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Abstract 

 
Satisfiability Data Mining (SAT-DM) is a new method for binary data classification 
problems, based on generating a collection of logical clauses, or equivalently a collection 
of inequalities in zero-one variables, for each group of points representing a given 
classification. A point with unknown membership is classified as belonging to a 
particular group based on comparing the number or proportion of the inequalities it 
satisfies for that group versus the number or proportion it satisfies for other groups. We 
make use of a fundamental observation which states that inequalities are satisfied by a 
subset of elements of a particular group (and correspondingly violated by a subset of 
elements from a complementary group) if and only if these inequalities correspond to 
feasible solutions to a special variant of a satisfiability problem. Based on this, we 
propose a method for generating membership-defining systems of inequalities that 
provide a filter for segregating points lying in different groups. 
 
Satisfiability data mining may be viewed as a procedure for generating multiple 
hyperplanes that segregate points of different groups by isolating their logical properties. 
The inequalities produced by SAT-DM capture classification regions in feature space that 
are more varied and complex than those derived from hyperplane separating procedures 
such as those used in support vector machines (SVMs) and related procedures based on 
linear programming and convex analysis. A particularly useful feature is the ability to 
generate the collections of segregating inequalities (complementary half-spaces) in a 
highly efficient manner, allowing the approach to handle large data sets without 
difficulty. The underlying processes can also be used for feature selection, or more 
generally attribute selection, to isolate a subset of attributes from large data sets that yield 
a high classification power while reducing the time and complexity of classification. 
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1. Introduction 
 
We introduce a Satisfiability Data Mining (SAT-DM) approach for classification and 
feature selection in applications involving data vectors of binary valued attributes. The 
problem addressed is as follows. Let Gk, k ∈ K, denote a collection of groups, each 
consisting of a set of data points (vectors) xi = (x1

i
, …,xn

i), for i ∈ Gk, where the 
components xj

i, j ∈ N = {1,…,n} of each vector xi are binary (0 or 1). We seek a rule for 
determining the membership of a binary vector xo = (x1

o
, …,xn

o) in one of the groups Gk, 
k ∈K, in order to establish which of these groups contains data points that xo is “most 
like” or has “the most in common with”. Example applications include diagnosing 
patients for disease, determining membership of biological organisms among groups 
exhibiting certain properties, classifying chemical compounds according to anticipated 
behaviors or functions, classifying investments for profitability, classifying drugs for 
their efficacy in treating specific conditions, and many others (see, e.g., Schlkopf and 
Smola, 2002; Dai, 2004; Wang, 2005). 
 
Satisfiability data mining may be viewed from the perspective of logical (Boolean) 
analysis to consist of a method for generating clauses Ck in disjunctive normal form for 
each group Gk, subject to the condition that each clause in Ck is satisfied (i.e., is true) for 
all or a specified fraction f|Gk| of the elements xi, i ∈ Gk, where 1 ≥ f > 0. Then xo is 
assigned to the group Gk such that minimizes an evaluation Ek(xo) measuring the degree 
to which xo violates the truth conditions of the clauses in Ck, as where Ek(xo) identifies 
the number or proportion of clauses of Ck for which xo is false. We generate the clauses 
implicitly rather than explicitly, by instead generating sets of inequalities in the binary 
variables xj that are satisfied if and only if the associated clauses are satisfied.     
 
The mechanism that enables these inequalities to be obtained efficiently is a one-one 
correspondence between the inequalities and feasible solutions to an associated 
covering/anti-covering satisfiability problem. By drawing on this relationship, we provide 
surrogate constraint algorithms for generating systems of inequalities that are particularly 
effective for differentiating among points that belong to different groups, leading to more 
compact and economical sets of inequalities for determining membership. 
 
2. Inequalities Representing Logical Clauses 
 
We begin by reviewing useful connections between logical clauses and associated 
systems of inequalities. With each component xj

i of xi, j ∈ N = {1,…n}, we associate a 
term xj that can be interpreted either as a logical statement about the value xj

i or as a 
corresponding Boolean (binary valued) variable associated with xj

i. From a logical frame 
of reference, we take xj to be the statement “xj

i = 1” and the negation xj of xj to be the 
statement “xj

i = 0.” For example, if x1 = (1  1  0  0) and x2 = (0  1  0  1), then the 
disjunctive clause x1∪x2 (where “∪” represents “or”) is true for x1 but not x2. By the 
usual association between logical statements and Boolean variables, the logical statement 
xj is represented by the Boolean assignment “xj

 = 1” and the negation xj is represented by 
“xj = 0,” or equivalently by “x j = 1” where xj = 1 – xj. By means of the correspondence 
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between the logical operator “∪” and the arithmetic operator “+”, the clause x1∪x2 
corresponds to the Boolean inequality x1 + x2 ≥  1 (which, like the clause, is satisfied by 
x1 and not by x2.)  
 
To represent more general clauses and their associated inequalities, let N1 refer to a 
subset of N associated with statements denoted by xj (equivalently, with assignments  xj = 
1) and N0 refer to a subset of N associated with statements denoted by xj (equivalently, 
with assignments x j = 1).   Then we are interested in identifying clauses expressed as 
logical disjunctions, taking the form 
 
  (∪(xj: j ∈ N1)) ∪ (∪(xj: j ∈ N0))     (1.0) 
 
Our first goal is to identify collections of clauses (1.0) that can be used to characterize 
elements of a particular group, which we will denote by Gα, and whose corresponding 
data points are represented by {xi: i ∈ Gα}.  For example, if x1 = (1  1  0  0) and x2 = (0  1  
0  1) are members of Gα, then we are interested in clauses that are true for both of them.1 
(The clauses x1∪x2 and x1∪x4 both work in this case, and x1∪x2 can be reduced to the 
more compact clause consisting of the single statement x2.)   
 
In terms of Boolean variables, we seek to generate inequalities of the form    
 

∑(xj: j ∈ N1) + ∑(xj: j ∈ N0)  ≥  1     (1.1) 
   

where, correspondingly, the initial goal is to identify instances of (1.1) that are satisfied 
by all or a usefully large portion of the elements xi in Gα.  
 
Going a step farther, we are interested in clauses (1.0) and hence inequalities (1.1) that 
are not only satisfied by elements of Gα, but that are violated by elements of another 
group Gβ. That is, while we want elements of Gα to satisfy (1.1), we want elements of Gβ 
instead to satisfy  
 
  ∑(xj: j ∈ N1) + ∑(xj: j ∈ N0)  ≤  0     (1.2)  
 
A natural choice is to designate Gβ to be the complement of Gα given by Gβ = ∪(Gk: k ∈ 
K) – Gα. Then if an inequality (1.1) is satisfied by all elements of Gα and if (1.2) is 
satisfied by all elements of its complement Gβ (or equivalently, if (1.1) is violated by all 
elements of Gβ), we have a useful means for classifying new points xo of unknown 
membership, by designating them to lie within or not within Gα according to whether or 
not they satisfy (1.1) or (1.2). In sum, our goal is to produce inequalities that include as 
many points as possible of Gα and exclude as many points as possible of Gβ. We 
summarize the form of our procedure as follows. 
 

                                                 
1 We sometimes refer to vectors as elements of groups, as a shorthand for saying that their indexes belong 
to the indicated sets; for example, speaking of a vector as belonging to Gα as a shorthand for saying that it 
belongs to the set {xi: i  ∈ Gα}. 
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Summary of Method 
1.   Generate a collection of clauses Ck, expressed as a system of inequalities in 

binary variables, for each group Gk, k ∈ K. The inequalities for Gk take the 
form of (1.1) and (1.2), by letting Gα = Gk and Gβ = the complement of Gk. 

2.   The collection of inequalities for Gk is constructed by generating solutions to 
an associated satisfiability problem. Each solution generated translates into an 
inequality that becomes a filter for differentiating points of Gk from points of 
other groups, and the resulting inequality captures a combination of properties 
of the points in Gk that differ from those captured by other inequalities in the 
collection.  

3.   The classification of a point xo of unknown membership as belonging to Gk is 
determined by comparing an evaluation Ek(xo) (derived from Ck) with 
corresponding evaluations Eh(xo) for other groups Gh, h ∈ K – {k}. 

 
The method we propose has an additional important property. Simultaneously with 
generating the collection Ck, k ∈ K, the method operates as a feature selection approach, 
isolating a subset of data features that by themselves are sufficient for defining effective 
instances of the collection, and that in general provide a more robust classification with 
reduced risk of over fitting. 
 
Links to Other Work in Logic Applied to Data Mining and in Zero-One 
Optimization 
 
An important body of work in applying logic to data mining is represented by the 
“Logical Analysis of Data (LAD)” approach of Boros et al. (2000a, 2000b). The LAD 
approach similarly generates binary inequalities by reference to clauses as in classical 
satisfiability problems. These inequalities are related to the canonical 0-1 cuts for integer 
programming in Balas and Jeroslow (1972) and strengthened for mixed integer 
programming by Glover (2008).  
 
Our approach adopts a different perspective than employed in LAD, by drawing on 
surrogate constraint analysis and metaheuristic guidance to generate the 0-1 inequalities. 
By this means it becomes possible to isolate selected subsets of the inequalities that are 
both parsimonious and highly effective, without having to generate a potentially vast set 
of alternatives and then to try retrospectively to discover which inequalities may prove 
more desirable.    
 
A Connection with Hyperplane Separation Models 
 
The widely used hyperplane separation models, proposed in various forms and more 
recently included among support vector machine (SVM) procedures, exemplify the theme 
of seeking inequalities that separate the space into disjoint regions with the goal of 
including as many points of a given group as possible within one of the regions and as 
many points of an alternative group in another. (See, e.g., Christiani and Shawe-Taylor, 
2000; Schlkopf and Smola, 2002; Glen, 2003; Glover, 2006.)   
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Our generation of the pair of inequalities (1.1) and (1.2) can be viewed from the 
standpoint of these hyperplane separation models as corresponding to generating the 
hyperplane  
 

∑(xj: j ∈ N1) + ∑(xj: j ∈ N0)  = .5 
 
Then we may classify a point as belonging to Gα if it lies on the “> .5 side” of the 
hyperplane or as belonging to Gβ if it lies on the “< .5 side”. Since we deal only in binary 
vectors of data points, and the coefficients of the inequality are all integers, the “> .5 
side” is the same as (1.1) and the “< .5 side” is the same as (1.2). 
 
However, our approach differs from the customary hyperplane separation approaches in 
three main ways, previously intimated: (i) The inequality pair (1.1) and (1.2) is produced 
by logical analysis (as opposed, for example, to statistical analysis or linear 
programming); (ii) We generate not a single inequality pair but many of them – a 
collection for each group Gα (or each pair Gα, Gβ of interest, if Gβ is not simply the 
complement of Gα); (iii) The classification of a point xo is made according to evaluations 
xo receives from each collection of inequalities (related to the number and proportion of 
the inequalities (1.1) it satisfies for each group Gk in the role of Gα), instead of basing the 
classification relative to a single hyperplane. 
 
There exist some special variations of hyperplane separation approaches that share 
features in common with our approach. In particular, in connection with the theme of (ii),  
classification procedures that utilize multiple separating hyperplanes, notably including 
hyperplanes generated by tree-based analysis, have been proposed in Glover (1990), 
Bennet and Blue (1998), Glen (2003), Better, Glover and Samorani (2006) and Glover 
(2006). The present framework can also be used in a natural way within the tree-based 
analysis approaches, giving another way of exploiting the inequalities (1.1) and (1.2). 
Details of how this may be accomplished are given in Section 10.  
 
3. Fundamental Relationships and the Quasi Covering/Anti-Covering 
System 
 
As a foundation for algorithms subsequently described, we establish a useful connection 
between inequalities of the form of (1.1) and (1.2) and feasible solutions to another set of 
inequalities. In the same way that xj identifies the complement of the variable xj, let xji 
denote the complement of the binary constant xj

i, that is, x ji = 1 – xj
i. We introduce a 

binary variable y1j associated with each xj
i and a binary variable y0j associated with each 

xji. Then we define the Quasi Covering/Anti-Covering System (QC/AC) as follows: 
 
 (QC/AC): 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≥  1      i ∈ Gα   (2.1) 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≤  0      i ∈ Gβ   (2.2) 

                                                  y1j + y0j  ≤  1      j ∈ N   (2.3) 
    y1j, y0j ∈ {0,1}     j ∈ N   (2.4) 
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The Quasi Covering/Anti-Covering term comes from the fact that (2.1) defines a 
collection of covering inequalities, and (2.2) defines a collection of what may be called 
anti-covering inequalities. The inclusion of (2.3) removes both of these components from 
strictly belonging to a covering or anti-covering category, and hence we use the term 
“quasi” to make this distinction. 

 
Fundamental Observation: Let Gα* be any subset of Gα and let Gβ* be any subset 

of Gβ. The inequality (1.1) is valid for all xi, i ∈ Gα* and the inequality (1.2) is valid for 
all xi, i ∈ Gβ*  if and only if N1 and N0 correspond to a feasible solution y1j*, y0j*, j ∈ N, 
to (QC/AC)  by the relationship 

  y1j* = 1 ↔ j ∈ N1 and y0j* = 1 ↔ j ∈ N0 

 
The significance of this observation is that we can pursue the goal of generating 
inequality pairs (1.1) and (1.2) that will respectively be satisfied by large subsets Gα* of 
Gα and Gβ* of Gβ by seeking feasible solutions to the system (QC/AC) that 
correspondingly satisfy large numbers of the inequalities (2.1) and (2.2). The (QC/AC) 
system, by reference to the Fundamental Observation, allows us to produce pairs of such 
inequalities (1.1) and (1.2) that are useful for the purpose of creating a collection to 
differentiate points of Gα from those of Gβ. 
 
