value coefficients of 0.

Thus, if the W-MAX-SAT has n variables and m clauses, the BOOP will have (n+m) variables
and m clauses. The number of clauses (rows), m, is often large compared to the number of
variables, n, giving a BOOP encoding for W-MAX-SAT having many more variables. (In the test
instances used in section 6.5 n is 100 and m is 800-900, giving 900-1000 variables for the BOOP
encoding, compared to 100 for W-MAX-SAT).

As we can see in the computational results section 6.5, our BOOP code compares favourably to
the GRASP heuristic on the same problem instances (Resende, Pitsoulis and Pardalos, 1997), and
is only slightly worse than the special purpose method of Shang (1997) in spite of the fact that no
specialization is used in our procedure.

6 Computational Results

This section reports the final parameter settings applied to each of the different methods or
mechanisms during testing, as well as overall computational results. Section 6.6 attempts to
compare all the different methods and mechanisms in a meaningful way.

The same BOOP test cases as used in the previous work (Hvattum, Løkketangen and Glover,
2003, and Davoine, Hammer and Vizvári, 2003) are used for testing. The test-set consists of 5485
instances, ranging in size from 50 to 1000 variables, and 200 to 10000 clauses (rows). Results are
reported as the average of solution values relative to results obtained by Davoine, Hammer and
Vizvári using CPLEX 6.0.

The testing of W-MAX_SAT is based on modifying the unsatisfiable jnh*, as used in Resende,
Pitsoulis and Pardalos (1997). These all have 100 variables and 800 to 900 clauses. For
preliminary testing to fix parameter values, we selected the same 3 test cases as in Hvattum,
Løkketangen and Glover (2003).

 9

6.1 Effect of Adaptive Clause Weights

The first addition to the mechanisms for BOOP described in Hvattum, Løkketangen and Glover
(2003), is the inclusion of adaptive clause weights (see 3.1). Preliminary testing showed that the
results were not very sensitive to the values of CWLIM (the maximum weight value) or CWDIV (the
renormalization factor). For our final testing we used CWLIM = 4.0 and CWDIV = 2.0. The best
value for CW∆ was chosen to be 0.003, based on preliminary testing. The actual value is not
sensitive, but it should be much smaller than 1.

Computational results are shown in Table 1. The results using Adaptive Clause Weights (ACW)
are compared to the results from Hvattum, Løkketangen and Glover (2003) (TS), with
computational time of 5 and 60 seconds.

Table 1. Adaptive Clause Weights

 TS 5 TS 60 ACW 5 ACW 60
Classes 1-22 100,001 100,001 100,002 100,002
Classes 23-49 101,214 101,215 101,212 101,214
Classes 50-54 106,305 106,982 107,628 107,866
Classes 55-63 102,463 102,465 102,462 102,464
Classes 1-63 101,373 101,427 101,477 101,497

As can be seen, the overall results show an improvement for both the 5 second and 60 second
cutoff. For classes 55-63 the results are slightly inferior to those of our earlier approach.

6.2 Effect of Probabilistic Move Acceptance

The important parameter for PMA is the probability of move acceptance, p. (See 3.2). In Table 2
and 3 are shown the results for a selected test case for various values of p without and with
adaptive clause weights (ACW). As is indicated in the tables, a fairly large value should be
chosen for p. In our subsequent test we use the value 0.9. Overall computational results are
shown in Table 4. The use of PMA gives in general slightly inferior results, except for the largest
problems. This is as expected, as the search guidance (through the move evaluation value) should
be better for smaller problems. The PMA also introduces a certain amount of diversification that
is helpful for the larger problems.

 10

Table 2. PMA without ACW

p obj. value time
0,1 142796 3,86
0,2 143138 3,47
0,3 143255 7,05
0,4 143315 5,27
0,5 143356 4,17
0,6 143367 4,02
0,7 143372 1,98
0,8 143372 1,20
0,9 143372 1,59
1,0 143372 1,33

Table 3. PMA with ACW

p obj.value time
0,1 142845 5,29
0,2 143148 6,35
0,3 143246 6,18
0,4 143323 5,51
0,5 143357 6,11
0,6 143365 4,62
0,7 143369 2,27
0,8 143372 1,96
0,9 143372 1,27
1,0 143372 0,82

Table 4. Results for PMA

 Tabu Search PMA w.o. ACW PMA w. ACW
 TS 5 TS 60 PMA 5 PMA 60 PMA 5 PMA 60
Classes 1-22 100,001 100,001 99,998 100,000 99,996 99,998
Classes 23-49 101,214 101,215 101,205 101,213 101,205 101,211
Classes 50-54 106,305 106,982 105,787 106,168 107,438 107,778
Classes 55-63 102,463 102,465 102,446 102,463 102,450 102,461
Classes 1-63 101,373 101,427 101,324 101,361 101,455 101,487

6.3 PAM and MCV

Preliminary testing gave the following values for the PAM (Persistent Attractiveness Measure)
and MCV (Marginal Conditional Validity) parameters, whose role is sketched in Sections 4.1 and
4.2:

 a = 2
 b = 3
 r* = 4

The PAM-value of each variable assignment is scaled to lie between 0 and 0.3 before it is used in
the move evaluation function as specified in section 4.1.

