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Abstract 
 
We propose new models for classification and discrimination analysis based on 
hyperplane and multi-hyperplane separation models. Our models are augmented for 
greater effectiveness by a tree-based successive separation approach that can be 
implemented in conjunction with either linear programming or mixed integer 
programming formulations. Additional model robustness for classifying new points is 
achieved by incorporating a retrospective enhancement procedure. The resulting models 
and methods may be viewed from the perspective of support vector machines and 
supervised machine learning, although the new approaches produce regions and means of 
exploring them that are not encompassed by the procedures customarily applied. We 
focus primarily on two-group classification, but also identify how our approaches can be 
applied to classify points that lie in multiple groups.  
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Introduction 

Let Ai = (ai1 ai2 … ain), i ∈ G = {1, 2,…, m} denote a collection of vectors whose 
elements belong to two groups, indexed by G1 and G2. We seek a classification rule to 
identify whether a given vector A should belong among the Ai for i ∈ G1 or among those 
for i ∈ G2. For example, the elements Ai may refer to people to be classified according to 
whether they have a particular disease (i ∈ G1) or are free of the disease (i ∈ G2), where 
the first component ai1 of Ai may refer to the person′s weight, the second component ai2 
may refer to the person′s white cell count, and so forth. Common instances of 
classification problems come from the areas of finance, healthcare, engineering design, 
biotechnology, text analysis, homeland security and many other areas (see, e.g., Dai, 
2004). 

The decision rules we investigate are based on hyperplane separation approaches, 
viewing the Ai vectors as points in an n-dimensional space. In the simplest case, we seek 
a single hyperplane to differentiate the points Ai for i ∈ G1 from the points for i ∈ G2, 
where as nearly as possible the hyperplane will lie between the two sets of points, so that 
each group lies predominantly on one side of the hyperplane .  

More generally, we identify conjunctions and disjunctions of hyperplanes to yield more 
complex regions for separating points of the two groups. The models are based on linear 
and mixed integer programming formulations, whose effectiveness is amplified by 
embedding them within a successive separation process that constitutes an iterative tree-
based procedure. A key variation makes special use of a procedure called successive 
perfect separation that compels one of the two separating regions to contain all points of 
one of the groups at each branch, and further refines the outcomes by a process of 
retrospective enhancement. 

The organization of this paper is as follows. We first review literature that provides the 
background for the new models, observing connections with ideas introduced in the 
context of support vector machines.  A series of basic linear and integer programming 
formulations is introduced, proceeding from simpler to more advanced considerations. 
We then introduce an additional layer of refinement, as a foundation for greater practical 
efficacy, by coupling these models with successive separation procedures and the 
associated methods of retrospective enhancement. Finally, we propose new mixed integer 
optimization models and associated streamlined approaches for solving them that give 
another level of sophistication to the classification tools used in successive separation.  
 
1. Linear Programming Models for Single Hyperplane Discrimination 
Analysis 

To begin we review fundamental ideas underlying the creation of a single separating 
hyperplane1 by linear programming (LP). Let x = (x1 x2 … xn) denote a vector of weights, 
                                                 
1 Since the hyperplane may not succeed in precisely separating the two groups, as where some points lie on 
the “wrong side” of the hyperplane, we use the word “separating” in a broad sense, as may alternately be 
conveyed by the term “quasi-separating.” 
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one for each of the n components of a vector A = (a1 a2 … an), where A may represent 
one of the vectors Ai, i ∈ G = {1, …, m} or a new vector that we may wish to classify. 
The weights xj of x are variables whose values we undertake to discover in order to 
produce the hyperplane. We also seek to determine the value of an additional variable, 
denoted by b, so that knowledge of x and b will permit the hyperplane to be represented 
by the equation Ax = b. Once the determination of x and b has been made, these variable 
quantities may be treated as constants, in order to test whether an arbitrary point A = (a1 
a2 … an) in n-space lies on a given side of the hyperplane. 

The condition that all Ai for i ∈ G1 lie on one side of the hyperplane and all points Ai for i 
∈ G2 lie on the other may be expressed by writing 

  Aix ≤  b  for i ∈ G1  and Aix ≥ b  for i ∈ G2. 

We prefer if possible to avoid the case where points lie precisely on the hyperplane (by 
satisfying Aix = b), and more generally prefer to have the hyperplane lie in a space that is 
“halfway between the two sets of points” in a meaningful sense. A point that is 
misclassified, by failing to lie in its targeted half-space, can be evaluated by reference to 
how far it lies from the hyperplane boundary, where the distance from the boundary 
(which is positive for misclassified points) is measured by Aix – b for i ∈ G1 and by b – 
Aix for i ∈ G2. By contrast, points that are correctly classified can be evaluated by 
reference to distance measures given by b – Aix for i ∈ G1 and by Aix – b for i ∈ G2, 
which are non-negative (and preferably positive) for these points.  

The study of separating hyperplane models using linear programming was launched by 
the work of Mangasarian (1965), who introduced a model to minimize the greatest 
violation of any misclassified point by solving a collection of 2m linear programs. 
Subsequently Freed and Glover (1981) provided a series of LP models for hyperplane 
separation, each requiring the solution of only a single linear program and encompassing 
the goals of minimizing the greatest violation as well as minimizing weighted sums of 
violations. These models also handled the case of maximizing the minimum internal 
deviation and of maximizing a weighted sum of internal deviations. Currently all 
separating hyperplane models use variations of the form that relies on solving only a 
single linear program. 
  
1.1 A Basic Linear Model Formulation 
 
We start from one of the primary linear programming models of Freed and Glover, and 
then introduce refinements and generalizations provided by a more recent formulation of 
Glover (1990). We will call points that lie or fail to lie in their appropriate half-spaces, 
i.e., which are correctly or incorrectly classified, satisfying or violating points, 
respectively. Let si denote a variable that measures the amount by which a satisfying 
point Ai lies inside its associated half-space, and let vi denote a variable that measures the 
amount by which a violating point lies outside this half-space. Figure 1 shows an 
example where hyperplane Ax = b attempts to separate the triangles from the squares.  
Point 1 is an element of the triangle group that satisfies its hyperplane constraint, while 
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point 2 violates it. By implication, si and vi are non-negative and at most one member of 
each pair may be positive, as the figure shows.  
 
 

v2

s1

Ax = b

1

2

 
Figure 1: schematic representation 
of satisfying and violating measures 

 
We incorporate these variables into the inequalities for the half-spaces to convert them 
into equations, by writing 
 

AIx – vi + si = b,   i ∈ G1  
AIx + vi – si = b,   i ∈ G2  

 
The first objective we examine is to minimize a weighted sum of the violations, and 
subject to this, to maximize a weighted sum of the satisfactions. Let hi denote a weight 
associated with the variable vi to discourage it from being positive, and let ki denote a 
weight associated with the variable si to encourage it to be a large as possible, in the 
event that vi = 0. Finally, let m1 = |G1| and m2 = |G2|. Then we obtain the formulation. 
 
 Minimize ∑ (hivi – kisi: i ∈ G)      (1.1) 
      subject to 

Aix – vi + si = b,   i ∈ G1       (1.2) 
Aix + vi – si = b,   i ∈ G2       (1.3) 

x, b unrestricted      (1.4) 
   vi, si  ≥ 0,  i ∈ G      (1.5) 

(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1   (1.6a) 
m1∑ (si –  vi: i ∈ G2) + m2∑ (si –  vi: i ∈ G1) = 1   (1.6b) 
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Equations (1.6a) and (1.6b) from Glover (1990) are equivalent forms of a normalization 
constraint that plays a vital role in the formulation.2 Usually, (1.6b) is more convenient to 
use than (1.6a) since it does not require computing the sum of the Ai vectors over i ∈ G1 

and i ∈ G2, but (1.6a) may sometimes be appealing for having a form that is more nearly 
invariant over additional formulations we describe subsequently. In addition, we suggest 
that it can be useful to impose a constraint that achieves a balanced violation condition 
when the formulation (1) does not result in perfectly separating the two groups (hence 
some of the vi variables receive positive values). Such a constraint may take the form  
 

m1∑ (vi: i ∈ G2)  =  m2∑ (vi: i ∈ G1) 
 
The constraint has no impact if a solution exists with all vi = 0, but it can have some 
utility in respect to generating more robust separations. 
 
1.2 Background of Normalizations and Common Uses of the Model 
 
Various normalizations have been proposed through the years to assure that linear 
programming models for discrimination analysis do not admit the degenerate solution 
given by x = 0, b = 0 (which also yields vi = si = 0 for all i ∈ G). However each of the 
normalizations introduced prior to those indicated in formulation (1) was discovered to 
introduce flaws into the model by failing to yield solutions that were invariant when the 
problem data undergoes transformations such as rotations or translations. The discovery 
of (1.6a) and (1.6b) finally removed these flaws, as proved in Glover (1990). 
Nevertheless, many researchers that use linear programming models for hyperplane 
separation continue to rely on flawed normalizations, apparently unaware of the 
deficiencies introduced. 
 
To assure that the solution to formulation (1) is bounded for optimality, it is necessary to 
choose the coefficients hi and ki so that hi > ki, i ∈ G. Theoretically, the condition can be 
relaxed to stipulate that hi ≥ ki, but this entails some risk computationally due to round-
off error that can cause difficulties when choosing hi = ki. More particularly, a condition 
that has been proved to assure bounded optimality in the presence of the normalization 
constraint (1.6a) or (1.6b) is given by selecting the hi and ki values so that  
 

Min(hi: i ∈ G) > Max(ki: i ∈ G). 
 
Historically, nearly all adaptations of formulation (1) explored in various studies reported 
in the literature have focused on the special case where all hi = 1 and all ki = 0. In this 
instance the objective reduces to simply minimizing the sum of violations (sometimes 
called external deviations), and the model has popularly come to be known as the 
“Minimum Sum of Deviations” or MSD, model. 
 

                                                 
2 The right hand side of 1 in these equations can be replaced by any positive constant, which has the 
outcome of scaling the solution.  
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It should be stressed, however, that the presence of weights hi and ki that differ from 1 
and 0 affords several advantages. Among these is an opportunity to emphasize the correct 
classification of some points more strongly than others (by means of the hi values) and to 
pursue a goal of driving some points to lie more deeply inside the half-space of correct 
classifications than others (by means of the ki values). Such features can be valuable in 
applications where incorrectly classifying certain points may have more unfavorable 
consequences than incorrectly classifying others, or conversely, where correctly 
classifying some points can have a greater pay-off than correctly classifying others.  
 
Allowing the hi and ki coefficients to take values other than the value 1 used in the simple 
MSD model also has the benefit of permitting these coefficients to be manipulated by 
means of linear programming post-optimality analysis. This makes it possible to change 
the emphasis on correctly classifying specific points or subsets of points, and to 
efficiently determine the effects of such changes. Figure 2.a) shows a hyperplane Ax = b 
that is obtained by assigning equal weights to all points. In figure 2.b), we assume that it 
is more important to correctly classify the triangular points than the squares; therefore, 
the triangular points that are shaded are assigned a higher weight hi than the other points, 
as a function of their proximity to the original hyperplane. The result is a new hyperplane 
A’x=b’ which now classifies two more of the triangles correctly, even though one more 
square is misclassified. 
 
As noted in Glover (1990), such manipulations can also be used to diminish the effects of 
outliers, e.g., by reducing the size of their coefficients or setting them to 0. (Setting the 
coefficients to 0 is equivalent to dropping a point from consideration altogether. Such an 
approach of removing outliers has been proposed more recently in Ma and Cherkassky, 
2005.) LP post-optimality procedures can also be used to generate new attributes as 
nonlinear functions of others. An efficient implementation results by pricing-out the 
associated new variables in a currently optimal linear programming basis, to identify at 
once whether these attributes are “profitable” in a linear programming sense and can 
thereby improve the problem objective by their inclusion (Barr and Glover, 1993, 1995). 
In this manner there is no need to generate or include such elements in the problem in 
advance, since they can be produced and evaluated on the fly. 
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Ax = b A’x = b’

1

a) b)  
Figure 2: an example of the effects of post-optimality analysis 

 
These types of approaches may be interpreted as belonging to the class called support 
vector machines (see, e.g., Christiani and Shawe-Taylor, 2000; Schlkopf and Smola, 
2002; Wang 2005). Although they originated before the SVM classification and 
taxonomy was introduced, the LP post-optimization proposals are highly relevant to the 
kernel function notion that has been popularized in the SVM literature. The purpose of a 
kernel function, in particular, is to transform the problem data to give it a structure or 
form that is easier to classify. The outcome of the transformation produces new units of 
data (increasing the problem dimensionality) as a way to incorporate information implied 
by the original data, but not originally in a form that is amenable to be treated effectively 
by the analytical tool used to produce classifications. As can be seen, the proposals to 
augment the LP model using linear programming post-optimality analysis yield an 
adaptive method for processing the data to yield new data. Consequently, this affords a 
means for enhancing the repertoire of SVM kernel generating procedures without the 
need to rely on an a priori specification or dedication to a particular type of 
transformation, or to invoke all elements of the transformation at once.   
 
The linear programming models for creating separating hyperplanes can be improved not 
only by differentially weighting the vi and si variables and by incorporating a post-
optimality component, but by additional elements introduced in subsequent sections. We 
lay the foundations for these improvements by examining natural extensions of the 
preceding model ideas. 
 
1.3 A More General Linear Model 
 
A simple extension of the model of Section 1.1 arises by introducing a comprehensive 
violation variable vo relevant to minimizing the maximum violation over all violating 
points, and a comprehensive satisfaction variable so relevant to maximizing the minimum 
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satisfaction over all satisfying points. With these variables included, the formulation 
becomes 
 
 Minimize ∑ (hivi – kisi: i ∈ G) + hovo – koso      (1.1′) 
      subject to 

Aix – vi + si – vo + so = b,   i ∈ G1      (1.2′) 
Aix + vi – si + vo – so = b,   i ∈ G2      (1.3′) 

x, b unrestricted      (1.4′) 
   vi, si  ≥ 0,  i ∈ G and i = 0     (1.5′) 

 (m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1   (1.6a′) 
m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1) + m(so – vo) = 1   (1.6b′) 

 
We note that the normalization (1.6a′) remains the same as (1.6a), while the equivalent 
normalization (1.6b′) differs from (1.6b) by including a weighted term so – vo. Models 
that included both the vo and so variables were proposed in the early paper of Freed and 
Glover (1981), though the model (1′) and the normalizations accompanying it first 
appeared in Glover (1990).  
 
The ability to place an emphasis on minimizing the greatest violation and on maximizing 
the least satisfaction (where, in the latter instance, the points can be accurately classified) 
has evident value in a variety of contexts. Although some researchers have looked at 
instances of model (1′) that include the variable vo, apparently none of these instances 
have also included so. As we will show later, so has a crucial role in procedures for 
creating more robust separations. Also, it appears that no study has attempted to examine 
the consequences of incorporating the vo variable within the same formulation as one that 
attaches non-zero hi and ki coefficients to the remaining vi and si variables.  
 
