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ABSTRACT 

Recent years have seen many important ad- 
vances in the solution of network problems. New 
solution algorithms and implementation techniques 
have dramatically reduced the cost of solving 
linear and convex network flow problems. For ex- 
ample, the cost of solving network problems with 
2400 equations and 500,000 arcs on an IBM 360/65 
has been reduced from $30,000 in 1968 to $300 in 
1976 by these advances. In addition, these ad- 
vances have stimulated the development of new non- 
linear modeling techniques for handling a multi- 
tude of problems that arise in applications of 
scheduling, routing, resource allocation, produc- 
tion, inventory management, facilities location 
and other areas. 

This paper presents modeling techniques which 
are mathematically and symbolically linked to net- 
work and augmented network structures. These mod- 
eling techniques are called the NETFO~ (network 
formulation) concept or approach. The pictorial as- 
pect of this approach has proven to be extremely 
valuable in both communicating and refining non- 
linear and combinatorial relationships. Addi- 
tionally, the NETFOI~4 concept often yields a 
formulation that enables the problem to be solved 
as a sequence of linear network problems with 
dramatic gains in efficiency over alternative 
approaches. The paper illustrates these attri- 
butes by providing a concrete example of a NET- 
FO~ model construction. Three real world appli- 
cations are then described which have profited by 
the use of NETFORM techniques. 

i. INTRODUCTION 

Recently many important problems have been 
modeled and solved as networks. This is partially 
due to the development of extremely efficient so- 
lution procedures for solving networks. These ad- 
vances are documented by an impressive array of 
empirical studies and successful real world solu- 
tion efforts. (See, for example, the survey ar- 
ticles [3] and [4].) 

The significance of these advances is illus- 
trated by the fact that a network problem with 
1,000 nodes and 7,000 arcs can be solved in 6 
seconds on an IBM 370/155 using the highly effi- 
cient network code of [2]. The cost of such a 
computer run is about $i. To solve such a problem 
using the best commercial LP code would take about 
I0 minutes and cost $200. For larger network prob- 
±ems these advances have had especially dramatic 
consequences. A recent practical illustration is 

that of a network flow model used by the U.S. 
Treasury to handle microdata file merging problems. 
The problem is immense, involving 5,000 nodes and 
625,000 arcs. Using the in-core out-of-core code 
of [i], this problem was solved in 9 minutes on a 
UNIVAC 1108, at a cost of about $90. Allowing an 
optimistic estimate, a good commercial LP code 
would require somewhat more than 20 hours of cen- 
tral processing time to solve this problem, at a 
cost of about $24,000. 

In view of these developments the question 
arises as to whether comparable gains might be 
possible for the multitude of nonlinear, "network- 
related" problems that arise in scheduling, rout- 
ing, resource distribution, facilities location, 
production and inventory management, and related 
areas. We argue on the basis of practical experi- 
ence that such gains are possible not only for 
problems conspicuously related to networks, but 
for many other problems as well by use of a new 
modeling technique called NETFORM. 

The NETFORM concept is the driving principle 
(or philosophy) behind a growing body of techniques 
by which a wide variety of nonlinear problems can 
be given a pictorial, network-related formulation. 
These network-related formulations often lead to 

different and more effective ways of hand- 
ling these problems than in the customary (often 
more laborious) mode[ formulations. This is es- 
pecially true for problems attended by combinato- 
rial (i.e., integer programming) types of restric- 
tions. 

Once an individual learns to visualize prob- 
lems in network-related frameworks, the initial 
"recognition" of many nonlinear problems is made 
far easier. This change of orientation by which 
problems are directly visualized and represented 
as NETFORMS has highly beneficial effects along 
several dimensions. First, management scientists 
are able to use these NETFO~4S to explain their 
models to the users more effectively. Second, the 
nonscientific user can be easily taught how to 
formulate his problems via such diagrams and pic- 
torial representations which management scientists 
can then analyze and refine. The combined effects 
of these advantages make it possible for manage- 
ment scientists and users to interact more fully, 
thereby leading to clearer mutual understanding of 
the problem formulation and of the potential mean- 
ing and usefulness of its solution. 

In the subsequent sections we will first pre- 
sent an example of how to model a zero-one integer 
programming problem, unrelated to networks, as a 
NETFO~I. Then we will describe three real world 
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applications that have profited by the use of NET- 
FORM techniques. 

