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Abstract 

We describe new constructive and iterative search methods for Boolean 
Optimization Problems. Extending previous work by the authors, we describe the 
use of adaptive clause weights and probabilistic move acceptance for the adaptive 
memory search. We also describe how the use of the concepts persistent 
attractiveness measures and marginal conditional validity as search guidance 
mechanisms lead to very good results. Computational tests on portfolios of 
benchmark problems taken from the literature disclose that our method obtains 
results that improve on those previously published. 

1 Introduction 

The Boolean Optimization Problem (BOOP) represents a large class of binary optimization 
models, including weighted versions of Set Covering, Graph Stability, Set Partitioning and 
Maximum Satisfiability problems. These problems are all NP-hard, and exact (provably 
convergent) optimization methods encounter severe performance difficulties in these particular 
applications, being dominated by heuristic search methods even for moderately sized instances. 

Previous heuristic work on this problem is mainly by Davoine, Hammer and Vizvári (2003), 
employing a greedy heuristic based on pseudo-boolean functions. Hvattum, Løkketangen and 
Glover (2003) describe simple iterative heuristic methods for solving BOOP, starting from 
random initial solutions. Although equipped with no long-term mechanism apart from a random 
restart procedure, they obtain very good results compared to the work by Davoine, Hammer and 
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Vizvári, and also by an even greater margin when compared to CPLEX and XPRESS/MP on the 
larger instances. 

The remainder of this paper is organized as follows. Section 2 provides BOOP problem 
formulations and details of previous work. Section 3 describes new local search mechanisms, 
designed to diversify the search, while Section 4 describes our new constructive methods. In 
Section 5 we address the Weighted Maximum Satisfiability problem (W-MAX_SAT), and show 
how to transform it into a BOOP formulation framework. Computational results are given in 
Section 6, followed by the conclusions in Section 7. 

2 Problem formulation and search basics 

2.1 Problem formulation 

The Boolean Optimization Problem (BOOP), first formulated in Davoine, Hammer and Vizvári 
(2003), is based on logical expressions in prepositional, first-order logic, with an extra cost (or 
profit) associated with the variables having a true (or false) value. One formulation can be 
(assuming maximization) 
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where Φ(x) is the logical expression, and N the number of variables. The solution to this problem 
is the set of truth value assignments to the x i variables that yields the highest objective function 
value z, while satisfying the logical expression. The logical expression can in general be arbitrary, 
but we restrict ourselves to formulations in conjunctive normal form, CNF. (The disjunctive 
normal form can be obtained by a simple transformation.) Informally, a BOOP can be regarded as 
a satisfiability problem (SAT) with an objective function added on. For more info on SAT, see 
e.g. Cook (1971), and Du et al. (1997). 

Applying simple transformations described in Hvattum, Løkketangen and Glover (2003), we get 
the following model by splitting each x i into its true and false component yi and yi#:  
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where D is the 0-1 matrix obtained by substituting the y’s for the xi’s. The last constraint is 
handled implicitly in the search heuristics we introduce. 

2.2 Local search basics 

To better understand the mechanisms described in this paper, some background from previous 
work is helpful. For fuller details, see Hvattum, Løkketangen and Glover (2003). The basic 
strategy of this earlier work includes the following features. 

• The starting solution (or starting point) is based on a random assignment to the variables. 
This solution may be primally infeasible, and hence the search must be able to move in 
infeasible space. 

• A move is the flip of a variable by assigning the opposite value  
(i.e. change 1 → 0 or 0 → 1). 

• The search neighborhood is the full set of possible flips, with a neighborhood size of N , 
the number of variables. 

• Move evaluation is based on both the change in objective function value, and the change 
in amount of infeasibility.  

• The move selection is greedy (i.e. take the best move according to the move evaluation). 

• Simple randomized tabu tenure and a new best aspiration criterion are used. 

•  A random restart is applied after a certain number of moves, to diversify the search 

• The stopping criterion is a simple time limit.   

The manner in which we incorporate these features, and add new ones to our current method, is 
sketched in the following sections. 

2.3 Move evaluation function 

The move evaluation function, FMi, has two components. The first is the change in objective 
function value. The cost coefficients, ci, are initially normalized to lie in the range (0,1). This 
means that the change in objective function value per move, ∆zi, is in the range (-1, +1). 

