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Scope and purpese—The transportation and transshipment problem was among the earliest to be attacked by
the methods of operations research. The methods and algorithms used for optimizing the allocation of
transportation capability are also used for many other seemingly unrelated problems of allocation and
allotment. Because of this wide range of application, a very great amount of effort has been devoted to the
development of algorithms for this problem. This article is primarily concerned with the past, present and
future capability of such algorithms. It deals with the dependence of computer runming time on problem
complexity, and how that has changed as new computers and new algorithms were developed.

Abstract—Three generations of computers have elapsed since the first satisfactory method for solving
transportation and transshipment problems was devised. During this time many computational advances have
taken place in developing computer codes to solve these problems. For example, recent breakthroughs in the
solution and human engineering aspects of transshipment problems have made it possible to solve problems
in only a few minutes that require many hours of computing time with commercial LP packages. Additionally
the computer memory requirements of new methods have enabled the solution of vastly larger problems than
previously imagined possible (50,000 equations and 62 million variables). Enhancing the significance of these
developments, new ways have been discovered for modelling broad classes of real world problems as
transshipment or transshipment-related problems. The primary purpose of this paper is to summarize these
events and to do some crystal ball gazing to provide what we believe to be “best estimates” of future trends.

PAST

Approximately 200 years have elapsed since the French Academy of Sciences posed the civil
engineering problem of “cutting and filling.” Their formulation of the problem was not the same
‘a5 the transportation problem as we know it today, but was the equivalent of a transportation
problem in continuous form. The current formulation of a transportation problem was due to
Kantorovich[31], Hitchcock [29), and Koopmans{38].
~antorovich showed in 1939 that a class of problems closely related to the transportation
E-loblem has a remarkable variety of applications. These were concerned typically with the
otment of tasks to machines whose costs and rates of production vary by task and machine
f?pe. Kantorovich gave a useful but incomplete algorithm for solving such problems. Later, in
&942, he studied both discrete and continuous versions of this problem and in 1948, along with
Gavurin wrote an applicational study on the capacitated transportation problem.
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Hitchcock developed an incomplete algorithm in 1941, which exploited special properties of
the transportation problem to find starting solutions. Koopmans [38] independently arrived at the
same problem in connection with his work as a member of the Combines Shipping Adjustmen
Board. He and Reiter discussed the problem from an economic efficiency analysis viewpoint ang
pointed out the analogy between it and the classical Maxwell-Kirchhoff electrical network
problem. Because of their work, the problem is often referred to as the Hitchcock-Koopmang
Transportation problems.

Early solution methods

The first generally satisfactory method for solving the general class of transportation ang
transshipment models was due to G. B. Dantzig in 1949. The method specializes the prima[
simplex method to exploit the network structure. Applied to transportation problems, this
method is sometimes called the Row-Column Sum Method [9] or the MODI method[13). Charnes|
and Cooper|[8] later wrote an explanation (dubbed the Stepping-Stone Method) of the simplex.
steps involved in the Row-Column Sum Method. The Charnes—-Cooper paper has become ¢,
standard reference in the field.

With the advent of a method for solving the transportation problem came numerous methods
for securing starting bases. Two of the methods commonly referenced are the Northwest-Corner
Rule[13] and the Vogel Approximation Method [49] (often referred to as VAM). Of all the start
methods developed, VAM became the one most used for hand calculations due to the excellent
start it provides. Thus in the folklore VAM is considered the best procedure for both computer
and hand calculations.

After the development of the Row-Column Sum Method, the transportation model, with
integer parameters, rapidly became the chief “solvable” integer linear programming problem due
to the integer extreme point property. Also, a survey by L. W. Smith, Jr. in 1956 indicated that at
least half of the linear programming applications used this model.

Some of the early reasons for the large concentration on problems of this kind, particularly in
applications, were:

(1) Business executives can understand the transportation model, leading to increased
demand for its applications in practical settings.

(2) It is possible to approximate many linear programs by transportation problems.

(3) A number of seemingly unrelated linear programs have been found to be equivalent to
transportation problems.

(4) Answers to “large” problems can be easily computed by hand, which is an impossible task
for general linear programming problems of similar dimensions. Also, integer solutions were
immediately attainable.

(5) Computer codes were developed as early as 1952 for solving transportation problems.