2. THE NETFORM APPROACH ILLUSTRATED IN THE CONTEXT 
OF AN IP PROBLEM 

In the NETFORM approach to problem modeling, 
as in traditional network modeling, we begin with a 
verbal description of the problem. From that we 
formulate a NETFORM schematic. This schematic, 
accompanied by stipulations concerning the flows on 
particular arcs (such as the requirement that some 
flows bear specific relationships to other flows, 
or that some flows must be either 0 or i, etc.), in 
itself provides a rigorous problem formulation. 
For more complex problems, it is convenient to de- 
vise a preliminary NETFO~ schematic that is sup- 
plemented by accompanying verbal notations. Such a 
preliminary schematic is especially useful, at all 
stages, for communicating with nontechnical people 
ab'out the problem. 

The NETFORM representation is mathematically 
equivalent to any of the algebraic representations 
that can be arrived at by customary mathematical 
programming formulation techniques. However, by 
the creation of the network-related structures, 
which may or may not be implicit in any customary 
formulation, the NETFORM representation permits the 
application of specialized solution methods, tailor- 
ed to employ recent algorithmic advances for ex- 
ploiting the graphical relationships of network com- 
ponents. The progression, then, is from problem de- 
scription to NETFORM schematic to specialized solu- 
tion procedure. 

In the illustration that follows, however, we 
demonstrate the NETFORM approach by starting with 
the algebraic representation of zero-one IP problem 
and displaying its NETFORM equivalent. Thus, in 
this illustration we progress from a standard al- 
gebraic representation to a NETFORM schematic. 

Consider the 0-i problem: 

Problem 1 

Minimize 

Subject to: 

3x I + 4x 2 + 7x 3 + 5x 4 

2x I + 4x 3 - 4x 4 Z 2 

-ix I + 10x 2 - 2x 3 - 6x 4 j 7 

4x I + ix 2 + 4x 4 = 5 

ix 3 + ix 4 ~ 1 

Xl, x2, x3, x 4 = 0 or 1 

2.1 Graph Construction 

In the first constraint, note that the lower 
bound identified by the right hand side ( ~ 2) may 
be viewed as a form of demand. If variable x I is 
given a value of 1 rather than 0 then x_ serves to 

i 
help meet the demand, and thus plays a supply role. 
In a similar way, setting x I = 1 contributes to (or 
detracts from) demands expressed by the other con- 
straints. The "supply/demand" orientation is use- 
ful for understanding the intuitive basis of the 
NETFOP~ representation that we now develop for this 
example. 

To construct this representation, we create 
nodes x I, xg, xq, and x,, one for each 0-i variable 

4 
We also-create 5rigin node 0 and provide arcs, 
called variable arcs, by which node 0 supplies 
these variable nodes, as shown in Figure i. Flows 

on these four variable arcs correspond to the 
values of the four 0-i variables. To insure that 
flow on these arcs lies in the interval from 0 to 1 
we associate a lower bound of 0 and an upper bound 
of 1 on each variable arc. These bounds are dis- 
played within parentheses in Figure i. (Optimal 
values of these flows are ultimately determined by 
the solution procedure to be applied to the NEt- 
FORM. ) 

Costs on the arcs originating at 0 correspond 
to the objective function coefficients of the asso- 
ciated variables, respectively, and are shown in 
the rectangles on these arcs. A flow of 1 unit on 
arc (0,x~), for example, corresponds to setting 

5 
x_ = 1 in the algebraic representation of the prob- 
lem and incurs a cost of 7. 

Thus far nothing new has been introduced; only 
traditional network conventions have been utilized. 
One of the additional conventions often used by the 
NETFORM approach is the introduction of an arc mul- 
tiplier, or gain factor, on some arcs. In Figure 1 
a multiplier is specified on the arc to which it 
applies by enclosing it inside a triangle. 

The addition of a multiplier to an arc cre- 
ates what is called a generalized arc. The multi- 
plier indicates that the flow entering the arc is 
multiplied by the value of the multiplier as that 
flow leaves the arc. For instance, a flow of 1 
unit entering arc (0,x I) is multiplied by 3 to be- 
come a flow of 3 units-as it leaves the arc at 
node x I. The are cost, it should be noted, and 
the arc's lower and upper bounds, apply only to 
the units of flow entering the arc. 