The second component is the change in the number of violated clauses (or constraint rows), for 
the flipping of each variable. This number, ∆Vi will usually be a small positive or negative 
integer.  For a different way to handle infeasible solutions, see Løkketangen and Glover (1996). 

These two components are combined to balance the considerations of obtaining solutions that are 
feasible and that have a good objective function value. The relative emphasis between the two 



 4 

components is changed dynamically to focus the search in the vicinity of the feasibility boundary, 
using the following move evaluation function: 

 iiMi zwVF ∆+∆= *  

The value of w, the adaptive component, is initially set to 1. It is adjusted after each move so that: 

• If the current solution is feasible:   w = w + ∆winc 

• If the current solution is not feasible, and w > 1: w = w - ∆wdec  

The effect of this adaptation is to induce a strategic oscillation around the feasibility boundary. A 
different approach appears in Glove r and Kochenberger (1996), where the oscillation is coupled 
with the use of a critical event memory, forcing the search into new areas. 

3 Local Search Improvements 

The simple local search described in Hvattum, Løkketangen and Glover (2003) relies on a 
sophisticated adaptive move evaluation scheme for achieving the type of balance between 
feasibility and objective function quality previously described. From their computational results, 
however, it is evident that for the larger test cases a better form of diversification than random 
restart is needed to be able to explore larger parts of the search space. 

The extra mechanisms come at a cost. There is a tradeoff between the gains provided by 
improved search guidance or diversification, and the associated computational effort to perform 
the extra calculations and to maintain the auxiliary data structures. In the current setting, the 
additional mechanisms reduce the number of search iterations done in a given amount of 
computational time. 

We have implemented two processes for diversification: Adaptive Clause Weighting, and 
Probabilistic Move Acceptance.  

3.1 Adaptive Clause Weights 

In the basic local search scheme, all violated clauses (i.e. constraint rows) contribute the same 
amount to the move evaluation function, FMi, as described in section 2.3. However, some of the 
clauses will be more difficult to satisfy than others, and should be given more emphasis. We 
achieve this by attaching a separate weight, CW, to each clause. Previous work on adaptive clause 
weights can be found in Løkketangen and Glover (1997). 

All clauses start with CW = 1. The weight is updated only after iterations where a clause becomes 
violated, at which point the weight of the newly violated clause is incremented by a small 
amount, CW∆ . To prevent clause weights from growing prohibitively large, they are 
renormalized by dividing all the clause weights by a constant CWDIV, whenever one weight 
becomes grater than some CWLIM. 
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Such a procedure constitutes a long-time learning approach. The move evaluation function drives 
the search out of the feasible region to seek solutions with high objective function quality in 
nearby infeasible space. Having adaptive clause weights helps the search to better adapt to the 
infeasibility border of the search space, thus enabling the search to cross back over the border to 
find different, and better, feasible solutions. As shown in Section 6.1, the tradeoff between the 
extra time taken to update the weights, and the resulting improved search guidance pays the 
greatest dividends for the larger problems. 

3.2 Probabilistic Move Acceptance 

Every iteration the search method generates a list that identifies a subset of possible moves to 
execute, and the best move from this list is selected. Usually this best  equates with best move 
evaluation value. But the move evaluation function is rather myopic, only looking at the local 
neighborhood, and we modify it by using recency and frequency measures as proposed in tabu 
search. (See, e.g., Glover and Laguna, 1997, and Gendreau, 2003)  

In a sorted list of possible moves, the presumably best moves will be at the front of the list, but 
not necessarily in strict order. A simplified variant of this principle from Glover (1989) is also 
employed in GRASP, where the chosen move is randomly selected among the top half of the 
moves (see Feo and Resende, 1989). 

We use this approach by selecting randomly from the top of the list, but in a way biased towards 
the moves having the highest evaluations. This is called Probabilistic Move Acceptance, PMA, as 
described in Løkketangen and Glover (1996). The selection method is as follows: 

PMA:  

1. Select a move acceptance probability, p. 

2. Each iteration sort the admissible moves according to the move evaluation 
function 

3. Reject moves with probability (1 - p) until a move is accepted 

4. Execute the selected move in the normal way 

5. If not finished, go to 2 and start the next iteration 

This can also be viewed as using randomness to diversify the search (as a substitute for 
deterministic use of memory structures), but in a guided way. 

