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MAXIMUM MATCHING IN A CONVEX BIPARTITE GRAPH* 

ABSTRACT 

A special matching problem arising in industry is shown to be 
solvable by an  algorithm of the form: match objects ai and bj if they 
satisfy a local optimality criterion based on a ranking of currently un- 
matched objects. When no ai and bi remain that can be matched, the 
largest number of acceptable matches has been found. 

We propose a "greedy" algorithmt to solve a maximum cardinality matching problem 

on a specially structured graph. The prototype for our problem (generalized below) is the 

following.f: A manufacturer produces a fixed number of left and right halves of "rods" which 

must be fitted together. 

Let wi denote the weight of the ith left half and v. denote the weight of the jth right 
I 

half, where, say, i = 1, . . . , m, and j = 1, . . . , n. The problem is to assemble as many rods 

as possible subject to the restriction that the ith left half can be matched to  the jth right half 

only if 

where U1, L1, U2, and L2 are given constants. 
Because of the structure of this problem it i s  natural to index the wi and v. so that 

1 

and 

*This research was supported by the Miller Institute of Basic Research in Sciences with the 
University of California. 

t ~ h i s  rather suggestive terminology is due to Jack Edmands [I]. 
%I a m  indebted to Professor Ronald Shephard for posinz this problem, which he encountered in 
an industrial setting. 
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Suppose m = n. Then we note that 

must hold for all i if there exists a matching that produces rn rods whose left and right 
halves satisfy (2). 

One may conjecture that the largest number of acceptable rods will be formed by match- 
ing wl with the f i r s t  acceptable v. (i.e., for which wl and v. satisfy (1) and (Z)), then matching 

I 3 
w2 with the f i r s t  remaining acceptable v., and so  on, skipping those wi that can't permissibly 

1 
match with any v.. This conjecture is  incorrect, however, and is also incorrect by instead 

I 
attempting to match each wi to the last v. with which it can be acceptably paired.* In fact, if 

1 
one permits an enumeration of alternatives, the attempt to match either the first  o r  last 01 the 
(remaining) wi by one of these cr i ter ia  will still not guarantee that the maximum cardinality 
matching will he found. 

Finally, if one tentatively matches wi t o  vi for all i, i t  is not in general possible to 
solve the problem by successive pair interchanges of the indices of the wi while increasing 
the number of acceptable matchings at each step. 

Before giving a rule that wlll produce the largest number of acceptable pairings, we 
generalize the problem as follows. 

Let a .  i = 1, . . . , m denote identifying labels assigned to a collection of m objects, 
1' 

and bj, = 1, . . . , n similarly denote identifying labels assigned to a second collection of 
objects (disjoint with the first). The two se t s  of objects may be represented by nodes in a bi- 
partite graph, where the edge (ai, b.) connects the node 14 to the node b. only if  they can be 

I 1 
acceptably matched. We assume that the ai can be ordered to satisfy the following "convexity" 
property: for each j, if b. connects a,, and ak, h <k, then b. connects every ai such that 

I 3 
h i  b k .  

We will call a graph that satisfies the convexity property a convex bipartite graph. It is 
evident that the earlier matching problem satisfies this property by the indicated indexing of 
the wi (regardless of the indexing of the v.). There a re  also many convex bipartite graphs that 

1 
cannot be interpreted to represent the restrictions (1) and (2). 

The matching problem for a n  arbitrary (finite) convex bipartite graph G can be stated: 
find a maximum cardinality set  of edges (ai, b.) that share no nodes in common. We now state 

l 
our main result. 
THEOREM: The following algorithm yields a maximum cardinality matching on a convex bi- 

partite graph G. 

