
 1

Improved Classification and Discrimination by Successive
Hyperplane and Multi-Hyperplane Separation

Fred Glover and Marco Better

OptTek Systems, Inc.
2241 17th Street

Boulder, CO 80302

Abstract

We propose new models for classification and discrimination analysis based on
hyperplane and multi-hyperplane separation models. Our models are augmented for
greater effectiveness by a tree-based successive separation approach that can be
implemented in conjunction with either linear programming or mixed integer
programming formulations. Additional model robustness for classifying new points is
achieved by incorporating a retrospective enhancement procedure. The resulting models
and methods may be viewed from the perspective of support vector machines and
supervised machine learning, although the new approaches produce regions and means of
exploring them that are not encompassed by the procedures customarily applied. We
focus primarily on two-group classification, but also identify how our approaches can be
applied to classify points that lie in multiple groups.

 2

Introduction

Let Ai = (ai1 ai2 … ain), i ∈ G = {1, 2,…, m} denote a collection of vectors whose
elements belong to two groups, indexed by G1 and G2. We seek a classification rule to
identify whether a given vector A should belong among the Ai for i ∈ G1 or among those
for i ∈ G2. For example, the elements Ai may refer to people to be classified according to
whether they have a particular disease (i ∈ G1) or are free of the disease (i ∈ G2), where
the first component ai1 of Ai may refer to the person′s weight, the second component ai2
may refer to the person′s white cell count, and so forth. Common instances of
classification problems come from the areas of finance, healthcare, engineering design,
biotechnology, text analysis, homeland security and many other areas (see, e.g., Dai,
2004).

The decision rules we investigate are based on hyperplane separation approaches,
viewing the Ai vectors as points in an n-dimensional space. In the simplest case, we seek
a single hyperplane to differentiate the points Ai for i ∈ G1 from the points for i ∈ G2,
where as nearly as possible the hyperplane will lie between the two sets of points, so that
each group lies predominantly on one side of the hyperplane .

More generally, we identify conjunctions and disjunctions of hyperplanes to yield more
complex regions for separating points of the two groups. The models are based on linear
and mixed integer programming formulations, whose effectiveness is amplified by
embedding them within a successive separation process that constitutes an iterative tree-
based procedure. A key variation makes special use of a procedure called successive
perfect separation that compels one of the two separating regions to contain all points of
one of the groups at each branch, and further refines the outcomes by a process of
retrospective enhancement.

The organization of this paper is as follows. We first review literature that provides the
background for the new models, observing connections with ideas introduced in the
context of support vector machines. A series of basic linear and integer programming
formulations is introduced, proceeding from simpler to more advanced considerations.
We then introduce an additional layer of refinement, as a foundation for greater practical
efficacy, by coupling these models with successive separation procedures and the
associated methods of retrospective enhancement. Finally, we propose new mixed integer
optimization models and associated streamlined approaches for solving them that give
another level of sophistication to the classification tools used in successive separation.

1. Linear Programming Models for Single Hyperplane Discrimination
Analysis

To begin we review fundamental ideas underlying the creation of a single separating
hyperplane1 by linear programming (LP). Let x = (x1 x2 … xn) denote a vector of weights,

1 Since the hyperplane may not succeed in precisely separating the two groups, as where some points lie on
the “wrong side” of the hyperplane, we use the word “separating” in a broad sense, as may alternately be
conveyed by the term “quasi-separating.”

 3

one for each of the n components of a vector A = (a1 a2 … an), where A may represent
one of the vectors Ai, i ∈ G = {1, …, m} or a new vector that we may wish to classify.
The weights xj of x are variables whose values we undertake to discover in order to
produce the hyperplane. We also seek to determine the value of an additional variable,
denoted by b, so that knowledge of x and b will permit the hyperplane to be represented
by the equation Ax = b. Once the determination of x and b has been made, these variable
quantities may be treated as constants, in order to test whether an arbitrary point A = (a1
a2 … an) in n-space lies on a given side of the hyperplane.

The condition that all Ai for i ∈ G1 lie on one side of the hyperplane and all points Ai for i
∈ G2 lie on the other may be expressed by writing

 Aix ≤ b for i ∈ G1 and Aix ≥ b for i ∈ G2.

We prefer if possible to avoid the case where points lie precisely on the hyperplane (by
satisfying Aix = b), and more generally prefer to have the hyperplane lie in a space that is
“halfway between the two sets of points” in a meaningful sense. A point that is
misclassified, by failing to lie in its targeted half-space, can be evaluated by reference to
how far it lies from the hyperplane boundary, where the distance from the boundary
(which is positive for misclassified points) is measured by Aix – b for i ∈ G1 and by b –
Aix for i ∈ G2. By contrast, points that are correctly classified can be evaluated by
reference to distance measures given by b – Aix for i ∈ G1 and by Aix – b for i ∈ G2,
which are non-negative (and preferably positive) for these points.

The study of separating hyperplane models using linear programming was launched by
the work of Mangasarian (1965), who introduced a model to minimize the greatest
violation of any misclassified point by solving a collection of 2m linear programs.
Subsequently Freed and Glover (1981) provided a series of LP models for hyperplane
separation, each requiring the solution of only a single linear program and encompassing
the goals of minimizing the greatest violation as well as minimizing weighted sums of
violations. These models also handled the case of maximizing the minimum internal
deviation and of maximizing a weighted sum of internal deviations. Currently all
separating hyperplane models use variations of the form that relies on solving only a
single linear program.

1.1 A Basic Linear Model Formulation

We start from one of the primary linear programming models of Freed and Glover, and
then introduce refinements and generalizations provided by a more recent formulation of
Glover (1990). We will call points that lie or fail to lie in their appropriate half-spaces,
i.e., which are correctly or incorrectly classified, satisfying or violating points,
respectively. Let si denote a variable that measures the amount by which a satisfying
point Ai lies inside its associated half-space, and let vi denote a variable that measures the
amount by which a violating point lies outside this half-space. Figure 1 shows an
example where hyperplane Ax = b attempts to separate the triangles from the squares.
Point 1 is an element of the triangle group that satisfies its hyperplane constraint, while

 4

point 2 violates it. By implication, si and vi are non-negative and at most one member of
each pair may be positive, as the figure shows.

v2

s1

Ax = b

1

2

Figure 1: schematic representation
of satisfying and violating measures

We incorporate these variables into the inequalities for the half-spaces to convert them
into equations, by writing

AIx – vi + si = b, i ∈ G1
AIx + vi – si = b, i ∈ G2

The first objective we examine is to minimize a weighted sum of the violations, and
subject to this, to maximize a weighted sum of the satisfactions. Let hi denote a weight
associated with the variable vi to discourage it from being positive, and let ki denote a
weight associated with the variable si to encourage it to be a large as possible, in the
event that vi = 0. Finally, let m1 = |G1| and m2 = |G2|. Then we obtain the formulation.

 Minimize ∑ (hivi – kisi: i ∈ G) (1.1)
 subject to

Aix – vi + si = b, i ∈ G1 (1.2)
Aix + vi – si = b, i ∈ G2 (1.3)

x, b unrestricted (1.4)
 vi, si ≥ 0, i ∈ G (1.5)

(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (1.6a)
m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1) = 1 (1.6b)

 5

Equations (1.6a) and (1.6b) from Glover (1990) are equivalent forms of a normalization
constraint that plays a vital role in the formulation.2 Usually, (1.6b) is more convenient to
use than (1.6a) since it does not require computing the sum of the Ai vectors over i ∈ G1

and i ∈ G2, but (1.6a) may sometimes be appealing for having a form that is more nearly
invariant over additional formulations we describe subsequently. In addition, we suggest
that it can be useful to impose a constraint that achieves a balanced violation condition
when the formulation (1) does not result in perfectly separating the two groups (hence
some of the vi variables receive positive values). Such a constraint may take the form

m1∑ (vi: i ∈ G2) = m2∑ (vi: i ∈ G1)

The constraint has no impact if a solution exists with all vi = 0, but it can have some
utility in respect to generating more robust separations.

1.2 Background of Normalizations and Common Uses of the Model

Various normalizations have been proposed through the years to assure that linear
programming models for discrimination analysis do not admit the degenerate solution
given by x = 0, b = 0 (which also yields vi = si = 0 for all i ∈ G). However each of the
normalizations introduced prior to those indicated in formulation (1) was discovered to
introduce flaws into the model by failing to yield solutions that were invariant when the
problem data undergoes transformations such as rotations or translations. The discovery
of (1.6a) and (1.6b) finally removed these flaws, as proved in Glover (1990).
Nevertheless, many researchers that use linear programming models for hyperplane
separation continue to rely on flawed normalizations, apparently unaware of the
deficiencies introduced.

To assure that the solution to formulation (1) is bounded for optimality, it is necessary to
choose the coefficients hi and ki so that hi > ki, i ∈ G. Theoretically, the condition can be
relaxed to stipulate that hi ≥ ki, but this entails some risk computationally due to round-
off error that can cause difficulties when choosing hi = ki. More particularly, a condition
that has been proved to assure bounded optimality in the presence of the normalization
constraint (1.6a) or (1.6b) is given by selecting the hi and ki values so that

Min(hi: i ∈ G) > Max(ki: i ∈ G).

Historically, nearly all adaptations of formulation (1) explored in various studies reported
in the literature have focused on the special case where all hi = 1 and all ki = 0. In this
instance the objective reduces to simply minimizing the sum of violations (sometimes
called external deviations), and the model has popularly come to be known as the
“Minimum Sum of Deviations” or MSD, model.

2 The right hand side of 1 in these equations can be replaced by any positive constant, which has the
outcome of scaling the solution.

 6

It should be stressed, however, that the presence of weights hi and ki that differ from 1
and 0 affords several advantages. Among these is an opportunity to emphasize the correct
classification of some points more strongly than others (by means of the hi values) and to
pursue a goal of driving some points to lie more deeply inside the half-space of correct
classifications than others (by means of the ki values). Such features can be valuable in
applications where incorrectly classifying certain points may have more unfavorable
consequences than incorrectly classifying others, or conversely, where correctly
classifying some points can have a greater pay-off than correctly classifying others.

Allowing the hi and ki coefficients to take values other than the value 1 used in the simple
MSD model also has the benefit of permitting these coefficients to be manipulated by
means of linear programming post-optimality analysis. This makes it possible to change
the emphasis on correctly classifying specific points or subsets of points, and to
efficiently determine the effects of such changes. Figure 2.a) shows a hyperplane Ax = b
that is obtained by assigning equal weights to all points. In figure 2.b), we assume that it
is more important to correctly classify the triangular points than the squares; therefore,
the triangular points that are shaded are assigned a higher weight hi than the other points,
as a function of their proximity to the original hyperplane. The result is a new hyperplane
A’x=b’ which now classifies two more of the triangles correctly, even though one more
square is misclassified.

As noted in Glover (1990), such manipulations can also be used to diminish the effects of
outliers, e.g., by reducing the size of their coefficients or setting them to 0. (Setting the
coefficients to 0 is equivalent to dropping a point from consideration altogether. Such an
approach of removing outliers has been proposed more recently in Ma and Cherkassky,
2005.) LP post-optimality procedures can also be used to generate new attributes as
nonlinear functions of others. An efficient implementation results by pricing-out the
associated new variables in a currently optimal linear programming basis, to identify at
once whether these attributes are “profitable” in a linear programming sense and can
thereby improve the problem objective by their inclusion (Barr and Glover, 1993, 1995).
In this manner there is no need to generate or include such elements in the problem in
advance, since they can be produced and evaluated on the fly.

 7

Ax = b A’x = b’

1

a) b)
Figure 2: an example of the effects of post-optimality analysis

These types of approaches may be interpreted as belonging to the class called support
vector machines (see, e.g., Christiani and Shawe-Taylor, 2000; Schlkopf and Smola,
2002; Wang 2005). Although they originated before the SVM classification and
taxonomy was introduced, the LP post-optimization proposals are highly relevant to the
kernel function notion that has been popularized in the SVM literature. The purpose of a
kernel function, in particular, is to transform the problem data to give it a structure or
form that is easier to classify. The outcome of the transformation produces new units of
data (increasing the problem dimensionality) as a way to incorporate information implied
by the original data, but not originally in a form that is amenable to be treated effectively
by the analytical tool used to produce classifications. As can be seen, the proposals to
augment the LP model using linear programming post-optimality analysis yield an
adaptive method for processing the data to yield new data. Consequently, this affords a
means for enhancing the repertoire of SVM kernel generating procedures without the
need to rely on an a priori specification or dedication to a particular type of
transformation, or to invoke all elements of the transformation at once.

The linear programming models for creating separating hyperplanes can be improved not
only by differentially weighting the vi and si variables and by incorporating a post-
optimality component, but by additional elements introduced in subsequent sections. We
lay the foundations for these improvements by examining natural extensions of the
preceding model ideas.

1.3 A More General Linear Model

A simple extension of the model of Section 1.1 arises by introducing a comprehensive
violation variable vo relevant to minimizing the maximum violation over all violating
points, and a comprehensive satisfaction variable so relevant to maximizing the minimum

 8

satisfaction over all satisfying points. With these variables included, the formulation
becomes

 Minimize ∑ (hivi – kisi: i ∈ G) + hovo – koso (1.1′)
 subject to

Aix – vi + si – vo + so = b, i ∈ G1 (1.2′)
Aix + vi – si + vo – so = b, i ∈ G2 (1.3′)

x, b unrestricted (1.4′)
 vi, si ≥ 0, i ∈ G and i = 0 (1.5′)

 (m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (1.6a′)
m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1) + m(so – vo) = 1 (1.6b′)

We note that the normalization (1.6a′) remains the same as (1.6a), while the equivalent
normalization (1.6b′) differs from (1.6b) by including a weighted term so – vo. Models
that included both the vo and so variables were proposed in the early paper of Freed and
Glover (1981), though the model (1′) and the normalizations accompanying it first
appeared in Glover (1990).

The ability to place an emphasis on minimizing the greatest violation and on maximizing
the least satisfaction (where, in the latter instance, the points can be accurately classified)
has evident value in a variety of contexts. Although some researchers have looked at
instances of model (1′) that include the variable vo, apparently none of these instances
have also included so. As we will show later, so has a crucial role in procedures for
creating more robust separations. Also, it appears that no study has attempted to examine
the consequences of incorporating the vo variable within the same formulation as one that
attaches non-zero hi and ki coefficients to the remaining vi and si variables.

A common variation of the formulations (1) and (1′) replaces b by b – ε in (1.2) and
(1.2′), and by b + ε in (1.3) and (1.3′), for a selected positive value of ε. The purpose of
this variation is to push the correctly classified points farther from the quasi-separating
hyperplane. This approach faces the difficulty of pre-specifying what an appropriate
value of ε should be, particularly since this value interacts with the value of the right hand
side constant in the normalization constraints. Formulation (1′) that includes so provides a
way to implicitly handle the influence of ε, while also handling additional considerations.