We will show how it is possible to exploit the foregoing observation to generate a 
collection of inequalities of the form (1.1) and (1.2) given by 

 
∑(xj: j ∈ N1(p)) + ∑( xj: j ∈ N0(p))  ≥  1     p  ∈ P  (1.1P)  
∑(xj: j ∈ N1(p)) + ∑( xj: j ∈ N0(p))  ≤  0     p  ∈ P  (1.2P)  
  

Assume that having produced (1.1P) and (1.2P) we identify the subsets Gα*(p) of Gα and 
Gβ*(p) of Gβ for each p ∈ P such that all points xi for i ∈ Gα*(p) and all points xi for i ∈ 
Gβ*(p) satisfy the pth instances of (1.1P) and (1.2P). For this particular p, it is desirable to 
have (1.1P) be a prime implicant for points xi, i ∈ Gα*(p) – that is, to have (1.1P) be 
irreducible (non-redundant) in the sense that neither of the sets N1(p) or N0(p) can be 
replaced by a proper subset and still allow the associated instance of (1.1P) to be satisfied 
by all of these points. The reduction of an inequality to a prime implicant is also desirable 
from the standpoint of feature selection, since it also reduces the number of features 
(indexes j) the indicated inequality relies on. 
 
More generally, in addition to reducing each instance of a collection (1.1P) to become a 
prime implicant, it is of further value from the standpoint of feature selection to generate 
inequalities that minimize the size of  N1(p)∪N0(p). More broadly, we give preference to 
smaller N1(p)∪N0(p) sets subject to the goal of producing inequalities (1.1P) and (1.2P) 
that are respectively satisfied by large numbers of points in within Gα and Gβ. This goal 
translates into seeking a solution y1j*, y0j*, j ∈ N to the system (QC/AC) that assigns y1j* 
= 1 and y0j* = 1 to a relatively small number of variables. Consequently, we are 
interested in solutions that achieve the secondary (approximate) goal of minimizing the 
sum of the y1j and y0j variables.  
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These goals can be made more restrictive by seeking to strictly maximize the sum of 
satisfied inequalities and subject to this to strictly minimize the sum of the y1j and y0j 
variables. These restrictive goals are narrower than desirable, however, given that we 
want to generate not just a single inequality but a collection of inequalities. In addition, 
the restrictive goals entail the solution of NP hard problems and hence can consume large 
amounts of computation time. As will be shown, strategies are available for achieving the 
broader goals we have proposed that succeed in generating a collection of varied 
inequalities highly efficiently. Finally, the more restrictive goals can rule out the 
generation of inequalities that may nevertheless be valuable for the purpose of 
differentiating elements of group Gα from those of group Gβ.  
 
Thus, in pursuing the broader satisfiability objectives of satisfying a large number of the 
inequalities (1.1P) and (1.2P), and using a small number of variables to do this, we 
embrace the imprecision of referring any solution that achieves these objectives as a 
strongly satisfying solution. Consequently, we are interested in the following type of 
satisfiability problem, which we call the Quasi Covering/Anti-Covering Satisfiability 
Problem:  
 
SAT(QC/AC):  Generate a collection of strongly satisfying solutions to the problem 
 Minimize ∑((y1j + y0j): j ∈ N) 
       subject to 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≥  1      i ∈ Gα   (2.1) 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≤  0      i ∈ Gβ   (2.2) 

                                                  y1j + y0j  ≤  1      j ∈ N   (2.3) 
    y1j, y0j ∈ {0,1}     j ∈ N   (2.4) 

 
While imprecise in its specification of a strongly satisfying solution, the formulation of 
SAT(QC/AC) leads to a procedure that achieves its purposes quite effectively. Moreover, 
the objective of minimizing the sum of the y1j and y0j variables has the bonus of 
reinforcing the pursuit of the objectives of satisfying large numbers of the constraints 
(2.1) and (2.2). In fact, we show that it is possible to generate solutions that embody an 
asymmetric form of strong satisfiability by satisfying all inequalities of (1.1P), and 
demonstrate that this asymmetric form is valuable for separating Gk from other groups. 
 
4. The Quasi Covering Problem and Surrogate Constraint Strategies 
 
As a first step toward producing strongly satisfying solutions for SAT(QC/AC), it is 
useful to  consider the simplified situation where Gβ is chosen to be the empty set. By this 
choice, we are interested in generating inequalities that are satisfied by as many points of 
Gα as possible, without being concerned about separating these points from those of 
another set (such as the complement of Gα). Under the assumption Gβ = ∅, we can 
disregard the inequalities (1.2P) and focus only on the quasi covering portion of the 
problem SAT(QC/AC), dropping the inequalities (2.2) associated with (1.2P). We call 
this simplified problem the Quasi Covering Satisfiability Problem, expressed as follows. 
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SAT(QC):  Generate a collection of strongly satisfying solutions to the problem 
           Minimize ∑((y1j + y0j): j ∈ N)   
                  subject to 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≥  1      i ∈ Gα   (2.1) 

                                                  y1j + y0j  ≤  1      j ∈ N   (2.3) 
    y1j, y0j ∈ {0,1}     j ∈ N   (2.4) 

 
The constraints of this problem, which again for convenience are given the same labeling 
as in the (QC/AC) system, correspond to those of SAT(QC/AC) except that the constraint 
corresponding to (2.2) is removed. 
  
An ability to generate good solutions to SAT(QC) is a cornerstone of generating good 
solutions to SAT(QC/AC) for the following reason. Every assignment of values to the y1j 
and y0j variables, regardless of whether the problem considered is SAT(QC/AC) or 
SAT(QC), gives rise to the pair of inequalities (1.1P) and (1.2P). Hence, each assignment 
generated for solving SAT(QC) can be evaluated relative to both problems. In particular, 
a solution to SAT(QC) can be evaluated for its quality as a solution to SAT(QC/AC) 
simply by identifying the number of points of Gβ that satisfy the associated inequalities 
(1.2P). Evidently, from among the large number of solutions that can be evaluated for the 
two problems, those that are best for SAT(QC) may not be best for SAT(QC/AC). 
Nevertheless, a procedure for generating good solutions to the simpler problem SAT(QC) 
provides insights into a procedure for generating good solutions to the more complex 
problem SAT(QC/AC). In addition, the SAT(QC) problem is important in its own right, 
because applications exist where the essential goal is to capture the nature of a group Gα 
without concern for differentiating it from a complementary group Gβ.  
 
Surrogate Constraint Strategy 
 
The structure of SAT(QC) makes it susceptible to exploitation by a surrogate constraint 
strategy (see, e.g., Glover, 1965, 1968, 2003; Greenberg and Pierskalla, 1970, 1973), 
whose form we briefly sketch as follows.  
 
A surrogate constraint consists of a non-negative linear combination of a selected subset 
of the problem constraints, and can be expressed in the context of the SAT(QC) problem 
by the inequality 
 

∑(a1jy1j: j ∈ N) + ∑(a0jy0j: j ∈ N)  ≥  ao     (3) 
 
The coefficients a1j, a0j and ao are determined in this case by reference to the inequalities 
of (2.1); i.e., for a chosen collection of non-negative weights wi, i ∈ Gα, we have a1j = 
∑(xj

iwi: i ∈ Gα),  a0j = ∑(xjiwi: i ∈ Gα) and ao = ∑(wi: i ∈ Gα)  (We do not include 
reference to constraints other than those of (2.1) in forming the surrogate constraint, 
because the requirements of these other constraints are handled as part of the approach 
for exploiting (3).)  
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A straightforward surrogate constraint strategy for SAT(QC) arises by successively 
selecting variables y1j and y0j to set to 1 (thus implicitly setting yvj to 0 if yvj is set to 1, v 
= 0 or 1), until enough variables have been selected to satisfy all or a desired portion of 
the inequalities of (2.1). All remaining unselected variables are given values of 0. The 
surrogate constraint (3) plays a central role in the process by providing the basis for 
choosing the specific y1j and y0j variables to be assigned values of 1.  
 
A commonly used rule for selecting a variable to set to 1 in covering problems translates 
in the present case to picking a variable y1j or y0j that has the largest coefficient a1j or a0j 
in the surrogate constraint (3). This simply chooses the variable that makes the best 
contribution toward satisfying the surrogate constraint (motivated by the fact that we seek 
to minimize the sum of the variables).  
 
Once the variable yvj is selected, for v = 1 or 0, then the assignment yvj = 1 is plugged into 
SAT(QC). The problem thus shrinks by removing yvj and y(1-v)j from further 
consideration, and removing all component inequalities of (2.1) that are thereby satisfied. 
The remaining variables and component inequalities of (2.1) then generate a new 
surrogate constraint (3) derived from the reduced set Gα (and defined over the reduced 
N). The process repeats until all inequalities of (2.1) are satisfied or until N becomes 
empty. In either case, the currently generated solution satisfies all inequalities of 
SAT(QC) that have been removed by shrinking the index set Gα. 
 
In keeping with the motive of producing a procedure that is both easy and fast to execute, 
we generate the surrogate constraint (3) by the surrogate sum method, which chooses all 
weights of the linear combination to be 1, and hence generates a1j and a0j as the sum of 
the coefficients xj

i and xji in (2.1); i.e.,  
 
  a1j = ∑(xj

i: i ∈ Gα) and a0j = ∑( xji: i ∈ Gα). 
 
The surrogate sum rule has been used in a variety of successive assignment procedures 
for generating good solutions to covering problems (e.g., Chvatal, 1979; Balas and Ho, 
1980; Feo and Resende, 1989; Caprara, Fischetti and Toth, 1999; Yagiura, Kishida and 
Ibaraki, 2006).2  Within the context of the SAT(QC) problem we have an added 
motivation for using it. It is easy to see that a1j and a0j identify the number of component 
inequalities of (2.1) that will be satisfied by setting y1j or y0j = 1, respectively. 
Consequently, the surrogate sum rule pursues the objective of maximizing the number of 
inequalities that are satisfied while simultaneously pursuing the objective of minimizing 
the sum of the y1j and y0j variables. This synergy between the objectives underlying the 
definition of a strongly satisfying solution, when the objectives are pursued by a 
surrogate constraint strategy, is a useful side benefit of our approach. 
 

                                                 
2 However, weights for the constraints other than all 1’s have proved superior in a number of applications; 
see, e.g., Gavish and Pirkul, 1985; Gavish, Glover and Pirkul, 1991; Freville and Plateau, 1993; 
Lokketangen and Glover, 1997; Albanedo and Rego, 2005. The Appendix gives another way to choose 
such weights. 
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We next examine how the surrogate constraint strategy can be used to generate a single 
solution to SAT(QC) and hence a corresponding inequality of the form (1.1P). Afterward 
we show how to extend the process to generate multiple solutions for the purpose of 
generating a collection of strongly satisfying solutions to SAT(QC), and hence to produce 
a collection of useful inequalities (1.1P).  
 
5. Creating a Single Inequality via SAT(QC) 
 
The method we identify for generating a single solution to SAT(QC) constitutes the core 
process of our satisfiability data mining procedure. To give this process an efficient 
structure, we work with an implicit rather than an explicit representation of the problem 
SAT(QC). Let No and Gα

o denote the original form of N and Gα, so that the process starts 
from N =  No and Gα = Gα

o. The operation of implicitly assigning values to variables y1j 
and y0j, which results in removing elements from N and Gα at each iteration, causes the 
current N to contain the indexes of variables not yet assigned and Gα to contain the 
indexes of inequalities (3 .1) not yet satisfied. Indexes from Gα are added to a set Gα* 
(which begins empty) so that Gα* identifies the inequalities of (2.1) that are satisfied at 
each stage; i.e., Gα* = Gα

o – Gα.  The current surrogate sum coefficients a1j and a0j, which 
result by summing over constraints of (2.1) that remain, can be determined by identifying 
a1j (respectively, a0j) as the number of remaining row vectors xi, i ∈ Gα such that xj

i
 = 1 

(respectively, xj
i = 0). Including ao we therefore have 

  
  avj =  |{i ∈ Gα: xj

i = v}|, for v ∈ {0,1} and  ao = |Gα|. 
 
The inequality (1.1) (the single instance of a collection (1.1P)) is generated by 
constructively building its associated index sets N1 and N0, starting with N0 and N1 
empty. Then at each iteration, the surrogate sum rule is used to pick the index v* ∈ {0,1} 
and the index j* ∈ N that yields 
 
   av*j* = Max(avj: v ∈ {0,1}, j ∈ N). 
 
This implicitly corresponds to choosing yv*j* as the variable to set to 1 on the current 
iteration. Accordingly, the index j* is added to N1 if v* = 1 and is added to N0 if v* = 0. 
The sets N and Gα are updated by setting  
 
  N := N – {j*} and Gα := Gα – {i: xj*

i = v*}. 
 
If it is desired for the resulting inequality (1.1) to be valid for all points xi in the original 
set Gα

o, the process can continue to choose additional v* and j* values until (2.1) is fully 
satisfied, i.e., until Gα shrinks to become empty. However, to give the procedure greater 
flexibility, we instead allow the procedure to terminate once it has generated an 
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inequality (1.1) that is satisfied by a specified positive fraction f ≤ 1 of the elements of 
Gα

o. This translates into the condition |Gα*| ≥ f| Gα
o

 |.3  
 
Drawing on the preceding observations, we summarize the SAT-DM Core method to 
generate a single inequality as follows. 
 