A common variation of the formulations (1) and (1′)  replaces b by b – ε in (1.2) and 
(1.2′), and by b + ε in (1.3) and (1.3′), for a selected positive value of ε. The purpose of 
this variation is to push the correctly classified points farther from the quasi-separating 
hyperplane. This approach faces the difficulty of pre-specifying what an appropriate 
value of ε should be, particularly since this value interacts with the value of the right hand 
side constant in the normalization constraints. Formulation (1′) that includes so provides a 
way to implicitly handle the influence of ε, while also handling additional considerations. 
 
In particular, replacing b by b – ε and by b + ε in the equations (1.2′), and (1.3′), 
respectively, is the same as assigning so a predetermined constant value of ε in the 
equations. Introducing so as a variable avoids the difficulty of having to figure out in 
advance an appropriate value for so to receive, and permits the flexibility of an interaction 
between the variables si and so by varying the coefficients ki and ko. In general, we may 
interpret the inclusion of a constant ε term to be the same as stipulating that so has a 
positive lower bound of ε, making it possible to both retain so in the model and also 
replace b by b – ε and by b + ε in the associated equations. By means of this change, so 
will receive a value that is the difference between ε and the true value of so. The use of ε 
as a lower bound on so can be appropriate in cases where we seek to assure a minimum 
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separation from the hyperplane regardless of all other considerations. An appropriate 
calibration for the value of ε can be achieved by once again making recourse to post-
optimization, changing ε in a series of steps and noting the tradeoffs that result. As we 
argue later, such a calibration can be valuable for the purpose of achieving a model that is 
robust in its ability to correctly classify data from hold-out samples. 
 
1.4 Variant of the More General Linear Model 
 
The vo and so variables of the model of Section 1.3 can be introduced in another fashion, 
removing them from the constraints (1.2′) and (1.3′) and incorporating the additional set 
of constraints vo ≥ vi  and  si ≤ so,  i ∈ G, to produce the following formulation 
 
 Minimize ∑ (hivi – kisi: i ∈ G) + hovo – koso      (1.1″) 
      subject to 

Aix – vi + si  = b,   i ∈ G1      (1.2″) 
Aix + vi – si  = b,   i ∈ G2      (1.3″) 
x, b unrestricted      (1.4″) 

   vi, si  ≥ 0,  i ∈ G and i = 0     (1.5″) 
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1   (1.6a″) 
m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1)  = 1   (1.6b″) 

   vo ≥ vi  and  si ≤ so,  i ∈ G     (1.7″) 
 
 Here (1.2″) and (1.3″) are the same as (1.2) and (1.3), and (1.6b″) is the same as (1.6b). 
Otherwise, except for the addition of the new constraints (1.7″), the rest of formulation 
(1″) is the same as formulation (1′). 
 
The changes that produce formulation (1″) enable the model to accomplish more complex 
objectives than handled by formulation (1′), encompassing more complex trade-offs 
between vo and so and the other vi and si variables, as the values of the coefficients ho and 
ko are changed relative to values of the other hi and ki coefficients. Additional advantages 
to formulation (1″) arise when the linear programming models are extended to mixed 
integer programming models.  
 
Formulation (1″)  can be generalized further to give weight to objectives of minimizing 
the maximum degree of violation, or maximizing the minimum degree of satisfaction, 
over various subsets of points S1, …, Sr. To accomplish this we introduce variables voq 
and soq, q = 1,…, r, which we assign coefficients hoq and koq in the objective function, and 
impose the inequalities 
  

voq ≥ vi  and  si ≤ soq ,  i ∈ Sq, q = 1…., r.    (1.8″) 
 
Such inequalities can be incorporated only for the voq variables or only for the soq 
variables, according to the set Sq considered. We can additionally generalize (1.8″) by 
means of the constraint  
 

voq ≥ ∑(hiqvi: i ∈ G) and  ∑(kiqsi: i ∈ G)  ≤ soq ,  q = 1…., r  (1.9″) 



 10

 
noting that (1.8″) results from (1.9″) by setting hiq = 1 and kiq = 1 only for i ∈ Sq, and  
hiq = kiq = 0 for i ∈ G – Sq. This type of generalization has uses in obtaining approximate 
solutions to mixed integer programs by solving only linear programming problems 
(Glover, 2006a). 
 
We do not explore applications of (1.8″) or (1.9″) in this paper, but will make explicit use 
of the model that embodies (1.7″). In this connection, formulations of subsequent sections 
that include vo or so in equations such as (1.2′) and (1.3′) can be modified by removing vo 
and so from these equations (producing equations corresponding to (1.2″) and (1.3″)) and 
then adding constraints of the form (1.7″), which permits the normalization constraint to 
be expressed as in (1.6b″), which is the same as the original form (1.6b). 
 
1.5 Pre-processing to Reduce Problem Size and Achieve Better Separations 
 
Pre-processing provides a natural way to reduce the size of the problem to be solved, and 
also to permit the separating hyperplane strategies to achieve better separations. A form 
of pre-processing we suggest in this regard is the following. Let D(Ap,Aq) be a measure 
of the distance between two points Ap and Aq, for p, q ∈ G. For a given point Ai, i ∈ Gk, 
let k* denote the index complementary to k (k* = 2 if k = 1, and k* = 1 if k = 2). We then 
define the quantities 
 
 For Ai, i ∈ Gk: 
  Dmin(Ai) = Min(D(Ai,Ap): p ∈ Gk*)  
   S(Ai) = {q ∈ Gk: D(Ai,Aq) < Dmin(Ai)} 
  
The larger the values of Dmin(Ai) and of |S(Ai)| relative to other points Aq, q ∈ Gk, the 
more “deeply embedded” the point Ai is within the Group k (and isolated from points in 
Group k*). We conjecture that if we remove such a deeply embedded point Ai from 
Group k before seeking to generate a separating hyperplane, the chances are high that Ai 
will automatically fall on the desired side of the hyperplane that is generated without 
referring to this point.  
 
Consequently, we suggest a pre-processing step that makes use of the quantities Dmin(Ai) 
and |S(Ai)| to select more deeply embedded points and temporarily set them aside, thus 
shrinking the size of the problem to be solved when seeking a separating hyperplane. For 
example, to identify points to be removed in this fashion, thresholds can be established on 
minimum sizes of Dmin(Ai) and |S(Ai)|, or of a weighted combination of these quantities, 
that will admit only a specified portion of the points Ai, i ∈ Gk to qualify for a “deeply 
embedded” designation. Once the hyperplane model is solved, if a point Ai that was 
temporarily set aside lies on the wrong side of the resulting hyperplane, then it can be 
introduced into the formulation. By using a linear programming post-optimality 
procedure, the solution process can continue from the current optimized solution (relative 
to the set of points that excluded Ai) without having to re-start the solution process from 
scratch. Such an approach complements the approach of using post-optimality to reduce 
the impact of outliers by reducing their objective function coefficients. 
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The values Dmin(Ai) and |S(Ai)| can be refined by applying a second order process. For 
this, we make use of the quantity  
 
  T(Ai) = {q ∈ G – Gk: D(Ai,Aq) < Dk} 
 
where Dk is a distance measure given by Dk = Mean(Dmin(Ai): i ∈ Gk), or more generally 
determined to insure that a certain portion of the points Ai, i ∈ Gk satisfy Dmin(Ai) ≤ Dk. If 
|T(Ai)| is relatively large compared to the value |T(Aq)| for other points Aq in Group k, 
then Ai may be considered as representing an anomalous (hard-to-classify or “out-of-
place”) point. Such a point can introduce a distortion in defining Dmin(Ap) and |S(Ap)| for 
points Ap that lie in the opposite Group k*. (This is particularly true when a small value 
of Dk is used in the definition of T(Ai).) Consequently, based on a first determination of  
Dmin(Ai) and S(Ai), we can make an improved second determination by choosing a 
threshold Tk for elements of Group k to identify a set Ek of points that are sufficiently 
anomalous to be excluded from consideration  
 
  Ek = {i ∈ Gk: |T(Ai)| ≥ Tk}. 
 
where, as suggested, Tk may be chosen to assure that Ek will not exceed a certain limited 
size. (Alternatively, Ek can be identified by arranging the |T(Ai)| in descending order and 
choosing at most a specified number of the largest values, stopping if the size of |T(Ai)| 
abruptly decreases or reaches 0. A similar process can be used to determine Dk itself.) 
Then, in particular, for a point Ai, i ∈ Gk, we re-define  
 
  Dmin(Ai) = Min(D(Ai,Ap): p ∈ Gk* – Ek* ).  
 
The composition of S(Ai) is then re-determined based on this new (second level) 
definition.  
 
A more cautious version of the exclusion set Ek is given by 
 
  Ek

o = {i ∈ Gk: S(Ai) = ∅} 
 
which may be used in place of Ek (i.e., Ek*

o can be used in place of Ek*) in the preceding 
second level definition of Dmin. Still more cautiously, first define 
  
  S[Gk] = ∪(S(Ai): i ∈ Gk}. 
 
Then the exclusion set Ek may be replaced by 
 
  Ek

+ = {i ∈ Gk – S[Gk]: S(Ai) = ∅}. 
 
We call points Ai for i ∈ Ek

+ strongly anomalous points, and stipulate that these points, if 
any exist, may be removed from Gk permanently. 
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It is important in implementing these forms of pre-processing to first scale the data, so 
that each attribute j, represented by the (column) vector A•j = (a1j a2j … amj), is 
normalized, as for example by dividing through by  ∑(|aij|: i ∈ G), understanding that 
attribute j may be discarded if  A•j is the 0 vector.  
 
More advanced forms of pre-processing can be based on the use of cluster analysis to 
produce clusters of points whose elements lie strictly within a given group, and then to 
subject such clusters to a successive perfect separation analysis as described in Section 3. 
The preceding use of Dmin(Ai), S(Ai), T(Ai) and the associated exclusion sets can be 
incorporated into a more general clustering procedure that can be used in this fashion 
(Glover, 2006b). (Another use of Dmin(Ai) is also given in Section 3.) 
 
1.6 Retrospective Enhancement for Robust Separation – First Level 
 
An important goal in applying separating hyperplane strategies is to go beyond the 
immediate objective of minimizing a measure of misclassifications, and in general, to 
generate hyperplanes that separate the correctly classified points of Group 1 from those 
of Group 2 by a greater distance – even where a perfect classification cannot be achieved. 
A hyperplane that achieves this additional separation objective is likely to be better at 
classifying new points that are not contained in the initial G1 and G2, and thus provide a 
more robust separation model.  
 
The goal of increasing the separation between correctly classified points is supported by 
the inclusion of the si variables in the objective function of formulation (1) and by the 
additional inclusion of the so variable in formulations (1′) and (1″). However, by 
themselves, the preceding models do not have full latitude to achieve this goal. In order 
to identify hyperplanes that place correctly classified points as far as possible from the 
hyperplane boundary, we make use of the so variable in an additional fashion, by 
employing a retrospective enhancement process that re-solves the hyperplane separation 
problem, taking advantage of knowledge obtained from the previous solution of the 
problem.  
 
Let C1 and C2 denote the sets of correctly classified points obtained by solving model (1′) 
or (1″).  (For convenience, as here, we often employ the convention of referring to points 
by naming their index sets.)  That is, the initial solution correctly assigns Ai to G1 for i ∈ 
C1 and correctly assigns Ai to G2 for i ∈ C2, hence C1 ⊆ G1 and C2 ⊆ G2. Let C = C1∪C2, 
and define mc1 = |C1|, mc2 = |C2| and  mc = |C|.  
 
Then we can seek a better separation of these points by retrospectively solving the new 
problem 
 
 Maximize ∑ (kisi: i ∈ C) + koso       (1.1o) 
      subject to 

Aix + si + so = b,   i ∈ C1      (1.2o) 
Aix – si – so = b,   i ∈ C2      (1.3o) 
x, b unrestricted      (1.4o) 
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   si  ≥ 0,  i ∈ C and i = 0      (1.5o) 
 (mc1∑ (Ai: i ∈ C2) – mc2∑ (Ai: i ∈ C1))x = 1   (1.6ao) 
mc1∑ (si: i ∈ C2) + mc2∑ (si: i ∈ C1) + mcso  = 1   (1.6bo) 

 
The value ko in the preceding formulation may appropriately be chosen to be significantly 
larger than ∑ (ki: i ∈ C). However, we may reasonably give small positive values to the ki 
coefficients for i ∈ C rather than setting these coefficients to 0, since there may be many 
alternative solutions that maximize the minimum value of so, and we are most interested 
in those that also push individual points away from the hyperplane, as well as those that 
merely achieve the objective related to so.  Figure 3 depicts the effects of retrospective 
enhancement. 
 

Ax = b

a)

A’x = b’

b)  
Figure 3: an example of retrospective enhancement 

 
Significantly more advanced forms of retrospective enhancement will be introduced in 
connection with successive separation strategies, which we examine next. 
 
2. Tree-Based Models Using Successive Separation Strategies 
 
2.1 Beginning Considerations  
 
A tree-based approach proposed in Glover (1990) allows a more complete means of 
separating two groups by making use of a successive separation (SS) process. Each stage 
of the process seeks to separate points that are incompletely differentiated, i.e., not yet 
correctly classified, by hyperplanes generated at preceding stages. This type of approach 
can also be used as a method for multi-group classification, where (as noted in Freed and 
Glover (1981)) any collection of groups whose members have not yet been isolated from 
all other remaining groups can be divided into two subsets, where one subset is defined to 
be Group 1 and the other subset is defined to be Group 2. Using such a division, a 
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hyperplane is then generated to isolate Group 1 as nearly as possible from Group 2, 
producing discrimination sets D1 and D2 where D1 consists of those points in the half-
space used to classify points (correctly or incorrectly) as belonging to Group 1 and D2 
consists of those points in the complementary half-space used to classify points as 
belonging to Group 2 (D1∪D2 = G1∪G2). (D1∩G1 and D2∩G2 correspond to the sets C1 
and C2 of correctly classified points discussed in Section 1.5, except that these sets may 
be targeted in the present case to contain elements of more than a single group.) 
 
Successive subdivisions of this type encompass alternatives ranging from a binary tree 
(where at each stage approximately half of the groups currently being considered are 
allocated to Group 1 and the remaining half are allocated to Group 2) to a one-at-a-time 
form of separation (where a single group is isolated from all remaining groups at each 
stage). Independent of the mode of subdivision, the process typically generates g – 1 
hyperplanes to separate g different groups. Fewer hyperplanes may be generated in the 
case where a classification attempt at a particular stage is done very poorly, and some 
group assigned to G1 (or respectively to G2) fails to have any of its elements appear in the 
set D1 (respectively D2). 
 
To achieve a more effective classification, the SS approach can be performed multiple 
times, using different forms of subdivision on each occasion. The outcomes can then be 
subjected to conditional Bayesian analysis to provide a composite classification scheme, 
yielding a rule that accounts for the decisions produced by each tree. The composite 
scheme can accordingly be used to determine the group that a new point should be 
assigned to. In a related manner, a voting scheme based on the outcomes of the different 
trees can also be used to provide an overall rule (Glover, 2006b).  
 