1. Begin with i = 1, and repeat the following instructions until i i s  incremented to 
m +  1. 

2. Let S be the set  of all j such that (a, b.) is an edge in G and hj has not already 
1 I 

been matched to some ak for k < i. 
3. U S is empty, increment i by 1 and return to 2. Otherwise, 
4. Let j(max) = ~ a x b ( a  , b . )  is in G}. Match bv to ai, where v E S and 

P l 
v(max) = Min (j(rnax)]. 

j a s  
Then increment i by 1 and return to 2 

+*Beginning with the w i  that matches with the fewest v., r a the r  than with w l ,  does not repair 
the conjecture. 1 
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PROOF: Let Gr, r = 1, . . . , m represent the graph consisting of al, . . . , ar, all of the b. 
1' 

and all edges (a., b.) for i C r. 
' 1  

Correspondingly, Er be the set of all edges (a,, b.) and their nodes, in the matching 
1 I 

prescribed by the theorem applied to Gr. Finally, let EF be the set  of all  (a., b.), and their 
1 1  

nodes, in a maximum cardinality matching on Gr, such that E: has a s  many edges in common 

with Er as possible. (If E; t Er, then it may not be unique.) 
It is obvious that E; = El. We assume E* = Er for r 2 m - 1 and prove it  is true r 

for r = m. More precisely, we assume E: = Er, r S m - 1, when the graphs Gr contain any 

specified subset of the nodes b.. (It i s  still clear that E; = El.) Then i f  we show E& = Em 
1 

when each Gr contains all b., the same argument applies to any subset of the b., and the 
1 1 

proof by induction will be complete. 

First ,  note that El c E 2 c  . . . c E m  (relative to all the b.). If am E Em, then 
1 

Em-l t Em and the induction assumption immediately implies Em = E&. Suppose now that 

Efm * Em. By the foregoing remark and the induction assumption we have 

(i) am E Efm - E m ,  

(ii) if b. E Em-l,  then (a b.) i s  not an edge in G, 
1 m' I 

(iii) there is a bk E Em-l such that (a,, bk) E E&. 

Let E; denote the set  of edges and their nodes in the matching prescribed by the theorem ap- 

plied to Gr after removing bk (defined in (iii)). Then by assumption, the edges of E;n_l to- 

gether with (a,, bk) must be a maximum matching on Gm. Identify the node a such that 
P 

(a  , b ) e Em-1. Then, evidently E; = Er for all r < p. Note that a e E ' .  For if not, E; 
P k P P 

will be the same as Er excluding (a  , b  ) and i t s  nodes, for all r 2 p, and hence E;n_l will 
P k 

have one less  edge than Em-l, which is impossible. Thus there i s  a b e E'  such that 
9 P 

(a , b ) E E' . Also, by the rule of the theorem for selecting bk to match to a in E it  
P q  P P P' 

follows that b and bk both connect all ar for r k p. Thus, we can alternately let b match 
9 9 

am in a maximum cardinality matching, and allow bk to remain matched to a Since 
P' 

bq E Em-l (by (ii)) we may assign b the role given bk, and repeat the foregoing argument 
q 

for a larger value of p. Eventually we must have p 2 m, which i s  impossible. This com- 

pletes the proof. 
REMARK: We will call G "doubly convex bipartite" if it exhibits the convexity property both 

as defined earlier and also when the role of the ai and b. a r e  interchanged (relative to an 
1 

appropriate indexing of the b.). Then, for such a G, the set S of the foregoing algorithm can 
J 

be replaced by the S' = bl, j2), where jl = min {j} and j2 = m a  {j}. 
je S J ES 

PROOF: Assume on the contrary that neither jl nor j2 qualifies to be v defined at  step 4 of 

the algorithm. Then 

v(max) < s = Min {jl(max), j2(max)}. 

Since the current value of i must satisfy i < s, and since b. connects a for some p t s, 
I1 P - 

and b. connects a for some q 2 s, the convexity property implies that b. and b. both 
19 9 11 19 - A 

connect as. But also jl < v < j2, and by the double convexity of G, as must connect bv, 

contradicting v(max) < s. This proves the remark. 
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The graph G corresponding to the problem of maximizing the number of rods whose 
halves satisfy (1) and (2) i s  doubly convex bipartite, a s  the indexing proposed for the wi and v. 

1 
makes clear. By reference to (1) and (2) and the results above we observe that the choice of v 
for this problem can be determined from the following numerical computation: 

bV = Min {6.  
31' 6jJ 

where 

6. = Min {lJl + v., U2 - vj} 
1 J 

and jl and j2 a r e  respectively the smallest and largest of the unmatched v. indices such that 
1 
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