In our local search setting, using PMA generally yields worse results than the deterministic 
approach of always taking the best non-tabu move. This implies that the move evaluation 
function is good, and that rejecting the top moves deteriorates the search.  

The inclusion of PMA yields better results for the largest problems (with up to 1000 variables 
and 10000 clauses). This indicates that the PMA introduces some necessary diversification that 
the basic mechanisms lack. 
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4 Constructive Methods 

Constructive methods in the literature are mainly used for creating good, or feasible, starting 
solutions for subsequent local search heuristics. We show how proper use of adaptive memory 
structures can be used to create iterated constructive learning heuristics. These generate a series 
of solutions, where the constructive guidance is modified by the outcome of the previous 
searches. Our ideas are based on principles for exploiting adaptive memory to enhance multi-start 
methods given in Glover (2000).  

We focus in particular on implementing the principles embodied in the PAM (Persistent 
Attractiveness Measure) and MCV (Marginal Conditional Validity) concepts. As is customary, 
our methods also incorporate a short local search after each constructive phase.  

4.1 PAM – Persistent Attractiveness Measure  

The Persistent Attractiveness Measure, PAM, is a measure of how often a specific value 
assignment to a variable is considered attractive, without actually being selected for inclusion in 
the solution. It is reasonable to assume that early assignments in the construction phase should 
have more importance than later assignments, and that good evaluations should be better than bad 
ones. The attractiveness should also increase for a variable assignment that repeatedly is ranked 
high without being chosen. 

If we index the assignment steps with s, and the individual rankings in a step with r, we would 
like the PAM to have the following properties:  

PAM(r,s) is decreasing for increasing s (earlier steps are more important) 

PAM(r,s) is decreasing for increasing r (higher rank is better) 

We only calculate PAM for the top ranked moves. 

The PAM evaluator can be formulated as E(s,r) = E’(s) + E’’(r), where, for BOOP, we set 

 E’(s) = as* - as and 
 E’’(r) = br* - br  

where s* = N  (number of variables) and r is a parameter. The constants a and b are determined 
experimentally as subsequently described.  

The PAM-values corresponding to a given assignment are summed over all the constructive 
steps, and added (with exponential smoothing over the constructive runs) to yield an overall 
measure of attractiveness for each possible assignment. 

PAM values for several consecutive constructive runs can be accumulated in a measure of 
attractiveness e.g. by exponential smoothing: 

 New PAM = (Last PAM + Last Accumulated Total PAM)/2  
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We thus expand the move evaluation indicated earlier to become: 

F(yi(#)) = ? Vi(#) + w*(zi(#) + PAMi(#)) 

The values for the PAM-measure are limited to an interval [0,k], with k chosen to match w in 
some way, again as specified later. 

4.2 MCV – Marginal Conditional Validity 

The choices made at the beginning of a constructive search are based on less information than 
later choices, and are thus more likely to be bad. When later choices are made, the problem has 
been reduced by the earlier choices, and better choices can be made (but in the context of the 
earlier ones). Later decisions are thus likely to make earlier decisions look better. We call this the 
Marginal Conditional Validity principle. 

After the constructive phase we analyze the completed solution to find assignments that should 
have been different. There are two cases that can be used as a foundation: 

1. A variable is true, but there are unsatisfied rows where the negated variable is present. 

2. A variable is false, but the negated variable is present only in rows that would be satisfied 
even if the variable had been flipped. 

In the first case the opposite value assignment to the variable would satisfy more rows, while in 
the second case we would get an increase in the objective function value, without violating any 
new constraints. These are then used as a start of the next iterat ion, with a probability p. 

4.3 A Comparison with GRASP 

The Greedy Randomized Adaptive Search Procedure, or GRASP, is a well known, memoryless, 
constructive heuristic relying heavily on randomization (see Resende, Pitsoulis, and Pardalos, 
1997). A constructive run can be followed by a short greedy local search.  

We have adapted and implemented GRASP to work for BOOP, for comparison purposes. We use 
the same basic objective function value as before, but without any adaptive memory or learning. 
The only parameter required for GRASP is the proportion of moves to be considered for 
execution in each constructive assignment, called α . 