2.2 Extended SS Approaches 
 
In contrast to the first level approach sketched in Section 2.1, the main use of the SS 
process is to create a mode of successive separation that does not stop its examination of 
a discrimination set D1 or D2 when the elements of the set belong only to a single one of 
the original groups, but continues to generate hyperplanes to achieve an improved 
classification.  
 
We discuss this process by returning the focus to the two-group case. When G1 and G2 
give rise to the two discrimination sets D1 and D2 by the hyperplane separation process, if 
either D1 or D2 contains points of both G1 and G2, then this set Dk may be subjected to a 
new hyperplane separation effort to try to separate the residual elements of G1 and G2 that 
it contains. The examination of set Dk to separate its G1 elements from its G2 elements 
(i.e., to separate Dk∩G1 from Dk∩G2) thus gives Dk the same role as the original G, 
whose G1 and G2 elements were subjected to a classification attempt on the original step. 
Thus, each step simply repeats the process applied on the first step. The SS procedure 
stops upon reaching a point where a new hyperplane fails to achieve a more effective 
classification or fails to improve on the previous classification by a pre-specified amount. 
The procedure may also stop by reaching a limit imposed on the number of subdivisions 
allowed, i.e., by reaching a selected limit on the depth of the tree. 
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As observed in Glover (1990), such an approach can be conveniently supplemented at 
each stage by employing a simple calculation to determine how far to shift the current 
hyperplane in each direction (by increasing and decreasing discriminant b) to reach a 
position where all points of either Group 1 or Group 2 will lie entirely on one side of the 
hyperplane (the side that includes the original hyperplane). We call the group that falls 
entirely on one side of the shifted hyperplane the primary group, and call the other group 
the secondary group. Correspondingly, we refer to the two sides of the shifted hyperplane 
as the primary and secondary sides. (That is, the primary side contains all points of the 
primary group. The primary/secondary classification that results by shifting the 
hyperplane in a given direction may be the same or different from the classification that 
results by shifting the hyperplane in the opposite direction.)  It can be useful in this 
approach to determine the original hyperplane by incorporating the balanced violation 
constraint  

m1∑ (vi: i ∈ G2)  =  m2∑ (vi: i ∈ G1), 
 

as discussed at the end of Section 1.1. 
 
Some points of the secondary group may lie on the primary side of the shifted 
hyperplane, but by changing b as little as possible to yield the separation, as many points 
as possible of the secondary group will lie on the secondary side. Moreover, all points of 
the secondary group that lie on the secondary side are perfectly classified by this 
separation, since no points of the primary group lie on the secondary side. Consequently, 
the subset of perfectly classified secondary points can be eliminated at once before 
continuing additional stages of separation.  
 
For some types of configurations, it may be that no points of the secondary group can be 
eliminated in this fashion.3 However, in many instances the approach of shifting b in the 
two different directions will be able to eliminate points from at least one of the two 
groups.  
 
2.3 Successive Perfect Separation (SPS) 
 
Taking the idea of the shifting hyperplane process a step farther, it is natural to employ a 
successive perfect separation (SPS) strategy that operates as follows. Rather than 
adopting the objective of trying to separate the groups in order to minimize the total 
weighted sum of violations (or one of the other related objectives addressed in Section 1), 
the SPS strategy seeks to establish a separation based on the primary/secondary group 
distinction, and thereby to achieve such a separation in a more rigorous fashion. For a 
given choice concerning which of Group 1 or Group 2 will be treated as the primary 
group, the SPS approach employs a model where the violation variables vi of this group 

                                                 
3 A simple worst case scenario is illustrated by the situation where a square is partitioned into 4 regions 
created by its two diagonals, and Group 1 and Group 2 each occupy two non-adjacent regions. Then no 
points of either group can be perfectly classified by this approach. We later describe a way to thwart this 
situation. 
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are given pre-emptively large hi coefficients in the objective function, so that all of its 
points are assured to lie on one side of the hyperplane, while achieving a “best 
separation” for the secondary group subject to this pre-emptive objective. Still, more 
directly, we may simply structure the model so that all points of the primary group fall on 
one side of the hyperplane.  
 
If Group 1 is treated as the primary group, the model may be expressed in the form 
 
 Minimize ∑ (hivi – kisi: i ∈ G2) + hovo – koso      (2.1) 
      subject to 

Aix + si + so = b,   i ∈ G1       (2.2) 
Aix + vi – si + vo – so = b,   i ∈ G2      (2.3) 

x, b unrestricted      (2.4) 
   si  ≥ 0,  i ∈ G and i = 0;  vi ≥ 0, i ∈ G2 and i = 0  (2.5) 

 (m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1   (2.6a) 
m1∑ (si – vi: i ∈ G2) + m2∑ (si: i ∈ G1) + mso – m1vo = 1   (2.6b) 

 
As previously noted, we can remove so and vo from the equations where they appear in 
this formulation, and instead introduce inequalities corresponding to those of (1.6b″). In 
most applications of this model, the variable vo can be disregarded, while the variable so 
takes a dominant role in relation to the variables si for i ∈ G2 (by making ko appreciably 
larger than the ki coefficients). Formulation (2) is particularly useful for its ability to 
achieve the same effect as the first level retrospective enhancement provided by model 
(1o), for situations in which the primary and secondary groups can be perfectly separated. 
We make use of this ability later in a more advanced form of retrospective enhancement. 
 
In order to decide which group should be primary in an SPS approach based on 
formulation (2), two instances of this formulation are solved at each stage, one for 
Group 1 in the role of the primary group and one for Group 2 in this role. Then the 
instance that yields the best outcome (as measured, for example, by correctly classifying 
the largest number of points, or by correctly classifying the largest proportion of points in 
the secondary group) is used to identify which group will be designated primary. If both 
choices for the primary/secondary roles are unattractive, because the solution to (2) yields 
too few elements of the secondary group that lie in its targeted half-space (i.e., too few 
secondary points Ai yield vi = 0), then the SPS approach incorporates an “SS intervention 
step” to generate a hyperplane by the customary successive separation process (using, for 
example, a formulation such as (1′) or (1″)), thus producing two continuations via 
discrimination sets D1 and D2 as discussed in the preceding section. For each 
continuation, the method then re-establishes the SPS focus by solving the type of model 
illustrated in formulation (2), based on invoking the primary/secondary distinction.  
 
The SPS approach employs the same type of termination criteria employed in the regular 
SS process. However, if a continuation is terminated by the criterion of limiting the depth 
of the tree, the final step likewise discards the primary/secondary distinction and reverts 
to the type of branch step employed in the regular SS procedure. The discrimination sets 
D1 and D2 thus produced are the leaf nodes of the indicated continuation.  
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We now turn to a context that makes it possible to take much fuller advantage of the 
hyperplane separation models, and of extensions we subsequently identify.  
 
3. Advanced Forms of Retrospective Enhancement and SPS 
 
Retrospective enhancement, as discussed in section 1.4, becomes of greater significance 
in the successive separation approaches, and especially in the context of successive 
perfect separation, than in the simpler strategies that rely on generating a single 
hyperplane. To introduce a form of retrospective enhancement applicable to this setting, 
we generalize the discussion of the SPS approach to consider the use of regions that 
include half-spaces as a special case. This generalized perspective makes it possible to 
exploit regions generated by mixed integer multi-hyperplane separation methods, 
subsequently discussed.  
 
3.1 General Description of Successive Perfect Separation 
 
A general form of successive perfect separation implicitly includes ordinary successive 
separation as a special case, since as previously noted we employ an SS intervention step 
whenever an SPS step fails to perfectly classify a sufficiently large portion of either 
group. Likewise, in the more common situation where the SPS process reaches a limiting 
depth without having completely separated Group 1 from Group 2, we conclude the 
process with a final SS step.  
 
To describe steps of a general SPS approach (that includes such SS steps), we replace the 
reference to hyperplanes and half-spaces by a reference to regions R1 and R2 that are 
generated with the goal of isolating the two groups G1 and G2 as nearly as possible from 
each other. More precisely, we refer to a collection of regions denoted by R1(d) and R2(d), 
generated at successive depths d = 1, …, do.  
 
Let G = {Ai: i ∈ G} and Gk = {Ai: i ∈ Gk} for k = 1, 2. In contrast to our usual 
convention of referring to a set of points by naming its index set, it is useful in the present 
setting to differentiate points from index sets more precisely. As in the preceding 
notation, we use italicized symbols in general to refer to collections of points.   
 
In the same way that we consider a pair of half-spaces defined by a separating hyperplane 
to be complementary (by implicitly supposing one of member of the pair is an open set, 
which may be enforced by a lower bound ε on so), we assume that the regions R1(d) and 
R2(d) are mutually complementary and partition the space Rn of all real n vectors A =  
{a1, …, an} (of which the points Ai in G  are specific instances). Later integer 
programming formulations that likewise incorporate an so variable will be designed to 
assure this condition. 
 
In a successive perfect separation process, where portions of G1 and G2 are perfectly 
classified and removed from consideration at various stages, we refer to the residual 
subsets of G1 and G2 that remain to be considered at depth d by G1(d) and G2(d). 
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Likewise, we refer to the residual portion of G itself by G(d) (= G1(d)∪G2(d)). (Initially, 
for d = 1, we have G1(d) = G1, G2(d) = G2 and G(d) = G.)  
 
Let Ck(d) for k = 1, 2 identify the set of points that are correctly classified by the region 
Rk(d) as a result of belonging to the associated subset Gk(d) of Gk at the current depth d; 
that is Ck(d) = Gk(d)∩Rk(d). The associated set of points Ik(d) that are incorrectly 
classified by the region Rk(d) is given by Ik(d) = Gk(d) – Rk(d). (Hence by the 
complementary relationship between R1(d) and R2(d), we also have I1(d) = G1(d)∩R2(d) 
and I2(d) = G2(d)∩R1(d).)   
  
In a direct parallel with the type of separations based on half-spaces, an SS approach 
generates regions R1(d) and R2(d) by reference to the goal of optimizing a function 
F(G1(d), G2(d)), where this function favors regions that give rise to empty sets I1(d)and 
I2(d) of misclassified points, when this is possible – as by minimizing a weighted sum of 
violations of points lying in I1(d)and I2(d), or by minimizing the number of points lying in 
these two sets, and so forth. (The formulations of preceding sections give examples of 
various forms of F(G1(d), G2(d)) when the regions R1(d) and R2(d) consist of 
complementary half-spaces.)  
 
For the SPS approach, we refer to the primary region by the index k and refer to the 
secondary region by the index k*, i.e., k* = 2 if k = 1 and k* = 1 if k = 2. Thus Rk(d) and 
Rk*(d) will refer the primary and secondary regions at depth d (where the identity of k can 
change as d changes), and we similarly refer to Gk(d) and Gk*(d) as the associated 
primary and secondary groups. By this designation, a successive perfect separation 
approach  operates by enforcing the requirement that Rk(d) includes all of Gk(d) (i.e., 
Rk(d) ⊇ Gk(d)), hence assuring Ik(d) =  ∅. Subject to this requirement, the approach seeks 
to generate regions Rk(d) and Rk*(d) that optimize a function Fo(Gk(d), Gk*(d)), which like 
the SS function F(G1(d), G2(d)) undertakes to minimize a weighted sum of violations 
(which in the present case is restricted to points in Ik*(d)) or to minimize the number of 
violations, and so forth. 
 
It should be pointed out that the condition Ik(d) =  ∅ in the SPS approach does not imply 
that the set of correctly classified points Ck(d) = Gk(d) is perfectly classified, since on the 
contrary the primary region Rk(d) may include points of Gk*(d) (i.e., the subset of  Gk*(d) 
that constitutes the set Ik*(d)). Rather, it is the set Ck*(d) that identifies the perfectly 
classified points, given that the region Rk*(d) containing Ck*(d) includes no points of 
Gk(d). 
 
In accordance with earlier discussions, we also emphasize the importance of selecting the 
SS function F(G1(d), G2(d)) and the SPS function Fo(Gk(d), Gk*(d)) to include provision 
for encouraging the greatest possible separation of the sets C1(d) and C2(d). For example, 
the objective functions in each of these cases may include reference to maximizing some 
function of the distances of points in C1(d) from the boundary of R1(d) and of points in 
C2(d) from the boundary of R2(d). Instances of such an objective are given by the models 
of previous sections that seek to separate correctly classified points by assigning 
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objective function weights to the variables so and si. i ∈ G. This robustness consideration 
will be treated more fully in the material that follows. 
 
To describe the SPS approach based on these conventions, we let do denote a selected 
upper limit on the depth d of the tree implicitly generated by the SPS process,4 and let 
List denote a list of groups G(d) (= G1(d)∪G2(d)) that are slated to be examined for 
separation. Also, let Correct and Incorrect respectively denote the sets of correctly 
classified and incorrectly classified points that are updated at various junctures in the 
application of the method (corresponding to the events of identifying leaf nodes of the 
tree implicitly generated).  
 
To specify the situation where an SS intervention step is employed, we make use of an 
aspiration threshold T ≥ 0 that provides a strict lower bound on an admissible number of 
correctly classified points that result by optimizing the SPS function Fo(Gk(d), Gk*(d)). 
Thus, T provides a bound on the desired number of perfectly classified points in Gk*(d) – 
hence the number of points in Ck*(d) (= Rk*(d)∩Gk*(d)). The signal to perform an SS 
intervention occurs when the optimization of Fo(Gk(d), Gk*(d)) subject to Rk(d) ⊇ Gk(d) 
fails to satisfy |Ck*(q)| > T, and instead yields |Ck*(q)| ≤ T.  
 
General SPS Procedure 
 

0.   (Initialization) Set d = 1, and G(d) = G(1) = G. Let List = ∅ and similarly set 
Correct = Incorrect = ∅.  

1. Identify the two component groups making up G(d), given by G1(d) = G(d)∩G1 
and G2(d) = G(d)∩G2. Select one of these, denoted Gk(d), to be primary and the 
other, Gk*(d), to be secondary. 

2. Identify the regions Rk(d) and Rk*(d) that optimize the SPS function Fo(Gk(d), 
Gk*(d)) subject to Rk(d) ⊇ Gk(d).   
(a) If |Ck*(d)| ≤ T (hence the requirement set by the aspiration threshold is 

violated), proceed to Step 5 to execute an SS intervention.  
(b) If |Ck*(d)| > T, proceed to Step 3 to complete the updates of the perfect 

separation process. 
3. Set G(d+1) = Gk(d)∪Ik*(d) (where Ik*(d) = Gk*(d) –  Ck*(d), and Gk(d) = Ck(d)). 

Add the perfectly classified points of Ck*(d) to the set Correct. (The points in 
Ck*(d) are automatically eliminated from future consideration since they do not 
belong to G(d+1).) 
(a) (Branch termination by complete separation) If Ik*(d) = ∅, then all points of 

G(d+1)  (= Ck(d)), have been perfectly classified. Add the points of Ck(d) to 
Correct, and proceed to Termination/Continuation at Step 6. 