Figure 1 shows results for the given test case for various values of p, the probability that
determines when to apply the MCV principle. For this test case the best results are when the
MCV principle (p = 0) is not applied. The results with p = 0.4 gives best results when applying
MCV, and this value is used in the computational testing.

 11

MCV parameter

140400

140600

140800
141000

141200

141400

141600

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

p

o
b

je
ct

iv
e

va
lu

e

Figure 1. Values for p for MCV

Table 5 shows the computational results for our constructive learning heuristic applying both
PAM and MCV. The column PAM/MCV - NO LS gives the results when no local search was
applied after each constructive run. PAM/MCV - STEEP indicates that a steepest descent local
search was applied after each construction, and PAM/MCV - TS 500 indicates that a tabu search
limited to 500 iterations, as described in 3.1, was used for improvement. All the runs were for 60
seconds. This new constructive method, eve n without the local search, performs much better than
the basic GRASP approach (see 6.4). The constructive approach without local search (LS) also
beats the results in Davoine, Hammer and Vizvári (2003) on small instances, and beats, with the
addition of a short LS to the constructive approach, these results on all the instances.

Table 5. Results for PAM and MCV

 PAM/MCV - NO LS PAM/MCV - STEEP PAM/MCV - TS 500
Classes 1-22 99,359 99,780 100,002
Classes 23-49 99,571 100,074 101,205
Classes 50-54 97,202 98,545 106,778
Classes 55-63 99,581 99,942 102,448
Classes 1-63 99,310 99,831 101,405

It seems that when combining the constructive learning heuristic with the TS from 3.1, most of
the benefit comes from the TS. However, the method PAM/MCV - TS 500 was the only method
that finds the optimum of all the small instances (class 1-22, 5280 instances). In fact, all the
optima were found within 2 seconds. This seems to reflect the trend we have observed for our
constructive heuristics, that they are more effective for the smaller problem instances and do not
often contribute improved results for the largest problem instances.

6.4 Comparison with GRASP

Results for the GRASP heuristic outlined in sectio n 4.3 are shown in Table 6, allowing for 5 or
60 seconds search time. A value of α = 0.5 was used. The column GRASP – NO LS shows the
results when no local search is applied after the constructive phase, and GRASP – CLS shows

 12

the results when a complete, recursive, local search is applied. GRASP – STEEP shows the
results when steepest descent is used.

Table 6. Results for GRASP

 GRASP – NO LS GRASP - CLS GRASP - STEEP
 5 sec. 60 sec. 5 sec. 60 sec. 5 sec. 60 sec.
Classes 1-22 97,483 98,413 99,387 99,680 99,389 99,662
Classes 23-49 95,400 96,149 97,216 97,983 98,326 98,826
Classes 50-54 86,554 89,748 90,164 91,857 93,844 95,969
Classes 55-63 95,647 96,550 97,114 97,950 97,302 97,988
Classes 1-63 95,461 96,489 97,400 98,085 98,195 98,772

These results indicate that GRASP is better than Davoine, Hammer and Vizvári (2003) on small
instances, but does not scale well for the larger problems.

When we apply our adaptive learning weights, GRASP functions much better. Table 7 shows the
results with adaptive clause weights and complete local search. The same values are used for
∆winc (= 0.20) and ∆wdec (= 0.15) as for the TS. The results are now better than Davoine, Hammer
and Vizvári (2003), except on classes 50-54. This shows that a modified GRASP can compete
with other heuristics on small and medium sized instances, while other mechanisms may be
needed for the larger ones. The recent work on marrying GRASP with path relinking offers
promise in this regard. (See Resende and Ribeiro, 2003)

Table 7. Results for GRASP with learning

 GRASP w. Learning
Classes 1-22 99,972
Classes 23-49 100,717

Classes 50-54 96,587
Classes 55-63 101,901
Classes 1-63 100,298

6.5 Results for Weighted Maximum Satisfiability

We use the encoding of W-MAX_SAT in the BOOP framework outlined in Section 5. Our
problem instances are from Resende, Pitsoulis and Pardalos (1997), based on the unsatisfiable
“jnh” instances from 2nd DIMACS Implementation Challenge. These test cases have 100
variables, and 800 to 900 clauses (rows). Our BOOP encoding of these problems thus has 900 to
1000 variables and 800 to 900 rows, being somewhat inflated compared to the original encoding.