In particular, replacing b by b – ε and by b + ε in the equations (1.2′), and (1.3′),
respectively, is the same as assigning so a predetermined constant value of ε in the
equations. Introducing so as a variable avoids the difficulty of having to figure out in
advance an appropriate value for so to receive, and permits the flexibility of an interaction
between the variables si and so by varying the coefficients ki and ko. In general, we may
interpret the inclusion of a constant ε term to be the same as stipulating that so has a
positive lower bound of ε, making it possible to both retain so in the model and also
replace b by b – ε and by b + ε in the associated equations. By means of this change, so
will receive a value that is the difference between ε and the true value of so. The use of ε
as a lower bound on so can be appropriate in cases where we seek to assure a minimum

 9

separation from the hyperplane regardless of all other considerations. An appropriate
calibration for the value of ε can be achieved by once again making recourse to post-
optimization, changing ε in a series of steps and noting the tradeoffs that result. As we
argue later, such a calibration can be valuable for the purpose of achieving a model that is
robust in its ability to correctly classify data from hold-out samples.

1.4 Variant of the More General Linear Model

The vo and so variables of the model of Section 1.3 can be introduced in another fashion,
removing them from the constraints (1.2′) and (1.3′) and incorporating the additional set
of constraints vo ≥ vi and si ≤ so, i ∈ G, to produce the following formulation

 Minimize ∑ (hivi – kisi: i ∈ G) + hovo – koso (1.1″)
 subject to

Aix – vi + si = b, i ∈ G1 (1.2″)
Aix + vi – si = b, i ∈ G2 (1.3″)
x, b unrestricted (1.4″)

 vi, si ≥ 0, i ∈ G and i = 0 (1.5″)
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (1.6a″)
m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1) = 1 (1.6b″)

 vo ≥ vi and si ≤ so, i ∈ G (1.7″)

 Here (1.2″) and (1.3″) are the same as (1.2) and (1.3), and (1.6b″) is the same as (1.6b).
Otherwise, except for the addition of the new constraints (1.7″), the rest of formulation
(1″) is the same as formulation (1′).

The changes that produce formulation (1″) enable the model to accomplish more complex
objectives than handled by formulation (1′), encompassing more complex trade-offs
between vo and so and the other vi and si variables, as the values of the coefficients ho and
ko are changed relative to values of the other hi and ki coefficients. Additional advantages
to formulation (1″) arise when the linear programming models are extended to mixed
integer programming models.

Formulation (1″) can be generalized further to give weight to objectives of minimizing
the maximum degree of violation, or maximizing the minimum degree of satisfaction,
over various subsets of points S1, …, Sr. To accomplish this we introduce variables voq
and soq, q = 1,…, r, which we assign coefficients hoq and koq in the objective function, and
impose the inequalities

voq ≥ vi and si ≤ soq , i ∈ Sq, q = 1…., r. (1.8″)

Such inequalities can be incorporated only for the voq variables or only for the soq
variables, according to the set Sq considered. We can additionally generalize (1.8″) by
means of the constraint

voq ≥ ∑(hiqvi: i ∈ G) and ∑(kiqsi: i ∈ G) ≤ soq , q = 1…., r (1.9″)

 10

noting that (1.8″) results from (1.9″) by setting hiq = 1 and kiq = 1 only for i ∈ Sq, and
hiq = kiq = 0 for i ∈ G – Sq. This type of generalization has uses in obtaining approximate
solutions to mixed integer programs by solving only linear programming problems
(Glover, 2006a).

We do not explore applications of (1.8″) or (1.9″) in this paper, but will make explicit use
of the model that embodies (1.7″). In this connection, formulations of subsequent sections
that include vo or so in equations such as (1.2′) and (1.3′) can be modified by removing vo
and so from these equations (producing equations corresponding to (1.2″) and (1.3″)) and
then adding constraints of the form (1.7″), which permits the normalization constraint to
be expressed as in (1.6b″), which is the same as the original form (1.6b).

1.5 Pre-processing to Reduce Problem Size and Achieve Better Separations

Pre-processing provides a natural way to reduce the size of the problem to be solved, and
also to permit the separating hyperplane strategies to achieve better separations. A form
of pre-processing we suggest in this regard is the following. Let D(Ap,Aq) be a measure
of the distance between two points Ap and Aq, for p, q ∈ G. For a given point Ai, i ∈ Gk,
let k* denote the index complementary to k (k* = 2 if k = 1, and k* = 1 if k = 2). We then
define the quantities

 For Ai, i ∈ Gk:
 Dmin(Ai) = Min(D(Ai,Ap): p ∈ Gk*)
 S(Ai) = {q ∈ Gk: D(Ai,Aq) < Dmin(Ai)}

The larger the values of Dmin(Ai) and of |S(Ai)| relative to other points Aq, q ∈ Gk, the
more “deeply embedded” the point Ai is within the Group k (and isolated from points in
Group k*). We conjecture that if we remove such a deeply embedded point Ai from
Group k before seeking to generate a separating hyperplane, the chances are high that Ai
will automatically fall on the desired side of the hyperplane that is generated without
referring to this point.

Consequently, we suggest a pre-processing step that makes use of the quantities Dmin(Ai)
and |S(Ai)| to select more deeply embedded points and temporarily set them aside, thus
shrinking the size of the problem to be solved when seeking a separating hyperplane. For
example, to identify points to be removed in this fashion, thresholds can be established on
minimum sizes of Dmin(Ai) and |S(Ai)|, or of a weighted combination of these quantities,
that will admit only a specified portion of the points Ai, i ∈ Gk to qualify for a “deeply
embedded” designation. Once the hyperplane model is solved, if a point Ai that was
temporarily set aside lies on the wrong side of the resulting hyperplane, then it can be
introduced into the formulation. By using a linear programming post-optimality
procedure, the solution process can continue from the current optimized solution (relative
to the set of points that excluded Ai) without having to re-start the solution process from
scratch. Such an approach complements the approach of using post-optimality to reduce
the impact of outliers by reducing their objective function coefficients.

 11

The values Dmin(Ai) and |S(Ai)| can be refined by applying a second order process. For
this, we make use of the quantity

 T(Ai) = {q ∈ G – Gk: D(Ai,Aq) < Dk}

where Dk is a distance measure given by Dk = Mean(Dmin(Ai): i ∈ Gk), or more generally
determined to insure that a certain portion of the points Ai, i ∈ Gk satisfy Dmin(Ai) ≤ Dk. If
|T(Ai)| is relatively large compared to the value |T(Aq)| for other points Aq in Group k,
then Ai may be considered as representing an anomalous (hard-to-classify or “out-of-
place”) point. Such a point can introduce a distortion in defining Dmin(Ap) and |S(Ap)| for
points Ap that lie in the opposite Group k*. (This is particularly true when a small value
of Dk is used in the definition of T(Ai).) Consequently, based on a first determination of
Dmin(Ai) and S(Ai), we can make an improved second determination by choosing a
threshold Tk for elements of Group k to identify a set Ek of points that are sufficiently
anomalous to be excluded from consideration

 Ek = {i ∈ Gk: |T(Ai)| ≥ Tk}.

where, as suggested, Tk may be chosen to assure that Ek will not exceed a certain limited
size. (Alternatively, Ek can be identified by arranging the |T(Ai)| in descending order and
choosing at most a specified number of the largest values, stopping if the size of |T(Ai)|
abruptly decreases or reaches 0. A similar process can be used to determine Dk itself.)
Then, in particular, for a point Ai, i ∈ Gk, we re-define

 Dmin(Ai) = Min(D(Ai,Ap): p ∈ Gk* – Ek*).

The composition of S(Ai) is then re-determined based on this new (second level)
definition.

A more cautious version of the exclusion set Ek is given by

 Ek

o = {i ∈ Gk: S(Ai) = ∅}

which may be used in place of Ek (i.e., Ek*

o can be used in place of Ek*) in the preceding
second level definition of Dmin. Still more cautiously, first define

 S[Gk] = ∪(S(Ai): i ∈ Gk}.

Then the exclusion set Ek may be replaced by

 Ek

+ = {i ∈ Gk – S[Gk]: S(Ai) = ∅}.

We call points Ai for i ∈ Ek

+ strongly anomalous points, and stipulate that these points, if
any exist, may be removed from Gk permanently.

 12

It is important in implementing these forms of pre-processing to first scale the data, so
that each attribute j, represented by the (column) vector A•j = (a1j a2j … amj), is
normalized, as for example by dividing through by ∑(|aij|: i ∈ G), understanding that
attribute j may be discarded if A•j is the 0 vector.

More advanced forms of pre-processing can be based on the use of cluster analysis to
produce clusters of points whose elements lie strictly within a given group, and then to
subject such clusters to a successive perfect separation analysis as described in Section 3.
The preceding use of Dmin(Ai), S(Ai), T(Ai) and the associated exclusion sets can be
incorporated into a more general clustering procedure that can be used in this fashion
(Glover, 2006b). (Another use of Dmin(Ai) is also given in Section 3.)

1.6 Retrospective Enhancement for Robust Separation – First Level

An important goal in applying separating hyperplane strategies is to go beyond the
immediate objective of minimizing a measure of misclassifications, and in general, to
generate hyperplanes that separate the correctly classified points of Group 1 from those
of Group 2 by a greater distance – even where a perfect classification cannot be achieved.
A hyperplane that achieves this additional separation objective is likely to be better at
classifying new points that are not contained in the initial G1 and G2, and thus provide a
more robust separation model.

The goal of increasing the separation between correctly classified points is supported by
the inclusion of the si variables in the objective function of formulation (1) and by the
additional inclusion of the so variable in formulations (1′) and (1″). However, by
themselves, the preceding models do not have full latitude to achieve this goal. In order
to identify hyperplanes that place correctly classified points as far as possible from the
hyperplane boundary, we make use of the so variable in an additional fashion, by
employing a retrospective enhancement process that re-solves the hyperplane separation
problem, taking advantage of knowledge obtained from the previous solution of the
problem.

Let C1 and C2 denote the sets of correctly classified points obtained by solving model (1′)
or (1″). (For convenience, as here, we often employ the convention of referring to points
by naming their index sets.) That is, the initial solution correctly assigns Ai to G1 for i ∈
C1 and correctly assigns Ai to G2 for i ∈ C2, hence C1 ⊆ G1 and C2 ⊆ G2. Let C = C1∪C2,
and define mc1 = |C1|, mc2 = |C2| and mc = |C|.

Then we can seek a better separation of these points by retrospectively solving the new
problem

 Maximize ∑ (kisi: i ∈ C) + koso (1.1o)
 subject to

Aix + si + so = b, i ∈ C1 (1.2o)
Aix – si – so = b, i ∈ C2 (1.3o)
x, b unrestricted (1.4o)

 13

 si ≥ 0, i ∈ C and i = 0 (1.5o)
 (mc1∑ (Ai: i ∈ C2) – mc2∑ (Ai: i ∈ C1))x = 1 (1.6ao)
mc1∑ (si: i ∈ C2) + mc2∑ (si: i ∈ C1) + mcso = 1 (1.6bo)

The value ko in the preceding formulation may appropriately be chosen to be significantly
larger than ∑ (ki: i ∈ C). However, we may reasonably give small positive values to the ki
coefficients for i ∈ C rather than setting these coefficients to 0, since there may be many
alternative solutions that maximize the minimum value of so, and we are most interested
in those that also push individual points away from the hyperplane, as well as those that
merely achieve the objective related to so. Figure 3 depicts the effects of retrospective
enhancement.

Ax = b

a)

A’x = b’

b)
Figure 3: an example of retrospective enhancement

Significantly more advanced forms of retrospective enhancement will be introduced in
connection with successive separation strategies, which we examine next.

2. Tree-Based Models Using Successive Separation Strategies

2.1 Beginning Considerations

A tree-based approach proposed in Glover (1990) allows a more complete means of
separating two groups by making use of a successive separation (SS) process. Each stage
of the process seeks to separate points that are incompletely differentiated, i.e., not yet
correctly classified, by hyperplanes generated at preceding stages. This type of approach
can also be used as a method for multi-group classification, where (as noted in Freed and
Glover (1981)) any collection of groups whose members have not yet been isolated from
all other remaining groups can be divided into two subsets, where one subset is defined to
be Group 1 and the other subset is defined to be Group 2. Using such a division, a

 14

hyperplane is then generated to isolate Group 1 as nearly as possible from Group 2,
producing discrimination sets D1 and D2 where D1 consists of those points in the half-
space used to classify points (correctly or incorrectly) as belonging to Group 1 and D2
consists of those points in the complementary half-space used to classify points as
belonging to Group 2 (D1∪D2 = G1∪G2). (D1∩G1 and D2∩G2 correspond to the sets C1
and C2 of correctly classified points discussed in Section 1.5, except that these sets may
be targeted in the present case to contain elements of more than a single group.)

Successive subdivisions of this type encompass alternatives ranging from a binary tree
(where at each stage approximately half of the groups currently being considered are
allocated to Group 1 and the remaining half are allocated to Group 2) to a one-at-a-time
form of separation (where a single group is isolated from all remaining groups at each
stage). Independent of the mode of subdivision, the process typically generates g – 1
hyperplanes to separate g different groups. Fewer hyperplanes may be generated in the
case where a classification attempt at a particular stage is done very poorly, and some
group assigned to G1 (or respectively to G2) fails to have any of its elements appear in the
set D1 (respectively D2).

To achieve a more effective classification, the SS approach can be performed multiple
times, using different forms of subdivision on each occasion. The outcomes can then be
subjected to conditional Bayesian analysis to provide a composite classification scheme,
yielding a rule that accounts for the decisions produced by each tree. The composite
scheme can accordingly be used to determine the group that a new point should be
assigned to. In a related manner, a voting scheme based on the outcomes of the different
trees can also be used to provide an overall rule (Glover, 2006b).

2.2 Extended SS Approaches

In contrast to the first level approach sketched in Section 2.1, the main use of the SS
process is to create a mode of successive separation that does not stop its examination of
a discrimination set D1 or D2 when the elements of the set belong only to a single one of
the original groups, but continues to generate hyperplanes to achieve an improved
classification.

We discuss this process by returning the focus to the two-group case. When G1 and G2
give rise to the two discrimination sets D1 and D2 by the hyperplane separation process, if
either D1 or D2 contains points of both G1 and G2, then this set Dk may be subjected to a
new hyperplane separation effort to try to separate the residual elements of G1 and G2 that
it contains. The examination of set Dk to separate its G1 elements from its G2 elements
(i.e., to separate Dk∩G1 from Dk∩G2) thus gives Dk the same role as the original G,
whose G1 and G2 elements were subjected to a classification attempt on the original step.
Thus, each step simply repeats the process applied on the first step. The SS procedure
stops upon reaching a point where a new hyperplane fails to achieve a more effective
classification or fails to improve on the previous classification by a pre-specified amount.
The procedure may also stop by reaching a limit imposed on the number of subdivisions
allowed, i.e., by reaching a selected limit on the depth of the tree.