(b) If Ik*(d) ≠ ∅, proceed to Step 4 .   
4. (Depth update) Let d := d + 1. If d < do (the limiting depth) then return to Step 1. 

Otherwise, if d = do, proceed to Step 5. 

                                                 
4 In many applications, the value of do can be chosen relatively small, such as 4 or 6. It would be rare to 
find an application making use of a do value greater than 8. 
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5. (SS Intervention (from Step 2(a)) or final step of SPS process (from Step 4))  
Optimize the SS function F(G1(d), G2(d)). 
(a) (SPS final step, on reaching limiting depth do) If Step 5 is reached from Step 4, 

then the method ends its examination of the current G(d) = G(do). Based on 
the optimization of F(G1(d), G2(d)) for d = do, add the final correctly classified 
sets C1(do) (=  R1(do)∩G1(do)) and C2(do) (=  R2(do)∩G2( do)) to Correct, and 
the final incorrectly classified sets I1(do) (=  R2(do)∩G1(do)) and I2(do) (=  
R1(do)∩G2(do)) to Incorrect.  Proceed to Termination/Continuation at Step 6.  

(b) (SS Intervention) If Step 5 is reached from Step 2(a), identify two new 
potential continuations by defining the groups G1(d+1) = C1(d)∪I2(d) and 
G2(d+1) =  C2(d)∪I1(d) (constituting the children of G(d)). Test for reaching 
the limiting depth do. 

(1) If d + 1 < do: set d := d + 1 and add G1(d) and G2(d) to List (to become 
candidates to be selected as a group G(d)). Proceed to Step 6.  

(2) Otherwise, if d + 1 = do: add C1(do) and C2(do) to Correct and add 
I1(do) and I2(do) to Incorrect (without incrementing d and without 
enlarging List). Proceed to Step 6.   

6. (Termination/Continuation). If List is empty, the method terminates. Otherwise, 
choose and remove a set G(d) from List (keeping track of the associated d value) 
and return to Step 1. 

 
It is possible that the final step 5(a) of an SPS process caused by reaching the limiting 
depth do may achieve a perfect separation of both groups by optimizing the SS function 
just as if the method had instead optimized the SPS objective function; i.e., the conditions 
I1(d) = ∅  and I2(d) = ∅ may result in Step 5(a) just as Ik*(d) = ∅  (and by construction, 
Ik(d) = ∅)  in Step 3(a).   Figure 4 depicts an example of a SPS procedure, requiring a SS 
intervention at do = 3.  In the first iteration we obtain hyperplane h1, placing all triangular 
elements to the right of it.  For the second iteration, we no longer need to consider any 
diamond-shaped points correctly classified by h1 (shown as white diamonds in Figure 
4.b); we then obtain h2 by placing all remaining diamonds to its left.  Again, for the third 
iteration we can ignore the triangles that were correctly classified by h2 (shown as white 
triangles in Figure 4.c), and we perform an SS intervention – given that we are already at 
depth do – to fully separate the residual elements. 
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a)   
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b)

h2

 
Figure 4a: step 1 – SPS by a single 
hyperplane (all triangles lie on one side) 

 
 

Figure 4b: step 2 – SPS of residual 
points by a second hyperplane 
(all diamonds lie on one side) 

h3 h1

c)

h2

 
Figure 4c: step 3 – final separation of  
residual points by a third hyperplane  

(all points are now correctly classified) 
 
We observe that the aspiration threshold T need not be a constant, but may be generated 
from a ratio of a desired size of Ck*(d) relative to the size of Ik*(d) or Gk*(d). Evidently, if 
T is made large enough, then the method becomes the same as an ordinary SS method. 
However, as the next section will make clear, there are advantages to choosing T 
relatively small, so that the method will perform perfect separation steps when possible.  
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3.2 Retrospective Enhancement – General Case 
 
The key ideas underlying retrospective enhancement are as follows.  
 
Treating SS Intervention. Although SS intervention is likely to be performed  rarely (or 
not at all) during the execution of the General SPS Procedure, the handling of an SS 
intervention step for the purpose of retrospective enhancement is easy to specify. Each 
time such a step is carried out (by executing Step 5(b)), the optimization of F(G1(d), 
G2(d)) in Step 5 is immediately followed by a second optimization that seeks to separate 
the correctly classified points (constituting the sets C1(d) and C2(d)) as fully as possible. 
Specifically, this is done by optimizing a function F′(C1(d), C2(d)) that is designed, as the 
formulation (1o) of Section 1.5, to yield a first level retrospective enhancement.  
 
The regions R1′(d) and  R2′(d) obtained from this latter optimization will normally differ 
from the regions R1(d) and  R2(d) obtained from the optimization of F(G1(d), G2(d)).  
Consequently, the solution that optimizes F′(C1(d), C2(d)) can yield a different pair of 
children G1(d+1) and G2(d+1) of G(d) in Step 5(b) of the General SPS Procedure. For 
this reason the new solution obtained from this second optimization must be identified 
before adding these children to List in 5(b)(1) or recording the updates of Correct and 
Incorrect in 5(b)(2). 
 
Treating Perfect Separation Sequences. The most effective form of retrospective 
enhancement results by re-processing a sequence of SPS steps that is not interrupted by 
SS intervention. This type of enhancement involves several layers of important 
considerations, and we devote the rest of the section to covering its details. 
 
There are two major operations to be performed: creating a set of buffer regions and 
refining regions previously created (which can include discarding regions that become 
redundant or dominated by others). 
 
As a foundation for both of these operations, we are concerned with subsequences of 
consecutively generated regions Rk(d) and Rk*(d), for d = d1, …, d2, uninterrupted by an 
SS Intervention step, such that the index k of the primary group Gk(d) remains unchanged 
for all d satisfying d ∈ [d1,d2] (i.e., for all d such that d1 ≤ d ≤ d2), and such that the 
subsequence is maximal (hence, d1 cannot be made smaller and d2 cannot be made larger, 
subject to maintaining the primary group index unchanged).  We observe that Gk(d) itself 
remains invariant throughout this sequence, i.e., Gk(d) = Gk(d1) = Gk(d2) for all d ∈ 
[d1,d2], and we call such a sequence a primary-invariant sequence.  
 
We also assume a first pass of the General SPS Procedure has already been performed, 
handling SS intervention steps as previously described (by optimizing the function 
F′(C1(d), C2(d)) each time such an intervention occurs, and adding the resulting children 
to List). Upon completion of this pass of the procedure by reaching Step 6 with List 
empty, we launch a new pass whose goal, roughly speaking, will be to create new regions 
R1(d) and R2(d), that separate G1 and G2 by the greatest possible amount, restricting 
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attention to those elements of these groups that were ultimately classified correctly on the 
first pass. Specifically, denote the sets G, Gk(d), Rk(d), Ck(d), Ik(d), Correct and Incorrect  
of the first pass of the General SPS procedure by Go, Gk

o(d), Rk
o(d), Ck

o(d), Ik
o(d), 

Correcto and Incorrecto. Then we start the second pass by removing all points of the 
Incorrecto set from each of the other sets, thus defining the new G that starts the second 
pass by G = Go – Incorrecto, or more simply G = Correcto.  
 
Evidently, if we generate exactly the same regions Rk(d) and Rk*(d) on a new pass of the 
General SPS Procedure as on the original pass (Rk(d) = Rk

o(d) and Rk*(d) = Rk*
o(d)), then 

during a primary-invariant sequence the new Gk(d) sets for d ∈ [d1,d2] will consist of the 
original Gk

o(d) sets reduced by the removal of the points of Incorrecto (i.e.,  Gk(d) = 
Gk

o(d) – Incorrecto), but the sets of correctly classified points, and in particular the sets 
Ck*(d) that are added to the set Correct throughout the execution of a primary-invariant 
sequence, will be unchanged (i.e., they don’t intersect Incorrecto, and hence Ck*(d) = 
Ck*

o(d)).  
 
 3.2.1 Creating Buffer Regions 
 
When the regions Rk(d) and Rk*(d) are used to classify new points, the SPS process 
dictates that a new point in the secondary region Rk*(d) is assigned to Group k*, whereas 
any point in the primary region Rk(d) may be assigned to either Group k or k* – a 
decision that is deferred until a secondary region is generated that contains the point. At 
the very end of the process, if the final step is an SS step, then a point is simply assigned 
to Group 1 if it lies in R1(do) and is assigned to Group 2 if it lies in R2(do). Thus the final 
step is treated as if it were a perfect separation of both groups, and by eliminating the 
elements of Incorrecto from consideration, it does in fact create a perfect separation for 
the remaining points of these two groups in the original G of the second pass (G = Go –  
Incorrecto). 
 
This gives rise to a special case for identifying the value d2 of a primary-invariant 
sequence identified from the first pass. If a perfect separation of both sets did not occur 
when d = d2 in such a sequence, and if do = d2 + 1, then the first pass of the method 
performed a final SPS step that consisted of optimizing the SS function at Step 5.  Under 
these circumstances, since we remove incorrectly classified elements from consideration 
on the second pass, we conclude as previously noted that the regions R1

o(do) and R2
o(do) 

generated on the final step of the first pass create a perfect separation of the two residual 
sets  G1(do) (= C1

o(do)) and G2(do) (= C2
o(do)) available to the second pass. Consequently, 

when the final step follows on the heels on a primary-invariant sequence, we may treat 
the primary index k as  remaining unchanged on this last step (regardless of the value of k  
when d2 = do – 1). This makes it possible to re-define d2 := d2 + 1 = do for the purpose of 
identifying the maximal primary-invariant sequence. This ability to make d2 larger by 1 
unit than it would otherwise be has useful consequences, as we will soon see.  
 
In the second pass we begin with the same set of regions R1

o(d) and R2
o(d) produced at 

each step of the first pass, and hence each primary-invariant sequence starts with Rk(d) = 
Rk

o(d) and Rk*(d) = Rk*
o(d), for d1 ≤ d ≤ d2.  As we undertake to modify the sets Rk(d) and 
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Rk*(d) to create a better separation of correctly classified points, the union of the correctly 
classified secondary sets for the primary-invariant sequence during the first pass, which 
we denote by C* = ∪(Ck*

o(d): d1 ≤ d ≤ d2), plays an important role.  
 
In general, there are two types of deficiencies of the first pass that we seek to remedy on 
the second pass. First, we don’t want any part of the boundary of Rk*(d) to be too close to 
the set of points Gk(d), because then it is quite possible that a new point that should 
belong to Group k but lies at the “edge” of a region containing Group k points will fall in 
Rk*(d), and consequently such a new point will mistakenly be assigned to Group k*.  
 
The second type of deficiency is more subtle. During a primary-invariant sequence, 
consider particular point Ap in Gk* that belongs to at least one of the regions Rk*(d), for  
d ∈ [d1,d2] (hence Ap ∈C*) but Ap lies very close to the boundary of every such region 
that contains it. It would be advantageous to create an additional region Rk*(d) that acted 
as a “buffer” for Ap by containing Ap more deeply within it – and yet whose boundary 
was not too close to the set of points Gk(d) (recalling that Gk(d) = Gk(d1) for all d of the 
primary-invariant sequence).   Then a new point that lay within this additional Rk*(d) 
region would reasonably be classified as belonging to Group k*. But without the 
existence of this buffer region, the new point might lie very close to Ap and not so close 
to the points of Group k, so that it might ultimately be assigned to Group k.  
 
One way to yield a better set of Rk(d) and Rk*(d) regions, therefore,  is to create buffer 
regions that “protect” points of C* such as Ap that happen to lie very close to the 
boundary of every secondary region that contains them. (The protection is not really for 
points such as Ap, but for new points that lie close to these points but not within the 
current secondary regions, and that should be assigned to Group k* as well.)   
 
The procedure we propose for doing this is the following. 
 
For each Ap ∈ C*,  let D(Ap) denote the maximum of the distances of Ap from the 
boundaries of those regions Rk*(d) in which Ap lies. (Thus D(Ap) measures the amount of 
“protection” Ap has as a result of lying in C*.) We refer again to the quantity   
Dmin(Ai) introduced in the discussion of pre-processing in Section 1.6, which for Ap ∈C* 
(hence Ap ∈ Gk*(d1)) becomes 
 
  Dmin(Ap) = Min(D(Ap,Ai): Ai ∈ Gk(d1)) 
 
noting that the foregoing definition remains the same if Gk(d1) is replaced by Gk(d) for 
any d ∈ [d1,d2] since the primary group remains unchanged for d in this interval. 
 
If D(Ap) < .5 Dmin(Ap), then it may be possible to create a new region Rk*( d′) (e.g., for d′ 
= d2+ 1) that will better separate a point Ap ∈ C*  from points of Gk(d1). This possibility 
arises from the fact that a region whose boundary lies half-way between Ap and the 
closest Ai in Gk(d1) would better protect Ap and yet also avoid the reverse risk of being 
too close to points of the primary group. (We can choose to make d′ > d2, rather than 
creating a separation involving the region Rk*( d′) at an earlier point in the primary-
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invariant sequence, because the type of protection provided by a buffer region can be 
provided at any step.)  Consequently, we identify the set of these fertile points for 
buffering 
 
  FB = {Ap ∈ C*: D(Ap) < .5Dmin(Ap)). 
 
If FB is empty, then no buffering is attempted. Otherwise, we seek a new region Rk*( d′) 
to establish a better separation of the points of FB from those of Gk(d1). 
 
It may not be possible to select a single new region Rk*( d′) that will provide a useful 
buffer for all points of FB, and hence we perform a simple variant of topological 
clustering (Glover, 2006b) to yield one or more subsets of FB that provide the foundation 
for generating new regions. For this we pre-order the distances D(Ap,Aq) for Ap,Aq ∈ FB 
in ascending order and construct a digraph DG whose nodes are the indexes p for the 
points Ap ∈ FB and whose arcs (p,q) will be generated with the interpretation that Ap and 
Aq belong to the same cluster. By extension, then, Ap and Aq belong to the same cluster if 
and only if they lie within a connected component of the digraph. We identify these 
connected components by introducing a label ρ(Ap) for each Ap that names the 
component Ap belongs to (where ρ(Ap) = 0 if Ap belongs to no connected component 
other than the trivial one consisting of the point Ap itself). Define the length of an arc 
(p,q) to be the distance D(Ap,Aq). We make use of an upper limit UL on the largest length 
D(Ap,Aq) that any arc (p,q) is allowed to have in DG. More particularly, we make use of 
an incremental limit ∆ so that, when the lengths of arcs in a candidate set CA (defined 
below) are arranged in ascending order, we cease to examine arcs beyond the point where 
D(p,q) > D(p′,q″) + ∆, where D(p,q) and D(p′,q″) are two successive distances in this 
ordering.  
 