SAT-DM Core Method. 
0. Begin with Gα = Gα

o
 , Gα

*
 = ∅, N = No, and N0 = N1 = ∅.  

1. Identify v* = 0 or 1 and j* ∈ N such that  
 (v*,j*) = arg max(avj: v ∈ {0,1}, j ∈ N) 
 (i.e., av*j* = Max(avj: v ∈ {0,1}, j ∈ N)) 
2. Set Nv* := Nv*∪{j*}, N := N – {j*}, Gα* := Gα*∪{i ∈ Gα: xj*

i = v*} and 
    Gα := Gα – {i ∈ Gα: xj*

i = v*}. 
3. If |Gα*| ≥ f| Gα

o
 | or N = ∅ proceed to Step 4. Otherwise, determine the updated    

    values avj =  |{i ∈ Gα: xj
i = v}|, for v ∈ {0,1}, j ∈ N, and return to Step 1. 

4. Generate the inequality (1.1), satisfied by all x = xi for i ∈ Gα*, given by 
∑(xj: j ∈ N1) + ∑( xj: j ∈ N0)  ≥  1    (1.1*)  

End of Core Method 
 
We have represented the instance of (1.1) generated in Step 4 by (1.1*) to emphasize that 
it has been generated in association with the set Gα* in the Core Method. This inequality 
may not be a prime implicant (i.e., it may not be undominated), and can be readily 
checked to see if tightening is possible. An undominated instance can be produced by 
dropping any element j ∈ N1  or j ∈ N0 whose removal will still allow (1.1*) to be 
satisfied by all elements of Gα* (or by f|Gα

o
 | elements of the original Gα). The process 

then repeats until no elements can be dropped. This tightening approach can be reiterated 
by using simple memory analogous to that specified in the next section, as a way to 
identify additional undominated inequalities if more than one is contained within the 
present (1.1*). In addition, in Section 8 we give a process associated with the method for 
SAT(QC/AC) that generates a special instance of a prime implicant that is relevant for 
that problem. 
 
 Remark 1. In applying the Core Method, it is unnecessary to generate or record 
the problem matrix associated with the variables y0j, j ∈ N, since each coefficient xji is 
known automatically from the corresponding coefficient xj

i. 
 
It will be seen that the organization of the Core Method implicitly takes this remark into 
account by means of the observation avj =  |{i ∈ Gα: xj

i = v}|, for v ∈ {0,1}. Thus, the 
method makes no reference to the coefficients xji.   
 

                                                 
3 Nevertheless, we will argue that f = 1 is often desirable. An analogous condition, which may be viewed as 
determining a value for f that can change from one inequality to another, is determined adaptively in the 
more general procedure we subsequently specify for SAT(QC/AC).  
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As an accompaniment to Remark 1, we can also accelerate the determination of the 
surrogate constraint coefficients avj by computing them only for v = 1, as noted next. 
 
 Remark 2. The value of a0j is given by a0j = ao – a1j (and, correspondingly, a0j = ao 
– a1j). 
 
These remarks disclose that the generation and examination of the coefficients avj in the 
Core Method should proceed by immediately examining the index pair (0,j) after the pair 
(1,j) rather than first examining all pairs (1,j) and then all pairs (0,j). Note that 
computation can be further streamlined by combining the update of the coefficients avj in 
Step 3 with the subsequent operation of identifying av*j* in Step 1. 
 
We later make additional remarks that can improve the efficiency of the procedures we 
propose and isolate preferable instances of the inequalities (1.1). 
 
6. Generating Multiple Inequalities 
 
The SAT-DM Core Method can be extended to generate multiple inequalities by 
introducing a simple memory structure to oversee the process. Let n(1:j) and n(0:j) 
identify the number of inequalities (1.1P) of Section 3 in which j is added to N1 and to 
N0, respectively. An initialization step that precedes Step 0 sets n(v,j) = 0 for all j ∈ N, v 
∈ {0,1},. At the conclusion of Step 4, the n(v,j) values are updated by setting n(v,j) := 
n(v,j) + 1 for each j ∈ Nv, v ∈ {0,1}. For the indexed collection of inequalities (1.1P) 
generated, we refer to Nv as Nv(p) fov v = 0 and 1. 
 
We stipulate that each instance of (1.1P) must contain at least one j ∈ Nv(p),  v ∈ {0,1},  
such that n(v,j) = 0, thus  automatically assuring every instance will be different. Let L 
denote a user-selected limit on the number of inequalities generated. Then, multiple 
inequalities can by generated by the following two modifications of the Core Method.  

(A) The method returns to Step 0 after each execution of Step 4, as long as n(v,j) 
= 0 for at least one pair v, j such that j ∈ N, v ∈ {0,1}, and as long as fewer than L 
inequalities have been generated,  

(B) Each time Step 1 is visited immediately after Step 0 (to select the first v* and 
j* for the new inequality (1.1P)), we additionally require n(v*,j*) = 0, and the method 
terminates once this condition cannot be met on such a “first execution” of Step 1. Thus, 
on visiting Step 1 immediately after Step 0, the value v* and the index j* are selected by 
the rule 
  (v*,j*) = arg max(avj: v ∈ {0,1}, j ∈ N, n(v,j) = 0) 

There is one further element to consider in the present case. If on some execution of Step 
1 for iter = 1 we have av*j* = 0, this implies that choosing v*, j* (implicitly setting yv*j* = 
1) can not satisfy any of the inequalities (2.1) for i ∈ Gα

o. In particular, xj*
i = 0 for all i ∈ 

Gα
o if v* = 1 and xj*i:= 0 for all i ∈ Gα

o if v* = 0. Consequently, this choice of v* and j* 
makes no contribution and can be disregarded. Since no other choice for v* and j* can do 
better, the procedure can terminate at this point. The condition av*j* = 0 cannot occur if 
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iter > 1, since the fact that xj
i or xji = 1 for every i implies either a1j or a0j must be positive 

for every j.  
 
For additional control, the n(1:j) and n(0:j) values can also be constrained not to exceed 
some specified limit in subsequent iterations of Step 1, in order to assure that particular 
variables do not appear a disproportionate number of times in the inequalities generated.    
 
We summarize these observations in the following method. The former Step 0 for the 
SAT-DM Core Method has been moved outside the procedure to become Step 1.0 of the 
more general method. 
 
Basic SAT-DM Method for Generating Multiple Inequalities.  
0.0 (Initialization) Select a limit L on the number p of inequalities to generate. Set p = 0,   
      n(v,j) = 0, v ∈ {0,1}, j ∈ No. 
1.0 (Prepare for the Core Method.) Set Gα = Gα

o
 , Gα* = ∅, N = No,  

      N0 = N1 = ∅. and iter = 0. 
 
SAT-DM Core Method (to Generate a Single Inequality). 
1. Set iter := iter + 1. Identify v* = 0 or 1 and j* ∈ N such that  
 If iter = 1: (v*,j*) = arg max(avj: v ∈ {0,1}, j ∈ N, n(v,j) = 0)). If av*j* = 0, stop. 
 If iter > 1:  (v*,j*) = arg max(avj: v ∈ {0,1}, j ∈ N) 
2. Set Nv* := Nv*∪{j*}, N := N – {j*}, Gα* := Gα*∪{i ∈ Gα: xj*

i = v*} and 
    Gα := Gα – {i ∈ Gα: xj*

i = v*}. 
3. If |Gα*| ≥ f| Gα

o
 | or N = ∅ proceed to Step 4. Otherwise, determine the updated    

    values avj =  |{i ∈ Gα: xj
i = v}|, for v ∈ {0,1}, j ∈ N, and return to Step 1. 

4. Set p := p + 1 and, after reduction to a prime implicant, generate the associated  
    instance of the inequality (1.1P), satisfied by all x = xi for i ∈ Gα*, given by 

∑(xj: j ∈ N1(p)) + ∑( xj: j ∈ N0(p))  ≥  1   (1.1(p))  
    Set n(v,j) := n(v,j) + 1 for each j ∈ Nv(p), v ∈ {0,1} for each j ∈ N1(p)∪N0(p). 
End of Core Method 
 
2.0 If p = L, or if |Gα*| < f| Gα

o
 | (implying N = ∅), or if n(v,j) > 0 for all j ∈ N and for 

both v = 0 and 1, then stop. Otherwise return to Step 1.0. 
End of Method 
 
The instance of (1.1P) generated in Step 4 is represented as (1.1(p)) to emphasize its 
association with a particular index p at that step. Under the stopping condition |Gα*| < f| 
Gα

o
 | of Step 2.0, the last inequality generated can be dropped, since it does not succeed in 

being satisfied by at least f|Gα
o

 | elements of Gα
o.  

 
7. Improved Method and Feature (or Attribute) Selection 
 
The observations at the conclusion of Section 5 concerning ways to reduce computation 
of the Core Method are likewise applicable to the Basic SAT-DM Method. We make 
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additional observations to improve the method at a similar rudimentary level and then 
examine improvements at a deeper level. 
 
 Remark 3. When an iteration of the Core Method occurs for a1j = ao or 0 (hence aoj 
= ao) for some j ∈ N, the method can directly identify all pairs (v*,j*) such that av*j* = ao, 
and augment the collection of inequalities (1.1(p)) by implementing Step 4 for each of 
these pairs (v*,j*) independent of the others (skipping Steps 2 and 3, except for setting 
Nv* := Nv*∪{j*} separately for each pair (v*,j*)).   
 
The condition a1j = ao or 0 identified in Remark 3 is the condition that causes Step 4 to be 
visited (after updating for selecting (v*,j*)) as a result of satisfying |Gα*| ≥ f| Gα

o
 | for f = 

1, which may also be expressed as Gα* = Gα
o (or Gα = ∅). The remark observes that the 

condition can be spotted in a simple way before updating and that a number of 
inequalities may possibly be produced from it at once rather than generating only one 
inequality at Step 4 at a time.  A special case of Remark 3 can provide further 
computational savings. 
 
 Remark 4. If the condition a1j = ao or 0 occurs on the first iteration of Step 1, when 
iter = 1 and p = 0, then after creating all of the inequalities indicated in Remark 3, each 
index j* that belongs to one of the pairs (v*, j*) can be permanently excluded from the set 
N in all subsequent iterations of the method. 
  
The next special case embraces a potentially larger set of conditions. 
 
 Remark 5. If the condition a1j = ao or 0 occurs on the second iteration of Step 1, 
when iter = 2 (and p has any value), then after creating all of the inequalities indicated in 
Remark 3, the specific index pair (v1,j1) that was chosen as (v*,j*) for iter = 1 (hence the 
pair such that j* ∈ Nv* before the updates of iter = 2) can permanently be dropped from 
consideration on all future iterations. 
 
The justification of this remark follows from the fact that the structure of the Basic SAT-
DM method assures that all undominated inequalities that include (v1, j1) have been 
generated by the method using the approach of Remark 3.  
 
Remark 5 raises an interesting point. The Basic SAT-DM method will automatically 
disregard the pair (v1,j1) whenever iter = 1 due to the use of the values n(v,j), but Remark 
5 goes farther by stipulating that (v1,j1) can be disregarded for values of iter > 1 as well. 
Nevertheless, the memory embodied in the n(v,j) values may be unduly restrictive in 
spite of the ability to override it in this special case, because it can exclude many 
inequalities that may be desirable to generate.  
 
A telling limitation of this memory structure comes from the fact that it operates in 
opposition to the goals of feature selection, where we seek a subset N′ containing features 
j ∈ N, typically much smaller than N itself, and classify new points by limiting 
consideration to N′. The organization of the Basic SAT-DM method, which forces a new 
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pair (v,j) to be introduced at each first step (iter = 1) of generating a new inequality, 
evidently tends to work against the goals of feature selection. 
 
It is possible to get around this limitation by applying the foregoing method within the 
framework of a tree search memory, and thereby generate all sequentially undominated 
inequalities that can be derived as feasible solutions to the constraints of SAT(QC). 
(“Sequentially undominated” is defined in the natural way as an inequality that cannot be 
reduced if the sequence of introducing its terms is fixed, i.e., if the pair (v*,j*) added at a 
given iteration must require the inclusion of pairs add up through all previous iterations.) 
While such a tree search approach can readily be adapted to the present setting (see, e.g., 
Glover, 1965), it has three important disadvantages: (a) it generates far more inequalities 
than are needed: (b) the inequalities include all possible features, and hence must be 
significantly culled to meet the goals of feature selection; (c) the inequalities are 
produced in a lock-step sequence that exhausts all possible sequentially undominated 
inequalities for each pair (v*,j*) chosen in sequence before generating any inequalities 
that lack (v*,j*) in this sequence. That means the type of variation admitted by 
performing a truncated form of this tree search is exceedingly limited. Recall that, in 
addition to feature selection, we wish to generate inequalities that are parsimonious in the 
sense of having a small number of terms.  
 
To combat these difficulties we introduce a more flexible memory structure based on 
ideas from the adaptive memory framework of tabu search. In fact, we may employ a 
relatively simple tabu search design that incorporates a common “recency-based” tabu 
list applied to choices at iter = 1, and an associated tabu restriction at iter = 2 that assures 
no duplications can occur. Within the modest limitations imposed by these two 
restrictions, the method is given a broad latitude to follow the guidance of the surrogate 
sum choice rule that favors parsimonious inequalities. Moreover, as will be shown, the 
method can be organized to pursue the goals of feature selection, enabling the feature 
selection problem to be handled simultaneously with the generation of inequalities for 
classification. 
 