 15

As observed in Glover (1990), such an approach can be conveniently supplemented at
each stage by employing a simple calculation to determine how far to shift the current
hyperplane in each direction (by increasing and decreasing discriminant b) to reach a
position where all points of either Group 1 or Group 2 will lie entirely on one side of the
hyperplane (the side that includes the original hyperplane). We call the group that falls
entirely on one side of the shifted hyperplane the primary group, and call the other group
the secondary group. Correspondingly, we refer to the two sides of the shifted hyperplane
as the primary and secondary sides. (That is, the primary side contains all points of the
primary group. The primary/secondary classification that results by shifting the
hyperplane in a given direction may be the same or different from the classification that
results by shifting the hyperplane in the opposite direction.) It can be useful in this
approach to determine the original hyperplane by incorporating the balanced violation
constraint

m1∑ (vi: i ∈ G2) = m2∑ (vi: i ∈ G1),

as discussed at the end of Section 1.1.

Some points of the secondary group may lie on the primary side of the shifted
hyperplane, but by changing b as little as possible to yield the separation, as many points
as possible of the secondary group will lie on the secondary side. Moreover, all points of
the secondary group that lie on the secondary side are perfectly classified by this
separation, since no points of the primary group lie on the secondary side. Consequently,
the subset of perfectly classified secondary points can be eliminated at once before
continuing additional stages of separation.

For some types of configurations, it may be that no points of the secondary group can be
eliminated in this fashion.3 However, in many instances the approach of shifting b in the
two different directions will be able to eliminate points from at least one of the two
groups.

2.3 Successive Perfect Separation (SPS)

Taking the idea of the shifting hyperplane process a step farther, it is natural to employ a
successive perfect separation (SPS) strategy that operates as follows. Rather than
adopting the objective of trying to separate the groups in order to minimize the total
weighted sum of violations (or one of the other related objectives addressed in Section 1),
the SPS strategy seeks to establish a separation based on the primary/secondary group
distinction, and thereby to achieve such a separation in a more rigorous fashion. For a
given choice concerning which of Group 1 or Group 2 will be treated as the primary
group, the SPS approach employs a model where the violation variables vi of this group

3 A simple worst case scenario is illustrated by the situation where a square is partitioned into 4 regions
created by its two diagonals, and Group 1 and Group 2 each occupy two non-adjacent regions. Then no
points of either group can be perfectly classified by this approach. We later describe a way to thwart this
situation.

 16

are given pre-emptively large hi coefficients in the objective function, so that all of its
points are assured to lie on one side of the hyperplane, while achieving a “best
separation” for the secondary group subject to this pre-emptive objective. Still, more
directly, we may simply structure the model so that all points of the primary group fall on
one side of the hyperplane.

If Group 1 is treated as the primary group, the model may be expressed in the form

 Minimize ∑ (hivi – kisi: i ∈ G2) + hovo – koso (2.1)
 subject to

Aix + si + so = b, i ∈ G1 (2.2)
Aix + vi – si + vo – so = b, i ∈ G2 (2.3)

x, b unrestricted (2.4)
 si ≥ 0, i ∈ G and i = 0; vi ≥ 0, i ∈ G2 and i = 0 (2.5)

 (m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (2.6a)
m1∑ (si – vi: i ∈ G2) + m2∑ (si: i ∈ G1) + mso – m1vo = 1 (2.6b)

As previously noted, we can remove so and vo from the equations where they appear in
this formulation, and instead introduce inequalities corresponding to those of (1.6b″). In
most applications of this model, the variable vo can be disregarded, while the variable so
takes a dominant role in relation to the variables si for i ∈ G2 (by making ko appreciably
larger than the ki coefficients). Formulation (2) is particularly useful for its ability to
achieve the same effect as the first level retrospective enhancement provided by model
(1o), for situations in which the primary and secondary groups can be perfectly separated.
We make use of this ability later in a more advanced form of retrospective enhancement.

In order to decide which group should be primary in an SPS approach based on
formulation (2), two instances of this formulation are solved at each stage, one for
Group 1 in the role of the primary group and one for Group 2 in this role. Then the
instance that yields the best outcome (as measured, for example, by correctly classifying
the largest number of points, or by correctly classifying the largest proportion of points in
the secondary group) is used to identify which group will be designated primary. If both
choices for the primary/secondary roles are unattractive, because the solution to (2) yields
too few elements of the secondary group that lie in its targeted half-space (i.e., too few
secondary points Ai yield vi = 0), then the SPS approach incorporates an “SS intervention
step” to generate a hyperplane by the customary successive separation process (using, for
example, a formulation such as (1′) or (1″)), thus producing two continuations via
discrimination sets D1 and D2 as discussed in the preceding section. For each
continuation, the method then re-establishes the SPS focus by solving the type of model
illustrated in formulation (2), based on invoking the primary/secondary distinction.

The SPS approach employs the same type of termination criteria employed in the regular
SS process. However, if a continuation is terminated by the criterion of limiting the depth
of the tree, the final step likewise discards the primary/secondary distinction and reverts
to the type of branch step employed in the regular SS procedure. The discrimination sets
D1 and D2 thus produced are the leaf nodes of the indicated continuation.

 17

We now turn to a context that makes it possible to take much fuller advantage of the
hyperplane separation models, and of extensions we subsequently identify.

3. Advanced Forms of Retrospective Enhancement and SPS

Retrospective enhancement, as discussed in section 1.4, becomes of greater significance
in the successive separation approaches, and especially in the context of successive
perfect separation, than in the simpler strategies that rely on generating a single
hyperplane. To introduce a form of retrospective enhancement applicable to this setting,
we generalize the discussion of the SPS approach to consider the use of regions that
include half-spaces as a special case. This generalized perspective makes it possible to
exploit regions generated by mixed integer multi-hyperplane separation methods,
subsequently discussed.

3.1 General Description of Successive Perfect Separation

A general form of successive perfect separation implicitly includes ordinary successive
separation as a special case, since as previously noted we employ an SS intervention step
whenever an SPS step fails to perfectly classify a sufficiently large portion of either
group. Likewise, in the more common situation where the SPS process reaches a limiting
depth without having completely separated Group 1 from Group 2, we conclude the
process with a final SS step.

To describe steps of a general SPS approach (that includes such SS steps), we replace the
reference to hyperplanes and half-spaces by a reference to regions R1 and R2 that are
generated with the goal of isolating the two groups G1 and G2 as nearly as possible from
each other. More precisely, we refer to a collection of regions denoted by R1(d) and R2(d),
generated at successive depths d = 1, …, do.

Let G = {Ai: i ∈ G} and Gk = {Ai: i ∈ Gk} for k = 1, 2. In contrast to our usual
convention of referring to a set of points by naming its index set, it is useful in the present
setting to differentiate points from index sets more precisely. As in the preceding
notation, we use italicized symbols in general to refer to collections of points.

In the same way that we consider a pair of half-spaces defined by a separating hyperplane
to be complementary (by implicitly supposing one of member of the pair is an open set,
which may be enforced by a lower bound ε on so), we assume that the regions R1(d) and
R2(d) are mutually complementary and partition the space Rn of all real n vectors A =
{a1, …, an} (of which the points Ai in G are specific instances). Later integer
programming formulations that likewise incorporate an so variable will be designed to
assure this condition.

In a successive perfect separation process, where portions of G1 and G2 are perfectly
classified and removed from consideration at various stages, we refer to the residual
subsets of G1 and G2 that remain to be considered at depth d by G1(d) and G2(d).

 18

Likewise, we refer to the residual portion of G itself by G(d) (= G1(d)∪G2(d)). (Initially,
for d = 1, we have G1(d) = G1, G2(d) = G2 and G(d) = G.)

Let Ck(d) for k = 1, 2 identify the set of points that are correctly classified by the region
Rk(d) as a result of belonging to the associated subset Gk(d) of Gk at the current depth d;
that is Ck(d) = Gk(d)∩Rk(d). The associated set of points Ik(d) that are incorrectly
classified by the region Rk(d) is given by Ik(d) = Gk(d) – Rk(d). (Hence by the
complementary relationship between R1(d) and R2(d), we also have I1(d) = G1(d)∩R2(d)
and I2(d) = G2(d)∩R1(d).)

In a direct parallel with the type of separations based on half-spaces, an SS approach
generates regions R1(d) and R2(d) by reference to the goal of optimizing a function
F(G1(d), G2(d)), where this function favors regions that give rise to empty sets I1(d)and
I2(d) of misclassified points, when this is possible – as by minimizing a weighted sum of
violations of points lying in I1(d)and I2(d), or by minimizing the number of points lying in
these two sets, and so forth. (The formulations of preceding sections give examples of
various forms of F(G1(d), G2(d)) when the regions R1(d) and R2(d) consist of
complementary half-spaces.)

For the SPS approach, we refer to the primary region by the index k and refer to the
secondary region by the index k*, i.e., k* = 2 if k = 1 and k* = 1 if k = 2. Thus Rk(d) and
Rk*(d) will refer the primary and secondary regions at depth d (where the identity of k can
change as d changes), and we similarly refer to Gk(d) and Gk*(d) as the associated
primary and secondary groups. By this designation, a successive perfect separation
approach operates by enforcing the requirement that Rk(d) includes all of Gk(d) (i.e.,
Rk(d) ⊇ Gk(d)), hence assuring Ik(d) = ∅. Subject to this requirement, the approach seeks
to generate regions Rk(d) and Rk*(d) that optimize a function Fo(Gk(d), Gk*(d)), which like
the SS function F(G1(d), G2(d)) undertakes to minimize a weighted sum of violations
(which in the present case is restricted to points in Ik*(d)) or to minimize the number of
violations, and so forth.

It should be pointed out that the condition Ik(d) = ∅ in the SPS approach does not imply
that the set of correctly classified points Ck(d) = Gk(d) is perfectly classified, since on the
contrary the primary region Rk(d) may include points of Gk*(d) (i.e., the subset of Gk*(d)
that constitutes the set Ik*(d)). Rather, it is the set Ck*(d) that identifies the perfectly
classified points, given that the region Rk*(d) containing Ck*(d) includes no points of
Gk(d).

In accordance with earlier discussions, we also emphasize the importance of selecting the
SS function F(G1(d), G2(d)) and the SPS function Fo(Gk(d), Gk*(d)) to include provision
for encouraging the greatest possible separation of the sets C1(d) and C2(d). For example,
the objective functions in each of these cases may include reference to maximizing some
function of the distances of points in C1(d) from the boundary of R1(d) and of points in
C2(d) from the boundary of R2(d). Instances of such an objective are given by the models
of previous sections that seek to separate correctly classified points by assigning

 19

objective function weights to the variables so and si. i ∈ G. This robustness consideration
will be treated more fully in the material that follows.

To describe the SPS approach based on these conventions, we let do denote a selected
upper limit on the depth d of the tree implicitly generated by the SPS process,4 and let
List denote a list of groups G(d) (= G1(d)∪G2(d)) that are slated to be examined for
separation. Also, let Correct and Incorrect respectively denote the sets of correctly
classified and incorrectly classified points that are updated at various junctures in the
application of the method (corresponding to the events of identifying leaf nodes of the
tree implicitly generated).

To specify the situation where an SS intervention step is employed, we make use of an
aspiration threshold T ≥ 0 that provides a strict lower bound on an admissible number of
correctly classified points that result by optimizing the SPS function Fo(Gk(d), Gk*(d)).
Thus, T provides a bound on the desired number of perfectly classified points in Gk*(d) –
hence the number of points in Ck*(d) (= Rk*(d)∩Gk*(d)). The signal to perform an SS
intervention occurs when the optimization of Fo(Gk(d), Gk*(d)) subject to Rk(d) ⊇ Gk(d)
fails to satisfy |Ck*(q)| > T, and instead yields |Ck*(q)| ≤ T.

General SPS Procedure

0. (Initialization) Set d = 1, and G(d) = G(1) = G. Let List = ∅ and similarly set
Correct = Incorrect = ∅.

1. Identify the two component groups making up G(d), given by G1(d) = G(d)∩G1
and G2(d) = G(d)∩G2. Select one of these, denoted Gk(d), to be primary and the
other, Gk*(d), to be secondary.

2. Identify the regions Rk(d) and Rk*(d) that optimize the SPS function Fo(Gk(d),
Gk*(d)) subject to Rk(d) ⊇ Gk(d).
(a) If |Ck*(d)| ≤ T (hence the requirement set by the aspiration threshold is

violated), proceed to Step 5 to execute an SS intervention.
(b) If |Ck*(d)| > T, proceed to Step 3 to complete the updates of the perfect

separation process.
3. Set G(d+1) = Gk(d)∪Ik*(d) (where Ik*(d) = Gk*(d) – Ck*(d), and Gk(d) = Ck(d)).

Add the perfectly classified points of Ck*(d) to the set Correct. (The points in
Ck*(d) are automatically eliminated from future consideration since they do not
belong to G(d+1).)
(a) (Branch termination by complete separation) If Ik*(d) = ∅, then all points of

G(d+1) (= Ck(d)), have been perfectly classified. Add the points of Ck(d) to
Correct, and proceed to Termination/Continuation at Step 6.

(b) If Ik*(d) ≠ ∅, proceed to Step 4 .
4. (Depth update) Let d := d + 1. If d < do (the limiting depth) then return to Step 1.

Otherwise, if d = do, proceed to Step 5.

4 In many applications, the value of do can be chosen relatively small, such as 4 or 6. It would be rare to
find an application making use of a do value greater than 8.

 20

5. (SS Intervention (from Step 2(a)) or final step of SPS process (from Step 4))
Optimize the SS function F(G1(d), G2(d)).
(a) (SPS final step, on reaching limiting depth do) If Step 5 is reached from Step 4,

then the method ends its examination of the current G(d) = G(do). Based on
the optimization of F(G1(d), G2(d)) for d = do, add the final correctly classified
sets C1(do) (= R1(do)∩G1(do)) and C2(do) (= R2(do)∩G2(do)) to Correct, and
the final incorrectly classified sets I1(do) (= R2(do)∩G1(do)) and I2(do) (=
R1(do)∩G2(do)) to Incorrect. Proceed to Termination/Continuation at Step 6.

(b) (SS Intervention) If Step 5 is reached from Step 2(a), identify two new
potential continuations by defining the groups G1(d+1) = C1(d)∪I2(d) and
G2(d+1) = C2(d)∪I1(d) (constituting the children of G(d)). Test for reaching
the limiting depth do.