Computational results are shown in Table 8. The settings for ACW 60 (see 6.1), without any
changes, are used. GRASP* shows the results reported in Resende, Pitsoulis and Pardalos
(1997). The column DML shows the results for DML, a Lagrange-based method specially
tailored to the problem (Shang, 1997).

 13

Table 8. Results for W-MAX_SAT

Problem Optimal GRASP* DML ACW 60
jnh1 420925 -188 0 0
jnh4 420830 -215 -41 -85
jnh5 420742 -254 0 -116
jnh6 420826 -11 0 -15
jnh7 420925 0 0 0
jnh8 420463 -578 0 0
jnh9 420592 -514 -7 -327

jnh10 420840 -275 0 0
jnh11 420753 -111 0 -250
jnh12 420925 -188 0 0
jnh13 420816 -283 0 0
jnh14 420824 -314 0 -172
jnh15 420719 -359 0 -52
jnh16 420919 -68 0 -5
jnh17 420925 -118 0 0
jnh18 420795 -423 0 -207
jnh19 420759 -436 0 0

jnh201 394238 0 0 0
jnh202 394170 -187 0 -126
jnh203 394199 -310 0 -137
jnh205 394238 -14 0 0
jnh207 394238 -137 0 -9
jnh208 394159 -172 0 -162
jnh209 394238 -207 0 0
jnh210 394238 0 0 0
jnh211 393979 -240 0 0
jnh212 394238 -195 0 0
jnh214 394163 -462 0 0
jnh215 394150 -292 0 -199
jnh216 394226 -197 0 0
jnh217 394238 -6 0 0
jnh218 394238 -139 0 0
jnh219 394156 -436 0 -103
jnh220 394238 -185 0 -33
jnh301 444854 -184 0 0
jnh302 444459 -211 -338 0
jnh303 444503 -259 -143 -414
jnh304 444533 -319 0 -570
jnh305 444112 -609 -194 -299
jnh306 444838 -180 0 0
jnh307 444314 -155 0 -685
jnh308 444724 -502 0 -699
jnh309 444578 -229 0 0
jnh310 444391 -109 0 0
Average 415914 -233 -16 -106

Our computational results compare favourably to those of the GRASP heuristic on the same
problem instances. Our outcomes are only slightly worse than those of the special purpose DML
method of Shang (1997), although we are undertaking to solve the much larger transformed
problem and make no use of any specialization.

 14

6.6 Performance Profiles

It is always very difficult to compare different methods based on tables of computational results,
unless one method is best on all the tests. We therefore also compare our methods using the ideas
given in Dolan and Moré (2001). Based on the time used to find the best solution, we can
construct a performance profile as follows.

Let P be the set of problem instances, S be the set of solvers, and np be the number of problems.
Define tp,s to be the time used by solver s to solve problem p. Let

 { }Sst

t
r

sp

sp
sp ∈

=
*|min *,

,
,

be the ratio between the performances of solver s to the best solver on the problem p. If a solver
fails to solve a problem, then set rp,s = rM, where rM ≥ rp,s for all p and s.

A measure of the performance of a solver can be given by

 () { },

1
|s p s

p

size p P r
n

ρ τ τ= ∈ ≤

where ()sρ τ is the probability that for solver s , the ratio of performance rp,s is within a factor t

of the best ratio. A plot of ()sρ τ for the different solvers will give interesting characteristics of

the solvers. Please note that ()1sρ gives the proportion of problems where s is winning over the
other solvers.

For many of our problem instances the reported solution time is very small, and the solvers report
0. All these instances are removed from this comparison. This is not necessarily a drawback, as
the remaining problems instances presumably are the most interesting ones.

Figure 2 shows performance profiles for the following 6 methods:

o ACW 60 – Tabu Search with adaptive clause weights

o TS 60 – Tabu Search without adaptive clause weights

o PMA 60 TS – Tabu Search without adaptive clause weights, but with PMA

o CON ACW – Constructive Search, followed by TS

o CON LS – Constructive Search, followed by Steepest Ascent

o CON – Constructive Search – No LS

The allotted solution times are 60 seconds per problem instance.

 15

Of the original 5485 problem instances, 352 were left after removing those where at least one of
the solvers reported a solution time of 0 seconds. Of these remaining problems there are 299
where not all the solvers find the same solution value.