Cluster Method by Creating the Digraph DG 
0. Create the set of candidate arcs CA = {(p,q): p < q, Ap, Aq ∈ FB, D(Ap,Aq) ≤ UL}. Let 
 ρo = 0 and ρ(Ap) = 0 for all Ap ∈ FB. The digraph DG begins with all nodes p for  
 Ap ∈ FB but without any arcs. 
1. Let (r,s) = arg min(D(Ap,Aq): (p,q) ∈ CA).  
2. If ρo > 0 and D(Ar,As) > Pre_D + ∆, stop. Otherwise: 
 (a) add arc (r,s) to the digraph DG and remove it from CA. 
 (b) set Pre_D = D(Ar,As) 

 (c) If ρ(Ar) = ρ(As) = 0, set ρo := ρo + 1 and set ρ(Ar) = ρ(As) = ρo. 
 (d) If  ρ(Ar) = 0 and ρ(As) > 0 set ρ(Ar) := ρ(As), and remove from CA all arcs  
  (r,q) or (q,r) such that ρ(Aq) = ρ(As). 
 (e) If  ρ(As) = 0 and ρ(Ar) > 0 set ρ(As) := ρ(Ar), and remove from CA all arcs  
  (s,q) or (q,s) such that ρ(Aq) = ρ(Ar). 
            (f) If  ρ(Ar) > 0 and ρ(As) > 0, remove from CA all arcs (p,q) such that ρ(Ap) =   
  ρ(Ar) or ρ(As) and such that ρ(Aq) =  ρ(Ar) or ρ(As) (but ρ(Aq) ≠ ρ(Ap)),  
  and relabel all points Ap such that ρ(Ap) = ρ(As) by setting ρ(Ap) := ρ(Ar). 
3. If CA = ∅, stop. Otherwise return to Step 1. 
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The preceding method can be undergo additional pre-processing to remove arcs of the 
initial CA that would create the termination D(Ar,As) > Pre_D + ∆ of Step 2. (The value 
UL can be reduced by taking account of this termination to remove such arcs, if UL is not 
already small enough.) Also, the removal of arcs from CA can be effected by reference to 
lists of arcs (p,q), for p < q,  associated with each node p. (Such a list is sometimes called 
the forward star of p, or the list of neighbors of p.) 
 
When the Cluster Method stops, each value ρ = 1, …, ρo such that ρ(Ap) = ρ for at least 
one Ap ∈ FB identifies a cluster (connected component of the Digraph DG) that consists 
of all Ap such that ρ(Ap) = ρ.   
 
The method to create Buffer regions then operates as follows. 
 
Buffer Method 
0. Start with FBo = FB, and set d′ = d2 + 1. 
1. Select a cluster CL, not previously chosen, that has been created by the preceding 

Cluster Method or created in Step 2 below, such that CL∩FBo  ≠ ∅. If no such 
cluster exists, stop. 

2. Optimize the function Fo(Gk(d1), CL) to create new regions Rk(d′), Rk*(d′) subject to 
Rk(d′) ⊇ Gk(d1), designed (as the formulation (2) of Section 2.3) to yield a first 
level retrospective enhancement if a perfect separation of Gk(d1) and CL can be 
achieved. If such a separation does not result, remove from CL all of its points 
that lie in region Rk(d′), designating them to constitute a new cluster to be 
examined in Step 1. Then repeat Step 2 for the current reduced CL. 

3. Remove from FBo all points Ap that lie in Rk*(d′) and set d′:= d′ + 1. Then return to 
Step 1. 

 
The reference to formulation (2) in Step 2 is motivated by the observations in Section 2.3 
about the uses of formulation (2) in contexts where a perfect separation may likely be 
achieved. In the Buffer Method, the goal is primarily to maximize the minimum 
separation between the groups, and hence the coefficient ko would be given a value that 
dominates the values of the coefficients ki in this formulation. 
 
The case where a perfect separation does not result in Step 2 of the Buffer Method entails 
only one repeat of this step, since the reduced CL is assured to yield such a separation. 
However, a better approach would be to identify a smaller value for ∆ and repeat the 
Cluster Method to produce a more appropriate set of clusters. Such a ∆ value can be 
implicitly identified by instead selecting a smaller UL value, which can be chosen to 
assure that the removal of arcs (p,q) having D(Ap,Aq) > UL from the connected 
component defining the cluster CL of Step 2 will produce new connected components. In 
fact this step can be streamlined. Whenever the Cluster Method is re-run by reducing 
either ∆ or UL (and without increasing either of these values), then we may restrict 
attention to a starting CA list that consists simply of the arcs of the final DG produced on 
the preceding pass. Since these arcs are already ordered by the first pass, they do not need 
to be ordered again. 
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The index d′ of the new regions Rk(d′) and Rk*(d′) starts at d2 + 1 for the reason 
previously specified and to avoid confusion with other regions previously generated. 
There is no concern that d′ may exceed the limit do, because buffer regions improve 
robustness rather than diminish it. (The larger value of d′ does not signify that the method 
is carried to a greater depth in the customary meaning of depth.)  
 
We observe that the region Rk*(d′) normally does not contain points outside of C*, i.e., 
we do not expect to enlarge the set of correctly classified points in C* by adding the 
region Rk*(d′)∩Gk*(d1) to C*. Such an outcome may occur gratuitously, however, since 
on the second pass the group Gk(d1) that is required to be encompassed within the region 
Rk*(d′) may be reduced as a result of removing the misclassified points of the first pass. 
 
The new buffer regions have a second benefit, because they contribute to the ability to 
create a further improved and more robust separation by a process of modifying the 
original regions Rk*(d) for d ∈ [d1,d2]. We examine this process next. 
 
 3.2.2 Refining Regions Previously Created. 
 
Upon applying the Buffer Method in the case where FB is not empty, we identify a 
possibly larger version Co*  of C*  given by Co*  = C*∪(Ck*(d′): d2 < d′ ≤ d″),  where d″ 
is the largest value of d′ values produced by the Buffer Method, and where the regions 
Ck*(d′) = Rk*(d′)∩Gk* identify the points that are correctly classified by these new Rk*(d′) 
(noting that all of these new regions may possibly lie in C*).  
 
If we remove any previous region Rk*(d) for d ∈ [d1,d2] from the classification process, 
then the remaining regions correctly classify the set of points Co*(d), which we define to 
be the union of all sets defining Co* except for the set Ck*

o
 (d), hence 

Co*(d) = ∪(Ck*
o(dd): d1 ≤ dd ≤ d2, dd ≠ d)∪(Ck*(d′): d2 < d′ ≤ d″).  It is possible that 

Co*(d) = Co*, so that the region Rk*(d) is redundant for the purpose to classifying all 
points of Co* correctly.  
 
The possibility of improvement comes from the fact that the original determination of 
Rk*(d) (= Rk*

o(d)) was based on trying to bring a significant portion of the not-yet-
correctly-classified points of Gk*  into the correctly classified domain by encompassing 
them within Rk*(d). However, we now know that we only need to make sure that Rk*(d) 
encompasses the points of Co* – Co*(d), which in general will be appreciably smaller 
than the group Gk*(d) that Rk*(d) originally sought to encompass. Moreover, we know 
that within Rk*

o(d) already contains all of Co* – Co*(d),  so there quite likely exists a new 
region  Rk*(d) that can replace Rk*

o(d)  and create a better separation between  Gk(d1) and 
Co* – Co*(d) than Rk*

o(d) does. 
 
The following straightforward method generates such substitute (refined) regions. 
 
Refinement Method. 
0. Start with dSet = the set of integers d ∈ [d1,d2]. 
1. If dSet is empty, stop. Otherwise, select and remove some d from dSet. 
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2. If Co* – Co*(d) ≠ ∅, optimize a function F′(Gk(d1), Co* – Co*(d)) that is designed, as 
the formulation (1o) of Section 1.5, to yield a first level retrospective 
enhancement, and denote the regions produced by Rk(d) and Rk*(d). Then redefine 
Rk*

o(d) := Rk*(d) (which thus may change the composition of Co* and of Co*(d) 
for other indexes d), and return to Step 1. 

3. If Co* – Co*(d) = ∅, remove Rk*(d) (and its complement Rk(d)) from the set of regions 
used to classify points of G (thus likewise changing the composition of Co* and of 
Co*(d) for other indexes d), and return to Step 1. 

 
Typically, the choice of the element d to remove from dSet in Step 1 is to start with d = 
d2 and work backward to d1. In Step 3, rather than simply remove a region Rk*(d) from 
being used to classify elements of G, we may instead seek to “cover” its removal by 
executing a further iteration of the Buffer Method, to see if there is a better way to 
separate points now that this set is gone. In this case the Buffer Method can be simplified 
by choosing the limiting value UL of the Cluster Method to be small. As previously 
noted, when UL is reduced we can perform a new pass of the Cluster Method by starting 
with a CA list produced by the final DG of the preceding pass. 
 

First Pass of SPS Retrospective
Enhancement

First 
buffer region

h1

h2

h2’

h1’Second 
buffer region

h2’

 
Figure 5: schematic representation of the 

retrospective enhancement procedure 
 
Figure 5 shows a schematic representation of the retrospective enhancement procedure.  
Moving downward from the top left corner, the first graph shows hyperplane h1 obtained 
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by a first SPS iteration; the second shows h2 obtained by a second SPS iteration, resulting 
in a perfect separation of all the elements.  However, this separation is not as robust as 
would be desired, given the precarious position of several elements that lie extremely 
close to the boundary – like the triangle highlighted near the intersection of h1 and h2, for 
instance.  The graph of the top right corner shows a buffer region based on h2 (ignoring h1 
for now) that allows for a more robust separation of the sets by a new hyperplane h2’ that 
replaces h2.  Finally, a second buffer region is used to obtain h1’, which replaces h1.  The 
result is a more robust boundary that better separates both groups.  Later sections make it 
possible to take advantage of the buffering and refinement processes of retrospective 
enhancement by employing a mixed integer programming model to produce multiple 
hyperplanes to separate the groups at each stage.   
 
4. Mixed Integer Programming Formulations 
  
4.1 A Basic Mixed Integer Programming Model 
 
As a first step toward introducing more advanced mixed integer models, we begin by 
examining a simple model to minimize the number of misclassified points by means of a 
single hyperplane. 
 
Let  zi denote a 0-1 integer variable that takes the value 1 if  the point Ai is misclassified  
and takes the value 0 otherwise. The following model (Glover, 1993) seeks to minimize 
the sum of the zi variables, and hence to minimize the number of misclassified points: 
 
 Minimize ∑ (zi: i ∈ G)       (4.1) 
      subject to 
   Aix – Mzi + si = b,   i ∈ G1      (4.2) 

Aix + Mzi – si = b,   i ∈ G2     (4.3) 
          x, b unrestricted      (4.4) 
          zi  ∈ {0,1}, i ∈ G     (4.5) 
(m1∑ (Ai: i ∈ G2) –  m2∑ (Ai: i ∈ G1))x = 1   (4.6a) 
m1∑ (si –  Mzi: i ∈ G2) + m2∑ (si –  Mzi: i ∈ G1) = 1  (4.6b) 

 
Note that (4.2) and (4.3) express the inequalities AIx – Mzi  ≤ b and AIx + Mzi ≥ b, to 
which we have added slack variables si to convert the inequalities into equations. The 
constant M in this formulation takes a “large value” to assure that the associated 
inequality will be redundant whenever zi = 1, and the quantities Mzi take a role analogous 
to that of the vi variables in the associated linear programming formulation of (1). (This 
connection is also evident upon comparing the normalization constraint (4.6b) to (1.6b).  
 
Several related mixed integer formulations have also been proposed in the literature, 
including those of Stam and Ragsdale (1992), Abad and Banks (1993) and Glen (1999, 
2003).  However, the alternative formulations have various deficiencies, and generally 
require more variables. For example, one of the more effective formulations, due to Glen 
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(1999, 2003),5 nevertheless requires doubling the number of x variables by splitting each 
xj into a positive and negative part, and then producing a normalization constraint that 
sets the sum of these variables to 1. The classic approach of replacing unrestricted 
variables by the difference of two non-negative variables has merit in the context of 
mixed integer models for feature selection, as discussed in Section 4.3, because of the 
susceptibility of these latter models to a parametric solution approach. (When using such 
a replacement in the present context, we recommend an alternative normalization that 
weights the sum of non-negative variables in a given group by the cardinality of the 
opposite group, by analogy to the normalization indicated in (1.6a) and (1.6b).)  An 
interesting study of credit scoring applications by Falangis (2006) supports Glen’s 
demonstrations that his model achieves useful outcomes.  
 
Several heuristics for dealing with these alternative mixed integer formulations are also 
proposed in the references cited. Special heuristics have likewise been proposed for 
solving formulation (4), making use of theorems in Glover (1993) that establish 
relationships between the mixed integer formulation and its linear programming 
relaxation.6  
 
We now make the present model (4) more complete, by marrying it with additional 
considerations derived from the previous linear programming models. To do this we 
consider a means to weight the si variables as in formulation (1) by coefficients ki and 
also to explicitly make use of the comprehensive satisfaction variable so, as introduced in 
formulation (1′). We do not include a vo variable in this formulation, though we observe 
that this can be done without requiring that vo be replaced by an associated integer 
variable.  
 
To allow the formulation to work as intended, the variables si themselves cannot be 
directly weighted by coefficients ki, but rather must be assigned these weights indirectly. 
The reason for this derives from the fact that assigning an integer variable zi a value of 1 
causes the slack variable si to receive an exceedingly large value, when in fact si should 
be treated as receiving a value of 0 in this case. This conclusion arises by observing that 
the constraints made redundant by zi = 1 identify points Ai that fall on the wrong side of 
the hyperplane, and we must exclude these points from consideration in seeking to weight 
the separations for the correctly classified points.   
 
We can produce the desired effect by introducing continuous variables ti bounded so that 
ti will be permitted to equal si only if the associated constraint is binding, i.e., only when 
zi = 0. Otherwise, when zi = 1, ti will have an upper bound of 0, so that the value of si will 
not affect the objective when the point Ai is misclassified. Under the assumption that zi = 

                                                 
5 Glen re-phrases the problem as one of maximizing the number of correct classifications, which 
formulation (3) above handles automatically by complementing each of the 0-1 zi variables, replacing it by 
the variable yi  = 1 – zi. 
 
6 The ability to take advantage of such relationships by means of a heuristic approach has not yet been 
explored in a computational study.  
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0 for at least one i ∈ G it is not necessary to introduce a corresponding variable to 
associated with so.  
 
Let Ui be an upper bound on the value of the associated variable si in the situation where 
the point Ai lies in the desired half-space (zi = 0). We weight the zi variables by a large 
value Mo, to be sure the objective of minimizing their sum remains the dominant goal of 
the model. Then the mixed integer model becomes 
 
 Minimize Mo∑ (zi: i ∈ G) – ∑ (kiti: i ∈ G) – koso    (4.1′) 
      subject to 
   Aix – Mzi + si + so = b,   i ∈ G1     (4.2′) 

Aix + Mzi – si  – so = b,   i ∈ G2    (4.3′) 
          x, b unrestricted      (4.4′) 
         zi  ∈ {0,1} i ∈ G     (4.5′) 
 (m1∑ (Ai: i ∈ G2) –  m2∑ (Ai: i ∈ G1))x = 1   (4.6a′) 

m1∑ (si –  Mzi: i ∈ G2) + m2∑ (si –  Mzi: i ∈ G1)  + mso = 1    (4.6b′) 
ti ≤ si,   ti ≤ Ui(1 – zi),   i ∈ G     (4.7′) 
 so ≥ 0, si ≥ 0, ti ≥ 0,  i ∈ G      (4.8′) 

 
The inequality ti ≥ 0 in (4.8′) is redundant under the assumption that the ki coefficients 
are positive and hence this inequality may be discarded from the model if desired.  
 