(1) If d + 1 < do: set d := d + 1 and add G1(d) and G2(d) to List (to become
candidates to be selected as a group G(d)). Proceed to Step 6.

(2) Otherwise, if d + 1 = do: add C1(do) and C2(do) to Correct and add
I1(do) and I2(do) to Incorrect (without incrementing d and without
enlarging List). Proceed to Step 6.

6. (Termination/Continuation). If List is empty, the method terminates. Otherwise,
choose and remove a set G(d) from List (keeping track of the associated d value)
and return to Step 1.

It is possible that the final step 5(a) of an SPS process caused by reaching the limiting
depth do may achieve a perfect separation of both groups by optimizing the SS function
just as if the method had instead optimized the SPS objective function; i.e., the conditions
I1(d) = ∅ and I2(d) = ∅ may result in Step 5(a) just as Ik*(d) = ∅ (and by construction,
Ik(d) = ∅) in Step 3(a). Figure 4 depicts an example of a SPS procedure, requiring a SS
intervention at do = 3. In the first iteration we obtain hyperplane h1, placing all triangular
elements to the right of it. For the second iteration, we no longer need to consider any
diamond-shaped points correctly classified by h1 (shown as white diamonds in Figure
4.b); we then obtain h2 by placing all remaining diamonds to its left. Again, for the third
iteration we can ignore the triangles that were correctly classified by h2 (shown as white
triangles in Figure 4.c), and we perform an SS intervention – given that we are already at
depth do – to fully separate the residual elements.

 21

h1

a)

h1

b)

h2

Figure 4a: step 1 – SPS by a single
hyperplane (all triangles lie on one side)

Figure 4b: step 2 – SPS of residual
points by a second hyperplane
(all diamonds lie on one side)

h3 h1

c)

h2

Figure 4c: step 3 – final separation of
residual points by a third hyperplane

(all points are now correctly classified)

We observe that the aspiration threshold T need not be a constant, but may be generated
from a ratio of a desired size of Ck*(d) relative to the size of Ik*(d) or Gk*(d). Evidently, if
T is made large enough, then the method becomes the same as an ordinary SS method.
However, as the next section will make clear, there are advantages to choosing T
relatively small, so that the method will perform perfect separation steps when possible.

 22

3.2 Retrospective Enhancement – General Case

The key ideas underlying retrospective enhancement are as follows.

Treating SS Intervention. Although SS intervention is likely to be performed rarely (or
not at all) during the execution of the General SPS Procedure, the handling of an SS
intervention step for the purpose of retrospective enhancement is easy to specify. Each
time such a step is carried out (by executing Step 5(b)), the optimization of F(G1(d),
G2(d)) in Step 5 is immediately followed by a second optimization that seeks to separate
the correctly classified points (constituting the sets C1(d) and C2(d)) as fully as possible.
Specifically, this is done by optimizing a function F′(C1(d), C2(d)) that is designed, as the
formulation (1o) of Section 1.5, to yield a first level retrospective enhancement.

The regions R1′(d) and R2′(d) obtained from this latter optimization will normally differ
from the regions R1(d) and R2(d) obtained from the optimization of F(G1(d), G2(d)).
Consequently, the solution that optimizes F′(C1(d), C2(d)) can yield a different pair of
children G1(d+1) and G2(d+1) of G(d) in Step 5(b) of the General SPS Procedure. For
this reason the new solution obtained from this second optimization must be identified
before adding these children to List in 5(b)(1) or recording the updates of Correct and
Incorrect in 5(b)(2).

Treating Perfect Separation Sequences. The most effective form of retrospective
enhancement results by re-processing a sequence of SPS steps that is not interrupted by
SS intervention. This type of enhancement involves several layers of important
considerations, and we devote the rest of the section to covering its details.

There are two major operations to be performed: creating a set of buffer regions and
refining regions previously created (which can include discarding regions that become
redundant or dominated by others).

As a foundation for both of these operations, we are concerned with subsequences of
consecutively generated regions Rk(d) and Rk*(d), for d = d1, …, d2, uninterrupted by an
SS Intervention step, such that the index k of the primary group Gk(d) remains unchanged
for all d satisfying d ∈ [d1,d2] (i.e., for all d such that d1 ≤ d ≤ d2), and such that the
subsequence is maximal (hence, d1 cannot be made smaller and d2 cannot be made larger,
subject to maintaining the primary group index unchanged). We observe that Gk(d) itself
remains invariant throughout this sequence, i.e., Gk(d) = Gk(d1) = Gk(d2) for all d ∈
[d1,d2], and we call such a sequence a primary-invariant sequence.

We also assume a first pass of the General SPS Procedure has already been performed,
handling SS intervention steps as previously described (by optimizing the function
F′(C1(d), C2(d)) each time such an intervention occurs, and adding the resulting children
to List). Upon completion of this pass of the procedure by reaching Step 6 with List
empty, we launch a new pass whose goal, roughly speaking, will be to create new regions
R1(d) and R2(d), that separate G1 and G2 by the greatest possible amount, restricting

 23

attention to those elements of these groups that were ultimately classified correctly on the
first pass. Specifically, denote the sets G, Gk(d), Rk(d), Ck(d), Ik(d), Correct and Incorrect
of the first pass of the General SPS procedure by Go, Gk

o(d), Rk
o(d), Ck

o(d), Ik
o(d),

Correcto and Incorrecto. Then we start the second pass by removing all points of the
Incorrecto set from each of the other sets, thus defining the new G that starts the second
pass by G = Go – Incorrecto, or more simply G = Correcto.

Evidently, if we generate exactly the same regions Rk(d) and Rk*(d) on a new pass of the
General SPS Procedure as on the original pass (Rk(d) = Rk

o(d) and Rk*(d) = Rk*
o(d)), then

during a primary-invariant sequence the new Gk(d) sets for d ∈ [d1,d2] will consist of the
original Gk

o(d) sets reduced by the removal of the points of Incorrecto (i.e., Gk(d) =
Gk

o(d) – Incorrecto), but the sets of correctly classified points, and in particular the sets
Ck*(d) that are added to the set Correct throughout the execution of a primary-invariant
sequence, will be unchanged (i.e., they don’t intersect Incorrecto, and hence Ck*(d) =
Ck*

o(d)).

 3.2.1 Creating Buffer Regions

When the regions Rk(d) and Rk*(d) are used to classify new points, the SPS process
dictates that a new point in the secondary region Rk*(d) is assigned to Group k*, whereas
any point in the primary region Rk(d) may be assigned to either Group k or k* – a
decision that is deferred until a secondary region is generated that contains the point. At
the very end of the process, if the final step is an SS step, then a point is simply assigned
to Group 1 if it lies in R1(do) and is assigned to Group 2 if it lies in R2(do). Thus the final
step is treated as if it were a perfect separation of both groups, and by eliminating the
elements of Incorrecto from consideration, it does in fact create a perfect separation for
the remaining points of these two groups in the original G of the second pass (G = Go –
Incorrecto).

This gives rise to a special case for identifying the value d2 of a primary-invariant
sequence identified from the first pass. If a perfect separation of both sets did not occur
when d = d2 in such a sequence, and if do = d2 + 1, then the first pass of the method
performed a final SPS step that consisted of optimizing the SS function at Step 5. Under
these circumstances, since we remove incorrectly classified elements from consideration
on the second pass, we conclude as previously noted that the regions R1

o(do) and R2
o(do)

generated on the final step of the first pass create a perfect separation of the two residual
sets G1(do) (= C1

o(do)) and G2(do) (= C2
o(do)) available to the second pass. Consequently,

when the final step follows on the heels on a primary-invariant sequence, we may treat
the primary index k as remaining unchanged on this last step (regardless of the value of k
when d2 = do – 1). This makes it possible to re-define d2 := d2 + 1 = do for the purpose of
identifying the maximal primary-invariant sequence. This ability to make d2 larger by 1
unit than it would otherwise be has useful consequences, as we will soon see.

In the second pass we begin with the same set of regions R1

o(d) and R2
o(d) produced at

each step of the first pass, and hence each primary-invariant sequence starts with Rk(d) =
Rk

o(d) and Rk*(d) = Rk*
o(d), for d1 ≤ d ≤ d2. As we undertake to modify the sets Rk(d) and

 24

Rk*(d) to create a better separation of correctly classified points, the union of the correctly
classified secondary sets for the primary-invariant sequence during the first pass, which
we denote by C* = ∪(Ck*

o(d): d1 ≤ d ≤ d2), plays an important role.

In general, there are two types of deficiencies of the first pass that we seek to remedy on
the second pass. First, we don’t want any part of the boundary of Rk*(d) to be too close to
the set of points Gk(d), because then it is quite possible that a new point that should
belong to Group k but lies at the “edge” of a region containing Group k points will fall in
Rk*(d), and consequently such a new point will mistakenly be assigned to Group k*.

The second type of deficiency is more subtle. During a primary-invariant sequence,
consider particular point Ap in Gk* that belongs to at least one of the regions Rk*(d), for
d ∈ [d1,d2] (hence Ap ∈C*) but Ap lies very close to the boundary of every such region
that contains it. It would be advantageous to create an additional region Rk*(d) that acted
as a “buffer” for Ap by containing Ap more deeply within it – and yet whose boundary
was not too close to the set of points Gk(d) (recalling that Gk(d) = Gk(d1) for all d of the
primary-invariant sequence). Then a new point that lay within this additional Rk*(d)
region would reasonably be classified as belonging to Group k*. But without the
existence of this buffer region, the new point might lie very close to Ap and not so close
to the points of Group k, so that it might ultimately be assigned to Group k.

One way to yield a better set of Rk(d) and Rk*(d) regions, therefore, is to create buffer
regions that “protect” points of C* such as Ap that happen to lie very close to the
boundary of every secondary region that contains them. (The protection is not really for
points such as Ap, but for new points that lie close to these points but not within the
current secondary regions, and that should be assigned to Group k* as well.)

The procedure we propose for doing this is the following.

For each Ap ∈ C*, let D(Ap) denote the maximum of the distances of Ap from the
boundaries of those regions Rk*(d) in which Ap lies. (Thus D(Ap) measures the amount of
“protection” Ap has as a result of lying in C*.) We refer again to the quantity
Dmin(Ai) introduced in the discussion of pre-processing in Section 1.6, which for Ap ∈C*
(hence Ap ∈ Gk*(d1)) becomes

 Dmin(Ap) = Min(D(Ap,Ai): Ai ∈ Gk(d1))

noting that the foregoing definition remains the same if Gk(d1) is replaced by Gk(d) for
any d ∈ [d1,d2] since the primary group remains unchanged for d in this interval.

If D(Ap) < .5 Dmin(Ap), then it may be possible to create a new region Rk*(d′) (e.g., for d′
= d2+ 1) that will better separate a point Ap ∈ C* from points of Gk(d1). This possibility
arises from the fact that a region whose boundary lies half-way between Ap and the
closest Ai in Gk(d1) would better protect Ap and yet also avoid the reverse risk of being
too close to points of the primary group. (We can choose to make d′ > d2, rather than
creating a separation involving the region Rk*(d′) at an earlier point in the primary-

 25

invariant sequence, because the type of protection provided by a buffer region can be
provided at any step.) Consequently, we identify the set of these fertile points for
buffering

 FB = {Ap ∈ C*: D(Ap) < .5Dmin(Ap)).

If FB is empty, then no buffering is attempted. Otherwise, we seek a new region Rk*(d′)
to establish a better separation of the points of FB from those of Gk(d1).

It may not be possible to select a single new region Rk*(d′) that will provide a useful
buffer for all points of FB, and hence we perform a simple variant of topological
clustering (Glover, 2006b) to yield one or more subsets of FB that provide the foundation
for generating new regions. For this we pre-order the distances D(Ap,Aq) for Ap,Aq ∈ FB
in ascending order and construct a digraph DG whose nodes are the indexes p for the
points Ap ∈ FB and whose arcs (p,q) will be generated with the interpretation that Ap and
Aq belong to the same cluster. By extension, then, Ap and Aq belong to the same cluster if
and only if they lie within a connected component of the digraph. We identify these
connected components by introducing a label ρ(Ap) for each Ap that names the
component Ap belongs to (where ρ(Ap) = 0 if Ap belongs to no connected component
other than the trivial one consisting of the point Ap itself). Define the length of an arc
(p,q) to be the distance D(Ap,Aq). We make use of an upper limit UL on the largest length
D(Ap,Aq) that any arc (p,q) is allowed to have in DG. More particularly, we make use of
an incremental limit ∆ so that, when the lengths of arcs in a candidate set CA (defined
below) are arranged in ascending order, we cease to examine arcs beyond the point where
D(p,q) > D(p′,q″) + ∆, where D(p,q) and D(p′,q″) are two successive distances in this
ordering.

Cluster Method by Creating the Digraph DG
0. Create the set of candidate arcs CA = {(p,q): p < q, Ap, Aq ∈ FB, D(Ap,Aq) ≤ UL}. Let
 ρo = 0 and ρ(Ap) = 0 for all Ap ∈ FB. The digraph DG begins with all nodes p for
 Ap ∈ FB but without any arcs.
1. Let (r,s) = arg min(D(Ap,Aq): (p,q) ∈ CA).
2. If ρo > 0 and D(Ar,As) > Pre_D + ∆, stop. Otherwise:
 (a) add arc (r,s) to the digraph DG and remove it from CA.
 (b) set Pre_D = D(Ar,As)

 (c) If ρ(Ar) = ρ(As) = 0, set ρo := ρo + 1 and set ρ(Ar) = ρ(As) = ρo.
 (d) If ρ(Ar) = 0 and ρ(As) > 0 set ρ(Ar) := ρ(As), and remove from CA all arcs
 (r,q) or (q,r) such that ρ(Aq) = ρ(As).
 (e) If ρ(As) = 0 and ρ(Ar) > 0 set ρ(As) := ρ(Ar), and remove from CA all arcs
 (s,q) or (q,s) such that ρ(Aq) = ρ(Ar).
 (f) If ρ(Ar) > 0 and ρ(As) > 0, remove from CA all arcs (p,q) such that ρ(Ap) =
 ρ(Ar) or ρ(As) and such that ρ(Aq) = ρ(Ar) or ρ(As) (but ρ(Aq) ≠ ρ(Ap)),
 and relabel all points Ap such that ρ(Ap) = ρ(As) by setting ρ(Ap) := ρ(Ar).
3. If CA = ∅, stop. Otherwise return to Step 1.

 26

The preceding method can be undergo additional pre-processing to remove arcs of the
initial CA that would create the termination D(Ar,As) > Pre_D + ∆ of Step 2. (The value
UL can be reduced by taking account of this termination to remove such arcs, if UL is not
already small enough.) Also, the removal of arcs from CA can be effected by reference to
lists of arcs (p,q), for p < q, associated with each node p. (Such a list is sometimes called
the forward star of p, or the list of neighbors of p.)