GRASP: 

1. Start with all variables unassigned, rate all possible assignments. 

2. Select an assignment randomly among those who are within α% of best evaluation 

3. When all variables are assigned, possibly do a local search 

4. Go to 1, if not finished 

We use time as a stopping criterion, and try three versions of local search: No LS, complete LS or 
“steepest ascent” LS.  
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We also tried to augment GRASP with learning capabilities similar to the adaptive clause weights 
outlined in section 3.1. After each GRASP run, the clause weights are updated analogous to the 
iterative case.  Computational results are in 6.4. 

5 Weighted Maximum Satisfiability 

To support the claim that BOOP can represent many different problem classes, this section 
outlines how Weighted Maximum Satisfiability problems (W-MAX_SAT) can be easily 
transformed to BOOP. Section 6.5 gives computational results for this case, without any effort to 
specialize our procedure to handle the special structure of this problem.  

A W-MAX_SAT instance can informally be regarded as an unsatisfiable instance of a SAT 
problem that in addition has weights on the clauses (rows). The objective is then to find a truth 
assignment that maximizes the sum of the weights on the satisfied clauses. This is similar to 
BOOP, except that weights are attached to the clauses rather than the variables. A W-MAX-SAT 
instance can be transformed to BOOP by adding a new variable to each clause to carry 
information about weights. The clause weights are transformed to objective function value 
coefficients, while the original n variables will have objective function value coefficients of 0. 

Thus, if the W-MAX-SAT has n  variables and m clauses, the BOOP will have (n+m) variables 
and m clauses. The number of clauses (rows), m, is often large compared to the number of 
variables, n, giving a BOOP encoding for W-MAX-SAT having many more variables. (In the test 
instances used in section 6.5 n is 100 and m is 800-900, giving 900-1000 variables for the BOOP 
encoding, compared to 100 for W-MAX-SAT). 

As we can see in the computational results section 6.5, our BOOP code compares favourably to 
the GRASP heuristic on the same problem instances (Resende, Pitsoulis and Pardalos, 1997), and 
is only slightly worse than the special purpose method of Shang (1997) in spite of the fact that no 
specialization is used in our procedure.  

6 Computational Results 

This section reports the final parameter settings applied to each of the different methods or 
mechanisms during testing, as well as overall computational results. Section 6.6 attempts to 
compare all the different methods and mechanisms in a meaningful way.  

The same BOOP test cases as used in the previous work (Hvattum, Løkketangen and Glover, 
2003, and Davoine, Hammer and Vizvári, 2003) are used for testing. The test-set consists of 5485 
instances, ranging in size from 50 to 1000 variables, and 200 to 10000 clauses (rows). Results are 
reported as the average of solution values relative to results obtained by Davoine, Hammer and 
Vizvári using CPLEX 6.0.  

The testing of W-MAX_SAT is based on modifying the unsatisfiable jnh*, as used in Resende, 
Pitsoulis and Pardalos (1997). These all have 100 variables and 800 to 900 clauses. For 
preliminary testing to fix parameter values, we selected the same 3 test cases as in Hvattum, 
Løkketangen and Glover (2003). 
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6.1 Effect of Adaptive Clause Weights 

The first addition to the mechanisms for BOOP described in Hvattum, Løkketangen and Glover 
(2003), is the inclusion of adaptive clause weights (see 3.1). Preliminary testing showed that the 
results were not very sensitive to the values of CWLIM (the maximum weight value) or CWDIV (the 
renormalization factor).  For our final testing we used CWLIM = 4.0 and CWDIV = 2.0. The best 
value for CW∆  was chosen to be 0.003, based on preliminary testing. The actual value is not 
sensitive, but it should be much smaller than 1. 

Computational results are shown in Table 1. The results using Adaptive Clause Weights (ACW) 
are compared to the results from Hvattum, Løkketangen and Glover (2003) (TS), with 
computational time of 5 and 60 seconds. 

