
" ~p"" ~ Ops Rtf., Vol. 2. pp. 7l-!1. PC1pIIIon Press. 197'- Printed ill Grell Britain

PAST, PRESENT AND FUTURE OF LARGE SCALE
TRANSSHIPMENT COMPUTER CODES

AND APPLICATIONS

A. CHARNES·, DAVID KARNEvt, D. KLINOMAN* and JOEL STIITZ§
University of Texas at Austin

and

FRED GLOVER'
University of Colorado

SCOpf Ind purpose---The transportation and transshipment problem was among the earliest to be attacked by
the methods of operations resutch. The methods and al,orithms used for optimizina the aJlcx:ation of
transportalton capability are also used for many other Steminal)' unrelated problems of allocation and
allotment. Because of this wide range,of application. a very pcal amount of effort ha.s been devoted to the,
development of al,orithms for this problem. This article is primarily concerned with the past, present and
future capability of such algorithms. It deals with the dependence of computer running time on problem
complexity. and how that has changed as new computers and new algorithms wert developed.

O\lmrxt-Three generations of computers have elapsed since the first satisfactory method for solvina
transportation and transshipment prob~ms was devised. Durinathis time many computational advances have
taken ~ace in devdopina computer codes to solve these prob~ms. For example, recent breakthroughs in the
solution and hUman enaineering aspects of transshipment problems have made it possible 10 solve problems
in only a few minutes that require many hours of computing time with commercial LP packages. Additionally
the computer memory requirements of new methods have enabled the solution of vastly larger problems than
previously imagined possible (SO,OOO equations and 62 million variables). Enhancing the significance of these
developments, new ways have been discovered fOr modellina broad classes of real world prob~ms as
transshipmenl or transshipment-related problems. Tbe primary purpose of this paper is to summarize these
events and to do iOfRC crystal ball gazing to provide what we believe to be "best estimates" of future trends.

PAST

pproximately 200 years have elapsed since the French Academy of Sciences posed the civil
engineering problem of "cutting and filling." Their formulation of the problem was not the same
~ the transportation problem as we know it today, but was the equivalent of a transportation
,PJ.oblem in continuous form. The current formulation of a transportation problem was due to
!K.antorovich [311, Hitchcock [291, and Koopmans [381.

: ~antorovich showed in 1939 that a class of problems closely related to the transportation
Wob. lem has a remarkable variety of applications. These were concerned typically with the
IIlotment of tasks to machines whose costs and rates of production vary by task and machine
ifpe. Kantorovich gave a useful but incomplete algorithm for solving such problems. Later, in
W/.42, he studied both discrete and continuous versions of this problem and in 1948, along with
liIavurin wrote an applicationaI study on the capacitated transportation problem.

"'Dr. Abraham Charnes is a professor at the University of Texas. He is a Fellow of ORSA, AAAS, and the £tonometric
LSociety; Founding Correspondin, Member of the National Academy of Engineering in Mexico: Founding Member and Past
President of TIMS.

tDavid Karney is Executive Vice President of Analysis, Research, and Computation Inc. He holds a BA in Mathematics
.~d an MA in Computer Sciences from the University of Texas at Austin. Mr. Karney is the co-author of several published
, papers and research notes on network analysis and co-author of a book on Testin. Computational Algorithms.

• iDarwin Klingman isa professor in the depanments of Mathematics. Opent;ons Research. and CompulCl Sciences al the
University of Texas at Austin, and is director of Computer Sciences Research for the Center for Cybernetic Studies. He is
the author of more than twenty-five articles in such journa1s as Management Science. Operations Research, and
Transportation Science. He is also co-author of books on linear proaramming and data processing.

§Joel Strutz is an Assistant Professor in Operations Research and Computer Sciences at the University of Texas. His
CUrrent research is on generalized network problems and interfacin. the hUman engineering aspects of data management
information system with optimization programs.

'Fred Glover is Professor of Management Science at the School of Business, University or Colorado, Boulder. His past
fields of research have included inte,er programming and combinatorial or graph theory problems (such as scheduling,
matching, and routing) relating to it.