Studies of the foregoing model by means of a sequential perfect separation approach in 
Better et al. (2006) have demonstrated its effectiveness in a cancer diagnosis application 
and a Japanese bank application.       
 
4.2 Improved Mixed Integer Programming Formulation 
 
To complete the foundation for creating an effective multi-hyperplane model, we first 
identify a variation of the previous model that is more suited to our needs. Our proposed 
variation has the same number of variables and constraints as the model (4′).  
 
We produce the new formulation by combining the model of (4) with the original linear 
programming formulation of (1). This reintroduces the vi variables back into the problem, 
and we accompany these variables with additional constraints to compel the 0-1 zi 
variables to take appropriate values. 
  

Minimize Mo∑ (zi: i ∈ G) + ∑ (hivi – kisi): i ∈ G) – koso   (4.1″) 
      subject to 

Aix – vi + si = b,   i ∈ G1      (4.2″) 
Aix + vi – si = b,   i ∈ G2      (4.3″) 
x, b unrestricted      (4.4″) 
zi  ∈ {0,1} i ∈ G      (4.5″) 
(m1∑ (Ai: i ∈ G2) –  m2∑ (Ai: i ∈ G1))x = 1   (4.6a″) 

  m1∑ (si –  vi: i ∈ G2) + m2∑ (si –  vi: i ∈ G1)  = 1   (4.6b″) 
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vi ≤ Uizi,  so ≤ si + Uozi,  i ∈ G    (4.7″) 
so ≥ 0, si ≥ 0, vi  ≥ 0,  i ∈ G      (4.8″) 

 
The constant Uo in (4.7″) is an upper bound on so, hence on the minimum (not maximum) 
value that can be received by the si variables that take on positive values. Because of the 
ability to make Uo relatively small, the model has advantages when subjected to a mixed 
integer programming solution procedure.  
 
The two inequalities vi ≤ Uizi and so ≤ so ≤ si + Uozi,  i ∈ G of (4.7″) replace the 
associated inequalities ti ≤ si and ti ≤  Ui(1 – zi),   i ∈ G, of (4.7′), though the inequalities 
of (4.7″) perform a different function than those of (4.7′). The ti variables of the previous 
formulation are not needed in the present one. Effectively, formulation (4″) may be seen 
as a mixed integer extension of formulation (1″). 
 
We can in fact reduce the number of inequalities in (4″) by stipulating that the 
inequalities of so ≤ si + Uozi,  i ∈ G of (4.7″) are only included for i ∈ G1 or for i ∈ G2, 
according to which of G1 or G2 has a smaller number of elements. The variable so, which 
serves the purpose of increasing the minimum separation of the satisfied points from the 
hyperplane boundary, now applies only to the satisfied points of one of the two groups. 
However, this use of so is equivalent to the previous one, since we can simply re-define b 
after solving the model where so is changed as indicated by setting b := b + .5so, and we 
see that so receives just twice the value it would receive in the formulation where so is left  
unchanged. (Similarly, it would be possible to include so only in one of the equations 
(4.2′) or (4.3′) in formulation (4′). However, this does not change the number of 
constraints in that formulation.) We will make additional use of this observation about 
associating so with only one of the two groups in our later development. 
 
We suggest a variation of model (4″) that replaces the term ∑(zi: i ∈ G) in the objective 
(4.1″) by the term m2∑(zi: i ∈ G1) + m1∑(zi: i ∈ G2). This variation seeks a “more 
balanced” solution that weights the sums of violations so that they will tend to be more 
nearly proportional to the numbers of elements in each of the two groups.  
 
A particular advantage of model (4″) over model (4′) is that it remedies the possibility 
that the normalization constraint in (4′) can become unstable under solution by a branch 
and bound method. The potential for instability is subtly hidden, but can be recognized by 
noting that the effect of setting zi values to 0 and 1 in (4′), as done at various points in 
applying a branch and bound method, eliminates the associated points Ai from having 
any effect on the model. This effectively removes these points from their associated sets 
G1 or G2, and thus causes the normalization constraint to become distorted because the 
values of m1 and m2 representing the numbers of elements in these sets remain constant. 
This situation where an integer programming model can become changed by the process 
of solving it is highly unusual! The ability to avoid it by formulation (4″) is accompanied 
by other advantages of this model when it is extended to create a multi-hyperplane 
formulation. 
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 4.2.1 Exploiting Model (4″) by a Fixed Charge Interpretation. 
 
Model (4″) offers an additional advantage due to the fact that it can be re-interpreted as a 
fixed charge model. In particular, we can remove the zi variables altogether, and view the 
vi variables as fixed charge variables, stipulating that the associated fixed charge has the 
value Mo for each of these variables (incurred for a given vi if and only if it is positive). 
The merit of this interpretation derives from the fact that a highly effective heuristic is 
available for fixed charge problems based on the framework of ghost image processes 
(Glover, 1994). A study in the context of fixed charge generalized network problems 
(Glover, Amini and Kochenberger, 2005) discloses that this approach obtains optimal 
solutions for all problems capable of being solved optimally by the state-of-the-art 
CPLEX MIP software, and produces solutions substantially superior to those obtained by 
this software for problems too large or too difficult for CPLEX to solve to optimality 
when allowed to run more than 100 times longer than the ghost image procedure.7 The 
fixed charge implementation of the study is not specific to the network setting, and hence 
can readily be adapted to the present context, affording an opportunity to solve problems 
of much greater size than would normally be possible by the mixed integer formulation. 
 
4.3 Feature Selection 
 
A formulation closely related to (4″) can be used to model the problem of feature 
selection, where the goal is to identify a limited number of attributes (features) that can 
yield an effective differentiation between elements of G1 and G2. The importance of the 
feature selection problem stems from the need to reduce the number of features 
considered when dealing with large data bases, and also from the fact that restricting the 
number of attributes often proves valuable for combating the “overfitting” problem, and 
thereby yields superior outcomes when seeking to classify elements of hold-out samples. 
 
 4.3.1 Elements of the Feature Selection Formulation 
 
A common formulation of the feature selection problem consists of imposing an upper 
bound on the number of attributes permitted to be used, and then seeking the best 
differentiation between the groups subject to this bound. In our setting, the objective can 
be viewed as one of finding a best separating hyperplane subject to bounding the number 
of components of x that are allowed to be non-zero.  

To provide a mixed integer programming model for this problem, we employ the device 
of introducing a binary variable wj where wj = 1 if xj is allowed to be non-zero and wj = 0 
otherwise. Let N = {1, …, n} and let U(w) represent the chosen upper limit on the 
number of xj for j ∈ N that are permitted to be non-zero. Then the bound can be enforced 
by means of the inequality 
 

∑ (wj: j ∈ N) ≤ U(w).  
 
                                                 
7 After obtaining solutions superior to those found by CPLEX on all instances of this testbed, no attempt 
was made to run CPLEX on remaining problems of corresponding size and difficulty. 



 34

The MIP formulation that captures the connection between the wj variables and the xj 
variables can be completed in two ways. The first identifies upper and lower bounds Uj 
and Lj for each xj. (Note that Lj is generally negative, and the bound Uj is of course not to 
be confused with the bound Ui for vi in sections 4.1 and 4.2.)  The condition that compels 
xj to be 0 when wj is 0, and otherwise allows xj to be bounded by Uj and Lj, can then be 
written as  
 

Ujwj ≥ xj ≥ Ljwj,  j ∈ N. 
 
It is possible to avoid using the inequalities xj ≥ Ljwj by replacing each xj for j ∈ N with 
the variable xj′ ≡ xj – Ljwj, which is assured to be non-negative. In particular, substituting 
for xj ≡ xj′ + Ljwj in the inequality Ujwj ≥ xj ≥ Ljwj yields Uj′wj ≥ xj′ ≥ 0, where Uj′ ≡ Uj – 
Lj. (This effectively reduces the number of inequalities of the problem, since the non-
negativity of the xj′ variables is handled implicitly by standard LP and MIP solvers.) 
Then the original xj values are recovered from xj ≡ xj′ + Ljwj in the final solution. 
 
The second way to create a suitable MIP formulation makes use of the familiar device of 
replacing xj by the difference of two non-negative variables (see, e.g., Charnes and 
Cooper, 1961 and Dantzig, 1963). Denoting these variables by xj

+
  and xj

–, we write  
xj

 = xj
+

  – xj
– . Then by the definitions of Uj and Lj we can compel these variables to be 0 

when wj is 0 by introducing the constraints 
 
    xj

+
  ≤ Ujwj and xj

– ≤ – Ljwj. 
 
Alternatively, by defining Uj

o = Max(Uj, – Lj),8 we may introduce the single constraint 
 
   xj

+
  + xj

–  ≤ Uj
owj. 

 
Finally, to assure at most one of xj

+
  and xj

– will be positive, we let cj and dj be small 
positive coefficients, and augment the minimization objective of the MIP formulation to 
include the term 
 

∑ (cjxj
+

  + djxj
–

 : j ∈N).  
 
We allow cj and dj to be different from each other as the basis for solving the feature 
selection MIP formulation by a parametric penalty approach, as described in Appendix 1. 
It may be noted that the formulation devices underlying the present feature selection 
model can also be used in feature selection for L1 regression models, and the resulting 
optimization problem can similarly be solved using the approach sketched in the 
accompanying appendix.  
  

                                                 
8 Of course, Uj

o may simply be taken to be a “large” value without first trying to estimate the values of Uj 
and Lj. 
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5. Mixed Integer Programming Formulations for Multi-Hyperplane 
Separation 
 
Our multi-hyperplane separation approach expands model (4″) by introducing a 
collection of half spaces denoted by 
 

Aixp ≤  bp and Aixp ≥ bp for p ∈ P =  {1, 2, …, po}.    

In practice, the value of po (hence the size of P) can be kept small, e.g., at most 3 or 4, 
because of the ability to use our mixed integer model within the framework of successive 
separation, and more particularly within the framework of successive perfect separation. 
By means of the SPS framework, and by taking advantage of retrospective enhancement, 
the multi-hyperplane model offers useful advantages even for po as small as 2.  

It is possible to generate complex collections of subspaces composed of various 
intersections and unions of the half-spaces Aixp ≤  bp and Aixp ≥ bp, and to produce a 
mixed integer formulation that assigns the points of Group 1 and Group 2 to specified 
instances of these subspaces. A general design for creating such formulations is given in 
Appendix 2. However, by designing our present muli-hyperplane approach to be used in 
conjunction with the SPS strategy, we focus on two simple types of separation that 
exhibit useful structures and that encompass a variety of more complex alternatives by 
the compounding effect of the tree-based derivations. As a means of solving these 
models, we recommend the parametric approach of Glover (2006a). 
 
5.1 All Union versus All Intersection Separating Conditions 

The first type of separation we consider requires all points of the primary SPS group to 
lie in the union of the half-spaces Aixp ≤ bp, p ∈ P, while all points of the secondary SPS 
group lie in the complementary region consisting of the intersection of the half-spaces 
Aixp ≥ bp, p ∈ P. Strictly speaking, for these two regions to be complementary, the latter 
one should be formed from the intersection of the open half-spaces Axp > bp, p ∈ P. We 
undertake to assure this, and simultaneously to induce points of the secondary group to 
lie as far inside this space as possible, by making use of the internal deviation variable so 
and by following up with the retrospective enhancement procedure. Glen (1999) was the 
first to propose a mixed integer model for this initial case we examine, although using a 
somewhat different framework and without accounting for internal deviations. 

In the general case of multi-hyperplane separations discussed in the Appendix 2, it is not 
possible to restrict Group 1 points to be associated only with inequalities of the form 
Aixp ≤  bp and to restrict Group 2 points to be associated only with inequalities of the 
form Aixp ≥ bp. However, this beginning special case we are concerned with constitutes 
an exception.  
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For convenience, we suppose that we represent the primary group as Group 1 and the 
secondary group as Group 2. To switch these groups, we correspondingly switch the 
labels of Group 1 and Group 2. 
 
Then we formulate our goals as follows.  

 
(a) For each i ∈ G1: compel Aix1 ≤ b1 or Aix2 ≤ b2 or … or Aixpo ≤ bpo

 

(b) For each i ∈ G2: induce Aix1 ≥ b1 and Aix2 ≥ b2 and … and Aixpo ≥ bpo 
 
The terminology of “inducing” the condition expressed in (b) means that we seek to 
minimize the number of violations of this condition, subject to enforcing condition 
expressed in (a). 
 
To achieve these goals, we transform the half-space inequalities into equations in the 
usual manner by writing 
 

Aixp – vi
p + si

p = bp,   i ∈ G1,  p ∈ P 
Aixp + vi

p – si
p = bp,   i ∈ G2,  p ∈ P    

 
Similarly, we introduce 0-1 variables zi

p, p = 1, …, po, where  zi
p = 1 if vi

p
 > 0 and zi

p = 0 
if vi

p
 = 0. Then (a) and (b) are respectively equivalent to the following conditions. 

 
(a1) For each i ∈ G1: compel zi

p = 0 for at least one element p ∈ P; or 
equivalently compel zi

p = 1 for at most po – 1 elements p ∈ P. 
(b1) For each i ∈ G2: induce zi

p = 0 for all elements p ∈ P; or equivalently induce 
zi

p = 1 for no elements p ∈ P. 
 
These conditions are met by introducing non-negative continuous variables yi, i ∈ G2,  
and minimizing the sum of these variables in the objective function, subject to    
 

(a2) For each i ∈ G1:   ∑(zi
p: p ∈ P) ≤ po – 1.  

(b2) For each i ∈ G2:  yi
p ≥ zi

p for each p ∈ P. 
 

Condition (a2) can alternately be achieved by introducing non-negative continuous 
variables yi for i ∈ G1 that are given pre-emptively large weights for minimizing their 
sum in the objective function, subject to the inequalities yi

p ≥ ∑(zi
p: p ∈ P) – (po – 1), and 

condition (b2) can be achieved by instead imposing the constraint  poyi
p ≥ ∑(zi

p: p ∈ P), 
although the latter yields a weaker LP relaxation of the mixed integer model. 
 