When the Cluster Method stops, each value ρ = 1, …, ρo such that ρ(Ap) = ρ for at least
one Ap ∈ FB identifies a cluster (connected component of the Digraph DG) that consists
of all Ap such that ρ(Ap) = ρ.

The method to create Buffer regions then operates as follows.

Buffer Method
0. Start with FBo = FB, and set d′ = d2 + 1.
1. Select a cluster CL, not previously chosen, that has been created by the preceding

Cluster Method or created in Step 2 below, such that CL∩FBo ≠ ∅. If no such
cluster exists, stop.

2. Optimize the function Fo(Gk(d1), CL) to create new regions Rk(d′), Rk*(d′) subject to
Rk(d′) ⊇ Gk(d1), designed (as the formulation (2) of Section 2.3) to yield a first
level retrospective enhancement if a perfect separation of Gk(d1) and CL can be
achieved. If such a separation does not result, remove from CL all of its points
that lie in region Rk(d′), designating them to constitute a new cluster to be
examined in Step 1. Then repeat Step 2 for the current reduced CL.

3. Remove from FBo all points Ap that lie in Rk*(d′) and set d′:= d′ + 1. Then return to
Step 1.

The reference to formulation (2) in Step 2 is motivated by the observations in Section 2.3
about the uses of formulation (2) in contexts where a perfect separation may likely be
achieved. In the Buffer Method, the goal is primarily to maximize the minimum
separation between the groups, and hence the coefficient ko would be given a value that
dominates the values of the coefficients ki in this formulation.

The case where a perfect separation does not result in Step 2 of the Buffer Method entails
only one repeat of this step, since the reduced CL is assured to yield such a separation.
However, a better approach would be to identify a smaller value for ∆ and repeat the
Cluster Method to produce a more appropriate set of clusters. Such a ∆ value can be
implicitly identified by instead selecting a smaller UL value, which can be chosen to
assure that the removal of arcs (p,q) having D(Ap,Aq) > UL from the connected
component defining the cluster CL of Step 2 will produce new connected components. In
fact this step can be streamlined. Whenever the Cluster Method is re-run by reducing
either ∆ or UL (and without increasing either of these values), then we may restrict
attention to a starting CA list that consists simply of the arcs of the final DG produced on
the preceding pass. Since these arcs are already ordered by the first pass, they do not need
to be ordered again.

 27

The index d′ of the new regions Rk(d′) and Rk*(d′) starts at d2 + 1 for the reason
previously specified and to avoid confusion with other regions previously generated.
There is no concern that d′ may exceed the limit do, because buffer regions improve
robustness rather than diminish it. (The larger value of d′ does not signify that the method
is carried to a greater depth in the customary meaning of depth.)

We observe that the region Rk*(d′) normally does not contain points outside of C*, i.e.,
we do not expect to enlarge the set of correctly classified points in C* by adding the
region Rk*(d′)∩Gk*(d1) to C*. Such an outcome may occur gratuitously, however, since
on the second pass the group Gk(d1) that is required to be encompassed within the region
Rk*(d′) may be reduced as a result of removing the misclassified points of the first pass.

The new buffer regions have a second benefit, because they contribute to the ability to
create a further improved and more robust separation by a process of modifying the
original regions Rk*(d) for d ∈ [d1,d2]. We examine this process next.

 3.2.2 Refining Regions Previously Created.

Upon applying the Buffer Method in the case where FB is not empty, we identify a
possibly larger version Co* of C* given by Co* = C*∪(Ck*(d′): d2 < d′ ≤ d″), where d″
is the largest value of d′ values produced by the Buffer Method, and where the regions
Ck*(d′) = Rk*(d′)∩Gk* identify the points that are correctly classified by these new Rk*(d′)
(noting that all of these new regions may possibly lie in C*).

If we remove any previous region Rk*(d) for d ∈ [d1,d2] from the classification process,
then the remaining regions correctly classify the set of points Co*(d), which we define to
be the union of all sets defining Co* except for the set Ck*

o
 (d), hence

Co*(d) = ∪(Ck*
o(dd): d1 ≤ dd ≤ d2, dd ≠ d)∪(Ck*(d′): d2 < d′ ≤ d″). It is possible that

Co*(d) = Co*, so that the region Rk*(d) is redundant for the purpose to classifying all
points of Co* correctly.

The possibility of improvement comes from the fact that the original determination of
Rk*(d) (= Rk*

o(d)) was based on trying to bring a significant portion of the not-yet-
correctly-classified points of Gk* into the correctly classified domain by encompassing
them within Rk*(d). However, we now know that we only need to make sure that Rk*(d)
encompasses the points of Co* – Co*(d), which in general will be appreciably smaller
than the group Gk*(d) that Rk*(d) originally sought to encompass. Moreover, we know
that within Rk*

o(d) already contains all of Co* – Co*(d), so there quite likely exists a new
region Rk*(d) that can replace Rk*

o(d) and create a better separation between Gk(d1) and
Co* – Co*(d) than Rk*

o(d) does.

The following straightforward method generates such substitute (refined) regions.

Refinement Method.
0. Start with dSet = the set of integers d ∈ [d1,d2].
1. If dSet is empty, stop. Otherwise, select and remove some d from dSet.

 28

2. If Co* – Co*(d) ≠ ∅, optimize a function F′(Gk(d1), Co* – Co*(d)) that is designed, as
the formulation (1o) of Section 1.5, to yield a first level retrospective
enhancement, and denote the regions produced by Rk(d) and Rk*(d). Then redefine
Rk*

o(d) := Rk*(d) (which thus may change the composition of Co* and of Co*(d)
for other indexes d), and return to Step 1.

3. If Co* – Co*(d) = ∅, remove Rk*(d) (and its complement Rk(d)) from the set of regions
used to classify points of G (thus likewise changing the composition of Co* and of
Co*(d) for other indexes d), and return to Step 1.

Typically, the choice of the element d to remove from dSet in Step 1 is to start with d =
d2 and work backward to d1. In Step 3, rather than simply remove a region Rk*(d) from
being used to classify elements of G, we may instead seek to “cover” its removal by
executing a further iteration of the Buffer Method, to see if there is a better way to
separate points now that this set is gone. In this case the Buffer Method can be simplified
by choosing the limiting value UL of the Cluster Method to be small. As previously
noted, when UL is reduced we can perform a new pass of the Cluster Method by starting
with a CA list produced by the final DG of the preceding pass.

First Pass of SPS Retrospective
Enhancement

First
buffer region

h1

h2

h2’

h1’Second
buffer region

h2’

Figure 5: schematic representation of the

retrospective enhancement procedure

Figure 5 shows a schematic representation of the retrospective enhancement procedure.
Moving downward from the top left corner, the first graph shows hyperplane h1 obtained

 29

by a first SPS iteration; the second shows h2 obtained by a second SPS iteration, resulting
in a perfect separation of all the elements. However, this separation is not as robust as
would be desired, given the precarious position of several elements that lie extremely
close to the boundary – like the triangle highlighted near the intersection of h1 and h2, for
instance. The graph of the top right corner shows a buffer region based on h2 (ignoring h1
for now) that allows for a more robust separation of the sets by a new hyperplane h2’ that
replaces h2. Finally, a second buffer region is used to obtain h1’, which replaces h1. The
result is a more robust boundary that better separates both groups. Later sections make it
possible to take advantage of the buffering and refinement processes of retrospective
enhancement by employing a mixed integer programming model to produce multiple
hyperplanes to separate the groups at each stage.

4. Mixed Integer Programming Formulations

4.1 A Basic Mixed Integer Programming Model

As a first step toward introducing more advanced mixed integer models, we begin by
examining a simple model to minimize the number of misclassified points by means of a
single hyperplane.

Let zi denote a 0-1 integer variable that takes the value 1 if the point Ai is misclassified
and takes the value 0 otherwise. The following model (Glover, 1993) seeks to minimize
the sum of the zi variables, and hence to minimize the number of misclassified points:

 Minimize ∑ (zi: i ∈ G) (4.1)
 subject to
 Aix – Mzi + si = b, i ∈ G1 (4.2)

Aix + Mzi – si = b, i ∈ G2 (4.3)
 x, b unrestricted (4.4)
 zi ∈ {0,1}, i ∈ G (4.5)
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (4.6a)
m1∑ (si – Mzi: i ∈ G2) + m2∑ (si – Mzi: i ∈ G1) = 1 (4.6b)

Note that (4.2) and (4.3) express the inequalities AIx – Mzi ≤ b and AIx + Mzi ≥ b, to
which we have added slack variables si to convert the inequalities into equations. The
constant M in this formulation takes a “large value” to assure that the associated
inequality will be redundant whenever zi = 1, and the quantities Mzi take a role analogous
to that of the vi variables in the associated linear programming formulation of (1). (This
connection is also evident upon comparing the normalization constraint (4.6b) to (1.6b).

Several related mixed integer formulations have also been proposed in the literature,
including those of Stam and Ragsdale (1992), Abad and Banks (1993) and Glen (1999,
2003). However, the alternative formulations have various deficiencies, and generally
require more variables. For example, one of the more effective formulations, due to Glen

 30

(1999, 2003),5 nevertheless requires doubling the number of x variables by splitting each
xj into a positive and negative part, and then producing a normalization constraint that
sets the sum of these variables to 1. The classic approach of replacing unrestricted
variables by the difference of two non-negative variables has merit in the context of
mixed integer models for feature selection, as discussed in Section 4.3, because of the
susceptibility of these latter models to a parametric solution approach. (When using such
a replacement in the present context, we recommend an alternative normalization that
weights the sum of non-negative variables in a given group by the cardinality of the
opposite group, by analogy to the normalization indicated in (1.6a) and (1.6b).) An
interesting study of credit scoring applications by Falangis (2006) supports Glen’s
demonstrations that his model achieves useful outcomes.

Several heuristics for dealing with these alternative mixed integer formulations are also
proposed in the references cited. Special heuristics have likewise been proposed for
solving formulation (4), making use of theorems in Glover (1993) that establish
relationships between the mixed integer formulation and its linear programming
relaxation.6

We now make the present model (4) more complete, by marrying it with additional
considerations derived from the previous linear programming models. To do this we
consider a means to weight the si variables as in formulation (1) by coefficients ki and
also to explicitly make use of the comprehensive satisfaction variable so, as introduced in
formulation (1′). We do not include a vo variable in this formulation, though we observe
that this can be done without requiring that vo be replaced by an associated integer
variable.

To allow the formulation to work as intended, the variables si themselves cannot be
directly weighted by coefficients ki, but rather must be assigned these weights indirectly.
The reason for this derives from the fact that assigning an integer variable zi a value of 1
causes the slack variable si to receive an exceedingly large value, when in fact si should
be treated as receiving a value of 0 in this case. This conclusion arises by observing that
the constraints made redundant by zi = 1 identify points Ai that fall on the wrong side of
the hyperplane, and we must exclude these points from consideration in seeking to weight
the separations for the correctly classified points.

We can produce the desired effect by introducing continuous variables ti bounded so that
ti will be permitted to equal si only if the associated constraint is binding, i.e., only when
zi = 0. Otherwise, when zi = 1, ti will have an upper bound of 0, so that the value of si will
not affect the objective when the point Ai is misclassified. Under the assumption that zi =

5 Glen re-phrases the problem as one of maximizing the number of correct classifications, which
formulation (3) above handles automatically by complementing each of the 0-1 zi variables, replacing it by
the variable yi = 1 – zi.

6 The ability to take advantage of such relationships by means of a heuristic approach has not yet been
explored in a computational study.

 31

0 for at least one i ∈ G it is not necessary to introduce a corresponding variable to
associated with so.

Let Ui be an upper bound on the value of the associated variable si in the situation where
the point Ai lies in the desired half-space (zi = 0). We weight the zi variables by a large
value Mo, to be sure the objective of minimizing their sum remains the dominant goal of
the model. Then the mixed integer model becomes

 Minimize Mo∑ (zi: i ∈ G) – ∑ (kiti: i ∈ G) – koso (4.1′)
 subject to
 Aix – Mzi + si + so = b, i ∈ G1 (4.2′)

Aix + Mzi – si – so = b, i ∈ G2 (4.3′)
 x, b unrestricted (4.4′)
 zi ∈ {0,1} i ∈ G (4.5′)
 (m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (4.6a′)

m1∑ (si – Mzi: i ∈ G2) + m2∑ (si – Mzi: i ∈ G1) + mso = 1 (4.6b′)
ti ≤ si, ti ≤ Ui(1 – zi), i ∈ G (4.7′)
 so ≥ 0, si ≥ 0, ti ≥ 0, i ∈ G (4.8′)

The inequality ti ≥ 0 in (4.8′) is redundant under the assumption that the ki coefficients
are positive and hence this inequality may be discarded from the model if desired.

Studies of the foregoing model by means of a sequential perfect separation approach in
Better et al. (2006) have demonstrated its effectiveness in a cancer diagnosis application
and a Japanese bank application.

4.2 Improved Mixed Integer Programming Formulation

To complete the foundation for creating an effective multi-hyperplane model, we first
identify a variation of the previous model that is more suited to our needs. Our proposed
variation has the same number of variables and constraints as the model (4′).

We produce the new formulation by combining the model of (4) with the original linear
programming formulation of (1). This reintroduces the vi variables back into the problem,
and we accompany these variables with additional constraints to compel the 0-1 zi
variables to take appropriate values.

Minimize Mo∑ (zi: i ∈ G) + ∑ (hivi – kisi): i ∈ G) – koso (4.1″)
 subject to

Aix – vi + si = b, i ∈ G1 (4.2″)
Aix + vi – si = b, i ∈ G2 (4.3″)
x, b unrestricted (4.4″)
zi ∈ {0,1} i ∈ G (4.5″)
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))x = 1 (4.6a″)

 m1∑ (si – vi: i ∈ G2) + m2∑ (si – vi: i ∈ G1) = 1 (4.6b″)

 32

vi ≤ Uizi, so ≤ si + Uozi, i ∈ G (4.7″)
so ≥ 0, si ≥ 0, vi ≥ 0, i ∈ G (4.8″)

The constant Uo in (4.7″) is an upper bound on so, hence on the minimum (not maximum)
value that can be received by the si variables that take on positive values. Because of the
ability to make Uo relatively small, the model has advantages when subjected to a mixed
integer programming solution procedure.

The two inequalities vi ≤ Uizi and so ≤ so ≤ si + Uozi, i ∈ G of (4.7″) replace the
associated inequalities ti ≤ si and ti ≤ Ui(1 – zi), i ∈ G, of (4.7′), though the inequalities
of (4.7″) perform a different function than those of (4.7′). The ti variables of the previous
formulation are not needed in the present one. Effectively, formulation (4″) may be seen
as a mixed integer extension of formulation (1″).