Investigations by the authors in the late 1960°s strongly confirm these views. These
investigations indicate that a very substantial proportion, perhaps as great as 70%, of the real
world mathematical programming problems consist of—or can be transformed into-—network
and “network-related” problems. Specifically, the predominant number of practical mathemati-
cal programming applications appear to involve problems of the following types: assignment
problems, transportation problems, transshipment problems, generalized transshipment prob-
lems, transshipment problems with extra linear constraints, integer problems whose relaxed
problem is one of these, or a problem which is equivalent to one of these by a simple linear
transformation.

Subsequent to the development of the simplex based Row-Column Sum Method, Ford and
Fulkerson[17], developed a primal-dual method for solving tramsportation problems and
Fulkerson[18] developed the out-of-kilter method, which is an extension of the primal-dual
method, for solving transshipment problems. Somewhat earlier Munkres[44) and Gleyzal{28]
also developed methods similar to the primal-dual method.

It is interesting to note that Dantzig, Ford and Fulkerson concluded on the basis of hand
calculations that the primal-dual method was superior in efficiency to the Row-Column Sum
Method. This conclusion was also supported by Flood[16] on computer codes. Consequently,
this conclusion became part of the folklore. (However, the computer codes were tested on
different problems and different computers.)
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gAnother major early solution method was developed by Busacher and Gowen{7]. Their
i;,fi‘f)‘(:edun', successively saturates shortest paths in the network. An alternative method for
olving transportation problems was developed by Balas and Hammer([2,3]. Later Charnes and
Grby [10] showed that this method may be viewed as a specialization of the dual simplex method.

jBarly computer codes

The first computer code for solving transportation problems was based on the Row-Column
&iim Method and in terms of current jargon is called a primal simplex transportation code. In fact,
;th code was also an in-core out-of-core code, utilizing magnetic tape for peripheral storage. The
ﬁde was developed in 1952 by the George Washington University Logistics Research Project in

njunctlon with the Computation Laboratory of the National Bureau of Standards[50].
gBeslgned for use on the Bureau of Standards Eastern Automatic Computer, the code was further
n%f:roved by the NBS Computation Laboratory. The improved version was capable of solving
sroblems with at most 600 nodes and required more than 3 min per pivot. Current pivot times for
iproblems of this size are 3-5 ms on the CDC 6600, UNIVAC 1108, and IBM 360/65 computers.
The in-core out-of-core primal simplex transportation code by Dennis[14] is one of the first
codes to be described in detail in the literature. Dennis’ paper is also one of the first to study
ifferent criteria for selecting pivot elements. Unfortunately, his study principally involved only
ne problém of size 30 origins by 260 destinations. The best solution time was 9-6 min on the
irlwind computer. Current solution time for this size problem on a CDC 6600 is 1 s, or roughly
600 times faster on in-Core codes.

Another in-core out-of-core primal simplex transportation code was developed in the late

fiitties by Glicksman et al.{20]. This code was developed for the UNIVAC I for solving “thin
ectangular” problems. The code solved a 15 origin by 488 distination problem in 24 min. This is
iapproximately 900 times slower than current in-core codes.

Also, during the late fifties in-core transportation codes were developed using the primal-duval
imethod, implemented primarily on IBM computers. These codes include the one due to
Flood[16] (using his proof of the Konig-Egervary Theorem) and the IB-TFL code (1938)
'developed by Rand Corporation, The code of Flood and the IB-TFL code were compared on a
problem with 29 origins and 116 destinations on an IBM 704. Their times were 193 and 197
seconds, respectively. Current solution time would probably be 1s.

Based on this testing Flood and others reinforced the earlier conclusion that the primal-dual
method was computationally superior to the primal simplex method. Note that this conclusion
was not well founded, In particular, it was based on solving different problems of different sizes
on different computers. Additionally the primal simplex codes were in-core out-of-core codes
using slow magnetic tape for peripheral storage, while the primal-dual codes were strictly in-core
codes using only fast-access (central) memory for storage.

As far as we have been able to determine no computer codes based on the dual simplex
method or the Busacher and Gowen method were developed prior to 1968. Additionally, no
testing was conducted to determine best start procedures and pivot criteria to use with the primal
simplex method and no primal simplex transshipment codes were developed.