In Figure 1 we associate with each variable 
arc a multiplier whose value is equal to the number 
of constraints in which that variable appears with 
a nonzero coefficient in Problem i. Thus, arc (0, 
x I) has a multiplier of 3, since variable x I ap- 
pears in constraints i, 2, and 3. The reason for 
selecting this multiplier value will be discussed 

subsequently. 
Problems with generalized arcs may have arc 

flows that are fractional valued (i.e,, non-inte- 
ger) in an optimal basic solution. Thus, it is 
necessary to employ a second convention, common to 
the NETFORM approach, of requiring certain arcs to 
receive integer-valued flows. This requirement is 
indicated by attaching an asterisk to an arc. 

In Figure 1 the flow on each variable arc is 
required to be integer-valued. Coupling this re- 
striction with the lower and upper bound restric- 
tion of the variable arcs implies that the flow of 
these arcs must be 0 or i. Further, the multiplier 
assigned to each variable arc together with the 
preceding observation, implies that either zero 
flow is transmitted to a variable node or a flow 
equal to the number of constraints that this vari- 
able appears in the algebraic statement is trans- 
mitted to its variable node. 

Using these observations, we can now complete 
an equivalent graphical formulation of the alge- 
braic statement of Problem i. To do this, we cre- 
ate constraint nodes i, 2, 3, 4 for the four con- 
straints. Each variable node is then connected to 
the constraint nodes, via constraint arcs. These 
constraint arcs, for a given variable, are asso- 
ciated with the constraints in Problem 1 in which 
that variable appears with a nonzero coefficient. 
See Figure i. (To keep the schematic simple, arcs 
out of nodes x~ and !3 have been left incomplete.) 
Each constrain~ arc is given a lower bound Of 0, 
an upper bound of i, a cost of 0, and a multiplier 
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Figure 1 

NETFORM FORMULATION 

~ ~2 

~Zbound =5 

flow must be intJger l demanJ 
multiplier requirements 

equal to the actual constraint coefficient of the 
variable with which this arc is associated. To 
illustrate, the multipliers on the constraint arcs 
leaving node x I are 2, -I, and 4, which are the co- 
efficients of variable x I in Problem 1 for con- 
straints i, 2, and 3, respectively. 

Finally, we associate with each constraint 
node a demand equal to the constraint bound (in- 
equalities and equalities involving the right hand 
side coefficients) specified in Problem i. Figure 
1 contains the completed fo~nulation. 

2.2 Model Equivalence . 

The equivalence of Problem 1 and Figure 1 
will now be made apparent by extending our earlier 
observations concerning the combined effect of the 
arc and node attributes. Consider origin node 0 
as a supply node, equipped to supply a maximum of 
four units (the maximum number of 0-i variables 
that can receive a value of i). If flow on the 
arc (0,x I) is 0 (i.e., x I = 0 in Problem I) then 
no flow zs transmitted to any of the constraint 
nodes via this variable arc and variable x con- 
tributes nothing to meeting the right handlside 
requirements. 

If on the other hand the flow on the arc (0, 
x]) is i, then the multiplier causes 3 units of 
fIow to enter node x]. The bounds of (0,i) on 
each constraint arc leaving node x I assure that 
each of these arcs receives exactly i unit of flow. 
These flows, amplified by the multipliers on the 
constraint arcs reflect variable x's contribu- 
• ' 1 

tlon to the three constraints in whlch x appears. 
• . 1 

In a similar fashion, the contrlbutlons of vari- 
ables x , x , and x to the four constraints are 

4 
also re~lec~ed correctly in Figure i. 

These flow possibilities may also be viewed 
alternatively from the standpoint of the con- 
straints. Thus, for example, flows into con- 
straint node 1 account for the contribution of 
variables xl, x 2, x 3, and x 4 to the demand require- 
ments specified by constraint 1 in Problem i. 

It should be evident that the schematic in 
Figure 1 is the precise equivalent of Problem I. 
Note further that the constraints in the algebraic 
problem can be generated from the NETFORM schematic 
of Figure i. Viewed from the standpoint of its 

graphical structure, this schematic also gives rise 
to a nonstandard algebraic formulation of the 0-i 
IP problem (via node-arc incidence relationships). 
Significantly, however, transformation to an alge- 
braic form is not required. Solution methods that 
deal with the problem in its graphical network-re- 
lated form are generally more powerful than those 
that deal with problems in an algebraic form. 

2.3 Solution and Alternative NETFORM Formulations 

A supply/demand and arc flow orientation is 
central to the NETFORM approach. The utility of 
this orientation is substantially responsible for 
the popularity of networks as model forms, flow- 
ever, by adding only a few additional features 
(arc multipliers, integer restrictions, etc.) and 
with the exercise of a bit of imagination, a much 
broader scope of real world problems, broader than 
that dealt with in traditional network modeling, 
can be modeled in the network schematic, as subse- 
quent examples in this paper will demonstrate. 