We can in fact reduce the number of inequalities in (4″) by stipulating that the
inequalities of so ≤ si + Uozi, i ∈ G of (4.7″) are only included for i ∈ G1 or for i ∈ G2,
according to which of G1 or G2 has a smaller number of elements. The variable so, which
serves the purpose of increasing the minimum separation of the satisfied points from the
hyperplane boundary, now applies only to the satisfied points of one of the two groups.
However, this use of so is equivalent to the previous one, since we can simply re-define b
after solving the model where so is changed as indicated by setting b := b + .5so, and we
see that so receives just twice the value it would receive in the formulation where so is left
unchanged. (Similarly, it would be possible to include so only in one of the equations
(4.2′) or (4.3′) in formulation (4′). However, this does not change the number of
constraints in that formulation.) We will make additional use of this observation about
associating so with only one of the two groups in our later development.

We suggest a variation of model (4″) that replaces the term ∑(zi: i ∈ G) in the objective
(4.1″) by the term m2∑(zi: i ∈ G1) + m1∑(zi: i ∈ G2). This variation seeks a “more
balanced” solution that weights the sums of violations so that they will tend to be more
nearly proportional to the numbers of elements in each of the two groups.

A particular advantage of model (4″) over model (4′) is that it remedies the possibility
that the normalization constraint in (4′) can become unstable under solution by a branch
and bound method. The potential for instability is subtly hidden, but can be recognized by
noting that the effect of setting zi values to 0 and 1 in (4′), as done at various points in
applying a branch and bound method, eliminates the associated points Ai from having
any effect on the model. This effectively removes these points from their associated sets
G1 or G2, and thus causes the normalization constraint to become distorted because the
values of m1 and m2 representing the numbers of elements in these sets remain constant.
This situation where an integer programming model can become changed by the process
of solving it is highly unusual! The ability to avoid it by formulation (4″) is accompanied
by other advantages of this model when it is extended to create a multi-hyperplane
formulation.

 33

 4.2.1 Exploiting Model (4″) by a Fixed Charge Interpretation.

Model (4″) offers an additional advantage due to the fact that it can be re-interpreted as a
fixed charge model. In particular, we can remove the zi variables altogether, and view the
vi variables as fixed charge variables, stipulating that the associated fixed charge has the
value Mo for each of these variables (incurred for a given vi if and only if it is positive).
The merit of this interpretation derives from the fact that a highly effective heuristic is
available for fixed charge problems based on the framework of ghost image processes
(Glover, 1994). A study in the context of fixed charge generalized network problems
(Glover, Amini and Kochenberger, 2005) discloses that this approach obtains optimal
solutions for all problems capable of being solved optimally by the state-of-the-art
CPLEX MIP software, and produces solutions substantially superior to those obtained by
this software for problems too large or too difficult for CPLEX to solve to optimality
when allowed to run more than 100 times longer than the ghost image procedure.7 The
fixed charge implementation of the study is not specific to the network setting, and hence
can readily be adapted to the present context, affording an opportunity to solve problems
of much greater size than would normally be possible by the mixed integer formulation.

4.3 Feature Selection

A formulation closely related to (4″) can be used to model the problem of feature
selection, where the goal is to identify a limited number of attributes (features) that can
yield an effective differentiation between elements of G1 and G2. The importance of the
feature selection problem stems from the need to reduce the number of features
considered when dealing with large data bases, and also from the fact that restricting the
number of attributes often proves valuable for combating the “overfitting” problem, and
thereby yields superior outcomes when seeking to classify elements of hold-out samples.

 4.3.1 Elements of the Feature Selection Formulation

A common formulation of the feature selection problem consists of imposing an upper
bound on the number of attributes permitted to be used, and then seeking the best
differentiation between the groups subject to this bound. In our setting, the objective can
be viewed as one of finding a best separating hyperplane subject to bounding the number
of components of x that are allowed to be non-zero.

To provide a mixed integer programming model for this problem, we employ the device
of introducing a binary variable wj where wj = 1 if xj is allowed to be non-zero and wj = 0
otherwise. Let N = {1, …, n} and let U(w) represent the chosen upper limit on the
number of xj for j ∈ N that are permitted to be non-zero. Then the bound can be enforced
by means of the inequality

∑ (wj: j ∈ N) ≤ U(w).

7 After obtaining solutions superior to those found by CPLEX on all instances of this testbed, no attempt
was made to run CPLEX on remaining problems of corresponding size and difficulty.

 34

The MIP formulation that captures the connection between the wj variables and the xj
variables can be completed in two ways. The first identifies upper and lower bounds Uj
and Lj for each xj. (Note that Lj is generally negative, and the bound Uj is of course not to
be confused with the bound Ui for vi in sections 4.1 and 4.2.) The condition that compels
xj to be 0 when wj is 0, and otherwise allows xj to be bounded by Uj and Lj, can then be
written as

Ujwj ≥ xj ≥ Ljwj, j ∈ N.

It is possible to avoid using the inequalities xj ≥ Ljwj by replacing each xj for j ∈ N with
the variable xj′ ≡ xj – Ljwj, which is assured to be non-negative. In particular, substituting
for xj ≡ xj′ + Ljwj in the inequality Ujwj ≥ xj ≥ Ljwj yields Uj′wj ≥ xj′ ≥ 0, where Uj′ ≡ Uj –
Lj. (This effectively reduces the number of inequalities of the problem, since the non-
negativity of the xj′ variables is handled implicitly by standard LP and MIP solvers.)
Then the original xj values are recovered from xj ≡ xj′ + Ljwj in the final solution.

The second way to create a suitable MIP formulation makes use of the familiar device of
replacing xj by the difference of two non-negative variables (see, e.g., Charnes and
Cooper, 1961 and Dantzig, 1963). Denoting these variables by xj

+
 and xj

–, we write
xj

 = xj
+

 – xj
– . Then by the definitions of Uj and Lj we can compel these variables to be 0

when wj is 0 by introducing the constraints

 xj

+
 ≤ Ujwj and xj

– ≤ – Ljwj.

Alternatively, by defining Uj

o = Max(Uj, – Lj),8 we may introduce the single constraint

 xj

+
 + xj

– ≤ Uj
owj.

Finally, to assure at most one of xj

+
 and xj

– will be positive, we let cj and dj be small
positive coefficients, and augment the minimization objective of the MIP formulation to
include the term

∑ (cjxj
+

 + djxj
–

 : j ∈N).

We allow cj and dj to be different from each other as the basis for solving the feature
selection MIP formulation by a parametric penalty approach, as described in Appendix 1.
It may be noted that the formulation devices underlying the present feature selection
model can also be used in feature selection for L1 regression models, and the resulting
optimization problem can similarly be solved using the approach sketched in the
accompanying appendix.

8 Of course, Uj

o may simply be taken to be a “large” value without first trying to estimate the values of Uj
and Lj.

 35

5. Mixed Integer Programming Formulations for Multi-Hyperplane
Separation

Our multi-hyperplane separation approach expands model (4″) by introducing a
collection of half spaces denoted by

Aixp ≤ bp and Aixp ≥ bp for p ∈ P = {1, 2, …, po}.

In practice, the value of po (hence the size of P) can be kept small, e.g., at most 3 or 4,
because of the ability to use our mixed integer model within the framework of successive
separation, and more particularly within the framework of successive perfect separation.
By means of the SPS framework, and by taking advantage of retrospective enhancement,
the multi-hyperplane model offers useful advantages even for po as small as 2.

It is possible to generate complex collections of subspaces composed of various
intersections and unions of the half-spaces Aixp ≤ bp and Aixp ≥ bp, and to produce a
mixed integer formulation that assigns the points of Group 1 and Group 2 to specified
instances of these subspaces. A general design for creating such formulations is given in
Appendix 2. However, by designing our present muli-hyperplane approach to be used in
conjunction with the SPS strategy, we focus on two simple types of separation that
exhibit useful structures and that encompass a variety of more complex alternatives by
the compounding effect of the tree-based derivations. As a means of solving these
models, we recommend the parametric approach of Glover (2006a).

5.1 All Union versus All Intersection Separating Conditions

The first type of separation we consider requires all points of the primary SPS group to
lie in the union of the half-spaces Aixp ≤ bp, p ∈ P, while all points of the secondary SPS
group lie in the complementary region consisting of the intersection of the half-spaces
Aixp ≥ bp, p ∈ P. Strictly speaking, for these two regions to be complementary, the latter
one should be formed from the intersection of the open half-spaces Axp > bp, p ∈ P. We
undertake to assure this, and simultaneously to induce points of the secondary group to
lie as far inside this space as possible, by making use of the internal deviation variable so
and by following up with the retrospective enhancement procedure. Glen (1999) was the
first to propose a mixed integer model for this initial case we examine, although using a
somewhat different framework and without accounting for internal deviations.

In the general case of multi-hyperplane separations discussed in the Appendix 2, it is not
possible to restrict Group 1 points to be associated only with inequalities of the form
Aixp ≤ bp and to restrict Group 2 points to be associated only with inequalities of the
form Aixp ≥ bp. However, this beginning special case we are concerned with constitutes
an exception.

 36

For convenience, we suppose that we represent the primary group as Group 1 and the
secondary group as Group 2. To switch these groups, we correspondingly switch the
labels of Group 1 and Group 2.

Then we formulate our goals as follows.

(a) For each i ∈ G1: compel Aix1 ≤ b1 or Aix2 ≤ b2 or … or Aixpo ≤ bpo

(b) For each i ∈ G2: induce Aix1 ≥ b1 and Aix2 ≥ b2 and … and Aixpo ≥ bpo

The terminology of “inducing” the condition expressed in (b) means that we seek to
minimize the number of violations of this condition, subject to enforcing condition
expressed in (a).

To achieve these goals, we transform the half-space inequalities into equations in the
usual manner by writing

Aixp – vi
p + si

p = bp, i ∈ G1, p ∈ P
Aixp + vi

p – si
p = bp, i ∈ G2, p ∈ P

Similarly, we introduce 0-1 variables zi

p, p = 1, …, po, where zi
p = 1 if vi

p
 > 0 and zi

p = 0
if vi

p
 = 0. Then (a) and (b) are respectively equivalent to the following conditions.

(a1) For each i ∈ G1: compel zi

p = 0 for at least one element p ∈ P; or
equivalently compel zi

p = 1 for at most po – 1 elements p ∈ P.
(b1) For each i ∈ G2: induce zi

p = 0 for all elements p ∈ P; or equivalently induce
zi

p = 1 for no elements p ∈ P.

These conditions are met by introducing non-negative continuous variables yi, i ∈ G2,
and minimizing the sum of these variables in the objective function, subject to

(a2) For each i ∈ G1: ∑(zi
p: p ∈ P) ≤ po – 1.

(b2) For each i ∈ G2: yi
p ≥ zi

p for each p ∈ P.

Condition (a2) can alternately be achieved by introducing non-negative continuous
variables yi for i ∈ G1 that are given pre-emptively large weights for minimizing their
sum in the objective function, subject to the inequalities yi

p ≥ ∑(zi
p: p ∈ P) – (po – 1), and

condition (b2) can be achieved by instead imposing the constraint poyi
p ≥ ∑(zi

p: p ∈ P),
although the latter yields a weaker LP relaxation of the mixed integer model.

Combining these observations with the considerations already discussed in relation to
formulation (4″), we obtain the following mixed integer programming model:

 Minimize Mo∑ (yi: i ∈ G2) + ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) – koso (5.1)

 subject to
Aixp – vi

p + si
p = bp, i ∈ G1, p ∈ P (5.2)

 37

Aixp + vi
p – si

p = bp, i ∈ G2, p ∈ P (5.3)
xp, bp unrestricted, p ∈ P (5.4)
zi

p ∈ {0,1} i ∈ G, p ∈ P (5.5)
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))xp = 1, p ∈ P (5.6a)

 m1∑(si
p – vi

p: i ∈ G2) + m2∑(si
p – vi

p: i ∈ G1) = 1, p ∈ P (5.6b)
vi

p ≤ Uizi
p

 , i ∈ G, p ∈ P (5.7)
si

p ≥ 0, vi
p ≥ 0, i ∈ G, p ∈ P (5.8)

so ≥ 0, yi ≥ 0, so ≤ si + Uoyi, i ∈ G2 (5.9)
∑(zi

p: p ∈ P) ≤ po – 1, i ∈ G1 (5.10)
yi ≥ zi

p, i ∈ G2, p ∈ P (5.11)

Thus the formulation (5) contains roughly po = |P| times the number of variables and
constraints of formulation (4″). The advantage of keeping po small by exploiting the SPS
framework is significant.

We have in fact incorporated more variables and constraints than necessary into the
preceding formulation, in order to demonstrate a connection with more general
formulations discussed in Appendix 2. In the present case, we can replace the po integer
variables zi

p, p ∈ P for each i ∈ G2, by a single integer variable yi, for each i ∈ G2 (i.e.,
upon removing the indicated zero-one variables zi

p, the variable yi is changed from being
continuous to being a zero-one variable). Then (5.5) and (5.7) are reduced by eliminating
reference to variables zi

p and associated inequalities over i ∈ G2, to become

zi
p ∈ {0,1}, i ∈ G1, p ∈ P (5.5a)

vi
p ≤ Uizi

p
 , i ∈ G , p ∈ P (5.7a)

Accompanying this, the non-negativity condition for yi in (5.9) is replaced by the zero-
one condition, and (5.11) shrinks to directly relate the yi variables to the continuous
violations vi

p, replacing po inequalities for each i ∈ G2 by a single inequality to produce

so ≥ 0, so ≤ si + Uoyi, yi ∈ {0,1}, i ∈ G2 (5.9a)
Uyi ≥ ∑(vi

p: p ∈ P), i ∈ G2 (5.11a)

where U is an upper bound on the sum of the violations on the right of (5.11a). It is clear
that this more economical formulation achieves the same result as the formulation
without these replacements.

Either with or without these replacements, the goal of minimizing the sum of the yi for
i ∈ G2 is given a large weight Mo in the objective (5.1) to allow it to dominate the other
parts of the objective. The term ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) is included for generality

but may be omitted. The inclusion of – koso in the objective is relevant for reasons
previously discussed. The size of Mo may be decreased (though it must be maintained
greater than ko) to allow a trade-off where a small number of additional points of Group 2
may be allowed to fall outside of the region targeted for this group, in exchange for
allowing satisfied points to be separated more cleanly from unsatisfied points.

 38

An alternative approach to incorporating such trade-offs is to solve formulation (5) first
in the form shown, and then to impose a bound on ∑ (yi: i ∈ G2) so as not to overshoot
the optimum value of this sum by more than a stipulated amount. Then the term
∑ (yi: i ∈ G2) can be removed from the objective function on a follow-up solution pass
that seeks an optimal solution for the residual objective.