Figure 2. Performance Profiles

As can be seen, the method ACW 60 is the best. It is of interest to note that when solution time is
small (less than a factor 40 from the best solver on each particular instance), is that CON ACW
is better than PMA 60 TS, while for longer solution times PMA 60 TS is better.

7 Conclusions

We have shown the value of certain types of adaptive memory to improve the performance of
heuristics, both iterative and constructive. Our results compare very favorably to previous
published results, and are significantly better than those obtained by exact solvers (XPRESS and
CPLEX)

For BOOP, we have achieved the best results by using a tabu search based heuristic, augmented
by an adaptive move evaluation function, and adaptive clause weights. Very good results are also

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

ACW 60
TS 60
PMA 60 TS
CON ACW
CON LS
CON

 16

obtained for constructive heuristics augmented by the learning schemes of PAM (Persistent
Attractiveness Measure) and MCV (Marginal Conditional Validity).

We also show that our approach can be applied to Weighted Maximum Satisfiability problems by
transforming them into (larger) BOOP problems, and that without specialization to the
W-MAX_SAT setting we obtain results comparable to those of the better specialized methods
from the literature.

References

Cook, S. A. (1971). “The complexity of theorem-proving procedures”. Proceedings of the Third
ACM Symposium on Theory of Computing, pp 151-158.

Davoine, T., P. L. Hammer and B. Vizvári. (2003). “A Heuristic for Boolean optimization
problems”. Journal of Heuristics 9, pp 229-247.

Dolan, E. D. and J. J. Moré. (2001). ”Benchmarking optimization software with performance
profiles”. Preprint ANL/MCS-P861-1200, Mathematics and Computer Science Division,
Argonne National Laboratory.

Feo, T. A. and M. G. C. Resende. (1989). “A probabilistic heuristic for a computationally
difficult set covering problem”. Operations Research Letters 8, pp. 67-71.

Gendreau, M. (2003). “An Introduction to Tabu Search”. In: Handbook of Metaheuristics,
Kluwer Academic Publishers. Eds.: F. Glover and G. Kochenberger.

Glover, F. (1989). “Tabu Search – Part I”. ORSA Journal on Computing 1, pp. 190-206.

Glover, F. (2000). "Multi-Start and Strategic Oscillation Methods – Principles to Exploit
Adaptive Memory". In: OR Computing Tools for Modeling, Optimization and Simulation:
Interfaces in Computer Science and Operations Research. Eds.: M. Laguna and
J. L. González-Velarde, pp. 1-24.

Glover, F. and G. Kochenberger. (1996). “Critical Event Tabu Search for Multidimensional
Knapsack Problems”, In: Meta Heuristics: Theory and Applications, Kluwer Academic
Publishers. Eds.: I. H. Osman and J. P. Kelly, pp. 407 – 427.

Glover, F. and M. Laguna. (1997). Tabu Search. Kluwer Academic Publishers.

Hvattum, L. M., A. Løkketangen and F. Glover. (2003). ”Adaptive Memory Search for Boolean
Optimization Problems”. Forthcoming in the special issue of Discrete Applied Mathematics on
boolean and pseudo-boolean functions.

Løkketangen, A. og F. Glover. (1996). “Probabilistic Move Selection in Tabu Search for 0/1
Mixed Integer Programming Problems”. In: Metaheuristics: Theory and Applications , Eds.:
I. H. Osman and J. P. Kelly, Kluwer, pp 467-488.

 17

Løkketangen, A. og F. Glover. (1997). “Surrogate Constraint Analysis - New Heuristics and
Learning Schemes for Satisfiability Problems”. In: Satisfiability Problem: Theory and
Applications . DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 35. AMS. Eds.: D. Du, J. Gu, and P. M. Pardalos.

Resende, M. G. C., L. S. Pitsoulis, and P. M. Pardalos. (1997). “Approximate solution of
weighted MAX-SAT problems using GRASP”. In: Satisfiability problem: Theory and
Applications . DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.
35. AMS. Eds.: D. Du, J. Gu, and P.M. Pardalos, pp. 393-405.

Resende, M. G. C. and C. C. Ribeiro. (2003). “GRASP with path-relinking: Recent advances and
applications”. Submitted to Metaheuristics: Progress as Real Problem Solvers , Kluwer
Academic Publishers. Eds.: T. Ibaraki, K. Nonobe and M. Yagiura.

Shang, Y. (1997). ”Global Search Methods for Solving Nonlinear Optimization Problems”. Ph.D.
Thesis, Dept. of Computer Science, Univ. of Illinois, USA.