71

72 A. CHAINES tt al.

Hitchcock developed an incomplete algorithm in 1941 , which exploited special properties of
the transportation problem to find starting solutioos. Koopmans[381 independently arrived at t~
same problem in connection with his work as a member of the Combines Shipping Adjustment
Board. He and Reiter discussed the problem from an economic efficiency analysis viewpoint and
pointed out the analogy between it and the classical Maxwell-Kirchhoff electrical netwo~
problem. Because of their work, the problem is often referred to as the Hitchcock-Koopman§
Transportation problems. '

Early solution methods
The first generally satisfactory method for solving the general class of transportation aM

transshipment models was due to G. B. Dantzig in 1949. The method specializes the Prim
simplex method to exploit the network structure. Applied to transportation problems, this
method is sometimes called the Row-Column Sum Method [91 or the MODI method [13]. Chame.
and Cooper [8] later wrote an explanation (dubbed the Stepping-Stone Method) of the simplex
steps involved in the Row-Column Sum Method. The Charnes-Cooper paper has become ::,
standard reference in the field. -

With the advent of a method for solving the transportation problem came numeroUs method,
for securing starting bases. Two of the methods commonly referenced are the Northwest-Corner
Rule [Ill and the Vogel Approximation Methodl49] (often referred to as VAM). Of aU the start
methods developed, V AM became the one most used for hand calculations due to the excellent
start it provides. Thus in the folklore V AM is considered the best procedure for both computer
and hand calculations.

After the development of the Row-Column Sum Method, the transportation model, with
integer parameters, rapidly became the chief "solvable" integer linear programming problem due
to the integer extreme point property. Also, a survey by L. W. Smith, Jr. in 1956 indicated that at
least half of the linear programming applications used this model.

Some of the early reasons for the large concentration on problems of this kind, particularly in
applications, were:

(I) Business executives can understand the transportation model, leading to increased
demand for its applications in practical settings.

(2) It is possible to approximate many linear programs by transportation problems.
(3) A number of seemingly unrelated linear programs have been found to be equivalent to

transportation problems.
(4) Answers to " large" problems can be easily computed by hand, which is an impossible task

for general linear programming problems of similar dimensions. Also, integer solutions were
immediately attainable.

(5) Computer codes were. developed as early as 1952 for solving transportation problems.
Investigations by the authors in the late 1960's strongly confirm these views. These

investigations indicate that a very substantial proportion, perhaps as great as 70%, of the real
world mathematical programming problems consist of -or can be transformed intc>-network
and "network-related" problems. SpecificaUy, the predominant number of practical mathemati
cal programming applications appear to involve problems of the following types: assignment
problems, transportation problems, transshipment problems, generalized transshipment prob
lems, transshipment problems with extra linear constraints, integer problems whose relaxed
problem is one of these, or a problem which is equivalent to one of these by a simple linear
transformation.

Subsequent to the development of the simplex based Row-Column Sum Method, Ford and
Fulkerson[I7), developed a primal-dual method for solving transportatioo problems and
Fulkerson [I 81 developed the out-of-kilter method, which is an extension of the primal-dual
method, for solving transshipment problems. Somewhat earlier Munkres [441 and Gleyzall281
also developed methods similar to the primal-dual method.

It is interesting to note that Dantzig, Ford and Fulkerson concluded on the basis of hand
calculations that the primal-dual method was superior in efficiency to the Row-Column Sum
Method. This conclusion was also supported by F100d[161 on computer codes. Consequently,

-this conclusion became part of the folklore . (However, the computer codes were tested on
different problems and different computers.)

Large scale transshipment computer codes and applications 73

AlAnother major early solution method was developed by Busacher and Gowen [7). Their
'ii!cedure successively saturates shortest paths in the network. An alternative method for
imving transportation problems was developed by Balas and Hammer[2,3). Later Charnes and
~if1,y[\O) showed that this method may be viewed as a specialization of the dual simplex method.

mt!,rly computer codes
iThe first computer code for solving transportation problems was based on the Row-Column

fSE", Method and in terms of current jargon is called a primal simplex transportation code. In fact,
ftik code was also an in-core out-of-core code, utilizing magnetic tape for peripheral storage. The
~de was developed in 1952 by the George Washington University Logistics Research Project in
!/mrtjunction with the Computation Laboratory of the National Bureau of Standards [50).
Fsigned for use on the Bureau of Standards Eastern Automatic Computer, the code was further
JwProved by the NBS Computation Laboratory. The improved version was capable of solving
~i>blems with at most 600 nodes and required more than 3 min per pivot. Current pivot times for
iJli9blems of this size are 3-5 ms on the CDC 6600, UNIVAC I \08, and IBM 360/65 computers. .