The combination of arc multipliers and the 
0-i integer restriction, as in the NETFORM repre- 
sentation just illustrated, gives rise to what we 
call a 0-1 generalized network problem. Efficient 
procedures [6] have been developed for solving 0-i 

generalized networks. 
It is important to note that the derivation 

of this type of NETFORM in the preceding illustra- 
tion produced the same number of integer variables 
as in the original algebraic formulation. The num- 
ber of continuous variables added to the problem 
depends on the particular transformation used. 
(The simple approach illustrated in Figure 1 intro- 
duces more arcs and continuous variables than nec- 
essary.) In fact, just as there are different IP 
formulations for the same problem, we are finding 
that there are different types of NETFO~ formula- 
tions (not all of which are "obviously" related to 
the type of formulation just illustrated). For ex- 
ample, by creating additional nodes and arcs, it is 
also possible to transform 0-i IP problems into 
"O-U" transshipment problems where the flows on 
certain arcs must be equal to their upper or lower 
bounds [7]. Also in the case of problems with 
special structure, there are several specializa- 
tions and simplifications of these basic ideas 
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that hold promise of permitting more effective 
treatment by appropriately designed algorithms. 

The preceding formulation techniques extend 
quite naturally to accommodate mixed integer 0-i 
problems where the continuous part of the problem 
is a transportation, transshipment, or generalized 
network problem itself. Many important real world 
applications have such a "mixed" structure; among 
them are a variety of energy models, plant loca- 
tion models, and physical distribution models. 

3. THREE REAL WORLD APPLICATIONS 

3.1 Air Force Course Scheduling 

Undergraduate Flight Training (UFT) graduates 
are required upon graduation to take advanced 
flight training and survival training courses en- 
route to their first operational assignment. The 
purpose of the advanced flight training is to quali- 
fy a pilot for a specific aircraft. Advanced 
flight training is offered only in formal schools 
usually by the Major Air Command, the principal 
aircraft user. Newly qualified UFT graduates will 
additionally require from one to four extra train- 
ing courses before being assigned to a crew--e.g., 
basic survival (Washington), water survival (Flor- 
ida), air weapons delivery (Texas), etc. These 
courses are only offered at certain times, have en- 
rollment limits, and may have prerequisites. The 
identification of schedules is further complicated 
by attendance requirements at Combat Crew Training 
courses, various modes of transportation, the num- 
ber of dead days in the pipeline, the opportunity 
for the UFT graduates to take leave as desired, etc. 

To solve this UFT graduate scheduling problem, 
the Air Force developed a computer program (called 
the UFT Pipeline Scheduling Model) which generates 
from one to five feasible least cost schedules for 
each graduate. Using these schedules and course 
enrollment limits, the personnel manager in the 
Training Pipeline Management Division manually as- 
signs each graduate to one of his feasible sched- 
ules. Clearly, this is a difficult and time con- 
suming task to do by hand; further, the total cost 
of these manual assignments may be far from opti- 
mal. 

In search of a better way, the Air Force 
formulated this problem as the following integer 
programming problem. 

C..X.. 
Minimize igl 13 13 

jsJ 

Subject to: Z x = i, i£I = {l,2,...,r} 
jgJ(i) ij 

i~IZ dkijxij _ < e k, k~K = {1,2,...,m} b k 

jEJ(i) 
x.. = 0 or i for icl, jgJ(i) 
lJ 

where I is the set of men, J(i) is the set of sched- 
ules for man i, K is the set of classes, cij is the 
cost of assigning man i to his jth schedule, b k is 
the lower class enrollment limit, e k is the upper 
class enrollment limit, xij is i if man i is as- 
signed to his jth schedule and 0 otherwise, and 
dkij = i if class k is in man i's jth schedule and 
0 otherwise. The first set of constraints requires 
that each man be assigned to exactly one schedule. 
The second set of constraints assures that the 

class enrollment limits are satisfied. 
Figure 2 illustrates an equivalent NETFORM 

formulation of the UFT problem. In Figure 2, the 
node Mi represents the i th man and has a supply of 
exactly i. Each man node is connected by arcs to 
its set of man/schedule nodes. These connecting 
man/schedule arcs have a multiplier aij equal to 
the number of classes in the schedule (that is, 

= k~K_ dkij ) and a cost cij equal to the cost of 
aij 
assigning man i to his jth schedule. The asterisk 
again indicates that flow must be integer-valued. 
The arcs emanating from a man/schedule node in Fig- 
ure 2 lead to the individual classes making up the 
schedule. Each of these arcs has an upper bound of 
one. Thus, if a particular schedule is "selected," 
then every class in the schedule is also automati- 
cally selected. The objective is to pick a sched- 
ule for each man that will minimize the value of 
the assignments on the overall program, subject to 
the upper and lower attendance limits for each 
class, expressed as bounds on the arcs from class 
nodes to the sink nodes of Figure 2. All arc costs, 
except for those attached to the man/schedule arcs, 
are thus equal to O. 