Following these developments, there was a hiatus of half a dozen years during which little was
visibly accomplished in the development of improved solution methods or computer
implementations. From an algerithmic standpoint, it was widely believed that no significant
refinements remained to be discovered. In retrospect, this attitude seems surprising, particularly
in view of the paucity of experimentation to determine the computational strengths and
weaknesses of alternative approaches. Then, in the later sixties and more particularly in the early
seventies, a new surge of interest in network methods and applications came about, leading to a
number of surprises for those steeped in the notions of a decade earlier.

It is to these more recent developments that we now turn.

PRESENT
Computational highlights to mid-1973
As already intimated, the early special purpose primal and primal-dual codes were capable of
solving only small problems, were quite slow, and were not extensively tested. Beginning with the
latter half of the sixties, several codes have been jointly developed by mathematical
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programmers and systems analysts who have performed extensive experimentation on varioy,
algorithmic rules. The major code developments completed by mid-1973 are indicated in Table |
These codes represent several “firsts” in computational and algorithmic development.

(1) The first implementations of dual simplex transportation and transshipment codes [21,24);

(2) The first implementation of a primal simplex transshipment code[21].

(3) The development of the negative cycle solution method for assignment problems by
Klein[35}, and its extension and implementation for transshipment problems by Bennington[6],

(4) The first primal simplex transportation code capable of solving capacitated problems agj;
the first code to store only the existing costs rather than a full cost matrix[23]}.

Table 1 also shows that the computer memory requirements of non-simplex codes ag
substantially larger than those of simplex codes. The codes that make the most efficient use of
computer memory are the primal simplex codes by Glover et al.[21,23] and Karney ang
Klingman[33]. It should be noted that all of the codes in Table 1 are coded in FORTRAN, and aJI
except If0 PNET are in-core codes. The If0 PNET code, by Karney and Klingman, is an m-core
out-of-core code designed for large-scale problems. Before this code was fully streamlined, it
solved a problem for the Naval Personne! Laboratory in San Diego with 2400 nodes and 450,000
arcs on an IBM 360/65 and CDC 6600 in 26 and 23 min of central processing time, respectively.

All of the primal and dual simplex codes in Table 1 (except that of Graves and McBride) us
the augmented predecessor list structure[22], which elaborates on Johnson’s *‘triple-label

Table 1. Code development by mid-1973

Core Memory

Developers Name Methodolo; Requirements Date
1. Barr, Glover, SUPERK  Out-of-kilter 4N + 9A 1972
Klingman
2, Bennington BENN Negative Cycle Method 6N + 11A 1971-73
3. Witzgall Boeing Qut-of-kilter 6N + 8A 1966
4. Clasen SHARE Out-of-kilter 6N + 7A 1966
5. Contrel Data NETFLOW  OQut-of-kilter 6N + 7a 1970
Corporation
6. Gavish and Schweitzer Primal Simplex 8N + 34 1972
Transportation
) 7. General Motors oM Primal-dual TN + 5A 1970~72
Trangportation
8. Glover, Karney, PTRANS
Klingman Primal Simplex 5N + 2A 1970-71
Transportation
9. Glover, Karney, DTRANS Dual Simplex 8N + 2A
1970-72
Klingman Transporcation
10. Glover, Karney, PNET Primal Simplex 6N + 24 1972-73
Klingman Trangshipment
11. Glover, Karney, DNET Dual Simplex 9N + 24 1972-73
Klingman Transshipment
12. Graves and McBride Primal Simplex 14N + 24 1972-73
Transshipment
13. Grigoriadis, etr. al. Rosen's Dual Method
1966-68
14. Kennington and Primal Simplex 8N + cost matrix 1972-73
Langley Transportation
15. Karmey and Klingman 1/0 PNET Primal Simplex 7N + Buffer 1973
Transshipment
16. Srinivasan and S-T
Thompson Primal Simplex 10N + cost matrix 197¢-72
Transportation
17. Texas Water Devel- TWB B 4N + 2
ot oacd Out-of-kilter N" + 7a 1968
18. UNIVAC UKILT Cut-of-kilter 4N + 94 1973
3N + SA

