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A variety of combinatorial problems (e.g., in capital budgeting, scheduling, allocation) can 
be expressed as a linear integer programming problem. However, the standard devices for 
doing this often produce an inordinate number of variables and constraints, putting the 
problem beyond the practical reach of available integer programming methods. 

This paper presents new formulation techniques for capturing the essential nonlinearities of 
the problem of interest, while producing a significantly smaller problem size than the 
standard techniques. 

1. Introduction 

Nonlinearities in integer programming are customarily handled by the use of 
techniques involving piecewise linear approximation [3], [I41 or involving the trans- 
formation of a nonlinear function into a polynomial function of 0- 1 variables [I], [I 11, 
and then transforming the polynomial function into a linear function of 0-1 variables 
[I], [25], [26]. Methods have also been devised for solving nonlinear integer programs 
directly, usually after conversion to 0-1 problems involving separable functions with 
certain monotonicity properties (such as polynomials-see, e.g., [4], [9], [lo], [12], [13], 
[16], [17], [23]). The relative effectiveness of the transformed linear approach and the 
direct nonlinear approach depends on the problem to be solved-neither approach 
claims a uniform advantage over the other in all cases. 

Nevertheless, the transformed linear approach often encounters a severe shortcom- 
ing. Standard procedures for "linearizing" nonlinear integer problems (including those 
of piecewise approximation) typically involve a radical increase in the number of 
problem variables and constraints. Consequently, the gains to be derived from dealing 
with linear functions (albeit of integer variables) are quite likely to be nullified by the 
increased problem size. 

Methods to achieve more economical linear representations of 0-1 polynomial 
programming problems have been proposed in [7], [8] in an effort to expand the range 
of nonlinear problems for which the transformed linear approach may prove effective. 
A useful result in [8] demonstrated the possibility of linearizing 0-1 polynomial 
problems by the addition of variables that are cot~tinuous(or, more precisely, automa- 
tically 0-1 without explicitly imposing an integer restriction), thus giving rise to a 
linear integer problem containing the same number of integer variables as the 
polynomial problem. The advantage of this derives from the fact that the difficulty of 
integer programming problems is usually much more dependent on the number of 
integer variables than the number of continuous variables. 

However, in the case of nonlinear integer problems that are not naturally 0-1, a 
great deal is lost to increased problem size in the initial conversion to a 0-1 problem 
before applying subsequent linearization. The purpose of this note is to give proce- 
dures for achieving improved linear representations of commonly encountered non- 
linearities by giving special attention to this initial conversion as well as by examining 
situations in which the variables are already 0- 1. 
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2. A Simple Technique for Linearization by Discrete Variables 

Many nonlinearities in integer programming appear in the form of polynomial 
functions (e.g., via the use of approximations), and of these a significant number 
involve terms no higher than the second order. Such "quadratic" integer programs 
arise commonly in capital budgeting [18], [19] and in scheduling [20], [21]. 

The standard approach to linearizing these polynomial functions is to express them 
first as functions of 0-1 variables and then to introduce new 0-1 variables to take the 
place of the cross product terms, simultaneously introducing auxiliary constraints to 
insure that the new variables will assume the appropriate values. Ways to accomplish 
these things economically are proposed in [7], [8]. However, i t  is possible to improve 
substantially on the previous proposals when dealing with certain types of nonlineari- 
ties. 

A number of improvements can be realized by linking these nonlinearities to the 
following simple situation. Consider a variable w and a 0-1 variable x which are 
related to each other by the conditions U, > w > Lo when x = 0, U, > IV > L ,  when 
x =  1. 

A natural way to model this situation is by the pair of inequalities 

Difficulties are encountered, however, if the U's and L's are not constants, but 
variables (e.g., expressions of other problem variables), since then (U,  - U,)x and 
(L ,  - Lo)x will usually be nonlinear, and we must find some way of dealing with 
these cross products in order to achieve a linear model. Assume for the moment that 
U, > U, and L ,  > Lo. Then we can linearize the cross product terms by means of an 
idea of Petersen [21]. Specifically, it is shown in [21] that cross products of the form 
xz, with z a nonnegative variable bounded above by a constant M, can be handled by 
replacing xz with a new variable y which is required to satisfy 

M x > , y > z + M x - M  and z > y .  (2) 

Thus, upon identifying appropriate upper bounds, each of the cross products of (1) 
can be accommodated by introducing a new variable and three new constraints by 
(2), or a total of two new variables and six new constraints to accommodate both of 
these cross products. A minor extension of Petersen's observation makes i t  possible to 
handle (1) similarly when U, > U, and L ,  > L, do not hold, but we can specify a 
more economical approach to dealing with (1) that also implies the extension of (2), 
and in which it is necessary only to introduce four new constraints and no new 
variables. To do this, we identify constants a , ,  _U,, J&, Lo,etc., such that 

where "upper bars" represent upper bounds and "lower bars" represent lower bounds. 
Then the appropriate set of inequalities is given by 

u,+ (u,- ~ , ) ( l- x) 2 w > L,  + ( L ,- Z,)( l  - x). (3) 

Note that the first pair of these inequalities is actually the same as (1) with the 
inclusion of bars in appropriate places, and the second pair is "equivalent" to (1) in a 
similar manner. 