Typically the UFT problem involves 120 men, 
200 classes, and 460 schedules, giving rise to a 
0-i formulation with 520 constraints and 460 0-i 
variables. The NETFORM formulation involves 460 
0-i variables, 2,200 continuous variables and 780 
nodes. This represents a fair increase in size as 
an LP problem, but provides a relatively small net- 
work problem. The NETFORM of this application was 
solved using a specialized branch and bound proce- 
dure with generalized transshipment subproblems. 
The optimal solution was often found and verified 
after only 30 seconds and in some cases only re- 
quired a total solution time of i0 seconds on a 
CDC 6600. 

3.2 Optimal Lot-Sizing and Machine Loading for 
Multiple Products 

This section describes a model currently used 
by a major manufacturing firm in solving a large- 
scale task allocation problem. The manufacturing 
problem involves the determination of lot-sizes for 
each of n products and the assignment of their pro- 
duction to m machines in such a way that combined 
set-up, production, and holding cost per unit time 
is minimized. The principal characteristics of the 
problem are: 
i. The planning horizon is a single period, t 

weeks in length. 
2. The products are designed to meet different 

needs and cannot be substituted for one 
another. Production of each product is a 
single-stage process. 

3. Lot-sizes are selected from a predetermined 
finite set of E possible lot-sizes. 

4. All lots of any single product must be produced 
on the same machine. 

5. The machines work in parallel. They are simi- 
lar in function, but they may differ in their 
rate and cost of operation. Some machines may 
be capable of producing several (or all) of the 
products while others may be more specialized. 

6. The production capacities of all machines over 
the planning horizon are known constants. Each 
machine can produce only one product at a time. 

7. Demand for each product is assumed to occur 
continuously at a known constant rate. 

286 



Figure 2 

UFT Netform Formulation 

Man/Schedule 
Nodes 

Man 

1= 

(0,1) 

Class 
Nodes 

(b3, e 3 ) 

I= 

Minimize 

Subject to: 

The characteristics just described give rise 
to the following mathematical model. 

The binary valued decision variable x is 
ijk ,. 

defined to be 1 if product j is produced on macnlne 
i in the k th possible lot-size and 0 otherwise. The 
combined set-up, production, and holding cost (per 
unit time) incurred when product j is produced on 
machine i in the k th possible lot-size is denoted 
by ci~u. Similarly, r~ denotes the capacity re- 
quire~on machine i to~oduce product j in the 
k th possible lot-size. Finally, b i denotes the 
aggregate production capacity of machine i over 
the t week planning horizon. 

The problem is to determine values for the 
variables that 

m n 

Z Z Z cij kXij k 
i=l j=l k=l 

m 

Z Z xij k 
i=l k=l 

n 
Z 

j =i k=l 

= 1 for j=l .... ,n (i) 

rijkXij k _< b i for i=l .... ,m (2) 

xij k = 0 or 1 for i=l,...,m; 

j=l ..... n; k=l,...,% (3) 

Constraints (i) and (3) together insure that one 
and only one machine and lot-size combination is 
selected for each product. Constraint (2) insures 
that each machine is assigned production tasks 
commensurate with its capacity. 