Table 1. Adaptive Clause Weights 

 TS 5 TS 60 ACW 5 ACW 60 
Classes   1-22 100,001 100,001 100,002 100,002 
Classes 23-49 101,214 101,215 101,212 101,214 
Classes 50-54 106,305 106,982 107,628 107,866 
Classes 55-63 102,463 102,465 102,462 102,464 
Classes   1-63 101,373 101,427 101,477 101,497 

 

As can be seen, the overall results show an improvement for both the 5 second and 60 second 
cutoff. For classes 55-63 the results are slightly inferior to those of our earlier approach.  

6.2 Effect of Probabilistic Move Acceptance 

The important parameter for PMA is the probability of move acceptance, p. (See 3.2). In Table 2 
and 3 are shown the results for a selected test case for various values of p without and with 
adaptive clause weights (ACW). As is indicated in the tables, a fairly large value should be 
chosen for p. In our subsequent test we use the value 0.9. Overall computational results are 
shown in Table 4. The use of PMA gives in general slightly inferior results, except for the largest 
problems. This is as expected, as the search guidance (through the move evaluation value) should 
be better for smaller problems. The PMA also introduces a certain amount of diversification that 
is helpful for the larger problems. 
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Table 2. PMA without ACW 
 

p obj. value time  
0,1 142796 3,86 
0,2 143138 3,47 
0,3 143255 7,05 
0,4 143315 5,27 
0,5 143356 4,17 
0,6 143367 4,02 
0,7 143372 1,98 
0,8 143372 1,20 
0,9 143372 1,59 
1,0 143372 1,33 

Table 3. PMA with ACW 
 

p obj.value  time 
0,1 142845 5,29 
0,2 143148 6,35 
0,3 143246 6,18 
0,4 143323 5,51 
0,5 143357 6,11 
0,6 143365 4,62 
0,7 143369 2,27 
0,8 143372 1,96 
0,9 143372 1,27 
1,0 143372 0,82 

 

Table 4. Results for PMA 

 Tabu Search PMA w.o. ACW PMA w. ACW 
 TS 5 TS 60 PMA 5 PMA 60 PMA 5 PMA 60 
Classes   1-22 100,001 100,001  99,998 100,000  99,996  99,998 
Classes  23-49 101,214 101,215 101,205 101,213 101,205 101,211 
Classes 50-54 106,305 106,982 105,787 106,168 107,438 107,778 
Classes 55-63 102,463 102,465 102,446 102,463 102,450 102,461 
Classes   1-63 101,373 101,427 101,324 101,361 101,455 101,487 

 

6.3 PAM and MCV 

Preliminary testing gave the following values for the PAM (Persistent Attractiveness Measure) 
and MCV (Marginal Conditional Validity) parameters, whose role is sketched in Sections 4.1 and 
4.2: 

 a = 2 
 b = 3 
 r* = 4  

The PAM-value of each variable assignment is scaled to lie between 0 and 0.3 before it is used in 
the move evaluation function as specified in section 4.1. 

Figure 1 shows results for the given test case for various values of p, the probability that 
determines when to apply the MCV principle. For this test case the best results are when the 
MCV principle (p = 0) is not applied. The results with p = 0.4 gives best results when applying 
MCV, and this value is used in the computational testing. 
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Figure 1. Values for p for MCV 

Table 5 shows the computational results for our constructive learning heuristic applying both 
PAM and MCV. The column PAM/MCV - NO LS gives the results when no local search was 
applied after each constructive run. PAM/MCV - STEEP indicates that a steepest descent local 
search was applied after each construction, and PAM/MCV - TS 500 indicates that a tabu search 
limited to 500 iterations, as described in 3.1, was used for improvement. All the runs were for 60 
seconds. This new constructive method, eve n without the local search, performs much better than 
the basic GRASP approach (see 6.4). The constructive approach without local search (LS) also 
beats the results in Davoine, Hammer and Vizvári (2003) on small instances, and beats, with the 
addition of a short LS to the constructive approach, these results on all the instances.  

Table 5. Results for PAM and MCV 

 PAM/MCV - NO LS PAM/MCV - STEEP PAM/MCV - TS 500 
Classes   1-22 99,359  99,780 100,002 
Classes 23-49 99,571 100,074 101,205 
Classes 50-54 97,202  98,545 106,778 
Classes 55-63 99,581  99,942 102,448 
Classes   1-63 99,310  99,831 101,405 

 

It seems that when combining the constructive learning heuristic with the TS from 3.1, most of 
the benefit comes from the TS. However, the method PAM/MCV - TS 500 was the only method 
that finds the optimum of all the small instances (class 1-22, 5280 instances). In fact, all the 
optima were found within 2 seconds. This seems to reflect the trend we have observed for our 
constructive heuristics, that they are more effective for the smaller problem instances and do not 
often contribute improved results for the largest problem instances.  