Attribute Selection Versus Feature Selection 
   
We find it useful in the present setting not simply to seek a small subset N′ of the features 
j ∈ N that provides a source of effective inequalities, but look for a more refined choice 
by reference to attributes rather than features.4 An attribute of a solution to SAT(QC/AC) 
or SAT(QC) is given not just by the index j, but by the pair (v,j). That is, each solution to 
the problems SAT(QC/AC) and SAT(QC) (and each inequality (1.1P) generated as a 
consequence) is uniquely determined by the set of pairs (v,j) that define the composition 
of N1(p) and N0(p). Accordingly, we are interested in the attribute selection problem that 
seeks a small set of attributes (v,j) that are capable of yielding strongly satisfying 
solutions to the inequalities (2.1) to (2.3). The imprecision of the word “small” in the 
feature selection literature carries over to attribute selection, but is mitigated in the 
                                                 
4 In some papers on feature selection, the word “attribute” is used as synonymous with “feature.” However, 
we differentiate the two by using the word “attribute” in the sense conveyed in memory-based search 
procedures (see, e.g., Glover and Laguna, 1997). 
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present context, as we have seen, by the fact that pursuit both of strongly satisfying 
solutions and solutions containing a modest number of attributes is reinforced by the 
surrogate constraint choice rules. This mutual reinforcement yields further useful 
outcomes when implemented within an appropriate memory framework. 
 
To pursue the attribute-based perspective, let NA refer to an attribute-based form of N, 
consisting of ordered pairs (v,j), i.e.,  
 
  NA = {(v,j): v ∈ {0,1}, j ∈ N}.5  
 
and let NA(p) denote the attribute-based equivalent of N1(p)∪N0(p) given by  
 
  NA(p) = {(v,j) ∈ NA: v = 1, j ∈  N1(p) or v = 0, j ∈ N0(p)}.  
 
The inequality (1.1(p)) generated at Step 4 of the Basic SAT-DM method can therefore 
be written as  
 

∑(xvj: (v,j) ∈ NA(p)) ≥  1 
 
where we define x1j ≡ xj and x0j ≡ xj.  
 
Basic Memory Structures 
 
As intimated, our memory structure employs two kinds of tabu lists, each consisting of 
selected elements of NA.  The first, Tabu1, is a list of attributes (v,j) that have been 
selected as (v*,j*) on previous executions of Step 1 for iter = 1. The purpose of Tabu1 is 
to prevent the choice of the first (v*,j*) used to produce the inequality (1.1(p)) at Step 4 
from duplicating previous choices. This does not by itself prevent the current (1.1(p)) 
from duplicating a previous (1.1(p)) (without incorporating the second tabu list), but it 
provides the potential to generate a variety of inequalities that are not compelled to keep 
the same first choice intact until all possible inequalities are generated that include this 
choice. Thus, Tabu1 induces a richer variety in the inequalities produced, while duplicate 
inequalities are avoided by including the second tabu list. 
 
As in rudimentary tabu list constructions, Tabu1 contains only a limited number of the 
attributes most recently selected in Step 1. We denote this limitation of the number of 
elements within Tabu1 by TabuLim. In addition, from the standpoint of the attribute 
selection problem, let AttLim denote a limit on the number of attributes permitted to be 
embodied in the inequalities (1.1(p)). Thus, we seek to generate inequalities subject to the 
(approximate) restriction 
 
  |∪(NA(q), q = 1,…,p)|  ≤  AttLim 
 

                                                 
5 An updated NA can be conveniently recorded and processed using two bit elements for each j ∈ N, Bit1(j) 
and Bit0(j), where Bitv(j) = 1 if and only if attribute (v,j)  ∈ NA.  
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Here p takes the value assigned at the most recent execution of Step 4, so that the 
indicated restriction applies to all inequalities produced up to a current execution of this 
step. TabuLim is related to AttLim by selecting TabuLim < AttLim (e.g., TabuLim = 
AttLim/2). 
 
The second tabu list is defined relative to a specified attribute (v′,j′) ∈ NA, and is given 
by  
 
      TabuMatch(v′,j′) =  {(v,j) ∈ NA(q): (v′,j′) ∈ NA(q):   q = 1, …p}  
 
In words, TabuMatch(v′,j′) consists of the attributes (v,j) that have appeared in the same 
inequalities as the attribute (v′,j′) on previous passes of the method. TabuMatch(v′,j′) 
begins empty for all pairs (v′,j′). ∈ NA, and stays empty until an inequality is generated 
that contains (v′,j′) and at least one additional attribute. This particular tabu list is updated 
each time a new inequality is generated at Step 4. It is used on subsequent steps of 
selecting (v*,j*) in Step 1 to insure that the second (v*,j*) selected during a given pass 
will not have appeared, together with the first (v*,j*) selected, in any inequality 
previously generated. This condition assures that no two inequalities can have the same 
composition of NA(p), and thus no two inequalities are the same (unless the first or 
second (v*,j*) chosen is dropped in producing a prime implicant at Step 4) .  
 
A useful consequence of this organization is that the number of nonempty lists 
TabuMatch(v′,j′) will be limited to at most AttLim, and in large problems AttLim will 
normally be chosen to be only a small fraction of |NA|.  
 
Exploiting the Memory Structures Efficiently 
 
A key ingredient of an approach for SAT(QC) is to identify a way to exploit its memory 
structures efficiently, without requiring supporting structures that consume an excessive 
amount of memory.  However, the goals of efficient computation and economical use of 
memory do not always go hand in hand. For example, a convenient way to exploit 
TabuMatch(v′,j′) is to create a supporting 0-1 matrix PairMatch((v1,j1),(v2,j2)), where  
PairMatch((v1,j1),(v2,j2)) = 1 if and only if (v1,j1) and (v2,j2) appear in the same inequality 
(1.1(q)) for some q = 1, …, p.  However, such a matrix consumes a prohibitive amount of 
space when |NA| is large.  
 
To obtain a more favorable balance between memory requirements and computational 
efficiency, we keep a bit-valued array TabuBit(v,j) initialized by setting TabuBit(v,j) = 0 
for all (v,j) ∈ NA. The SAT-DM method can take advantage of this array by performing 
a Set Bit operation relative to the list TabuList(v*,j*) that consists of making a single pass 
of the list to set TabuBit(v,j) = 1 for each attribute (v,j) on this list. This allows a very fast 
determination of whether a given element (v,j) subsequently examined is an element of 
TabuList(v*,j*) simply by checking whether TabuBit(v,j) = 1 or 0. Once the use of the 
array TabuBit(v,j) is completed, it is restored to its initial “all 0” state by a Re-Set Bit 
operation in which one additional pass of TabuList(v*,j*) identifies the elements of 
TabuBit(v,j) to be changed from 1 back to 0.  
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An analogous process can also be used to create an efficient update of the relevant lists 
TabuList(v,j) that are affected each time a new inequality (1.1(p)) is generated at Step 4. 
For this, we exploit the fact that (v,j) ∈ TabuList(v*,j*) if and only if (v*,j*) ∈ 
TabuList(v,j). First the Set Bit operation is performed relative to TabuList(v*,j*) as 
previously indicated. Then, a pass is made of the elements (v,j) ∈ NA(p), considering 
only elements such that TabuBit(v,j) = 0. For each of these elements, the attribute (v*,j*) 
is added to TabuList(v,j) and (v,j) is added to TabuList(v*,j*). Finally, once again the Re-
Set Bit operation is performed to restore TabuBit(v,j) to its all zero state, in this case 
referring only to the subset of TabuList(v*,j*) that was used in the Set Bit operation. 
 
The exploitation of the Tabu1 list, to avoid re-selecting pairs (v,j) on the first iteration of 
Step 1 that were selected on the first iteration when generating recent previous 
inequalities, can be handled in a simpler fashion by using a dedicated TabuBit1(v,j) array 
where TabuBit1(v,j) = 1 if (v,j) ∈ Tabu1 and TabuBit1(v,j) = 0 otherwise. However, if an 
additional saving of memory is desired, the membership in Tabu1 can be tracked by a 
procedure analogous to that indicated for handling TabuList(v*,j*). 
 
To summarize, the key updates used in the improved SAT-DM method can be described 
by reference to the following elementary operations.  
 
For updating Tabu1 in Step 1 for iter = 1: 
 Let (v′,j′) denote the element (v,j) that was added to Tabu1 on the step that 
occurred TabuLim executions in the past (if at least this many executions of Step 1 for 
iter = 1 have occurred). 
 
Tabu1 and TabuBit1 Update. 
 For (v*,j*) chosen at Step 1 for iter = 1: Let Tabu1 = Tabu1∪(v*,j*) – (v′,j′). Set 
TabuBit1(v′,j′) = 0 and TabuBit1(v*,j*) = 1. 
 
For checking and updating TabuList(v*,j*)) in Step 1 for iter = 2 and for updating 
TabuList(v*,j*) and associated lists TabuList(v,j) in Step 4:  
 Let NS denotes an arbitrary subset of NA (e.g., NS = TabuList(v*,j*)).  
 
Set Bit(NS)  
 For each (v,j) ∈ NS, set TabuBit(v,j) = 1. 
 
Re-Set Bit(NS) 
 For each (v,j) ∈ NS, set TabuBit(v,j) = 0. 
 
Finally, to achieve the goals of the attribute selection problem, we use an attribute list 
AttList to record the attributes (v,j) that have been selected to create the inequalities 
generated. Once the SAT-DM method fills this list with a number of attributes sufficient 
to yield |AttList| ≥ AttLim, we restrict the method from then on to generate inequalities 
only from the attributes (v,j) ∈ AttList. This policy assures that the inequalities embody 
only a limited set of attributes, and also substantially reduces the computation from this 
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point onward. Thus, once |AttList| ≥ AttLim, the SAT-DM method prepares for the Core 
Routine by setting NA (the set of attributes accessed in this routine) to AttList, instead of 
setting NA to the original set of attributes NAo. AttList is updated by the operation 
AttList := AttList∪NA* in Step 4 (as long as |AttList| < AttLim), and this may be done 
efficiently by keeping a bit list AttBit(v,j) that is devoted to identifying membership in 
AttList, or, if memory is desired to be conserved, by re-using the bit list TabuBit(v,j) with 
the Set Bit and Re-Set Bit operations. 
 
On each first iteration of the Core Method (when iter = 1), we restrict consideration to 
elements j in a set NA1 which differs from NA if the attribute list AttList is full (|AttList| 
≥ AttLim). In this case, in preparation for the Core Method we set NA1 = NA – {(v,j) ∈ 
AttList: |TabuList(v,j)| ≥ AttLim – 1}, thus removing from NA all those attributes (v,j) 
that have been paired with at least AttLim – 1 other attributes, since if we select any (v,j) 
in NA1 then we will be unable to match it with another attribute by the rule of iter = 2. 
(We specify AttLim – 1 instead of AttLim, to account for the fact that the attribute (1 – 
v,j) will not be listed on TabuList(v,j) but (v,j) still cannot be paired with it.)  Though we 
do not bother to give the details, an array such as AttBit(v,j) can similarly be used to 
facilitate the updating and checking of NA1. 
 
The improved form of the SAT-DM method that results from incorporating these 
observations is as follows. 
 
Improved  SAT-DM Method for Generating Multiple Inequalities.  
0.0 (Initialization) Select a limit L on the number of inequalities to generate and a limit 

AttLim on the number of attributes to be used over all inequalities generated. 
Initialize p = 0, and set TabuBit(v,j) = TabuBit1(v,j) = AttBit(v,j) = 0 for all (v,j) ∈ 
NAo. Let AttList = ∅.  

1.0 (Prepare for the Core Method.) Set Gα = Gα
o

 , Gα* = ∅,  N0 = N1 = ∅,  
     NA* = ∅ and iter = 0. 
     Attribute List Activation Check:   
     If |AttList| ≥ AttLim (AttList is full, and is no longer allowed to grow)  
           Set NA = AttList. 
           NA1 = NA – {(v,j) ∈ AttList: |TabuList(v,j)| ≥ AttLim – 1} 
           If NA1 = ∅, terminate the method. 
     Else (if |AttList| < AttLim) 
           Set NA = NAo. 
           NA1 = NA 
     Endif 
 
SAT-DM Core Method. 
1. Set iter := iter + 1. Identify v* = 0 or 1 and j* ∈ N such that  
 If iter = 1: (v*,j*) = arg max(avj: (v,j) ∈ NA1, TabuBit1(v,j) = 0). 
                              Execute Tabu1 and TabuBit1 Update. Set (v1,j1) = (v*,j*).  
 If iter = 2: Execute Set Bit(TabuList(v1,j1))  
        (v*,j*) = arg max(avj: (v,j) ∈ NA, TabuBit(v,j) = 0) 
        Execute Re-Set Bit(TabuList(v1,j1))  
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 If iter > 2:  (v*,j*) = arg max(avj: (v,j) ∈ NA) 
            If av*j* = 0: 
                If iter = 1, terminate the Core Method. 
                If iter > 1, go to Step 4. 
            If av*j* > 0: continue to Step 2. 
2. Set Nv* := Nv*∪{j*}, NA := NA – {0,j*} – {1,j*}, Gα* := Gα*∪{i ∈ Gα: xj*

i = v*} and     
    Gα := Gα – {i ∈ Gα: xj*

i = v*}. Execute Set Bit(TabuList(v*,j*)) and let  
    TabuSave =  TabuList(v*,j*).6 Then for each (v,j) ∈ NA* such that TabuBit(v,j) = 0,    
            Add (v*,j*) to TabuList(v,j) and add (v,j) to TabuList(v*,j*).  
    Execute Re-Set Bit(TabuSave) and set NA* := NA*∪{(v*,j*)} 
3. If |Gα*| ≥ f| Gα

o
 | or NA = ∅ proceed to Step 4. Otherwise, determine the updated    

    values avj =  |{i ∈ Gα: xj
i = v}|, for (v,j) ∈ NA, and return to Step 1. 