Combining these observations with the considerations already discussed in relation to 
formulation (4″), we obtain the following mixed integer programming model:  
 
    Minimize Mo∑ (yi: i ∈ G2) + ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) – koso  (5.1) 

      subject to 
Aixp – vi

p + si
p = bp,   i ∈ G1,  p ∈ P    (5.2) 
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Aixp + vi
p – si

p = bp,   i ∈ G2,  p ∈ P    (5.3) 
xp, bp unrestricted,  p ∈ P     (5.4) 
zi

p  ∈ {0,1} i ∈ G,  p ∈ P     (5.5) 
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))xp = 1,  p ∈ P  (5.6a) 

             m1∑(si
p – vi

p: i ∈ G2) + m2∑(si
p – vi

p: i ∈ G1)  = 1,  p ∈ P (5.6b) 
vi

p ≤ Uizi
p

 , i ∈ G,  p ∈ P       (5.7) 
si

p ≥ 0, vi
p  ≥ 0, i ∈ G, p ∈ P       (5.8) 

so ≥ 0,  yi  ≥ 0, so ≤ si + Uoyi,  i ∈ G2    (5.9) 
∑(zi

p: p ∈ P) ≤ po – 1, i ∈ G1     (5.10) 
yi ≥ zi

p, i ∈ G2,  p ∈ P      (5.11) 
 

Thus the formulation (5) contains roughly po = |P| times the number of variables and 
constraints of formulation (4″). The advantage of keeping po small by exploiting the SPS 
framework is significant. 
 
We have in fact incorporated more variables and constraints than necessary into the 
preceding formulation, in order to demonstrate a connection with more general 
formulations discussed in Appendix 2. In the present case, we can replace the po integer 
variables zi

p, p ∈ P for each i ∈ G2, by a single integer variable yi, for each i ∈ G2 (i.e., 
upon removing the indicated zero-one variables zi

p, the variable yi is changed from being 
continuous to being a zero-one variable). Then (5.5) and (5.7) are reduced by eliminating 
reference to variables zi

p and associated inequalities over i ∈ G2, to become 
 

zi
p  ∈ {0,1},  i ∈ G1,  p ∈ P     (5.5a) 

vi
p ≤ Uizi

p
 , i ∈ G ,  p ∈ P       (5.7a) 

 
Accompanying this, the non-negativity condition for yi in (5.9) is replaced by the zero-
one condition, and (5.11) shrinks to directly relate the yi variables to the continuous 
violations vi

p, replacing po inequalities for each i ∈ G2 by a single inequality to produce 
 

so ≥ 0,  so ≤ si + Uoyi, yi  ∈ {0,1}, i ∈ G2   (5.9a) 
Uyi ≥ ∑(vi

p: p ∈ P),  i ∈ G2     (5.11a) 
 
where U is an upper bound on the sum of the violations on the right of (5.11a). It is clear 
that this more economical formulation achieves the same result as the formulation 
without these replacements. 
 
Either with or without these replacements, the goal of minimizing the sum of the yi for  
i ∈ G2 is given a large weight Mo in the objective (5.1) to allow it to dominate the other 
parts of the objective. The term ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) is included for generality 

but may be omitted. The inclusion of – koso in the objective is relevant for reasons 
previously discussed. The size of Mo may be decreased  (though it must be maintained 
greater than ko) to allow a trade-off where a small number of additional points of Group 2 
may be allowed to fall outside of the region targeted for this group, in exchange for 
allowing satisfied points to be separated more cleanly from unsatisfied points.  
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An alternative approach to incorporating such trade-offs is to solve formulation (5) first 
in the form shown, and then to impose a bound on ∑ (yi: i ∈ G2) so as not to overshoot 
the optimum value of this sum by more than a stipulated amount. Then the term  
∑ (yi: i ∈ G2) can be removed from the objective function on a follow-up solution pass 
that seeks an optimal solution for the residual objective. 
 
The application of formulation (5) in the sequential perfect separation approach occurs by 
employing this formulation in place of formulation (2) in section 2.3, and otherwise 
following the prescriptions of the SPS method. Similarly, the general form of 
retrospective enhancement can take direct advantage of formulation (5).  
 
One subtlety introduced by formulation (5) is that it implicitly gives rise to four different 
ways to create a distinction between the primary and secondary sets, rather than only two 
ways as in the case where the regions of interest consist simply of half-spaces. Because 
the regions generated by (5) are not symmetric (as half-spaces are), we can create a 
different model by reversing which conditions are compelled and which are induced in 
(a) and (b), thus producing 
 

(a1) For each i ∈ G1: induce Aix1 ≤ b1 or Aix2 ≤ b2 or … or Aixpo ≤ bpo
 

(b2) For each i ∈ G2: compel Aix1 ≥ b1 and Aix2 ≥ b2 and … and Aixpo ≥ bp 

 
The change in formulation (5) to handle (a1) and (a2) is apparent. 

 
5.2 Additional Structure for the Case of po = 3. 
 
Because of the relevance of focusing on cases where po is small, we examine next a 
special case for po = 3 that is a natural accompaniment of the structure examined in 
Section 5.1. In particular we seek the handle the situation where the primary and 
secondary sets are generated as shown in (a) and (b), following:   

 
(a) For each i ∈ G1: compel (Aix1 ≤ b1 and Aix2 ≤ b2) or (Aix3 ≤ b3) 
(b) For each i ∈ G2: induce (Aix1 ≥ b1 and Aix3 ≥ b3) or (Aix2 ≥ b2 and Aix3 ≥ b3) 

 
We describe the logic for treating this case in a more general form than used to identify 
the formulation in Section 5.1, and thus provide a means for generating additional cases. 
(Further details concerning this form of analysis are given in Appendix 2.) 
 
Starting with (a) to define the conditions applicable to the primary SPS group, which we 
have expressed in disjunctive normal form, the conditions (b) applicable to the secondary 
SPS group are generated by complementing the primary group definition, and then re-
expressing the result likewise in disjunctive normal form. To qualify as a disjunctive 
normal form expression, each condition is expressed as the union of a collection of 
intersections (as a disjunction of a series of conjunctions). We use the notation where the 
symbol p represents  Aixp ≤ bp and the symbol * denotes complementation, hence p* 
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represents Aixp > bp (where we take the liberty of referring to this latter inequality in the 
relaxed form Aixp ≥ bp). Then we derive (b) from (a) as follows.  
 
First, the primary condition identified in (a) corresponds to (1∩2) ∪3 (which is already 
expressed in disjunctive normal form to start). The complement of this expression is 
(1∩2)* ∩ 3* and we put it likewise in disjunction normal form by the series of steps  
(1∩2)* ∩ 3* = (1*∪2*)∩ 3* = (1*∩ 3*)∪(2*∩ 3*). The latter expression corresponds to 
(b) above.  
 
The following rule models an expression in disjunctive normal form by creating an 
inequality that compels a variable yi to be 1 if the expression is true and to be 0 if the 
expression is false. We have chosen the index i of yi to associate this variable with a 
specific point Ai, following the notation used in the formulation of Section 4.1. Let 
(g1∩…∩gr) be any component of the disjunctive normal form expression associated with 
the point Ai, and let zi

p be the 0-1 variable such that zi
p = 1 if and only if gp is true. Then 

we write yi ≥ zi
1 + …+ zi

r – (r – 1) for each of these components. (If r = 1 the resulting 
inequality is just yi ≥ zi

1.) Evidently, yi = 1 if zi
p = 1 for all p = 1, …, r, and otherwise yi 

may permissibly receive the value 0. Moreover yi will automatically be 0 if the condition 
yi = 1 is not compelled, because in the present context the variable yi receives a positive 
weight in the objective function. Finally, in the case where we seek to compel a 
disjunctive normal form expression not to be true, we simply set yi = 0 and generate the 
inequality r – 1 ≥ zi

1 + …+ zi
r. 

 
We illustrate this analysis by applying it to (a) and (b) above. First, to satisfy (a) we must 
prohibit its complement (b) from holding (i.e., we must prohibit any point Ai for i ∈ G1 
from satisfying (b)). By reference to the complement (b) of (a), expressed in disjunctive 
normal form, this gives rise to the two inequalities 
 

yi  ≥ zi
1 + zi

3 – 1 and yi  ≥ zi
2 + zi

3 – 1,  i ∈ G1. 
 
where, for i ∈ G1, zi

p is the 0-1 variable that equals 1 if and only if the inequality  
Aixp ≤ bp is violated, and hence Aixp > bp is satisfied. Since we wish to compel (b) not to 
hold, we set yi = 0 in these two inequalities to yield 
 

1 ≥ zi
1 + zi

3   and  1 ≥ zi
2 + zi

3
.,  i ∈ G1. 

 
Next, starting with (b), which we want to induce by penalizing its violation, we seek to 
avoid satisfying the complement expressed in (a), and hence we obtain the inequalities 
 

yi  ≥ zi
1 + zi

2 – 1 and yi  ≥ zi
3,  i ∈ G2 

 
where, for i ∈ G2, zi

p is the 0-1 variable that equals 1 if and only if the inequality  
Aixp ≥ bp is violated, and hence Aixp < bp is satisfied. In this case we do not compel yi = 0, 
but retain the two inequalities as shown and rely on penalizing yi in the objective function 
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to yield yi = 0 (achieving this outcome if it will result in minimizing the sum of the yi 
variables over i ∈ G2). 
 
By means of this analysis we obtain the following formulation, for the specific conditions 
embodied in (a) and (b) preceding (and for P = {1,2,3}). 
 
    Minimize Mo∑ (yi: i ∈ G2) + ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) – koso  (5.1′) 

      subject to 
Aixp – vi

p + si
p = bp,   i ∈ G1,  p ∈ P    (5.2′) 

Aixp + vi
p – si

p = bp,   i ∈ G2,  p ∈ P    (5.3′) 
xp, bp unrestricted,  p ∈ P     (5.4′) 
zi

p  ∈ {0,1} i ∈ G,  p ∈ P     (5.5′) 
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))xp = 1,  p ∈ P  (5.6a′) 

          m1∑(si
p – vi

p: i ∈ G2) + m2∑(si
p – vi

p: i ∈ G1)  = 1,  p ∈ P (5.6b′) 
vi

p ≤ Uizi
p

 , i ∈ G,  p ∈ P       (5.7′) 
si

p ≥ 0, vi
p  ≥ 0, i ∈ G, p ∈ P       (5.8′) 

so ≥ 0,  yi  ≥ 0, so ≤ si + Uoyi,  i ∈ G2    (5.9′) 
1 ≥ zi

1 + zi
3  and 1 ≥ zi

2 + zi
3

.,  i ∈ G1    (5.10′) 
yi  ≥ zi

1 + zi
2 – 1 and yi  ≥ zi

3,  i ∈ G2    (5.11′) 
 
As can be seen, this formulation is identical to that of (5), except for the inequalities of 
(5.10′) and (5.11′) which we have derived from the analysis of this section. 
 
We examine one more case for po = 3 to conclude our analysis. In this instance we begin 
with the requirement for the primary set given by 
 

(a′) For each i ∈ G1: compel (Aix1 ≤ b1 or Aix2 ≤ b2) and (Aix3 ≤ b3) 
(b′) For each i ∈ G2: induce the complement of (a) to hold 

 
We have not yet stipulated the precise condition that expresses (b′) for the secondary set, 
but derive it from the knowledge of (a′). To begin, (a′) is not stated in disjunctive normal 
form, so we proceed to put it in that form. By the notation used to derive formulation  (5′) 
we write (a′) as (1∪2) ∩ 3, and transform it into disjunctive normal form by the sequence 
(1∪2) ∩ 3 =  (1∩3) ∪ (2∩3) (which in this instance is completed by a single step). We 
then proceed to generate the complement of (a′) and to put it in disjunctive normal form. 
Complementing (1∪2) ∩ 3 yields (1∪2)* ∪ 3* =  (1*∩2)* ∪3*, and the process is 
complete.  
 
As it turns out, it is unnecessary to generate a new model from this outcome, as may be 
seen by comparing the conditions (a′) and (b′) with the previous conditions (a) and (b).  
 

(a) For each i ∈ G1: compel (1∩2) ∪3  
(b) For each i ∈ G2: induce (1*∩3*) ∪ (2*∩3*)  

 
(a′) For each i ∈ G1: compel (1∩3) ∪ (2∩3) 
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(b′) For each i ∈ G2: induce (1*∩2)* ∪3* 
 
In particular, these two sets of conditions can be seen to be the opposite of each other, if 
we swap the role of the sets G1 and G2 and the direction of the inequalities associated 
with these sets. That is, it is only an arbitrary choice to associate G1 with “less than or 
equal to” inequalities of the form Aixp ≤ bp and to associate G2 with “greater than or equal 
to” inequalities” of the form Aixp ≥ bp, since the mixed integer model can reverse these 
inequalities simply by reversing the sign of x and b. With this in mind, we can as readily 
write (a′) and (b′) in the form 
 

(a′) For each i ∈ G1: compel (1*∩3*) ∪ (2*∩3*) 
(b′) For each i ∈ G2: induce (1∩2) ∪3 

 
Finally, by interchanging the roles of G1 and G2 to make G2 the primary set and G1 the 
secondary set, (a′) and (b′) give rise to the conditions 
 

(a″) For each i ∈ G2: compel (1∩2) ∪3  
(b″) For each i ∈ G1: induce (1*∩3*) ∪ (2*∩3*)  

 
Thus (a″) and (b″) result simply by changing the choice of which set is primary and 
which is secondary in (a) and (b), and we don’t need a new formulation to capture the 
conditions of (a′) and (b′). It would have been possible to have reached this conclusion 
even before generating (b′) as the complement of (a′), simply by noting that (a′) is the 
same as (b) with the symbol p replaced by the symbol p*. 
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Appendix 1. A Parametric Process for Solving the MIP Formulation for 
the Feature Selection Problem.  
 
The MIP feature selection formulation described in Section 4.3 may be superimposed on 
either a basic LP separating hyperplane formulation (e.g.,  the formulation (1″) or the SPS 
formulation (2)) or an MIP formulation such as (4″). In each case, the feature selection  
formulation is completed simply by augmenting the basic formulation to include the 0-1 
variables wj together with the constraints and objective function components previously 
indicated.  
 
We denote the resulting feature selection formulation incorporating the wj variables as 
P*(w), and denote the basic (LP or MIP) separating hyperplane formulation that is 
augmented to produce P*(w) by P*. Accompanying this, we let LP* denote the LP 
problem corresponding to P*; where LP* is the same as P* if P* is an LP formulation, 
and LP* is the linear programming relaxation of P* if P* is an MIP formulation. 
 
A parametric penalty approach for the feature selection problem can be described by 
viewing the problem as that of shrinking N to yield a smaller set of variables indexed by 
No. We first provide some background observations before sketching how such an 
approach may operate. 
 
One way to carry out the shrinking of N is to first solve the problem LP*, and then 
choose the reduced set No for the formulation P*(w) to consist only of those attributes j 
whose associated weights xj receive non-zero values in this solution. The set No thus 
chosen may be smaller than is preferable, since a potentially better solution may be 
obtained by solving P*(w) over a superset of No (given there is no assurance that the best 
subset of U(w) variables permitted to be non-zero will be identified by No). Such a 
superset of No can be generated by post-optimal pivoting in LP*, selecting pivots to 
generate multiple solutions having the same or nearly the same objective value as the 
linear programming optimum. (Typically, dual degeneracy of LP* assures multiple 
optima exist.) 
 