6.4 Comparison with GRASP 

Results for the GRASP heuristic outlined in sectio n 4.3 are shown in Table 6, allowing for 5 or 
60 seconds search time. A value of α = 0.5 was used. The column GRASP – NO LS shows the 
results when no local search is applied after the constructive phase, and GRASP – CLS shows 
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the results when a complete, recursive, local search is applied. GRASP – STEEP shows the 
results when steepest descent is used. 

Table 6. Results for GRASP 

 GRASP – NO LS GRASP - CLS GRASP - STEEP 
 5 sec. 60 sec. 5 sec. 60 sec. 5 sec. 60 sec. 
Classes   1-22 97,483 98,413 99,387 99,680 99,389 99,662 
Classes 23-49 95,400 96,149 97,216 97,983 98,326 98,826 
Classes 50-54 86,554 89,748 90,164 91,857 93,844 95,969 
Classes 55-63 95,647 96,550 97,114 97,950 97,302 97,988 
Classes   1-63 95,461 96,489 97,400 98,085 98,195 98,772 

 

These results indicate that GRASP is better than Davoine, Hammer and Vizvári (2003) on small 
instances, but does not scale well for the larger problems. 

When we apply our adaptive learning weights, GRASP functions much better. Table 7 shows the 
results with adaptive clause weights and complete local search. The same values are used for 
∆winc (= 0.20) and ∆wdec (= 0.15) as for the TS. The results are now better than Davoine, Hammer 
and Vizvári (2003), except on classes 50-54. This shows that a modified GRASP can compete 
with other heuristics on small and medium sized instances, while other mechanisms may be 
needed for the larger ones. The recent work on marrying GRASP with path relinking offers 
promise in this regard. (See Resende and Ribeiro, 2003) 

Table 7. Results for GRASP with learning 

 GRASP w. Learning  
Classes   1-22  99,972 
Classes 23-49 100,717 

Classes 50-54  96,587 
Classes 55-63 101,901 
Classes   1-63 100,298 

 

6.5 Results for Weighted Maximum Satisfiability 

We use the encoding of W-MAX_SAT in the BOOP framework outlined in Section 5. Our 
problem instances are from Resende, Pitsoulis and Pardalos (1997), based on the unsatisfiable 
“jnh” instances from 2nd DIMACS Implementation Challenge. These test cases have 100 
variables, and 800 to 900 clauses (rows). Our BOOP encoding of these problems thus has 900 to 
1000 variables and 800 to 900 rows, being somewhat inflated compared to the original encoding. 

Computational results are shown in Table 8. The settings for ACW 60  (see 6.1), without any 
changes, are used. GRASP* shows the results reported in Resende, Pitsoulis and Pardalos 
(1997). The column DML shows the results for DML, a Lagrange-based method specially 
tailored to the problem (Shang, 1997). 
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Table 8. Results for W-MAX_SAT 

Problem Optimal GRASP* DML ACW 60 
jnh1 420925 -188 0 0 
jnh4 420830 -215 -41 -85 
jnh5 420742 -254 0 -116 
jnh6 420826 -11 0 -15 
jnh7 420925 0 0 0 
jnh8 420463 -578 0 0 
jnh9 420592 -514 -7 -327 

jnh10 420840 -275 0 0 
jnh11 420753 -111 0 -250 
jnh12 420925 -188 0 0 
jnh13 420816 -283 0 0 
jnh14 420824 -314 0 -172 
jnh15 420719 -359 0 -52 
jnh16 420919 -68 0 -5 
jnh17 420925 -118 0 0 
jnh18 420795 -423 0 -207 
jnh19 420759 -436 0 0 