It is clear from the formulation above that 
the model is designed only to load the machines and 
that it does not schedule the work on each machine. 
In fact, the lot-sizes selected by the model may 
generate scheduling conflicts on any given machine. 
Although such potential conflicts are important in 
theory, they have not caused any difficulty in 
practice. Moreover, managers primarily use the 
model for capacity planning and prefer to retain 
the option of scheduling on the basis of what is 
"hot." That is, management retains the prerogative 
of determining the precise sequence and timing for 
implementing the candidate assignment over the ho- 
rizon, in accordance with the objectives of this 
application. This provides flexibility to make ad- 
justments to special conditions and changed demands, 
while simultaneously aiding planning functions 
(such as evaluating the possible use of overtime 
shifts in periods when the candidate assignments 
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tax weekly production capacities). For this type 
of flexibility and responsiveness to the needs of 
management, and to further support the analyses 
based on alternative assumptions of demands and 
capacities, it is especially important to be able 
to solve the model quickly for different (or re- 
cently updated) sets of data. Indeed, management 
has found that the best way to handle various plan- 
ning and scheduling contingencies, and to obtain a 
clear picture of options within its complex opera- 
ting environment, is to re-solve the model many 
times in the process of composing a weekly produc- 
tion schedule. Thus, the success of the applica- 
tion depends in large measure on the ability to 
solve the problem efficiently. 

The firm initially tried to solve this problem 
using the efficient 0-i code, RIP 30-C developed by 
Geoffrion at UCLA. This proved to be unsuccessful 
for two reasons: (i) the large array requirements 
of RIP-30-C made it impossible to accommodate large 
problems; and (2) the method required excessive 
computation times even to solve problems with no 
more than 50 variables. 

Consequently, it was apparent that an alterna- 
tive modeling and solution approach was needed. 
Figure 3 illustrates the NETFORM formulation of 
this problem. This NETFORM is quite simple to ex- 
plain. There are two sets of nodes--a product node 
set and a machine node set. The arcs joining these 
node sets correspond to the variables x~; the 
cost and multiplier of each of these arcs corres- 
pond to the cost and resource consumption of the 
associated variable. This NETFORM representation 
has a special bipartite network structure which is 
called a generalized assignment problem. Extremely 
effective techniques for solving such problems have 
been developed by Ross and Soland [9] and embedded 
in a computer code called Big-A. 

A comparison of the Big-A code with the RIP 
30-C code for this problem shows that the Big-A 
code is from 300 to 1000 times faster. In addi- 

Figure 3 

tion, the Big-A code readily handles pYoblems of up 
to 4000 variables within available computer memory. 
Thus, the firm now uses the NETFORM formulation 
coupled with the Big-A code to solve the problem. 
This approach makes it possible to solve problems 
with 106 machines, 182 products, 4 lot-size options 
per machine/product combination and 3772 zero-one 
variables in .64 seconds on a CDC 6600. 

3.3 Refuelin$ Nuclear Reactprs 

Another problem whose solution has been im- 
proved by the use of the NETFORM concept is a mixed 
integer programming problem for determining the 
minimum cost refueling schedule for nuclear reac- 
tors. This problem was initially modeled by Kaz- 
mersky [8] as a mixed integer programming problem 
with no apparent connection to networks. However, 
after working closely with Dr. Kazmersky, we dis- 
covered a way to express the problem by a NETFORM 
representation that was not only equivalent to the 
original formulation but that also succeeded in re- 
ducing the size of the problem. The transformation 
of the original problem to a NETFORM will not be 
shown because the mathematics are somewhat intri- 
cate and the original formulation by itself con- 
sumes more than twenty pages of [8]. However, 
making use of the NETFORM, we were able to develop 
a specialized solution process employing network 
optimization procedures we had previously developed 
for subproblem relaxations [5], and solved four 
versions of this problem with data supplied by the 
TVA. The first three versions, while requiring 
half an hour to two hours to solve with standard 
procedures, were easily solved in seconds to min- 
utes using the NETFORM representation and the spe- 
cialized solution approach. The fourth version 
was by far the most difficult, involving 173 con- 
straints, 126 zero-one variables, and 511 contin- 
uous variables. The original mixed IP formulation 
was run for eight hours on an IBM 370/168 using 
MPSX, and then taken off the machine to avoid fur- 

N e t f o r m  R e p r e s e n t a t i o n  

Product • Machine 
Nodes N~les 

1 = ~<b 2 

1= 

~brn 
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ther computer run costs. At the end of this time 
the best (minimum cost) solution obtained had an 
objective function value of $136,173,440. With a 
time limit of 30 minutes imposed on the NETFORM 
solution effort, a solution was obtained that had 
an objective function value of $125,174,727, which 
constitutes more than a $i0,000,000 improvement. 
Consequently, this application shows that the use 
of NETFORM representations can provide improved 
solutions for problems too complex to be solved 
optimally (within practical time limits) by stan- 
dard approaches. 

9. 

Ph.D., Ohio State University (1974). 

Ross, G. T. and Soland, R. A branch and 
bound algorithm for the generalized assign- 
ment problem. Mathematical Programming 8, 1 
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