The application of formulation (5) in the sequential perfect separation approach occurs by
employing this formulation in place of formulation (2) in section 2.3, and otherwise
following the prescriptions of the SPS method. Similarly, the general form of
retrospective enhancement can take direct advantage of formulation (5).

One subtlety introduced by formulation (5) is that it implicitly gives rise to four different
ways to create a distinction between the primary and secondary sets, rather than only two
ways as in the case where the regions of interest consist simply of half-spaces. Because
the regions generated by (5) are not symmetric (as half-spaces are), we can create a
different model by reversing which conditions are compelled and which are induced in
(a) and (b), thus producing

(a1) For each i ∈ G1: induce Aix1 ≤ b1 or Aix2 ≤ b2 or … or Aixpo ≤ bpo

(b2) For each i ∈ G2: compel Aix1 ≥ b1 and Aix2 ≥ b2 and … and Aixpo ≥ bp

The change in formulation (5) to handle (a1) and (a2) is apparent.

5.2 Additional Structure for the Case of po = 3.

Because of the relevance of focusing on cases where po is small, we examine next a
special case for po = 3 that is a natural accompaniment of the structure examined in
Section 5.1. In particular we seek the handle the situation where the primary and
secondary sets are generated as shown in (a) and (b), following:

(a) For each i ∈ G1: compel (Aix1 ≤ b1 and Aix2 ≤ b2) or (Aix3 ≤ b3)
(b) For each i ∈ G2: induce (Aix1 ≥ b1 and Aix3 ≥ b3) or (Aix2 ≥ b2 and Aix3 ≥ b3)

We describe the logic for treating this case in a more general form than used to identify
the formulation in Section 5.1, and thus provide a means for generating additional cases.
(Further details concerning this form of analysis are given in Appendix 2.)

Starting with (a) to define the conditions applicable to the primary SPS group, which we
have expressed in disjunctive normal form, the conditions (b) applicable to the secondary
SPS group are generated by complementing the primary group definition, and then re-
expressing the result likewise in disjunctive normal form. To qualify as a disjunctive
normal form expression, each condition is expressed as the union of a collection of
intersections (as a disjunction of a series of conjunctions). We use the notation where the
symbol p represents Aixp ≤ bp and the symbol * denotes complementation, hence p*

 39

represents Aixp > bp (where we take the liberty of referring to this latter inequality in the
relaxed form Aixp ≥ bp). Then we derive (b) from (a) as follows.

First, the primary condition identified in (a) corresponds to (1∩2) ∪3 (which is already
expressed in disjunctive normal form to start). The complement of this expression is
(1∩2)* ∩ 3* and we put it likewise in disjunction normal form by the series of steps
(1∩2)* ∩ 3* = (1*∪2*)∩ 3* = (1*∩ 3*)∪(2*∩ 3*). The latter expression corresponds to
(b) above.

The following rule models an expression in disjunctive normal form by creating an
inequality that compels a variable yi to be 1 if the expression is true and to be 0 if the
expression is false. We have chosen the index i of yi to associate this variable with a
specific point Ai, following the notation used in the formulation of Section 4.1. Let
(g1∩…∩gr) be any component of the disjunctive normal form expression associated with
the point Ai, and let zi

p be the 0-1 variable such that zi
p = 1 if and only if gp is true. Then

we write yi ≥ zi
1 + …+ zi

r – (r – 1) for each of these components. (If r = 1 the resulting
inequality is just yi ≥ zi

1.) Evidently, yi = 1 if zi
p = 1 for all p = 1, …, r, and otherwise yi

may permissibly receive the value 0. Moreover yi will automatically be 0 if the condition
yi = 1 is not compelled, because in the present context the variable yi receives a positive
weight in the objective function. Finally, in the case where we seek to compel a
disjunctive normal form expression not to be true, we simply set yi = 0 and generate the
inequality r – 1 ≥ zi

1 + …+ zi
r.

We illustrate this analysis by applying it to (a) and (b) above. First, to satisfy (a) we must
prohibit its complement (b) from holding (i.e., we must prohibit any point Ai for i ∈ G1
from satisfying (b)). By reference to the complement (b) of (a), expressed in disjunctive
normal form, this gives rise to the two inequalities

yi ≥ zi
1 + zi

3 – 1 and yi ≥ zi
2 + zi

3 – 1, i ∈ G1.

where, for i ∈ G1, zi

p is the 0-1 variable that equals 1 if and only if the inequality
Aixp ≤ bp is violated, and hence Aixp > bp is satisfied. Since we wish to compel (b) not to
hold, we set yi = 0 in these two inequalities to yield

1 ≥ zi
1 + zi

3 and 1 ≥ zi
2 + zi

3
., i ∈ G1.

Next, starting with (b), which we want to induce by penalizing its violation, we seek to
avoid satisfying the complement expressed in (a), and hence we obtain the inequalities

yi ≥ zi
1 + zi

2 – 1 and yi ≥ zi
3, i ∈ G2

where, for i ∈ G2, zi

p is the 0-1 variable that equals 1 if and only if the inequality
Aixp ≥ bp is violated, and hence Aixp < bp is satisfied. In this case we do not compel yi = 0,
but retain the two inequalities as shown and rely on penalizing yi in the objective function

 40

to yield yi = 0 (achieving this outcome if it will result in minimizing the sum of the yi
variables over i ∈ G2).

By means of this analysis we obtain the following formulation, for the specific conditions
embodied in (a) and (b) preceding (and for P = {1,2,3}).

 Minimize Mo∑ (yi: i ∈ G2) + ∑ (hivi

p – kisi
p): i ∈ G2, p ∈ P) – koso (5.1′)

 subject to
Aixp – vi

p + si
p = bp, i ∈ G1, p ∈ P (5.2′)

Aixp + vi
p – si

p = bp, i ∈ G2, p ∈ P (5.3′)
xp, bp unrestricted, p ∈ P (5.4′)
zi

p ∈ {0,1} i ∈ G, p ∈ P (5.5′)
(m1∑ (Ai: i ∈ G2) – m2∑ (Ai: i ∈ G1))xp = 1, p ∈ P (5.6a′)

 m1∑(si
p – vi

p: i ∈ G2) + m2∑(si
p – vi

p: i ∈ G1) = 1, p ∈ P (5.6b′)
vi

p ≤ Uizi
p

 , i ∈ G, p ∈ P (5.7′)
si

p ≥ 0, vi
p ≥ 0, i ∈ G, p ∈ P (5.8′)

so ≥ 0, yi ≥ 0, so ≤ si + Uoyi, i ∈ G2 (5.9′)
1 ≥ zi

1 + zi
3 and 1 ≥ zi

2 + zi
3

., i ∈ G1 (5.10′)
yi ≥ zi

1 + zi
2 – 1 and yi ≥ zi

3, i ∈ G2 (5.11′)

As can be seen, this formulation is identical to that of (5), except for the inequalities of
(5.10′) and (5.11′) which we have derived from the analysis of this section.

We examine one more case for po = 3 to conclude our analysis. In this instance we begin
with the requirement for the primary set given by

(a′) For each i ∈ G1: compel (Aix1 ≤ b1 or Aix2 ≤ b2) and (Aix3 ≤ b3)
(b′) For each i ∈ G2: induce the complement of (a) to hold

We have not yet stipulated the precise condition that expresses (b′) for the secondary set,
but derive it from the knowledge of (a′). To begin, (a′) is not stated in disjunctive normal
form, so we proceed to put it in that form. By the notation used to derive formulation (5′)
we write (a′) as (1∪2) ∩ 3, and transform it into disjunctive normal form by the sequence
(1∪2) ∩ 3 = (1∩3) ∪ (2∩3) (which in this instance is completed by a single step). We
then proceed to generate the complement of (a′) and to put it in disjunctive normal form.
Complementing (1∪2) ∩ 3 yields (1∪2)* ∪ 3* = (1*∩2)* ∪3*, and the process is
complete.

As it turns out, it is unnecessary to generate a new model from this outcome, as may be
seen by comparing the conditions (a′) and (b′) with the previous conditions (a) and (b).

(a) For each i ∈ G1: compel (1∩2) ∪3
(b) For each i ∈ G2: induce (1*∩3*) ∪ (2*∩3*)

(a′) For each i ∈ G1: compel (1∩3) ∪ (2∩3)

 41

(b′) For each i ∈ G2: induce (1*∩2)* ∪3*

In particular, these two sets of conditions can be seen to be the opposite of each other, if
we swap the role of the sets G1 and G2 and the direction of the inequalities associated
with these sets. That is, it is only an arbitrary choice to associate G1 with “less than or
equal to” inequalities of the form Aixp ≤ bp and to associate G2 with “greater than or equal
to” inequalities” of the form Aixp ≥ bp, since the mixed integer model can reverse these
inequalities simply by reversing the sign of x and b. With this in mind, we can as readily
write (a′) and (b′) in the form

(a′) For each i ∈ G1: compel (1*∩3*) ∪ (2*∩3*)
(b′) For each i ∈ G2: induce (1∩2) ∪3

Finally, by interchanging the roles of G1 and G2 to make G2 the primary set and G1 the
secondary set, (a′) and (b′) give rise to the conditions

(a″) For each i ∈ G2: compel (1∩2) ∪3
(b″) For each i ∈ G1: induce (1*∩3*) ∪ (2*∩3*)

Thus (a″) and (b″) result simply by changing the choice of which set is primary and
which is secondary in (a) and (b), and we don’t need a new formulation to capture the
conditions of (a′) and (b′). It would have been possible to have reached this conclusion
even before generating (b′) as the complement of (a′), simply by noting that (a′) is the
same as (b) with the symbol p replaced by the symbol p*.

 42

References

Abad P.L and W. J. Banks (1993) “New LP based heuristics for the classification

problem,” European Journal of Operational Research, Vol. 67, pp. 88-100.

Barr, R. and F. Glover (1993) "Adding Optimization to Recursive Partitioning: Machine

Discovery of Quality Improvement Strategies," ORSA/TIMS National
Convention, Chicago, May, 1993.

Barr, R. and F. Glover (1995) "LP-based Recursive Partitioning for High-Speed Machine

Learning and Pattern Recognition," TIMS XXXIII, Singapore, June, 1995.

Better, M., F. Liang and M. Samorani (2006) "Linear and Integer Programming

Classification Analysis with Decision Trees,” paper presented at the DIMACS
Workshop on Data Mining, Systems Analysis and Optimization in Neuroscience,
Gainesville, Florida.

Charnes, A. and W.W. Cooper (1961) Management Models and Industrial Applications

of Linear Programming, Vol. 1, Wiley, New York.

Christiani, N. and J. Shawe-Taylor (2000) An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods, Cambridge University Press,
Cambridge, UK.

Dantzig, G. (1963) Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

Dai, H. (2004) Advances in Knowledge Discovery and Data Mining, Springer Publishing.

Falangis, K. (2006) "Testing the accuracy of the MP models in the credit environment,”

Proceedings of the 4th International Conference on Business, Economics,
Management and Marketing – 2006, Athens, Greece.

Freed, N. and F. Glover (1981) "A Linear Programming Approach to the Discriminant

Problem," Decision Sciences, Vol. 12, No. 1, pp. 68-79.

Glen, J.J. (1999) “Integer programming methods for normalization and variable selection

in mathematical programming discriminant analysis models,” Journal of the
Operational Research Society, Vol. 50, pp. 1043-1053.

Glen, J.J. (2003) “An iterative mixed integer programming method for classification

accuracy maximizing discriminant analysis,” Computers and Operations
Research, 30/181-198.

 43

Glover, F. (1990) "Improved Linear Programming Models for Discriminant Analysis,"
Decision Sciences, Vol, 21, No. 4, pp. 771-785.

Glover, F. (1993) "Improved Linear and Integer Programming Models for Discriminant

Analysis," Creative and Innovative Approaches to the Science of Management,
RGK Foundation Press, pp. 187-215.

Glover, F. (1994) "Optimization by Ghost Image Processes in Neural Networks,"

Computers and Operations Research, Vol. 21, No. 8, pp. 801-822.

Glover, F. (2006a) “Parametric Tabu Search for Mixed Integer Programs,” Computers

and Operations Research, Volume 33, Issue 9, pp. 2449-2494.

Glover, F. (2006b) "Topological Methods for Classification and Clustering,” Leeds

School of Business, University of Colorado, Boulder.

Glover, F., M.Amini and G. Kochenberger (2005) "Parametric Ghost Image Processes for

Fixed-Charge Problems: A Study of Transportation Networks,” Journal of
Heuristics, Volume 11, Number 4, pp. 307-336.

Glover, F., S. Keene and R. Duea (1988) "A New Class of Models for the Discriminant

Problem," Decision Sciences, Vol. 19, 269-280.

Ma, Y. and V. Cherkassky (2005) "Multiple Model Estimation for Nonlinear

Classification," in Support Vector Machines: Theory and Applications, L. Wang,
ed., pp. 49-76, Springer-Verlag, New York

Mangasarian, O.L. (1965) “Linear and Nonlinear Separation of Patterns by Linear

Programming,” Operations Research 13, pp. 444-452.

Mangasarian, O.L. and R. R. Meyer (1979) “Nonlinear Perturbation of Linear Programs,”

SIAM Journal on Control and Optimization 17(6), pp. 745-752.

Schlkopf, B. and A. J. Smola (2002) Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond (Adaptive Computation and Machine
Learning), Cambridge, MA: MIT Press.

Stam, A. and Ragsdale, C.T. (1992) “On the classification gap in mathematical

programming-based approaches to the discriminant problem.” Naval Research
Logistics, 39/545-559.

Wang, L. (2005) Support Vector Machines: Theory and Applications, Springer-Verlag,

New York.

 44

Appendix 1. A Parametric Process for Solving the MIP Formulation for
the Feature Selection Problem.

The MIP feature selection formulation described in Section 4.3 may be superimposed on
either a basic LP separating hyperplane formulation (e.g., the formulation (1″) or the SPS
formulation (2)) or an MIP formulation such as (4″). In each case, the feature selection
formulation is completed simply by augmenting the basic formulation to include the 0-1
variables wj together with the constraints and objective function components previously
indicated.

We denote the resulting feature selection formulation incorporating the wj variables as
P*(w), and denote the basic (LP or MIP) separating hyperplane formulation that is
augmented to produce P*(w) by P*. Accompanying this, we let LP* denote the LP
problem corresponding to P*; where LP* is the same as P* if P* is an LP formulation,
and LP* is the linear programming relaxation of P* if P* is an MIP formulation.

A parametric penalty approach for the feature selection problem can be described by
viewing the problem as that of shrinking N to yield a smaller set of variables indexed by
No. We first provide some background observations before sketching how such an
approach may operate.