N - number of nodes
A - number of arcs

Hote: All of these are in-core codes coded in FORTRAN,
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method”"[30] by providing an efficient method for characterizing successive basis trees with
minimal relabeling. The augmented predecessor list structure has been a major contributor to the
improvements in the computational efficiency of solution algorithms. With its use, the primal
{ransportation code by Glover et al.[23] executes a pivot on a 600 node problem in 6 ms compared
with the early breakthrough (1952) of reducing the time per pivot to 3 min. While this reduction is
largely due to improvements in computers and the in-core nature of these codes, this is not the
whole reason. For instance, the first accelerated primal transportation code developed by
Srinivasan and Thompson([51) employed a list structure for proceeding in a forward direction
through a spanning tree similar to Dennis’ procedure. Upon comparing solution times of the
§nnivasan and Thompson code with the Glover, Karney, and Klingman code on the same
problems and machine, the efficiencies of the augmented index structure became apparent.
Snmvasan and Thompson recoded using the augmented list structure and cut their solution times
by more than half. Similarly, Gavish and Schweitzer(19] improved their solution times by a factor
of,3 after adopting the predecessor list structure.

The code development and comparison of Srinivasan and Thompson[51] provides an
important computational analysis of several primal start procedures and pivot criteria. The
purpose of this study was to determine a design for an in-core uncapacitated primal
transportation and assignment code which optimally combines start procedures and pivot criteria
for maximum solution efficiency. The study disclosed that the best start method is the “modified
row minimum start” procedure and the best pivot selection criterion is the “row most negative
rule.” This pivot rule was also found to be best by Dennis[14). Maximum problem size solved was
350 nodes (origins plus destinations). This node limitation is due to the fact that it is an in-core code
which stores a complete cost matrix. The average solution time on 175 origin by 175 destination
transportation and assignment problems was 7-8s.

The code development and comparison by Glover, Karney, Klingman, and Napier (1970--72)
performed similar analyses on a broad profile of dense and nondense problems. The underlying
code PTRANS was specially designed for solving both capacitated and uncapacitated problems
with nondense cost matrices (i.e., transportation problems where some cells may not be allowable).
This study also found the modified row minimum start and row most negative pivot rule to be best,
-thus casting doubt on the folklore of the superiority of VAM starts. In addition, using 100 problems,
the study compared PTRANS to several other codes including Clasen’s SHARE code (1966), the
Glover, Karney, and Klingman dual code DTRANS (1970), and the state-of-the-art linear
programming code OPHELIE/LP. As indicated in Table 2 this comparison revealed that the

SPTRANS Code was at least eight times faster than the SHARE and DTRANS codes, and 150 times
faster than OPHELIE/LP. Thus the old folklore about the superiority of out-of-kilter methods,
-and a new folklore among computer service divisions about equivalence of general purpose and
‘special purpose solution codes for transportation and transshipment problems were upended. (The
times indicated in Table 2 for PTRANS in 1973 have been made three times faster in 1974. Thus the
superiority of primal simplex codes appear even more pronounced than suspected.)

The largest problems solved in the study{23] were 1000 origin by 1000 destination problems
with an average solution time of 17 s. This study also tested the primal code on four computers,
IBM 360/65, UNIVAC 1108, CDC 6400, and CDC 6600 in order to provide insights into
conclusions based on comparing times on different machines and compilers. It was discovered
that standard guidelines concerning the relative efficiencies of different computers were
completely misleading, since the primal code ran only 10-12% faster on the CDC 6600 than on the
UNIVAC 1108 and the IBM 360/65 differing substantially from the estimates one would obtain by
comparing instruction execution times of the machines.

Motivated by the fact that out-of-kilter codes were found to be substantially slower than the
special primal code, Barr et al.[5] developed an improved version of the out-of-kilter method
which was subsequently coded. This code was found to be only 40% slower (on the same
problems and machine) than the primal transportation code of Glover, Karney, and Klingman on
transportation problems. This code was also compared against Clasen’s SHARE Code, Boeing’s
code, and the Texas Water Development Board code and found to be at [east six times faster than
the best of these {which differed from problem to problem). The study also examined a total of
215 capacitated and uncapacitated transhipment problems demonstrating the superiority of the
improved version of the out-of-Kilter code over the other out-of-kilter codes in all cases. The
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Table 2. Solution times (sec) for Out-of-Kilter, OPHELIE/LP, primal and dual algorithms®