When x = 0, the first of these inequalities becomes Uo > w > Lo, as desired, and 
(upon rearranging terms) the second becomes & + (U,  -Q,) > w > _L, -(Z,- L,). 



NONLINEAR IKTEGER PROBLtMS: N k W  FORMULATIONS 457 

Since a. > Uo, Lo > &,and the quantities in parentheses are nonnegative, the second 
inequality is redundant relative to the first. In a similar manner. when x = 1 the 
second inequality of (3) becomes U ,  2 w > L, ,  as desired, and the first inequality 
becomes redundant. 

The foregoing inequalities can help considerably to reduce the number of new 
variables and constraints standardly introduced to accommodate cross products. An 
example is the "quadratic" capital budgeting problem [15], [18], in which it is desired 
to minimize Cj,J,,vx,dGs, subject to x, = 0 or 1 for all i E .Y = {I ,  . . . . t ~ ) ,  with all 
remaining constraints linear. The standard approach introduces n(n - 1)/2 new 0-1 
variables (one for each cross product term). This can be improved in the manner of [8] 
which makes these variables continuous (automatically 0 or 1 when the original x, 
variables are 0 or 1 ) .  By the use of (3) we can reduce the number of new variables to 11 

atld make them continuous. Specifically. define wi = x , ~ , d i J . ~ , .  the desiredThen 
restrictions translate into the following conditions involving M;: 

Thus, appropriate constants for (3) (with = M',) are 

Dl = L,= Dl+= the sum (over j )  of the posltlve dli's. 

-U , = L ,  = D,- = the sum (overj)  of the negative d,,'s 

Consequently, (3) becomes 

for K,= U; and s = s , ,  and we have succeeded in modeling the quadratic objective 
function by introducing n new continuous variables (M,,. i E A') and 4t1 constraints. 

3. Handling Other Common Nonlinearities 

Another. more general. nonlinearity is frequently encountered in an objective 
function of the form ~ , , , ; , , , x , d l i ~ ;  where. as before. the .u, are 0-1 but the variables 
v -
J 

need not be so constrained. The procedure for handling this is the same as in the 
J 

preceding section redefining Di+and D ,  appropriately to provide upper and lower 
bounds for C,dGd~,. A more interesting case is when the integer \.ariables x, are not 
constrained to be 0 or 1. Such a situation typically occurs in quadratic capital 
budgeting problems in which a prqject is not merely to be accepted or rejected. but 
can be accepted at  various levels of investment. It is still possible to accomniodate this 
within the framework of (3) by expressing each .Y, as a linear combination of 0-1 
variables; e.g.. 

where r > x, > 0. Then 
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and (3) can be applied for x = x, and w = w,, where w, = kxi,xjdijyj. Consequently, 
if Dik+ and Di, are upper and lower bounds on kzjdijyj we obtain the constraints 

thus introducing a total of nr new variables (w,) and 4nr constraints (after the initial 
replacement of each xi by the 0-1 variables x,). Alternatively, one may express each xi 
in the familiar "binary expansion" of 0-1 variables xi = xi, + 2xi2+ 4xi, + . . . 
giving roughly log, r integer 0- 1 variables for each xi. This results, correspondingly, in 
about n log, r new w, variables and 4n log,r constraints. However, I would like to 
suggest that this is one instance in which reducing the number of variables may not be 
particularly advantageous. The actual number of 0-1 solutions is not reduced in the 
binary expansion, and the structure of the "direct expansion" (4), in which a sum of 
variables cannot exceed 1,  is highly exploitable both in the continuous and in the 
integer settings. (This is true both in branch and bound [2]. [5], [24] and in cutting [6].) 

Moreover, the direct expansion actually permits a more substantial reduction in the 
number of remaining new variables and constraints than the binary expansion. This is 
accomplished by the following generalization of (3). 

Consider the situation in which 

Via the direct expansion (4) (suppressing the i subscript) the inequalities of (5) can be 
modeled by 

U, + ( U  - _U,)(1 - x,) > w > L, + (L - z,)(1 - x,) for k = 0, 1, . . . , r, (6) 

where the constants LJ,, G,U and L satisfy 

-U,< U,, > L,, U > Max{U,), L < Min{L,)
k k 

and where, definitionally, x, -- 1 - xk=,xk. That (6) accomplishes the intended effect 
is immediately apparent; its form is essentially that of the second inequality of (3), 
and becomes exactly that of this inequality by the minor refinement of replacing Cf 
and L with and _L,, where 4 > Max,, + ,{ U,}, 4,  < Min,, + ,{LA}. To use (6) 
to linearize the expression xiEN;jEMxidijyj it suffices to introduce a single variable 
wi = xiz,dijyj for each i E M and require 

Thus, letting Dik+ and Di, represent upper and lower bounds on kzjd,jyj, as before, 
and letting Di+ = Max{D,k+} and Dip = Min{Di; }, the inequalities of (6) become 

introducing a total of only n new continuous variables and n (r + 1) constraints (as 
contrasted with nr new variables and 4nr constraints for the preceding use of the 
expansion (4)). 

It should be noted that the direct expansion immediately accommodates the 
generalization of the foregoing to the case in which xi is replaced by the nonlinear 
function f(xi), requiring only that kzdijyj be replaced by f(k)xdijyj. The binary 
expansion, on the other hand, can be used in this situation only if one carries out a 
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