One way to carry out the shrinking of N is to first solve the problem LP*, and then
choose the reduced set No for the formulation P*(w) to consist only of those attributes j
whose associated weights xj receive non-zero values in this solution. The set No thus
chosen may be smaller than is preferable, since a potentially better solution may be
obtained by solving P*(w) over a superset of No (given there is no assurance that the best
subset of U(w) variables permitted to be non-zero will be identified by No). Such a
superset of No can be generated by post-optimal pivoting in LP*, selecting pivots to
generate multiple solutions having the same or nearly the same objective value as the
linear programming optimum. (Typically, dual degeneracy of LP* assures multiple
optima exist.)

In the case where the LP* by itself is too large to solve readily, then smaller versions of it
may be formed by a sequence of solution passes each of which operates with a different
selected subset of N. The collection of these subsets may appropriately contain
overlapping elements, as exemplified by the following constructive procedure: choose
each subset to contain 1/3 of the elements of N. After selecting the first subset, choose
each additional subset so that half of its elements comes from the part of N that has not
yet been allocated, and the other half comes from a portion of the preceding subset that
has not been shared with any other subset. (The last subset takes its elements from the
unshared portions of the next-to-last subset and the first subset.) The illustrated
construction thereby produces 6 subsets, and its general form that assigns n′/d elements to
each subset produces 2d.different subsets when d is a positive integer.

Upon thus selecting subsets of N and solving LP problems over these subsets, No can be
specified to consist of the union of the variables xj that receive non-zero values in these

 45

smaller problem instances. No can be made smaller by giving priority to variables that
have received non-zero values in a larger number of sub-problem solutions. (In the 6
subset example, each variable will receive a non-zero value in at most two solutions.)
Such a strategy can also be useful as a means of identifying particular variables that are
likely to be important for generating robust solutions.

With these preliminaries, we briefly sketch how the MIP problem P*(w) itself can be
solved by a parametric form of tabu search. (The following discussion assumes a basic
understanding of the tabu search framework; see, e.g., Glover and Laguna, 1997.) The
approach works strictly with the LP problem LP*, but written in the form that replaces
the xj variables by the xj

+
 and xj

– variables, and that includes these variables in the
objective function with coefficients cj and dj are previously indicated. This may be
viewed as working with the form of P*(w) that replaces the xj variables by the xj

+
 and xj

–
variables, but that discards all reference to the wj variables and hence is simply a linear
programming problem.

We call the resulting LP problem LP(c,d), since the coefficients cj and dj in this problem
are the ones to be manipulated by the parametric TS solution procedure. For the initial
form of LP(c,d) we let all cj and dj equal 0 (or, for implementation, a small positive
value). Evidently, if cj and dj are chosen large enough, then xj

+
 and xj

–, and hence xj, will
be driven to 0. The goal is to identify the “right” variables to receive non-zero (large)
penalty values in LP(c,d), in order to drive some desired number of variables to 0 and yet
obtain a good solution to the residual problem over the variables that are not penalized.

To initiate the tabu search method, the first variables to penalize by assigning them large
cj and dj values can be those that receive the smallest positive values in the solution to
LP*. Assigning penalties to any particular set of variables can cause new variables xj

+
 or

xj
– that are not yet penalized to receive positive values in turn.

An elementary TS recency memory can be used to manage the parameters cj and dj
foridding penalties previously introduced from being removed (set to 0) for a certain
number of re-optimizations and also forbidding penalties removed from being re-
introduced for a certain span of time, as established by customary rules for assigning tabu
tenure. The rules for determining which penalized variables should be freed from their
penalties can make use of LP reduced costs in the solution to LP(c,d). These reduced
costs provide an evaluation that discloses the amount by which the associated variables
resist their penalties.

Let RCj

+ and RCj
– denote the reduced costs for xj

+
 and xj

– in the current LP solution. At
optimality all reduced costs are non-negative and those for basic variables are 0. The true
reduced costs TRCj

+ and TRCj
– for xj

+
 and xj

–, representing the reduced costs there
variables would have in the current basis if no penalties were assigned to the variables
(before the added step of driving the reduced costs for basic variables again to zero) are
given by TRCj

+ = RCj
+ – cj and TRCj

– = RCj
– – dj. The smaller (or “more negative”) this

value is, the more attractive the variable is to be released from its penalty. The measure
can be supplemented by taking account of the adjusted reduced cost values that result by

 46

zeroing out the TRCj
+ and TRCj

– values for basic variables in the current objective
function representation. Basic variables can additionally be evaluated by reference to
their current values in the LP solution, where those with larger values are more attractive
to be released.

By means of this evaluation, instead of automatically releasing a tabu variable that
receives a penalty from its penalized status when its current tabu tenure expires, the
method can consider all such tabu variables whose residual tenures fall below a specified
value and release one or more of these that are evaluated as most attractive according to
the reduced cost measure. Frequency-based memory can supplement this recency-based
memory in the customary manner, as by modifying choice rules to discourage or
encourage the assignment of penalties to particular variables according to how often (or
for what cumulative duration) they have been penalized previously, or to increase or
decrease the values of penalties assigned. Frequencies likewise can be used to amend the
choice of variables to be released from tabu status by a rule that is independent of the
reduced cost values, as by creating aspiration criteria for overriding tabu status that are a
function of such frequencies.

Additional more advanced considerations, including associated intensification and
diversification strategies, ways to exploit cutting planes within the parametric design, and
detailed specifications of the mechanisms for handling tabu status in relation to penalties,
can be found in the parametric tabu search method described in Glover (2006a).

 47

Appendix 2: Creating General Subspaces for Multi-hyperplane MIP
formulations.

As in Section 5.2, we use the symbol ∪ to represent set union (the logical or operator)
and the symbol ∩ to identify set intersection (the logical and operator). Similarly we let
the symbol * represent complementation (the logical not operator).

To create the subspaces used for classification, we generate logical strings such as
(5*∩4)∪((6∩1*)∪2) to identify regions designed to include the points of one group but
not the other.9 Our approach manipulates these strings by Boolean analysis to produce
associated mixed integer programming models, and we may accordingly call the resulting
subspaces Boolean subspaces. A Boolean subspace will be called variable if its form is
represented as in with bp and xp variable, and will be called fixed if we have assigned
specific constant values to bp and the components of the vector xp.

Our multi-hyperplane discrimination approach takes the following form:

1. Generate a series of logic strings to identify a collection of variable Boolean
subspaces denoted by Bh, h ∈ H.

2. Create a mixed integer programming formulation based on Bh and its variable
complement Bh* to determine fixed instances Bh and Bh* of these subspaces,
for the objective of including as many points as possible of G1 and G2 in Bh
and Bh*, respectively.

For the purpose of comparing logic strings, and of creating a mixed integer programming
model from them, we convert them into disjunctive normal form; i.e., we express the
strings as the disjunction (union) of a collection of conjunctions (intersections), as
represented by

V1 ∪ V2 ∪ V3 ∪ … ∪ Vr

where each Vk, k = 1, …, r has the form Vk = (Vk1 ∩ Vk2 ∩ Vk3 ...) and the terms Vkj are
primitives, in the present case consisting of terms p and p*, for various values of
p ∈ P ={1,…, po}. The value of r is variable and depends on a given logical string. We
suppose the primitives of each Vk have been logically reduced so that, within any given
Vk, no primitive p or p* appears twice and at most one of the pair p and p* appears.
(Multiple occurrences of a given primitive can be replaced by a single instance, and the
appearance of both p and p*, which by convention we assume to have an empty
intersection, causes Vk to drop out of the disjunctive normal form.) Likewise, we assume
that the sets Vk have been reduced so that any set that is a proper subset of another is
dropped, and all but one occurrence of multiple identical sets are dropped. (Note, under

9 For the purpose of identifying implicit parentheses in subsequent strings, the ∩ operator takes a stronger
position than the ∪ operator, analogous to the way the multiplication operator is used relative to the
addition operator in ordinary arithmetic representations.

 48

intersection, a set Vk is a subset of a set Vh if all of the primitives of Vh appear in Vk,
hence Vk contains more rather than fewer primitives in its representation.)

In addition, if we wish to enumerate the possible disjunctive normal forms of interest, we
may require the primitives of each Vk to be arranged in ascending order by size, where by
convention we extend the definition of “<” so that p < p* and p* < q if p < q. With the
primitives of the sets Vk thus ordered, we also use the symbol “<” to denote a
lexicographical relationship between these sets, and define a set Vk to be
lexicographically smaller than a set Vh, writing Vk < Vh, if Vk contains fewer primitives
than Vh or if the two sets contain the same number of primitives, and the first primitive in
which they differ is smaller in Vk than in Vh. (Thus, for example, the set (3 ∩ 5 ∩ 7*) is
lexicographically smaller than both (2 ∩ 3 ∩ 6* ∩ 7) and (3 ∩ 5* ∩ 7).)

Finally, we stipulate that the disjunctive normal form representation is ordered by
lexicography so that V1 < V2 < V3 < < Vr. We call this the canonical representation of
the disjunctive normal form. It is easy to see that the canonical representation is unique,
given our assumptions on reducing the sets Vk and dropping those that are superfluous.
We also compare two canonical forms having the same number of component sets on the
basis of their lexicographic size, saying that a canonical form identified by
V1′ < V2′ < V3′ < … < Vr′ is lexicographically smaller than one identified by
V1 < V2 < V3 < < Vr. if Vh′ < Vh, for the first index h such that Vh′ ≠ Vh.

The relevance of comparing canonical forms in this way is that we consider two different
canonical forms to be equivalent, for the purpose of generating subspaces, if we can
rename the primitives in one of them so that their representations become identical. (We
interpret renaming to include the possibility of mapping a primitive p* into a primitive q,
and vice versa.) Thus, to avoid the need to consider many different possible
representations that are equivalent in this sense, we seek to restrict attention to canonical
forms that are minimal by which we mean they cannot be made lexicographically smaller
by renaming. Then we only generate subspaces from these minimal canonical forms.

We identify a heuristic renaming rule designed to achieve such a minimal representation,
given that the representation is already canonical, and then will illustrate the rule to
provide an understanding of these minimal forms.

Renaming Process
Stage 1.
 1. Beginning with a canonical representation, rename the elements of set V1 so
that they are the primitives, 1, 2, 3, …,p in sequence. (This can change the names of
elements in other sets, and also implicitly determines the names of primitives that are
complements q or q* of any of the primitives renamed.) If r = 1 or p = po proceed to
Stage 2. Otherwise, let k = 2 to examine set Vk for k = 2.
 2. Restricting attention to primitive in Vk that have not yet been explicitly or
implicitly renamed, assign these primitives the names p+1, p+2, …, p′. Let q or q* denote
the largest of these renamed primitives in the set. (q = p′ if any primitive has changed its
name, and otherwise q* = p*.)

 49

 3. If k = r or q = po proceed to Stage 2. Otherwise, redefine p: = q, set k: = k+1,
and return to Step 2 of Stage 1.
Stage 2.
 1. If no change occurred in applying Stage 1, proceed to Stage 3.
 2. Otherwise, put the primitives back in ascending order in each of the sets, and
arrange the sets again in lexicographically increasing order to achieve a new canonical
representation. If this causes no changes, likewise proceed to Stage 3.
 3. Otherwise, return to repeat the process of Stage 1.
Stage 3.
 1. If there is an element p < q where p or p* and q or q* lie in a given set Vk and
where swapping the names p ↔ q will decrease the lexicographic size of the resulting
canonical form, then rename p and q as indicated. Repeat this process until no more name
exchanges of this type remain.

The approach can be accelerated by restarting Stages 1 and 2 from the point where
changes have occurred since they were last visited. We have expressed Stage 3 without
care to make it efficient. Our goal is simply to demonstrate a process for seeking minimal
canonical forms to clarify their nature. Subsequently we will employ a constructive
process that creates such forms automatically without the need for a heuristic or exact
procedure to revise a canonical form that lacks this property.

For the purpose of illustration, we start with an initial disjunctive normal form
representation given by

(3∩2*∩1∩2*) ∪ (1∩4*∩4) ∪ (4∩5) ∪ (2∩5∩3∩5) ∪ (5∩4∩2).
To put this in canonical form, we first arrange the primitives of each set in ascending
order, to give
 (1∩2*∩2*∩3) ∪ (1∩4∩4*) ∪ (4∩5) ∪ (2∩3∩5∩5) ∪ (2∩4∩5).
Now, we remove an extraneous 2* from the first set and an extraneous 5 from the fourth
set, and drop the second set because it contains both 4 and 4*. Similarly we drop the fifth
set because it is a subset of the third ((2∩4∩5) ⊂ (4∩5)). Upon putting the remaining sets
in lexicographically increasing order we have the canonical representation
 (4∩5) ∪ (1∩2*∩3) ∪ (2∩3∩5).
Next, we apply Stage 1 of the renaming process yields new names by the mapping 4 → 1,
5 → 2, 1 → 3, 2* → 4, 2 → 4*, 3 → 5, renaming all primitives before reaching the last
set, yields
 (1∩2) ∪ (3∩4∩5) ∪ (4*∩5∩2)
or on re-ordering primitives in the last set, which causes the second and third sets to
switch positions, we obtain
 (1∩2) ∪ (2∩4*∩5) ∪ (3∩4∩5)
Now we again apply Stage 1, yielding 4* → 3 and 4 → 3*, 5 → 4, 3 → 5 to give

(1∩2) ∪ (2∩3∩4) ∪ (5∩3*∩4)
or on rearranging

(1∩2) ∪ (2∩3∩4) ∪ (3*∩4∩5)
Upon once again applying Stage 1 nothing changes and we proceed to Stage 3. We see
that we can swap the names 1 and 2 in the first set to decrease the lexicographic size of
the second, thus yielding

 50

(1∩2) ∪ (1∩3∩4) ∪ (3*∩4∩5).
No similar swaps remain and we are done. It is easy to show that this approach is not
sufficient to guarantee a minimal form will be found. For example, if we start with

(1∩2) ∪ (4∩5) ∪ (3∩4∩6)
we first obtain (after re-ordering the last set)

 (1∩2) ∪ (3∩4) ∪ (3∩5∩6)
This is a locally optimal solution. However, if we rename the elements of the second set
by 3 → 1 and 4 → 2, followed by renaming those of the first set by 1 → 3 and 2 → 4,
then we obtain

(1∩2) ∪ (3∩4) ∪ (1∩5∩6)
Moreover, we obtain this same result by renaming 1 → 4 and 2 → 3 in the first

set.

For any such representation for a primary set, we can generate the complementary
representation for the secondary set, and then exploit the outcome by the process
described in Section 5.2.

Elementary set theory relationships useful for generating canonical representations and
their complements:

A∪(B∩C) = (A∪B)∩(B∪C)
A∩ (B∪C) = (A∩B)∩(A∪C)
(A∩B)* = A*∪B*
(A∪B)* = A*∩B*
 (A*)* = A