SHARE
PTRANS OPHELIE/LP Out-of-
Mean Primal Solucion Kilter DTRANS
Problem Size Density Solution Time Solution Solution
Timel Time _Time
10 X 10 0.35 0.016 0.755 0.10 0.025
20 X 20 0.65 0.104 4.012 0.68 0.226
30 x 30 0.60 0.242 2.04 0.689
40 X 40 0.36 0.282 39.375 2.42 0.903
50 X 50 0.54 0.611 5.70 3.053
60 X 60 0.20 0.692 5.28 3.026
70 X 70 0.28 0.925 9.46 7.022
80 X 80 0.31 1.467 22,10 9.829
90 X 90 0.28 1.917 26.35 15.180
100 X 100 . 0.20 1.907 276.90 21.17 14.622
500 X 500 0.011 5.983
1000 X 1000 0.005 17.081

lihese times have been improved by a factor of three in 1974.
21’\1.]. times are median times with five problems per group.

largest problems solved were 1500 node transshipment problems. The mean solution time wa§
34s.

Still more recently, Glover et al.[21] have developed a general primal transshipment code]
Computational comparison of this code with the out-of-kilter code by Barr et al. reveals that the;
primal code is 30% faster on transshipment problems. This is rather startling since the Barr et dl.
code is probably the fastest out-of-kilter code in the world and conventional wisdom has it that
labeling techniques are inherently more efficient than simplex techniques. The primal
transshipment code was also tested against the negative cycle code by Bennington[6] and found
to be ten times faster. This computational study also showed the superiority of the new primal
transshipment code in terms of central memory requirements for storing network data.
Specifically, the out-of-kilter codes discussed earlier require 6~10 arc-length arrays and 4-7
node-length arrays as compared to 3 arc-length arrays and 8 node-length arrays for the primal
code. The substantially increased problem size that can be accomodated by the new primal code
is illustrated in the study by the solution of an 8000 node problem.

In addition to these code development efforts and computational comparisons, an extensive,
study of the effects of parameter values was conducted for transportation problems by Klingman
et al.[36]. This study performed a detailed examination of the effects of problem dimensionality
on solution times. The study included over 1000 randomly generated problems with 185 different
combinations of number of origins, number of destinations and number of variables (not all cells
being considered admissible). Every problem was solved using three starting procedures. Over
10,000 pieces of data were analyzed, providing numerous insights into the computational effects
of the number of constraints, the degree of “rectangularity”, and the number of variables.

Some of the conclusions drawn from this study are:

(1) For problems with a constant number of variables and a constant number of constraints,
total solution time decreases as the problems become more rectangular. Additionally, the basis
equivalent paths in a rectangular problem are shorter.

(2) For a constant density and a constant number of variables the total solution time increases
as rectangularity increases.

(3) Total solution time increases slightly greater than in proportion to the change in the square
of the number of constraints for problems with a fixed density and a fixed ratio of m/n.
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(4) For a fixed number of origins and a fixed density, the total solution time increases in
proportion to an increase in the number of destinations. (The paper contains least square solution
time estimators.)

(5) For a fixed degree of rectangularity, increasing the number of constraints for a fixed
number of variables has a greater effect on total solution time than increasing the number of
‘'variables for a fixed number of constraints.

(6) As variance increases in the cost distribution, solution time increases. Thus problems
whose costs are randomly generated using a uniform probability distribution are hardest to solve
for a fixed cost range.

These studies on the effect of parameter values and code comparisons repeatedly reinforced
the conclusion that in order for researchers to compare their codes in 2 meaningful way it is
necessary that they use exactly the same problems. This is due to the fact that, even if two
randomly generated problems have the same parameter values, a generator inherently builds
structure into the problems, particularly transshipment and transportation problems in which
ssome arcs do not exist. This point is underscored in the computational study[5] and has been
further demonstrated by the comparison of the codes due to Bennington; Glover, Klingman, and
Karney; and Srinivasan and Thompson which yielded unexpected results when tested on the
‘same problems and the same computer.