4. Set p := p + 1 and generate the inequality (1.1(p)), satisfied by all x = xi for i ∈ Gα*,    
    given by 

∑(xj: j ∈ N1(p)) + ∑( xj: j ∈ N0(p))  ≥  1   (1.1(p))  
    If (1.1(p)) can be reduced, perform the reduction to replace it by a prime implicant,  
    and remove from NA* any attributes dropped in such a reduction. If |AttList| <   
    AttLim, then for each (v,j) ∈ NA* such that AttBit(v,j) = 0, set  
    AttList :=AttList∪{v,j) and AttBit(v,j) = 1.. 
End of Core Method 
 
2.0 If p = L or if |Gα*| < f| Gα

o
 |, then stop. Otherwise return to Step 1.0. 

End of Method 
 
The comments of Remarks 1 through 5 can be used to reduce the computation of the 
method. A significant further reduction in computation can be achieved by using a 
candidate list CanAtt to restrict the number of attributes examined during the choice step 
– in this case, constituting a set of attributes (v,j) that are permitted to be examined in 
selecting (v*,j*) within Step 1. We briefly sketch how CanAtt can be incorporated within 
the SAT-DM method. 
 
CanAtt operates much like AttList, except that it is larger than AttList (though still, as a 
rule, substantially smaller than NAo) and is filled faster than AttList. This accelerated 
filling of CanAtt allows it to take over the job of restricting the number of choices 
examined while waiting for AttList to be filled. To accomplish this, CanAtt includes not 
only the attributes selected to generate the inequalities (1.1(p)), but also additional 
attributes that receive high evaluations as candidates for the pair (v*,j*) selected in Step1. 
 
Thus, to start, CanAtt receives the following assignment of attributes in the Initialization 
Step 0.0 
 
 CanAtt = {(v,j) ∈ NAo: avj := one of the ho largest avj values for (v,j) ∈ NAo}. 
 

                                                 
6 TabuSave can be identified simply by flagging the last element in the current TabuList(v*,j*). 
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The parameter ho is fairly small relative to AttLim (e.g., ho = AttLim/20), subject to 
requiring, for example, ho ≥ 10.  Subsequently, during iterations of the Core Method, 
when iter ≥ 2 we identify a set  
 
 Can′ = {(v,j) ∈ NA: avj is one of the ho largest avj values for (v,j) ∈ NA′}  
 
where  
 
 NA′ = {(v,j) ∈ NA: TabuBit(v,j) = 0} for iter = 2 and NA′ = NA for iter > 2.  
 
Then CanAtt is augmented to include new elements of Can′ (if any exist not already in 
CanAtt) by setting  CanAtt := CanAtt∪NA′, taking advantage of a bit set CanBit(v,j) 
exactly analogous to the set AttBit(v,j).   
 
Finally, a limit CanLim can be employed that operates for CanAtt in the same way as the 
limit AttLim operates for AttList (where, for example, CanLim = vAttLim for v between 
1.5 and 3). When CanAtt is filled to the point where |CanAtt| ≥ CanLim, then the set NA 
is set equal to CanAtt in Step 1.0, until at last AttList is filled and NA is set equal to 
AttList from then on. 
 
The foregoing method can be used to differentiate elements of Gα from those of Gβ by a 
two-pass application in which Gβ adopts the role of Gα on the second pass. The restricted 
set of attributes embodied in AttList is carried forward from the first pass to the second. 
Then, a new point of unknown membership becomes classified as belonging to Gα or Gβ 
according to the number or proportion of the inequalities that the point satisfies for each 
of these two groups. In the next section we address the challenge of creating a unified 
method that simultaneously considers both Gα and Gβ during the generation of each 
inequality, by referring to the problem SAT(QC/AC) in place of SAT(QC).    
 
8. SAT-DM Method for SAT(QC/AC)  
 
The description of SAT(QC/AC) is duplicated below as a basis for extending the 
foregoing ideas to generate inequalities relative to this more general problem. 
 
SAT(QC/AC):  Generate a collection of strongly satisfying solutions to the problem 
            Minimize ∑((y1j + y0j): j ∈ N) 
       subject to 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≥  1      i ∈ Gα   (2.1) 

∑(xj
i y1j: j ∈ N) + ∑( xji y0j: j ∈ N)  ≤  0      i ∈ Gβ   (2.2) 

                                                  y1j + y0j  ≤  1      j ∈ N   (2.3) 
    y1j, y0j ∈ {0,1}     j ∈ N   (2.4) 

 
We again make recourse to surrogate constraint analysis to exploit the problem structure. 
In the case of SAT(QC/AC), we generate two surrogate constraints, one for the 
inequalities (2.1) and one for the inequalities (2.2).  
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To be consistent with the statement of the Fundamental Observation, the index set Gβ* is 
used to identify the subset of inequalities of (2.2) that are satisfied at any stage of 
executing the SAT-DM method (just as Gα* identifies the subset of the inequalities of 
(2.1) that are satisfied at any stage). Consequently, Gβ* initially starts out as Gβ* = Gβ

o, in 
contrast to Gα* which starts out as Gα* = ∅. The update of Gβ* is carried out in the same 
manner as the update of Gα (which, analogously to Gβ*, starts out Gα = Gα

o). 
Consequently, while Gα identifies the portion of Gα

o corresponding to constraints (2.1) 
not yet satisfied, Gβ* identifies the portion of Gβ

o corresponding to constraints (2.2) not 
yet violated. (In reverse, while Gα* identifies the constraints of (2.1) currently satisfied, 
Gβ identifies the constraints of (2.2) currently violated.)  
 
The surrogate constraint for (2.1) for the SAT(QC/AC) problem can then be written in 
the same way as for the SAT(QC) problem, i.e.  
 

∑(a1jy1j: j ∈ N) + ∑(a0jy0j: j ∈ N)  ≥  ao     (3) 
 
Correspondingly, we write the surrogate constraint for (2.2) for the SAT(QC/AC) 
problem as 
 

∑(b1jy1j: j ∈ N) + ∑(b0jy0j: j ∈ N)  ≤  0          (4) 
 
As previously observed, the coefficients a1j and a0j produced by the surrogate sum rule 
are given by  
 
  a1j = ∑(xj

i: i ∈ Gα) and a0j = ∑( xji: i ∈ Gα).   
 
By contrast, in view of the preceding observations, the coefficients b1j and b0j are given 
by  
 
  b1j = ∑(xj

i: i ∈ Gβ*) and b0j = ∑(xji: i ∈ Gβ*) 
 
(i.e., the latter are created by summing over Gβ* rather than Gβ). For the chosen attribute 
(v*,j*), the coefficient bv*j*  identifies the number of inequalities i ∈ Gβ* that will become 
violated by the assignment yv*j* = 1, as opposed to the coefficient av*j*, which identifies 
the number of inequalities i ∈ Gα of (2.1) that will become satisfied by this assignment. 
(It is possible that bv*j* = 0 and hence no new inequalities i ∈ Gβ* will become violated.) 
We may equivalently write avj =  |{i ∈ Gα: xj

i = v}| and bvj =  |{i ∈ Gβ*: xj
i = v}|, for v ∈ 

{0.1}. 
 
By the discussion of the SAT-DM method for the SAT(QC) problem, we are assured of 
being able to select v* and j* so that av*j* > 0 on each iteration of Step 1 (except possibly 
when iter = 1 for the Basic Method, in which case the method terminates).  There is no 
virtue in a choice of v* and j* that yields av*j* = 0, given that setting yv*j* = 1 can not 
improve the number of inequalities of (2.2) that are satisfied in this case. 
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We propose two approaches for taking advantage of the surrogate constraint (4) to create 
a choice rule for selecting v* and j*. For the first, write (4) as 
 

∑(– b1jy1j: j ∈ N) + ∑(– b0jy0j: j ∈ N)  ≥  0        (4a) 
 
Then we create a single surrogate constraint as a composite of (3) and (4a) by choosing a 
positive weight w to multiply by (3) and add to (4a), thus yielding 
 

∑(wa1j – b1j)y1j: j ∈ N) + ∑(wa0j –b0jy0j): j ∈ N)  ≥  0        (5) 
 
The value w captures the tradeoff between the amount of emphasis placed on satisfying 
constraints of (2.1) versus violating constraints of (2.2). A natural choice for w  is  
w = |Gβ*| /|Gα|, which gives an equal emphasis to proportional changes in |Gβ*| and |Gα|. 
(|Gα| ≥ 1 holds whenever v* and j* are chosen, because if Gα becomes empty the method 
does not return to Step 1 but generates a new inequality at Step 4.) Then the associated 
rule for choosing v* and j* can be expressed as 
 

 (v*,j*) = arg max(wavj – bvj: v ∈ {0,1}, j ∈ N). 
 
The surrogate constraints (3) and (4) can be used in an additional way. Let Tα be a 
threshold  establishing a lower bound on the improvement sought in Gα,  and 
correspondingly, let Tβ be a threshold establishing an upper bound on the deterioration 
allowed in Gβ. Then the rule for choosing v* and j* that takes these thresholds into 
account may be specified as 
 

Rule 1: (v*,j*) = arg max(wavj – bvj: avj ≥  Tα, bvj ≤ Tα, v ∈ {0,1}, j ∈ N).  
 
This rule includes the previous one as a special case by selecting both Tα and Tβ 
redundant, as by Tα = 0 and Tβ = large (where |Gβ

o| suffices for “large”). Extreme 
examples include  
 

Tα = Max(avj: v ∈ {0,1}, j ∈ N), Tβ = large, and  
Tα = 0, Tβ = Min(bvj: v ∈ {0,1}, j ∈ N).  

 
Based on the fact that Gα is the focal group, and that avj

 > 0 is preferable to assure, an 
appealing form of Rule 1 is to take Tβ = large and to choose Tα from the interval 
 

Mean(avj > 0: v ∈ {0,1}, j ∈ N) ≤  Tα  ≤ Max(avj: v ∈ {0,1}, j ∈ N).   
 
The second approach for exploiting the pair of surrogate constraints (3) and (4) is to 
maximize the ratio avj/bvj (representing the increase in the number of constraints satisfied 
in (2.1) to the increase in the number of constraints violated in (2.2)), or more precisely to 
maximize the ratio avj/bvj

e, selecting the exponent e > 1 (e.g., e = 1.5 or 2), to emphasize 
the goal of avoiding the case where a choice will result in (or lead to) violating a 
significant number of the inequalities of (2.2). We replace bvj

e in the ratio avj/bvj
e by 
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adding a moderately small positive value ε (e.g., ε ≤ .1) to the denominator to avoid 
complication when bvj = 0.  Then we obtain the rule 
 

Rule 2: (v*,j*) = arg max((avj/(bvj
e
 + ε)):, v ∈ {0,1}, j ∈ N)  

  
For definiteness, we will incorporate Rule 2 into our description of the SAT-DM method 
for SAT(QC/AC), though Rule 1 can be used as well. 
 
Alternating Construction and Destruction 
 
The SAT-DM method for SAT(QC/AC) begins in the same way as the version for 
SAT(QC), by constructively choosing a new attribute (v*,j*) to augment the set NA(p) at 
each iteration of the Core Method. The only difference is in the rule for selecting (v*,j*). 
The fraction f is taken to be 1 to allow the constructive process to continue until Gα* = 
Gα

o (Gα = ∅) when this is possible, in order to satisfy all of the inequalities of (2.1). This 
asymmetric solution, which satisfies all of (2.1), has a special role in a tree-based 
classification procedure as we show later. However, to compensate for this asymmetry, 
we follow the constructive process of the Core Method with a destructive process to 
successively remove selected attributes from NA(p) to create a balance between the 
number of data points satisfying (2.1) and the number violating (2.2), respectively 
identified by |Gα*| and |Gβ*|. 
 
Each destructive iteration decreases both |Gα*| and |Gβ*|, hence improving |Gβ*| while 
worsening |Gα*|. (Reducing (2.1(p)*) to a prime implicant before the destructive step 
removes the possibility that |Gα*| will remain unchanged.) We again make use of 
surrogate constraint coefficients that identify the change in these two values, and select a 
preferred (v*,j*) to drop by a ratio rule related to Rule 2, by identifying  
 
 Coverα(i) = ∑(xj

i: j ∈ N1(p)) + ∑(xji: j ∈ N0(p)),  for i ∈ Gα
o   (6) 

 
and similarly 
 
 Coverβ(i) = ∑(xj

i: j ∈ N1(p)) + ∑(xji: j ∈ N0(p)),  for i ∈ Gβ
o.  (7) 

 
The inequality (2.1) is satisfied for a given i ∈ Gα

o if Coverα(i) ≥ 1 and the inequality 
(2.2) is satisfied for a given i ∈ Gβ

o if Coverβ(i)  ≤ 0. We exploit this fact as follows.  
 
For j ∈ N1(p), define  

 
       a1j =  ∑(xj

i: i ∈ Gα
o, Coverα(i) = 1) and b1j = ∑(xj

i:  i ∈ Gβ
o, Coverβ(i) = 1)  (8)  

 
Similarly, for j ∈ N0(p), define  

 
       a0j =  ∑(xji: i ∈ Gα

o, Coverα(i) = 1) and b0j = ∑(xji: i ∈ Gβ
o, Coverβ(i) = 1) (9) 
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Then avj identifies the number of new inequalities for i ∈ Gα
o that become violated by 

dropping (v,j) from NA(p) (by implicitly setting yvj = 0) and bvj identifies the number of 
new inequalities for i ∈ Gβ

o that become satisfied by dropping (v,j) from NA(p) (likewise 
by setting yvj = 0) . Thus, to assure an appropriate tradeoff between improving |Gβ*| and 
worsening |Gα*|, we require bvj/avj > R where R is a selected ratio such as R =  |Gβ

o|/|Gα
o|. 