In the case where the LP* by itself is too large to solve readily, then smaller versions of it 
may be formed by a sequence of solution passes each of which operates with a different 
selected subset of N. The collection of these subsets may appropriately contain 
overlapping elements, as exemplified by the following constructive procedure: choose 
each subset to contain 1/3 of the elements of N. After selecting the first subset, choose 
each additional subset so that half of its elements comes from the part of N that has not 
yet been allocated, and the other half comes from a portion of the preceding subset that 
has not been shared with any other subset. (The last subset takes its elements from the 
unshared portions of the next-to-last subset and the first subset.) The illustrated 
construction thereby produces 6 subsets, and its general form that assigns n′/d elements to 
each subset produces 2d.different subsets when d is a positive integer. 
 
Upon thus selecting subsets of N and solving LP problems over these subsets, No can be 
specified to consist of the union of the variables xj that receive non-zero values in these 
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smaller problem instances. No can be made smaller by giving priority to variables that 
have received non-zero values in a larger number of sub-problem solutions. (In the 6 
subset example, each variable will receive a non-zero value in at most two solutions.) 
Such a strategy can also be useful as a means of identifying particular variables that are 
likely to be important for generating robust solutions.  
 
With these preliminaries, we briefly sketch how the MIP problem P*(w) itself can be 
solved by a parametric form of tabu search. (The following discussion assumes a basic 
understanding of the tabu search framework; see, e.g., Glover and Laguna, 1997.) The 
approach works strictly with the LP problem LP*, but written in the form that replaces 
the xj variables by the xj

+
  and xj

– variables, and that includes these variables in the 
objective function with coefficients cj and dj are previously indicated. This may be 
viewed as working with the form of P*(w) that replaces the xj variables by the xj

+
  and xj

– 
variables, but that discards all reference to the wj variables and hence is simply a linear 
programming problem.  
 
We call the resulting LP problem LP(c,d), since the coefficients cj and dj in this problem 
are the ones to be manipulated by the parametric TS solution procedure. For the initial 
form of LP(c,d) we let all cj and dj equal 0 (or, for implementation, a small positive 
value). Evidently, if cj and dj are chosen large enough, then xj

+
  and xj

–, and hence xj, will 
be driven to 0. The goal is to identify the “right” variables to receive non-zero (large) 
penalty values in LP(c,d), in order to drive some desired number of variables to 0 and yet 
obtain a good solution to the residual problem over the variables that are not penalized.  
 
To initiate the tabu search method, the first variables to penalize by assigning them large 
cj and dj values can be those that receive the smallest positive values in the solution to 
LP*. Assigning penalties to any particular set of variables can cause new variables xj

+
  or 

xj
– that are not yet penalized to receive positive values in turn.  

 
An elementary TS recency memory can be used to manage the parameters cj and dj 
foridding penalties previously introduced from being removed (set to 0) for a certain 
number of re-optimizations and also forbidding penalties removed from being re-
introduced for a certain span of time, as established by customary rules for assigning tabu 
tenure. The rules for determining which penalized variables should be freed from their 
penalties can make use of LP reduced costs in the solution to LP(c,d). These reduced 
costs provide an evaluation that discloses the amount by which the associated variables 
resist their penalties. 
 
Let RCj

+ and RCj
–  denote the reduced costs for xj

+
  and xj

– in the current LP solution. At 
optimality all reduced costs are non-negative and those for basic variables are 0. The true 
reduced costs TRCj

+ and TRCj
–  for xj

+
  and xj

–, representing the reduced costs there 
variables would have in the current basis if no penalties were assigned to the variables 
(before the added step of driving the reduced costs for basic variables again to zero) are 
given by TRCj

+ = RCj
+ – cj and TRCj

–  = RCj
–  – dj. The smaller (or “more negative”) this 

value is, the more attractive the variable is to be released from its penalty. The measure 
can be supplemented by taking account of the adjusted reduced cost values that result by 
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zeroing out the TRCj
+ and TRCj

–  values for basic variables in the current objective 
function representation.  Basic variables can additionally be evaluated by reference to 
their current values in the LP solution, where those with larger values are more attractive 
to be released. 
 
By means of this evaluation, instead of automatically releasing a tabu variable that 
receives a penalty from its penalized status when its current tabu tenure expires, the 
method can consider all such tabu variables whose residual tenures fall below a specified 
value and release one or more of these that are evaluated as most attractive according to 
the reduced cost measure. Frequency-based memory can supplement this recency-based 
memory in the customary manner, as by modifying choice rules to discourage or 
encourage the assignment of penalties to particular variables according to how often (or 
for what cumulative duration) they have been penalized previously, or to increase or 
decrease the values of penalties assigned. Frequencies likewise can be used to amend the 
choice of variables to be released from tabu status by a rule that is independent of the 
reduced cost values, as by creating aspiration criteria for overriding tabu status that are a 
function of such frequencies.  
 
Additional more advanced considerations, including associated intensification and 
diversification strategies, ways to exploit cutting planes within the parametric design, and 
detailed specifications of the mechanisms for handling tabu status in relation to penalties, 
can be found in the parametric tabu search method described in Glover (2006a). 
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Appendix 2: Creating General Subspaces for Multi-hyperplane MIP 
formulations.  
 
As in Section 5.2, we use the symbol ∪ to represent set union (the logical or operator) 
and the symbol ∩ to identify set intersection (the logical and operator). Similarly we let 
the symbol * represent complementation (the logical not operator).  
 
To create the subspaces used for classification, we generate logical strings such as  
(5*∩4)∪((6∩1*)∪2) to identify regions designed to include the points of one group but 
not the other.9 Our approach manipulates these strings by Boolean analysis to produce 
associated mixed integer programming models, and we may accordingly call the resulting 
subspaces Boolean subspaces. A Boolean subspace will be called variable if its form is 
represented as in with bp and xp variable, and will be called fixed if we have assigned 
specific constant values to bp and the components of the vector xp. 
 
Our multi-hyperplane discrimination approach takes the following form: 

1. Generate a series of logic strings to identify a collection of variable Boolean 
subspaces denoted by Bh, h ∈ H. 

2.  Create a mixed integer programming formulation based on Bh and its variable 
complement Bh* to determine fixed instances Bh and Bh* of these subspaces, 
for the objective of including as many points as possible of G1 and G2 in Bh 
and Bh*, respectively. 

 
For the purpose of comparing logic strings, and of creating a mixed integer programming 
model from them, we convert them into disjunctive normal form; i.e., we express the 
strings as the disjunction (union) of a collection of conjunctions (intersections), as 
represented by 
 

V1 ∪ V2 ∪ V3 ∪ … ∪ Vr 
 
where each Vk, k = 1, …, r has the form Vk = (Vk1 ∩ Vk2 ∩ Vk3 ...) and the terms Vkj are 
primitives, in the present case consisting of terms p and p*, for various values of  
p ∈ P ={1,…, po}. The value of r is variable and depends on a given logical string. We 
suppose the primitives of each Vk have been logically reduced so that, within any given 
Vk, no primitive p or p* appears twice and at most one of the pair p and p* appears. 
(Multiple occurrences of a given primitive can be replaced by a single instance, and the 
appearance of both p and p*, which by convention we assume to have an empty 
intersection, causes Vk to drop out of the disjunctive normal form.) Likewise, we assume 
that the sets Vk have been reduced so that any set that is a proper subset of another is 
dropped, and all but one occurrence of multiple identical sets are dropped. (Note, under 

                                                 
9 For the purpose of identifying implicit parentheses in subsequent strings, the ∩ operator takes a stronger 
position than the ∪ operator, analogous to the way the multiplication operator is used relative to the 
addition operator in ordinary arithmetic representations. 
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intersection, a set Vk is a subset of a set Vh if all of the primitives of Vh appear in Vk, 
hence Vk contains more rather than fewer primitives in its representation.) 
 
In addition, if we wish to enumerate the possible disjunctive normal forms of interest, we 
may require the primitives of each Vk to be arranged in ascending order by size, where by 
convention we extend the definition of “<” so that p < p* and p* < q if p < q. With the 
primitives of the sets Vk thus ordered, we also use the symbol “<” to denote a 
lexicographical relationship between these sets, and define a set Vk to be 
lexicographically smaller than a set Vh, writing Vk < Vh, if Vk contains fewer primitives 
than Vh or if the two sets contain the same number of primitives, and the first primitive in 
which they differ is smaller in Vk than in Vh. (Thus, for example, the set (3 ∩ 5 ∩ 7*) is 
lexicographically smaller than both (2 ∩ 3 ∩ 6* ∩ 7) and (3 ∩ 5* ∩ 7).)  
 
Finally, we stipulate that the disjunctive normal form representation is ordered by 
lexicography so that V1 < V2 < V3 < .... < Vr. We call this the canonical representation of 
the disjunctive normal form. It is easy to see that the canonical representation is unique, 
given our assumptions on reducing the sets Vk and dropping those that are superfluous. 
We also compare two canonical forms having the same number of component sets on the 
basis of their lexicographic size, saying that a canonical form identified by 
V1′  < V2′ < V3′ < … < Vr′ is lexicographically smaller than one identified by 
V1 < V2 < V3 < .... < Vr. if Vh′ < Vh, for the first index h such that Vh′ ≠ Vh. 
  
The relevance of comparing canonical forms in this way is that we consider two different 
canonical forms to be equivalent, for the purpose of generating subspaces, if we can 
rename the primitives in one of them so that their representations become identical. (We 
interpret renaming to include the possibility of mapping a primitive p* into a primitive q, 
and vice versa.) Thus, to avoid the need to consider many different possible 
representations that are equivalent in this sense, we seek to restrict attention to canonical 
forms that are minimal by which we mean they cannot be made lexicographically smaller 
by renaming. Then we only generate subspaces from these minimal canonical forms. 
 
We identify a heuristic renaming rule designed to achieve such a minimal representation, 
given that the representation is already canonical, and then will illustrate the rule to  
provide an understanding of these minimal forms.  
 
Renaming Process 
Stage 1. 
 1. Beginning with a canonical representation, rename the elements of set V1 so 
that they are the primitives, 1, 2, 3, …,p in sequence. (This can change the names of 
elements in other sets, and also implicitly determines the names of primitives that are 
complements q or q* of any of the primitives renamed.) If r = 1 or p = po proceed to 
Stage 2. Otherwise, let k = 2 to examine set Vk for k = 2. 
 2. Restricting attention to primitive in Vk that have not yet been explicitly or 
implicitly renamed, assign these primitives the names p+1, p+2, …, p′. Let q or q* denote 
the largest of these renamed primitives in the set. (q = p′ if any primitive has changed its 
name, and otherwise q* = p*.)  
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 3. If k = r or q = po proceed to Stage 2. Otherwise, redefine p: = q, set k: = k+1, 
and return to Step 2 of Stage 1. 
Stage 2. 
 1. If no change occurred in applying Stage 1, proceed to Stage 3.  
 2. Otherwise, put the primitives back in ascending order in each of the sets, and 
arrange the sets again in lexicographically increasing order to achieve a new canonical 
representation. If this causes no changes, likewise proceed to Stage 3.  
 3. Otherwise, return to repeat the process of Stage 1.  
Stage 3. 
 1. If there is an element p < q where p or p* and q or q* lie in a given set Vk and 
where swapping the names p ↔ q will decrease the lexicographic size of the resulting 
canonical form, then rename p and q as indicated. Repeat this process until no more name 
exchanges of this type remain.          
 
The approach can be accelerated by restarting Stages 1 and 2 from the point where 
changes have occurred since they were last visited. We have expressed Stage 3 without 
care to make it efficient. Our goal is simply to demonstrate a process for seeking minimal 
canonical forms to clarify their nature. Subsequently we will employ a constructive 
process that creates such forms automatically without the need for a heuristic or exact 
procedure to revise a canonical form that lacks this property. 
   
For the purpose of illustration, we start with an initial disjunctive normal form 
representation given by  

(3∩2*∩1∩2*) ∪ (1∩4*∩4) ∪ (4∩5) ∪ (2∩5∩3∩5) ∪ (5∩4∩2). 
To put this in canonical form, we first arrange the primitives of each set in ascending 
order, to give 
 (1∩2*∩2*∩3) ∪ (1∩4∩4*) ∪ (4∩5) ∪ (2∩3∩5∩5) ∪ (2∩4∩5). 
Now, we remove an extraneous 2* from the first set and an extraneous 5 from the fourth 
set, and drop the second set because it contains both 4 and 4*. Similarly we drop the fifth 
set because it is a subset of the third ((2∩4∩5) ⊂ (4∩5)). Upon putting the remaining sets 
in lexicographically increasing order we have the canonical representation 
 (4∩5) ∪ (1∩2*∩3) ∪ (2∩3∩5). 
Next, we apply Stage 1 of the renaming process yields new names by the mapping 4 → 1,  
5 → 2, 1 → 3, 2* → 4, 2 → 4*, 3 → 5, renaming all primitives before reaching the last 
set, yields 
 (1∩2) ∪ (3∩4∩5) ∪ (4*∩5∩2) 
or on re-ordering primitives in the last set, which causes the second and third sets to 
switch positions, we obtain 
 (1∩2) ∪ (2∩4*∩5) ∪ (3∩4∩5) 
Now we again apply Stage 1, yielding 4* → 3 and 4 → 3*,  5 → 4, 3 → 5 to give 

(1∩2) ∪ (2∩3∩4) ∪ (5∩3*∩4) 
or on rearranging 

(1∩2) ∪ (2∩3∩4) ∪ (3*∩4∩5) 
Upon once again applying Stage 1 nothing changes and we proceed to Stage 3. We see 
that we can swap the names 1 and 2 in the first set to decrease the lexicographic size of 
the second, thus yielding 
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(1∩2) ∪ (1∩3∩4) ∪ (3*∩4∩5). 
No similar swaps remain and we are done. It is easy to show that this approach is not 
sufficient to guarantee a minimal form will be found. For example, if we start with 

(1∩2) ∪ (4∩5) ∪ (3∩4∩6) 
we first obtain (after re-ordering the last set) 

 (1∩2) ∪ (3∩4) ∪ (3∩5∩6) 
This is a locally optimal solution. However, if we rename the elements of the second set 
by 3 → 1 and 4 → 2, followed by renaming those of the first set by 1 → 3 and 2 → 4, 
then we obtain 

(1∩2) ∪ (3∩4) ∪ (1∩5∩6) 
Moreover, we obtain this same result by renaming 1 → 4 and 2 → 3 in the first 

set.  
 
For any such representation for a primary set, we can generate the complementary 
representation for the secondary set, and then exploit the outcome by the process 
described in Section 5.2. 
 
Elementary set theory relationships useful for generating canonical representations and 
their complements: 
 
A∪(B∩C) = (A∪B)∩(B∪C) 
A∩ (B∪C) = (A∩B)∩(A∪C) 
(A∩B)* = A*∪B* 
(A∪B)* = A*∩B* 
 (A*)* = A 
 