To enable researchers to meaningfully compare their solution codes, Klingman et al.[37]
developed a code which generates assignment problems, and capacitated and uncapacitated
transportation and transshipment problems. In addition to producing structurally different classes
of transshipment problems, the code permits the user to vary structural characteristics within a
class. By means of this code, researchers can generate identical transshipment problems
(independent of the computer). Advantages of the transshipment generator, which is available
with documentation to researchers for a nominal handling charge, are its ease of use (requiring
only two data cards per transshipment problem) and the standardization of its output (generating
problems for use by other codes in SHARE input format). In addition, the latter part of the
‘documentation provides the user with the data on 40 assignment, transportation, and
transshipment problems varying in size from 200 nodes to 8000 nodes and from 1300 arcs to
35,000 arcs. The objective function value and solution time for these problems are also provided
for the SHARE, Boeing, TWB, GM, SUPERK, PNET, and BENN code.

Conclusions and limitations of mid-1973 testing

The code development and testing conducted between 1970 and mid-1973 produced
implementations of all widely known transportation and transshipment solution methods except
for the Busacker and Gowen method. Extensive computational comparisons of these methods
have been made using the same problems, computer, and compiler(21, 23, 33, 37]. The results of
this testing showed that the primal simplex transportation method embodied in PTRANS{23] was
the most efficient transportation code in terms of both computer memory space and solution time.
Similarly, the primal simplex transshipment code PNET[21] was the most efficient code for
transshipment problems. PNET runs only 10% slower than PTRANS on transportation
problems, for which the latter was especially designed. This raises the question “Is it worth
developing both transportation and transshipment codes?”

Testing and code development after mid-1973

During the summer of 1973, Glover, Klingman, and Stutz developed a new list structure for
storing and updating spanning trees called the Augmented Threaded Index Method (ATI){26].
The ATI is the only list structure that uses only two pointers per node (in a non-binary tree) while
providing the ability to traverse the tree both upward and downward efficiently. The ATI[26] is
thus more efficient than the API[22] in terms of both computer memory requirements and
solution speed. Following this development a number of new codes were developed (see Table 3).
All of the codes in Table 3 use the ATI method except Edmonds and Karp, Graves, and Rao and
Fong. Computational testing has shown all of these codes to be inferior to the ATI codes. (An
interesting point which Jack Edmonds mentioned at the Combinatorial Conference at Versaille in
September 1974 was that some computational testing on the streamlined version[15] of the
Busacker and Gowen algorithm had been done and the results indicated that the algorithm in [15]
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Table 3. Code development completed after mid-1973

Developer Name Type Array Size Year
1. Analysis, Research, ARC PPN In~Core Primal 6N + 2A 1974
and Computation Simplex Transshipment
2. Barr SUPERT In-Core Primal Gm +n) + 1973
Simplex Transportation 2d(mn)
4. Glover, Karney, PNET~1I In-Core Primal 5N + 2A 1973
Klingman Simplex Transshipment
4. UGraves In-Core Primal N + 2A 1974
Simplex Transshipment
5,  Karoey and Klingman 1/O PNET-1 In-Core Out-of-Core 5N + Buffer 1974
Primal Simplex
Transshipment
f. Mulvey LP~NET In-Core Primal 6N + 2A 1974
Simplex Transshipment
/. Rae amd Fong Primal-Dual In-Core f{m + n} + 1971
Transporcation 3mn

For transsipment problems N is the number of nodes and A is the number of arcs.
For transportation problems m is the mumber of origins, n is the wumber of destinations:
and d Is the density of the admissible cells.

is inferior to SUPERK [5].) Thus, after testing all of the basic network solution algorithms, it
has been established that primal simplex based network codes are the fastest. Further,
computational testing indicates that the fastest primal simplex transshipment code is the one by
Analysis, Research, and Computation, Inc.[1] and the fastest transportation code is the one by
Barr[4]. Both codes use the ATI method[26] augmented by a depth factor degeneracy
check[42, 51] and a candidate list pivot selection procedure[42].

A significant recent finding by Mulvey[42] is that the best pivoting procedure determined in
[14, 21,23, 51] for small and medium size problems is not the most efficient for large problems.
Mulvey’s fiinding is that by using an appropriate candidate list pivot selection procedure (i.e.,a
multi-pricing procedure) when solving large problems, solution time can be cut in half over the
pivot criteria used in [14, 21,23, 51]. Another recent computational conclusion [19, 42} is that
avoiding andfor exploiting degenerate privots can significantly enhance simplex based codes
since degeneracy is as high as 99% in large problems.