First, to remove the possibility avj
 = 0, we reduce the inequality to a prime implicant by 

the choice rule 
 

Prime Implicant Choice Rule: (v*,j*) = arg max(bvj:  avj = 0, (v,j) ∈ NA(p))   
 
After updating by dropping (v*,j*) from NA(p) and computing the new avj and bvj values, 
the process repeats. Once this rule can no longer be applied, because avj > 0 for all (v,j) ∈ 
NA(p), the inequality is a prime implicant. Thereafter we apply the choice rule 
 
  Ratio Choice Rule: (v*,j*) = arg max(bvj

e/avj: (v,j) ∈ NA(p)). 
  
This process is similarly repeated until av*j*  ≤ R. At that point an addition inequality pair 
(1.1P) and (1.2P) is obtained, and the method goes back to launch the next execution of 
the Core Method, starting with its constructive component. 
 
There is one final consideration to be mentioned regarding these choice rules. From the 
standpoint of a more robust classification, there can be value in not merely satisfying the 
inequalities of the original SAT(QC/AC) system, but in producing values of Coverα(i) as 
large as possible for i ∈ Gα

o
 and values of Coverβ(i) as small as possible for i ∈ Gβ

o. 
Thus, we not only strive to yield Coverα(i) ≥ 1 and Coverβ(i) ≤ 0, but to encourage 
Coverα(i) to increase still further while preventing Coverβ(i) from increasing more than 
necessary, subject to meeting our first objective. Consequently, it is useful to extend the 
interpretation of the arg max function used in the Constructive and Destructive 
components of the method, to endow it with a tie-breaking function. In the Constructive 
Component, where we choose (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA), there can well 

be situations where different attributes (v,j) yield the same avj and bvj values that result in 
ties for choosing (v*,j*). We propose to break ties by reapplying the same choice rule, 
but replacing the current avj and bvj values with their original values determined relative 
to the sets Gα

o and Gβ
o. These original values can be computed and stored just once, in a 

preprocessing step, so that they can be instantly accessed without re-computation as a 
basis for resolving ties relative to the current values. The same comments apply to the 
determination of (v*,j*) by reference to the choice rules used in the Destructive 
Component.     
 
The complete SAT-DM method for SAT(QC/AC) may now be described as follows.  
 
SAT-DM Method for SAT(QC/AC).  
0.0 (Initialization) Select a limit L on the number of inequalities to generate and a limit 

AttLim on the number of attributes to be used over all inequalities generated. 
Initialize p = 0, and set TabuBit(v,j) = TabuBit1(v,j) = AttBit(v,j) = 0 for all (v,j) ∈ 
NAo. Let AttList = ∅.  
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1.0 (Prepare for the Core Method.) Set Gα = Gα
o

 , Gα* = ∅,  Gβ = Gβ*, Gβ = ∅,  
      N0 = N1 = ∅, NA* = ∅ and iter = 0. Set Coverα(i) = 0 for i ∈ Gα

o
 and Coverβ(i) = 0   

      for i ∈ Gβ
o.  

      Attribute List Activation Check:   
      If |AttList| ≥ AttLim (AttList is full, and is no longer allowed to grow)  
           Set NA = AttList. 
           NA1 = NA – {(v,j) ∈ AttList: |TabuList(v,j)| ≥ AttLim – 1} 
           If NA1 = ∅, terminate the method. 
      Else (if |AttList| < AttLim) 
           Set NA = NAo. 
           NA1 = NA 
      Endif 
 
SAT-DM Core Method for SAT(QC/AC) 
Constructive Component 
1.  Set iter := iter + 1. Identify (v*,j*) ∈ NA such that  
 If iter = 1: (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA1, TabuBit1(v,j) = 0). 

                              Execute Tabu1 and TabuBit1 Update. Set (v1,j1) = (v*,j*).  
 If iter = 2: Execute Set Bit(TabuList(v1,j1))  
        (v*,j*) = arg max(avj/(bvj

e + ε): (v,j) ∈ NA, TabuBit(v,j) = 0) 
        Execute Re-Set Bit(TabuList(v1,j1))  
 If iter > 2:  (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA) 

            If av*j* = 0: 
                If iter = 1, terminate the Core Method. 
                If iter > 1, go to Step 4. 
            If av*j* > 0: continue to Step 2. 
2.  Set Nv* := Nv*∪{j*}, NA := NA – {0,j*} – {1,j*}, Gα* := Gα*∪{i ∈ Gα: xj*

i = v*} and     
     Gα := Gα – {i ∈ Gα: xj*

i = v*}. Gβ := Gβ∪{i ∈ Gβ: xj*
i = v*}, Gβ* := Gβ* –{i ∈ Gβ: xj*

i 
= v*}, Also set Coverα(i) := Coverα(i) + 1 for i ∈ Gα

o: xj*
i = v*, and Coverβ(i) := 

Coverβ(i) + 1 for i ∈ Gβ
o: xj*

i = v*.     
     Execute Set Bit(TabuList(v*,j*)) and let TabuSave =  TabuList(v*,j*).7 Then for each    
     (v,j) ∈ NA* such that TabuBit(v,j) = 0:   
            Add (v*,j*) to TabuList(v,j) and add (v,j) to TabuList(v*,j*).  
    Execute Re-Set Bit(TabuSave) and set NA* := NA*∪{(v*,j*)}. 
3. If |Gα*| ≥ |Gα

o| or NA = ∅ proceed to Step 4. Otherwise, determine the updated    
    values avj =  |{i ∈ Gα: xj

i = v}|, for (v,j) ∈ NA, and return to Ste(1.1(p)), p 1. 
4. Set p := p + 1 and generate the inequality (1.1(p)), satisfied by all x = xi for i ∈ Gα*  
    and i  ∈ Gβ  and the inequality (1.2(p)), satisfied by all x = xi for i ∈ Gα and i ∈ Gβ* 
    given by 

∑(xj: j ∈ N1(p)) + ∑(xj: j ∈ N0(p))  ≥  1   (1.1(p))  
∑(xj: j ∈ N1(p)) + ∑(xj: j ∈ N0(p))  ≤  0   (1.2(p)) 

End of Constructive Component 
 

                                                 
7 TabuSave can be identified simply by flagging the last element in the current TabuList(v*,j*). 
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Destructive Component 
Generate avj and bvj by (8) and (9) for (v,j) ∈ NA(p).  
Phase 1. 
Set iter1 = 0. 
D1. Select (v*,j*) by the Prime Implicant Choice Rule:  
                (v*,j*) = arg max(bvj:  avj = 0, (v,j) ∈ NA(p)) 
       If (v*,j*) is not defined: proceed to Step D2 if iter1 > 0 and to Step D3 if iter1 = 0. 
       Otherwise, if (v*,j*) is defined: set iter1 := iter1 + 1, update NA(p) by dropping  
       (v*,j*), and update Coverα(i) and Coverβ(i) and avj  and bvj by (6) – (9); then  
       repeat D1.  
D2. (iter > 0: NA(p) has been reduced in D1 on previous Phase 1 iterations). Redefine   
       (1.1(p)) and (1.2(p)) relative to the reduced set NA(p). 
D3. (Inequality (1.1(p)) is a prime implicant). If |AttList| < AttLim, then for each  
       (v,j) ∈ NA* such that AttBit(v,j) = 0, set AttList :=AttList∪{v,j) and AttBit(v,j) = 1. 
Phase 2. 
Set iter2 = 0. 
D4. Select (v*,j*) by the Ratio Choice Rule:  
                (v*,j*) = arg max(bvj

e/avj: (v,j) ∈ NA(p)) 
       If av*j*  ≤ R:  
                 If iter2 > 0, proceed to Step D5, while if iter2 = 0, terminate the Destructive   
                 Component  (hence terminating the Core Method). 
       Otherwise, if av*j*  > R:  
                 Set iter2 := iter2 + 1, update NA(p) by dropping (v*,j*), and update   
                 Coverα(i) and Coverβ(i) and avj  and bvj by (6) – (9). Then repeat D4.  
D5. Set p := p + 1 and generate the balanced inequalities   

∑(xj: j ∈ N1(p)) + ∑(xj: j ∈ N0(p))  ≥  1   (1.1(p))  
∑(xj: j ∈ N1(p)) + ∑(xj: j ∈ N0(p))  ≤  0   (1.2(p)) 

End of Destructive Component and End of Core Method 
  
2.0 If p ≥ L, then stop. Otherwise return to Step 1.0. 
End of Method 
 
In the pursuit of creating inequalities (1.1(p) and (1.2(p)) yielding classifications of 
greater robustness, we can go a step beyond our convention of interpreting the arg max 
function so that it breaks ties to increase the values Coverα(i) and decrease the values of 
Coverβ(i), by adding a final “Re-constructive Component” after the Destructive 
Component of the Core Method. In this final component, the method looks for choices 
that can promote a still better distribution of Coverα(i) and Coverβ(i) values, without 
permitting any Coverβ(i) values that are 0 to become positive. Likewise, it is possible to 
use the Coverα(i) and Coverβ(i) values in the rules for choosing (v*,j*) to differentially 
encourage smaller Coverα(i) values to grow end larger Coverβ(i) values not to grow. 
Whether the added computational expense of such refinements is warranted will depend 
on the setting.  
 



 28

As in the case of the method of Section 7 for the SAT(QC) problem, the preceding 
method can be executed in two passes where the second interchanges the roles of Gα and 
Gβ. 
 
A Staged Variant   
 
A useful variant of the foregoing method arises by generating more than one inequality in 
the Constructive Component by means of a staged process as follows. The choice rule for 
selecting (v*,j*) in the Constructive Method, given by  
   
  (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA) 

 
will automatically select av*j* > 0 when possible, and if the outcome av*j* = 0 results the 
Constructive Component terminates. (If iter = 1 when av*j* = 0 the Core Method itself, 
terminates.)  Given av*j* > 0 the preceding rule will also choose bv*j* = 0 whenever the 
latter is also possible, and in this circumstance the method avoids increasing the number 
of inequalities in the system (2.2) that are currently violated. Furthermore, if the exponent 
e is made large enough the rule for choosing (v*,j*) will always favor a smaller bv*j* 
value over a larger one. Hence in this case the succession of choices will always give 
priority to creating the smallest deterioration (increase) in the set Gβ (which identifies the 
violated inequalities of (2.2) and the points xi that are covered by (1.2(p))).  
 
Such an approach is appealing from a conservative perspective of seeking to limit the 
growth in Gβ at each step, producing a pattern where successive executions of the Core 
Method are induced to generate inequalities (1.1(p)) and (1.2(p)) for smaller Gβ sets 
before generating inequalities for larger Gβ sets. Under such a “staged” organization, the 
Constructive Component of the Core Method can appropriately record additional 
inequalities generated along the way, saving the inequality for each of the conditions |Gβ| 
= 0, |Gβ| = 1, |Gβ| = 2, etc., that yields the maximum size of the set Gα* (which identifies 
the satisfied inequalities of (2.1)) for this particular value of |Gβ|. This organization also 
permits the Constructive Component to be terminated once |Gβ| reaches a selected size, 
thus limiting the number of violated inequalities from the system (2.2) that will be 
tolerated. Each of the inequalities (1.1(p)) and (1.2(p)) thus recorded for different |Gβ| 
values is relevant in a different way for classifying an unknown point correctly. For 
example, we have already suggested two alternatives for classifying a point of unknown 
membership as belonging to one of the original group Gα

o
 or Gβ

o, giving it a vote of either 
1 or |Gα*|/|Gα

o| for belonging to Gα
o if it satisfies a given inequality (1.1(p)), and similarly 

giving it a vote of either 1 or |Gβ*|/|Gβ
o| for belonging to Gβ

o if it satisfies a given 
inequality (1.2(p)). The record of additional inequalities for different numbers of 
elements of Gα* and Gβ (hence of Gβ* = Gβ

o – Gβ) expands the representation of this 
process. It also allows reference to be made to ratios such as |Gα*|/(|Gα*| + |Gβ*|) 
|Gβ*|/(|Gα*| + |Gβ*|) to further refine such votes. 
 
The indicated Staged Method has another potential advantage that derives from its ability 
to be organized in a different manner. Rather than assigning a large value to the exponent  
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e in the rule for choosing (v*,j*), the rule can be broken into the following two parts: 
 
 Identify b* = Min(bvj: (v,j) ∈ NA) 
 Select (v*,j*) = arg max(avj: bvj = b*, (v,j) ∈ NA) 
 
The utility of this organization comes from the following observation. After each choice 
of (v*,j*), the value of |Gβ| becomes increased by b*, and hence if b* = 0, the size of |Gβ| 
does not change. In addition, the outcome b* > 0 implies that the inequality pair (1.1(p)) 
and (1.2(p)) (produced by the current composition of N1(p) and N0(p) before selecting the 
new (v*,j*)) gives the locally maximum value of |Gα*| for the current value of  |Gβ|. Thus, 
b* > 0 signals that the current pair (1.1(p)) and (1.2(p)) should be identified in order to 
record the desired inequality for each value of |Gβ|. (Such a record is excluded if iter = 1, 
because at this point Gα* is still empty and no implied inequality pair (1.1(p)) and 
(1.2(p)) yet exists.)  
 