jnh201 394238 0 0 0 
jnh202 394170 -187 0 -126 
jnh203 394199 -310 0 -137 
jnh205 394238 -14 0 0 
jnh207 394238 -137 0 -9 
jnh208 394159 -172 0 -162 
jnh209 394238 -207 0 0 
jnh210 394238 0 0 0 
jnh211 393979 -240 0 0 
jnh212 394238 -195 0 0 
jnh214 394163 -462 0 0 
jnh215 394150 -292 0 -199 
jnh216 394226 -197 0 0 
jnh217 394238 -6 0 0 
jnh218 394238 -139 0 0 
jnh219 394156 -436 0 -103 
jnh220 394238 -185 0 -33 
jnh301 444854 -184 0 0 
jnh302 444459 -211 -338 0 
jnh303 444503 -259 -143 -414 
jnh304 444533 -319 0 -570 
jnh305 444112 -609 -194 -299 
jnh306 444838 -180 0 0 
jnh307 444314 -155 0 -685 
jnh308 444724 -502 0 -699 
jnh309 444578 -229 0 0 
jnh310 444391 -109 0 0 
Average 415914 -233 -16 -106 

 

Our computational results compare favourably to those of the GRASP heuristic on the same 
problem instances. Our outcomes are only slightly worse than those of the special purpose DML 
method of Shang (1997), although we are undertaking to solve the much larger transformed 
problem and make no use of any specialization.  
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6.6 Performance Profiles 

It is always very difficult to compare different methods based on tables of computational results, 
unless one method is best on all the tests. We therefore also compare our methods using the ideas 
given in Dolan and Moré (2001). Based on the time used to  find the best solution, we can 
construct a performance profile as follows. 

Let P be the set of problem instances, S be the set of solvers, and np be the number of problems. 
Define tp,s to be the time used by solver s to solve problem p. Let  

 { }Sst

t
r

sp

sp
sp ∈

=
*|min *,

,
,  

be the ratio between the performances of solver s to the best solver on the problem p. If a solver 
fails to solve a problem, then set rp,s = rM, where rM ≥  rp,s for all p and s.  

A measure of the performance of a solver can be given by 

 ( ) { },

1
|s p s

p

size p P r
n

ρ τ τ= ∈ ≤  

where ( )sρ τ  is the probability that for solver s , the ratio of performance rp,s is within a factor t 

of the best ratio. A plot of ( )sρ τ  for the different solvers will give interesting characteristics of 

the solvers. Please note that ( )1sρ  gives the proportion of problems where s is winning over the 
other solvers.    

For many of our problem instances the reported solution time is very small, and the solvers report 
0. All these instances are removed from this comparison. This is not necessarily a drawback, as 
the remaining problems instances presumably are the most interesting ones.  

Figure 2 shows performance profiles for the following 6 methods: 

o ACW 60 – Tabu Search with adaptive clause weights 

o TS 60 – Tabu Search without adaptive clause weights 

o PMA 60 TS – Tabu Search without adaptive clause weights, but with PMA 

o CON ACW – Constructive Search, followed by TS  

o CON LS – Constructive Search, followed by Steepest Ascent 

o CON – Constructive Search – No LS 

The allotted solution times are 60 seconds per problem instance. 
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Of the original 5485 problem instances, 352 were left after removing those where at least one of 
the solvers reported a solution time of 0 seconds. Of these remaining problems there are 299 
where not all the solvers find the same solution value. 

 

 

Figure 2. Performance Profiles 

As can be seen, the method ACW 60 is the best. It is of interest to note that when solution time is 
small (less than a factor 40 from the best solver on each particular instance), is that CON ACW 
is better than PMA 60 TS, while for longer solution times PMA 60 TS is better. 

7 Conclusions 

We have shown the value of certain types of adaptive memory to improve the performance of 
heuristics, both iterative and constructive. Our results compare very favorably to previous 
published results, and are significantly better than those obtained by exact solvers (XPRESS and 
CPLEX) 

For BOOP, we have achieved the best results by using a tabu search based heuristic, augmented 
by an adaptive move evaluation function, and adaptive clause weights. Very good results are also 
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obtained for constructive heuristics augmented by the learning schemes of PAM (Persistent 
Attractiveness Measure) and MCV (Marginal Conditional Validity). 

We also show that our approach can be applied to Weighted Maximum Satisfiability problems by 
transforming them into (larger) BOOP problems, and that without specialization to the 
W-MAX_SAT setting we obtain results comparable to those of the better specialized methods 
from the literature. 
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