Due to these important computational aspects of large problems, Glover and Klingman [27]
very recently developed another list structure which extends the ATI method to directly
incorporate information needed to exploit both degeneracy and depth. This new list structure has
the disadvantage of requiring one moré computer memory array than the ATI method augmented
by the depth factor but offers substantial computational advantagé. In particular, the new list
structure requires significantly fewer computer operations (e.g., array references and arithmetic
operations) to update the basis tree than the latter. In addition, the new list structure minimizes
the efforts required to update dual information. Thus, it is quite likely that this list structure will
produce another breed of primal simplex codes similar to the developments following the API
and ATI developments [22, 26].

FUTURE

In spite of the major recent gains in the development and testing of network codes, significant
avenues remain to be explored. In particular, most of the codes currently in vogue are in-core
codes, all are coded in FORTRAN, most have not fully exploited problem size capability of third
generation computers. Thus, we shall probably see codes developed in other languages (e.g.,
ALGOL and APL) in order to rigorously determine which language is best in network
applications. Assembly language codes are also quite conceivably in the offing, but of course will
be machine specific and sacrifice portability.
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In the near future, we will undoubtedly see super large scale in-core out-of-core network
codes developed which will be capable of solving network problems of almost unlimited size. For
example, the Analysis, Research and Computation code, ARC-PPN,{1] is being extended and
highly specialized to solve a 50,000 node, 62 million arc transportation problem on a UNIVAC
1108 for the U.S. Treasury Department. This Extended Transportation System (which is to
include such special features as primal generated percent optimality bounds and dynamic
candidate list selection pivot procedures) will probably determine future algorithm needs and
provide important insights on current solution bounds.

While the transshipment generator{37] is a start towards helping benchmark these codes, we
believe that a bureau needs to be established to enable standardized comparisons. We have been
informed by Richard Jackson (at the National Bureau of Standards) that the Mathematical
Programming Society in conjunction with various researchers, is considering the feasibility of
establishing a service facility to accomplish this. The benefit of establishing such a service is
apparent; however, numerous problems must be overcome. For example, Input-Output formats
of codes and methods for timing codes must be standardized. While such matters may appear to
be quite simple, they are not. To illustrate, every code benchmarked by the authors, (e.g., those
due to Clasen, Boeing, the Texas Water Development Board, General Motors, Bennington, and
Srinivasan and Thompson), used a different input format, and considerable effort was required to
accommodate these differences. Also, while a valid criterion for the timing of in-core codes is
quite easy to define (namely central processing time exclusive of data input and output),
establishing an acceptable measure for the timing of in-core out-of-core codes in a
multi-processing environment is far more complex. In any case, we believe some criteria need to
bedeveloped.

Other short range future developments which we foresee include:

(a) development of network computer systems similar to general linear programming systems.
These systems will include such things as a command language (which allows the user to add,
delete, and modify arcs), matrix generators, report generators, user subroutine control of
individual components of the system, and interactive coupling with data base management
information systems. The Control Data Corporation NETFLOW [45] system and the UNIVAC
UKILT-1100[52] system are forerunners of such systems.

(b) establishment of numerous special purpose integer programming codes using efficient
network codes as the main computational vehicle, e.g. plant location codes, fixed charge network
codes, integer generalized network codes, constrained network codes, multi-commodity (integer)
&etwork codes, constrained generalized network codes, and multi-commodity (integer)
generalized network codes.

This integer programming development will be (and must be) integrated with the following
analysis:

(1) find efficient ways to match data organization and manipulation schemes of network-
related problems with integer programming information requirements.

(2) just as researchers have found in the past that there are different integer programming
sormulations for the same problem, researchers [25,43] now are discovering that there are
different types of network relaxations within formulations. Thus researchers need to test which
of these relaxations are best along several dimensions. For example, studies must be conducted
to determine the trades-offs between the strength of relaxation, solution time, and usability of
special penalty calculations.

Looking farther into the future, we anticipate the following as possible developments:

(a) an efficient graph computer language which allows a user to write special purpose network
codes in half a day. A forerunner is the GROPE language at the University of Texas.

(b) network and related optimization codes which modify themselves; for example, computer
network codes which “learn” how to efficiently solve particular types of problems through
experience in solving them. (Preliminary investigations of this type have now been going on for
more than a decade.)

(c) multi-page linear programming codes which use special purpose codes (e.g., network
codes) to solve pages (components) which have a special structure.
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