This two-part choice rule can be executed with particular efficiency if more than one 
iteration occurs in succession with b* = 0. Let NA(b*) denote be the reduced subset of 
NA over which the selection of (v*,j*) is implicitly restricted by the two-part rule; i.e., 
NA(b*) = {(v,j) ∈ NA: bvj = b*). Then, during any series of iterations in which b* = 0, 
the set NA(b*) (= NA(0)) cannot grow, but can only decrease in size. Whenever b* = 0, 
b* will again be 0 on the next iteration if and only if NA(0) remains non-empty when  
updated in the same way that NA is updated; i.e., NA(0) := NA(0) – {0,j*} – {1,j*} for 
each choice of j* once b* = 0 occurs (either on iter = 1 or immediately after the latest 
iteration when b* > 0). Moreover, as long as NA(0) remains non-empty by this update, 
then the next choice of (v*,j*) is simplified by (v*,j*) = arg max(avj: (v,j) ∈ NA(0)), and 
there is no need to first identify b* from its definition.  
 
A special condition needs to be heeded for iter = 2 and for the case where NA is 
initialized to equal AttList (in preparation for the Core Method). Then possibly the choice 
of av*j* may yield av*j* = 0 even if NA(0) is non-empty,. (This outcome can’t occur if NA 
is instead initialized by NA = NAo and if iter ≠ 2 because av*j* = 0 can only occur if (v,j) 
∈ NA implies (1 – v,j) ∉ NA, which is not true until NA becomes a subset of AttList or 
the special rule of iter = 2 is used to select (v*,j*).) Thus, whenever av*j* = 0 or whenever 
NA(0) becomes empty, the method reverts to the complete two-part rule to first compute 
b* and then identify (v*,j*) without taking advantage of the simplified rule. 
 
9. A Compound Variable SAT(QC/AC) Method   
 
The SAT(QC/AC) Method is susceptible to an enhancement that separates the groups Gα 
and Gβ  more effectively by introducing additional binary variables as products of other 
variables, e.g., representing a product such as x1x2x3 (= x1x2(1-x3)) as an additional binary 
variable. We show how this can be done adaptively. 
 
The Compound Variable SAT-DM Method embodies a modification of the Constructive 
Component of the SAT-DM Core Method, but retains most of its present structure to 
initiate the choice of each first component term xj or x j of a compound variable. The 
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choice step consists of selecting an index j* and a 0-1 value v*, as before, to make an 
assignment xj*

i = v*, which by the Fundamental Observation translates into creating a 
term xj* and designating j* to be an element of N1(p) if v* = 1, or of creating a term xj*, 
and designating j* to be an element of N0(p), if v* = 0.   
 
The change entails introducing an Inner Loop into the Core Method after selecting the 
first term of a compound variable. The Inner Loop then selects additional terms xj or x j, 
by means of additional choices of pairs (j*,v*), until the complete compound variable is 
produced, whereupon it is treated as if it were a “normal” 0-1 variable, yh, which in this 
case is identified by  
 

yh = ∏ (xj: j ∈ N1(h)) ∏(xj: j ∈ N0(h)),  
 
By convention, the product over N1(h) or N0(h) is understood to equal 1 if the 
corresponding set is empty. 
 
The complete set of compound variables that compose the current inequality pair (1.1(p)) 
and (1.2(p)) is denoted by yh, h ∈ H(p). Consequently, the new compound forms of the 
inequalities are denoted by (1.1-H(p)) and (1.2-H(p)) , and given the representation 
 

∑(yh: h ∈ H(p)) ≥  1     (1.1-H(p)) 
∑(yh: h ∈ H(p)) ≤  0     (1.2-H(p)) 

 
A new yh variable is created at each iteration, iter, of the Core Method, and hence  
|H(p)*| = iter each time the full inequality pair  (1.1-H(p)) and (1.2-H(p)) is generated. 
 
From a logical standpoint, a compound variable corresponds to a conjunction rather than 
a disjunction of terms. Hence yh corresponds to a conjunction of each of its xj and xj 
components. As a result, each new component added to yh creates the following effect.  
 
Let Iα and Iβ* denote the intersection of elements of Gα and Gβ generated by the 
compound variable yh. When the first term (xj* or x j*) of the yh is created by the initial 
choice of the pair (j*,v*), we set Iα = {i ∈ Gα: xj*

i = v*} and Iβ* = {i ∈ Gβ: xj*
i = v*}. The 

choice of each new pair (j*,v*) produces the updated form of the intersections Iα and Iβ* 
by setting Iα := {i ∈ Iα: xj*

i = v*} and Iβ* := {i ∈ Iβ*: xj*
i = v*}. Hence, each updated 

instance of Iα and Iβ* is a subset of its previous instantiation. Our goal remains to cover as 
much of the original Gα

o as possible and as little of the original Gβ
o as possible, and hence 

to maximize the size of Iα and minimize the size of Iβ*. The fact that the compound 
variables generate intersections hinders the maximization objective but helps the 
minimization objective. If we obtain a compound variable that results in making Iβ* 
empty (as successive intersections help to foster), then a gain has been achieved by 
covering all of the original Gα

o that falls in Iα while avoiding the inclusion of any part of 
the original Gβ

o. 
 
The surrogate constraint choice rule used in the SAT(QC/AC) method continues to be 
applicable to selecting each successive term of a compound variable, except that we 
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replace the reference to Gα and Gβ* by a reference instead to Iα and Iβ*. Thus, within the 
Inner Loop of the Compound Variable Method the coefficients avj and bvj of the surrogate 
constraints (3) and (4) are generated relative to this replacement by 
 
  a1j = ∑(xj

i: i ∈ Iα) and a0j = ∑( xji: i ∈ Iα),   
  b1j = ∑(xj

i: i ∈ Iβ*) and b0j = ∑(xji: i ∈ Iβ*) 
 
By its nature, the surrogate constraint rule that chooses (v*,j*) = arg max(avj/(bvj

e
 + ε) will 

thereby favor making Iα large and Iβ* small, since by the intersection update, the 
coefficients avj and bvj identify the new cardinality of each of these sets as a result of 
choosing (v*,j*). 
 
The SAT(QC/AC) method becomes simplified in one respect by including compound 
variables, in that the Core Method no longer needs to include a Destructive Component. 
In particular, the generation of compound variables takes care of the goal of establishing 
an improved tradeoff between satisfying constraints associated with Gα and violating 
constraints associated with Gβ, and hence the Destructive Component is not required to 
achieve this goal. However, the handling of tabu restrictions becomes more subtle. Now, 
instead of seeking to avoid a duplicate pairing of choices on iter = 2 in the Core Method 
(i.e., in its Constructive Component), we seek simply to assure that at least one 
compound variable has a different composition than any previous compound variable. 
This is done by a design similar to that previously used to handle the case for iter = 2 in 
the Core Method, but applied to iter0 = 2, where iter0 identifies the iteration count for the 
Inner Loop for a given iteration of the Core Method. More precisely, we now avoid a 
pairing when iter = 1 and iter0 = 2 that has occurred in any previous compound variable, 
since this will assure the resulting new compound variable creates no duplications.  
 
There is one more subtlety, however, because it is possible that the method will only 
generate a single variable and not a compound variable when iter = 1 and iter0 = 2. We 
make use of an indicator Compound = false if such a compound variable is not created 
and Compound = true otherwise. When iter = 2 and Compound = false, then we use the 
rule previously identified for the case of iter = 2 in the Core Method. The rule has a 
different significance, however, because the array TabuList(v,j) now stores just the 
attributes that have been paired in (v,j) in creating compound variables. Hence, whenever 
(v*,j*) is selected to avoid a pairing, the choice refers strictly to a pairing involving such 
compound variables. This means that TabuList(v,j) is updated strictly within the Inner 
Loop, where compound variables are created, rather than externally in the Core Method 
as previously. 
 
For simplicity, we continue to refer to NA as the source of the pairs (v,j) from which  
(v*,j*) is chosen, but NA is no longer updated by removing both (v*,j*) and (1 – v*,j*) 
following the selection of (v*,j*),  but by removing only (1 – v*,j*), since it is possible 
that the choice (v*,j*) may be useful within another compound variable on the same 
execution of the Inner Loop. Our handling of TabuList(v,j) permits such repetition to 
occur while avoiding a repetition among combinations of variables that compose a 
compound variable.  



 32

 
Finally, we impose an aspiration threshold on the amount of improvement that occurs as 
a result of choosing (j*,v*). Using the choice rule of the preceding section, which selects 
(v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA), we want to be sure that the ratio that 

determines this choice does not deteriorate below some minimum value MinRatio over 
successive iterations, and thus will make some minimum level of progress toward 
covering Gα and/or shrinking Gβ. For convenience we select MinRatio to be the value 
av*j*/(bv*j*

e
 + ε) achieved by the first (v*,j*) choice on the Inner Loop that generates the 

compound variable yh.8 Consequently, whenever the choice of (v*,j*) made after this first 
choice results in (av*j*/(bv*j* + ε) ≤ MinRatio, the Inner Loop is terminated. (For 
convenience we allow yh to refer to a single variable xj or xj when a compound variable 
consisting of additional terms fails to be generated.) 
 
Drawing on these observations, the compound variable method may be stated as follows. 
 
Compound Variable SAT-DM Method for SAT(QC/AC).  
0.0 (Initialization) Select a limit L on the number of inequalities to generate and a limit 

AttLim on the number of attributes to be used over all inequalities generated. 
Initialize p = 0, and set TabuBit(v,j) = TabuBit1(v,j) = AttBit(v,j) = 0 for all (v,j) ∈ 
NAo. Let AttList = ∅. Set h = 0 (to index the compound variables yh generated within 
the Core Method). Set NA = NAo 

1.0 (Prepare for the Core Method.) Set Gα = Gα
o

 , Gα* = ∅, Gα* = ∅,  Gβ = Gβ*, Gβ = ∅,   
      NA* = ∅ and iter = 0.  
     Attribute List Activation Check:   
     If |AttList| ≥ AttLim (AttList is full, and is no longer allowed to grow)  
           Set NA = AttList. 
           NA1 = NA – {(v,j) ∈ AttList: |TabuList(v,j)| ≥ AttLim – 1} 
           If NA1 = ∅, terminate the method. 
     Else (if |AttList| < AttLim) 
           Set NA = NAo. 
           NA1 = NA 
     Endif 
     
SAT-DM Core Method for SAT(QC/AC) 
1.  Set iter := iter + 1. Identify (v*,j*) ∈ NA such that  
 If iter = 1: (v*,j*) = arg max(avj/(bvj

e + ε): (v,j) ∈ NA1, TabuBit1(v,j) = 0.) 
                              Execute Tabu1 and TabuBit1 Update. Set (v1,j1) = (v*,j*).  
                              Set Compound = false (to be set to true in the Inner Loop if the right  
                              conditions occur). 
 If iter = 2 and Compound = false: Execute Set Bit(TabuList(v1,j1))  
        (v*,j*) = arg max(avj/(bvj

e + ε): (v,j) ∈ NA, TabuBit(v,j) = 0) 
        Execute Re-Set Bit(TabuList(v1,j1))  
 Otherwise:  (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA) 

            NA := NA – {(1 – v*,j*)}. 
                                                 
8 This value for MinRatio can undoubtedly be improved by experimentation. 
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            If |AttList| <  AttLim and if AttBit(v*,j*) = 0:  
                 set AttList := AttList∪{v*,j*) and AttBit(v*,j*) = 1, and if now  
                 |AttList| ≥ AttLim, set NA := NA∩AttList. 
 
           Inner Loop for Compound Variables  
           I0.  iter0 = 1 and CompoundList(iter0) = (v*,j*) 
                 h := h + 1 
                 Set yh := xj* if v* = 1 and yh = xj* if v* = 0. 
                 Set Iα = {i ∈ Gα: xj*

i = v*} and Iβ* = {i ∈ Gβ: xj*
i = v*}.  

                 Set MinRatio = av*j*/(bv*j*
e + ε) 

                 If |Iβ*| = 0 (Iβ* = ∅, or equivalently bv*j* = 0) then yh is complete without   
                           including additional component variables and the Inner Loop terminates.   
                 Otherwise, execute the following steps.  
           I1.  iter0 := iter0 + 1 
       If iter0 = 2 and iter = 1: Execute Set Bit(TabuList(v1,j1))  
     (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA, TabuBit(v,j) = 0) 

     Execute Re-Set Bit(TabuList(v1,j1))  
       Otherwise:  (v*,j*) = arg max(avj/(bvj

e
 + ε): (v,j) ∈ NA) 

                 Ratio Improvement Test:  
                 If  (av*j*/(bv*j*

e
 + ε) ≤ MinRatio terminate the Inner Loop. (The threshold of   

                            improvement is not satisfied.)  
                 Otherwise, if  (av*j*/(bv*j*

e
 + ε) > MinRatio: 

                            If iter0 = 2 and iter = 1 set Compound = true (a compound variable has  
                                   been successfully created for iter0 = 2 and iter = 1) 
                            Iα := {i ∈ Iα: xj*

i = v*} and Iβ* := {i ∈ Iβ*: xj*
i = v*}.  

                            Add j* to Nv*(h) and set yh := yhxj* if v* = 1 and yh = yhxj* if v* = 0. 
                                   (Hence yh = ∏(xj: j ∈ N1(h)) ∏(xj: j ∈ N0(h)).) 
                            NA := NA – {(1 – v*,j*)}. 
                            If |AttList| <  AttLim and if AttBit(v*,j*) = 0:  
                                    set AttList := AttList∪{v*,j*) and AttBit(v*,j*) = 1. If now  
                                    |AttList| ≥ AttLim, set NA := NA∩AttList. 
           I2.  Execute Set Bit(TabuList0(v*,j*)) and let TabuSave =  TabuList(v*,j*).  
                 Then for each (v,j) ∈ CompoundList(q), q = 1, …, iter0 –1 such that  
                 TabuBit(v,j) = 0:   
                           Add (v*,j*) to TabuList(v,j) and add (v,j) to TabuList(v*,j*).  
                 Execute Re-Set Bit(TabuSave) and set CompoundList(iter0) = (v*,j*)  
                 If |Iβ*| = 0 (equivalently bv*j* = 0) terminate the Inner Loop. Otherwise,  
                 update the surrogate constraint coefficients avj and bvj (relative to Iα and   
                 Iβ*) and return to Step I1.   
           End of Inner Loop 
 
2.  Set Gα* := Gα*∪Iα and Gα := Gα – Iα. Gβ := Gβ∪Iβ*, Gβ* := Gβ* – Iβ*   
3. If |Gα*| ≥ f| Gα

o
 | or if or NA = ∅ proceed to Step 4. Otherwise, determine the updated    

    values avj =  |{i ∈ Gα: xj
i = v}| and bvj =  |{i ∈ Gβ*: xj

i = v}|, for (v,j) ∈ NA and return  
    to Step 1. 
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4. Set p := p + 1 and for H(p) = {ho, …, h} generate the inequality (1.1-H(p)) satisfied by   
    all x = xi for i ∈ Gα* and i  ∈ Gβ  and the inequality (1.2-H(p)) satisfied by all x = xi   
    for i ∈ Gα and i ∈ Gβ* given by 
 

∑(yh: h ∈ H(p)) ≥  1     (1.1-H(p)) 
∑(yh: h ∈ H(p)) ≤  0     (1.2-H(p)) 

End of Core Method 
 
2.0 If p ≥ L, then stop. Otherwise return to Step 1.0. 
End of Method 
 
 
10. Tree-Based SAT-DM Methods  
 
The inequalities generated by the SAT-DM method9 can be used to create a tree-based 
classification process using the design for such a process in the context of hyperplane 
separation methods. We discuss only the basic ideas of such a design here, and refer the 
reader to Glover (2006) for a more advanced treatment. 
 
Theoretically, the rules of a decision tree process within the present framework will 
generate a collection of logical clauses equivalent to those produced by the compound 
variable method, assuming every possible decision tree and every possible compound 
variable inequality is generated. (This follows from the fact that the rules of a binary 
decision tree can be re-expressed as a set of logical clauses whose disjunctive normal 
form corresponds to a collection of inequalities that can be represented in the same way 
as (1.1-H(p)) and (1.2-H(p).) Given that the collection of all possible decision trees (and 
all compound variable inequalities) can be exponentially large, the subset generated by a 
practical method can be much smaller than the total, and hence a Compound Variable 
method and a tree-based method may produce somewhat different results. 
 
We identify the fundamental structure of a SAT-DM decision tree approach as follows. 
Let Gα

o(s) and Gβ
o(s) denote the subsets of Gα

o
  and Gβ

o associated with a given node s of 
the decision tree, where s = 1 identifies the initial (root) node of the tree (and hence 
Gα

o(1)  = Gα
o

 and Gβ
o(1) = Gβ

o). Each node s is the source of two branches, the first 
branch corresponding to the inequality (1.1(p)) and the second branch corresponding to 
the inequality (1.2(p)). Let Gα*(s), Gβ*(s), Gα(s), and Gβ(s) denote the sets identified as 
Gα*, Gβ*, Gα, and Gβ in Step 4 (or Step D5) of the SAT-DM method, at the point of 
generating (1.1(p)) and (1.2(p)). Thus, in particular, Gα*(s) and Gβ(s) constitute the 
portions of the original sets Gα

o(s) and Gβ
o(s) whose points satisfy (1.1(p)), and Gβ*(s) 

and Gα(s) constitute the portions of Gα
o(s) and Gβ

o(s) whose points satisfy (1.2(p)). (We 
continue to adopt the convention of referring to a point xi as belonging to a set, with the 
interpretation that its index i belongs to the set.) 
                                                 
9 In this section, the term “SAT-DM method” will refer to the version for the SAT(QC/AC) problem 
described in Section 8, but it can also refer to the Compound Variable Version of this method by means of 
evident qualifications, such as replacing the inequalities (1.1(p)) and (1.2(p)) by the inequalities (1.1-H(p)) 
and (1.2-H(p)),  
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New decision nodes at the end of these two branches for node s are denoted by s′ = s+1 
and s′ = s+2, where the node s′ for the first branch (for (1.1(p))) is associated with the 
new sets  Gα

o(s′)  = Gα*(s) and Gβ
o(s′) = Gβ(s), and the node s′ for the second branch (for 

(1.2(p))) is associated with the new sets  Gα
o(s′)  = Gα(s) and Gβ

o(s′) = Gβ*(s). 
(Consequently, each node represents the portions of Gα

o(s) and Gβ
o(s) whose points 

satisfy the inequalities associated with its respective branch.) To continue the decision 
tree construction, we now perform additional executions of the Core Method, not by 
repeatedly generating new inequalities for the original Gα

o(s) and Gβ
o(s) sets, but instead 

by generating inequalities for each of the residual sets Gα
o(s′) and Gβ

o(s′). This produces a 
conditional separation process, generally shrinking the size of the sets as the depth of the 
tree increases. 
 
In an ideal situation the branches created for a node s will produce a perfect separation of 
its sets Gα

o(s) and  Gβ
o(s). In this case, upon reaching Step 4 (or D5) of the Core Method 

we will have Gα*(s) = Gα
o(s) and  Gβ*(s) = Gβ

o(s) (hence Gα(s) and Gβ(s) are both empty). 
Consequently, all points of Gα

o(s) satisfy (1.1(p)) and all points of Gβ
o(s) satisfy (1.2(p)), 

and the nodes s′ = s+1 and s′ = s+2 are terminal nodes of the tree. A terminal node can 
also occur on just one of the two branches. For example, if Gα*(s) = Gα

o(s) (and hence 
Gα(s) = ∅) but Gβ*(s) ≠ Gβ

o(s) (and hence Gβ(s)  ≠ ∅), then the node s′ of the first branch 
has both of its new sets Gα

o(s′) and Gβ
o(s′) nonempty, but node s′ of the second branch 

has only Gβ
o(s′) nonempty. This means all points of the second branch are correctly 

classified as belonging to Gβ
o(s), and more generally as belonging to the original Gβ

o 
itself. Consequently, the node s′ of the second branch is a terminal node, while the node 
s′ of the first branch is not.  In reverse, if Gβ*(s) = Gβ

o(s) but Gα*(s) ≠ Gα
o(s), then all 

points associated with the node s′ of the first branch are correctly classified as belonging 
to Gα

o(s), but the node s′ of the second branch contains points of both Gα
o(s) and Gβ

o(s), 
and hence the former node is a terminal node terminal node while the latter is not.  
 
A terminal node can be produced in one other situation, where the sets Gα

o(s′) and Gβ
o(s′) 

for one of the nodes s′ are both empty. Hence these sets for the other node s′ are given by 
Gα

o(s′) = Gα
o(s) and Gβ

o(s′) = Gβ
o(s), disclosing that no differentiation between the 

starting sets Gα
o(s′) and Gβ

o(s) has been achieved. We call this latter node an unresolved 
terminal node, because it contains points that have not been classified. We also call the 
points associated with this node unresolved points. By contrast, each of the terminal 
nodes produced in the tree preceding situations are called resolved terminal nodes, 
because all points in their final sets are correctly classified, and we call their points 
resolved points. In practice, a node can be treated as a terminal node if it lies at a 
sufficiently large depth from the root even if one of the preceding conditions does not 
occur. In this case we also identify it as a unresolved terminal node and identify its 
associated points as unresolved points.  
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Organization to Generate Multiple Decision Trees. 
 
The SAT-DM method can thus be used to generate multiple decision trees as a basis for a 
global decision rule. We first observe that the uses of the tabu conditions to influence the 
choice rules for iter = 1 and iter = 2 in the Constructive Component of the method can be 
carried over to generating multiple decision trees as follows. Each time the construction 
of a new tree is launched, the choice rule for iter = 1 is applied to the root node s = 1 in 
generating the two branches s′ = 2 and 3. Then the choice rule for iter = 2 is applied in 
generating the branches derived from each of these latter nodes. 
 
Beyond this, we organize the multiple tree generation process so that future trees give a 
higher priority to correctly classifying points that were unresolved in previous trees. To 
do this, a record is kept for each point, relative to a given tree that gives the depth of the 
terminal node where this point ends up. The depths for unresolved terminal nodes are 
increased by adding to them the value of the maximum depth of a resolved terminal node. 
Thus, unresolved nodes are assigned greater depth values than resolved nodes. 
 
Then, on a pass to generate a new tree, each point is assigned a priority value equal to the 
sum of its depth values over previously generated trees. (The sum can be weighted so that 
trees generated more recently receive larger weights than those generated farther in the 
past.) Points that were more often (or more recently) unresolved receive greater priority 
values than those that were more often (or more recently) resolved. Likewise, resolved 
nodes whose resolution occurred at greater depths over previous trees receive greater 
priority values than those whose resolution occurred at smaller depths. 
 
These priority values are used to produce a new tree that gives greater emphasis to 
correctly classifying higher priority points, and classifying them at earlier depths of the 
tree, than it gives to the lower priority points. The mechanism for accomplishing this is 
provided by the surrogate constraint choice rule, by generating the surrogate constraint 
coefficients avj and bvj in relation to weights produced by the priority values. The process 
results by replacing the previous “simple sum” surrogate constraint choice rule with one 
based on introducing a weight wi for each point xi

 as a basis for creating the avj and bvj 
coefficients. Thus, we write  
 
  a1j = ∑(xj

iwi: i ∈ Gα)  and  a0j = ∑(xjiwi: i ∈ Gα)   
 
  b1j = ∑(wixj

i: i ∈ Gβ*)  and  b0j = ∑(wixji: i ∈ Gβ*). 
 
where wi > wi′ if xi receives a higher priority than xi′. The weights can be chosen, if 
desired, to give a pre-emptive emphasis on some points over others, in effect creating 
different bvj values for different sets of component constraints, and then assigning a strict 
priority to the order in which these values are considered by the choice criterion arg 
max(avj/(bvj

e
 + ε): (v,j) ∈ NA). This altered definition of the avj and bvj coefficients entails 

a slight increase in computation, but produces decision trees that are collectively 
structured to produce more effective classifications, given that it is out of the question to 
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generate more than a small fraction of the enormous number of decision trees that are 
possible. 
  
Global Decision Rule. 
 
A global decision rule for classifying a new point of unknown membership operates as 
follows. Each decision tree casts a vote for assigning the point to membership in Gα

o or 
Gβ

o
. If the branching process of a given tree assigns a point to either Gα

o
 or Gβ

o
 by placing 

it in a resolved terminal node, then the point receives a vote of 1 for the indicated 
membership.  
 
But if a point winds up being assigned to an unresolved terminal node s′, then it receives 
a vote of  |Gα

o(s′)|/|Gα
o(s′)| + |Gβ

o(s′)|) for membership in Gα
o and a vote of 

|Gβ
o(s′)|/|Gα

o(s′)| + |Gβ
o(s′)|)  for membership in Gβ

o. Finally, the membership category for 
the point is determined as the one that receives the greatest number of votes over all 
trees.10 
 
Variants arise by combining the preceding approach with the form of the SAT-DM 
method described in Section 8 (that does not rely on a tree-based decision process). In 
this ease, the tree is truncated by restricted its generation to a relatively small depth. Each 
unresolved terminal node s′ of the truncated tree then becomes the source of multiple 
inequalities by treating the two sets Gα

o(s′) and Gβ
o(s′) exactly as if they were the sets Gα

o 
and Gβ

o of the method of Section 8. 
 
The ability of this decision tree process to uncover possible useful classification rules that 
are not equivalent to those produced by the Compound Variable Method, and vice versa, 
encourages the use of these two approaches in tandem. 
 
11. Conclusions 
 
Satisfiability data mining provides a method for separating and classifying points that 
opens up new avenues for determining group membership. The main contributions of this 
paper, in addition to linking logical clauses and their associated inequalities to group 
separation by means of the Fundamental Observation, may be summarized as follows: 
 

• Identifying effective ways to generate a subset of preferred inequalities from the 
full collection possible, making use of surrogate constraint analysis and memory-
based designs of tabu search. 

• Handling the feature (attribute) selection problem simultaneously, as a natural 
concomitant of generating preferred inequalities, and without requiring the 
solution of an auxiliary optimization problem. 

• Introducing a coordinated procedure that accommodates criteria for balancing 
trade-offs between satisfying inequalities defining membership in the two groups 

                                                 
10 The two groups Gα

o and Gβ
o can  be interchanged to carry out this process. 
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being compared, including a staged version of the procedure that offers a useful 
alternative from a conservative perspective.  

• Providing an related process that generates compound variables to enhance the 
ability to separate selected groups, utilizing surrogate constraint evaluations in a 
manner that permits the determination of appropriate compound variables again 
without the need to solve an auxiliary problem or resort to an external algorithm.   

• Disclosing how to embed the classification process in a decision tree framework 
by an adaptation of processes designed to produce decision trees for separating 
hyperplane analysis. 

 
Empirical research to explore the promise of these new developments will be the topic of 
future work. 
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