,The in-core out-of-core primal simplex transportation code by Dennis [14) is one of the first

I
· '2iies to be described in detail in the literature. Dennis' paper is also one of the first to study

.

ifferent criteria for selecting pivot elements. Unfortunately, his study principally involved only
De problem of size 30 origins by 260 destinations. The best solution time was 9·6 min on the
. . Iwind computer. Current solution time for this size problem on a CDC 6600 is I s, or roughly

'liOO times faster on in-core codes .
.... 'Another in-core out-of-core primal simplex transportation code was developed in the late
Baties by Glicksman et al. [20). This code was developed for the UNIVAC I for solving "thin
~ctangular" problems. The code solved a 15 origin by 488 distination problem in 24 min. This is
,~pproximately 900 times slower than current in-core codes.

Also, during the late fifties in-core transportation codes were developed using the primal-dual
tmethod, implemented primarily on IBM computers. These codes include the one due to
IFlood(16) (using his proof of the Konig-Egervary Theorem) and the IB-TFL code (1958)
~eveloped by Rand Corporation. The code of Flood and the IB-TFL code were compared on a
'~roblem with 29 origins and 116 destinations on an IBM 704. Their times were 193 and 197
;seconds, respectively. Current solution time would probably be I s.

Based on this testing Flood and others reinforced the earlier conclusion that the primal-dual
method was computationally superior to the primal simplex method. Note that this conclusion
was not well founded. In particular, it was based on solving different problems of different sizes
on different computers. Additionally the primal simplex codes were in-core out-of-core codes
using slow magnetic tape for peripheral storage, while the primal-dual codes were strictly in-core
codes using only fast-access (central) memory for storage.

As far as we have been able to determine no computer codes based on the dual simplex
method or the Busacher and Gowen method were developed prior to 1%8. Additionally, no
testing was conducted to determine best start procedures and pivot criteria to use with the primal
simplex method and no primal simplex transshipment codes were developed.

Following these developments, there was a hiatus of half a dozen years during which little was
visibly accomplished in the development of improved solution methods or computer
implementations. From an algorithmic standpoint, it was widely believed that no significant
refinements remained to be discovered. In retrospect, this attitude seems surprising, particularly
in view of the paucity of experimentation to determine the computational strengths and
weaknesses of alternative approaches. Then, in the later sixties and more particularly in the early
seventies, a new surge of interest in network methods and applications came about, leading to a
number of surprises for those steeped in the notions of a decade earlier.

It is to these more recent developments that we now turn.

PRESENT
Computational highlights to mid-1973

As already intimated, the early special purpose primal and primal-dual codes were capable of
solving only small problems, were quite slow, and were not extensively tested. Beginning with the
latter half of the sixties, several codes have been jointly developed by mathematical

74 A. CHARNES et al.

programmers and systems analysts who have performed extensive experimentation on variou1
algorithmic rules. The major code developments completed by mid-I973 are indicated in Table 1\
These codes represent several "firsts" in computational and algorithmic development.

(I) The first implementations of dual simplex transportation and transshipment codes [21.24]i
(2) The first implementation of a primal simplex transshipment code[21].
(3) The development of the negative cycle solution method for assignment problems ~y,

Klein [35]. and its extension and implementation for transshipment problems by Bennington [6].
(4) The first primal ~implex transportation code capable of solving capacitated problems a I

the first code to store only the existing costs rather than a full cost matrix [23].
Table I also shows that the computer memory requirements of non-simplex codes alt

substantially larger than those of simplex codes. The codes that make the most efficient Use Qt.
computer memory are the primal simplex codes by Glover et al. [21.23] and Karney ~
Klingman[33]. It should be noted that all of the codes in Table I are coded in FORTRAN. and ,;n\
except I/O PNET are in-core codes. The I/O PNET code. by Karney and Klingman. is an in-co~
out-of-core code designed for large-scale problems. Before this code was fully streamlined,ii
solved a problem for the Naval Personnel Laboratory in San'Diego with 2400 nodes and 450.000~
arcson an IBM 360/65 and CDC 6600 in 26 and 23 min of central processing time. respectively.

All of the primal and dual simplex codes in Table I (except that of Graves and McBride) USt"

the augmented predecessor list structure [22]. which elaborates on Johnson's "triple-Ia~l

Table 1. Code development by mid~ 1973

Core Memory
uuvt!lo~ars Name HethodoloS:l Reguirements Date

l- Barr. Glover. 5UPERK Out-af-kilter 4N + 9A 1972
Klingman

2. Bennington BENN Negative Cycle Kethod 6N + llA 1971-73

3. Witzgall Boetng Out-af-kilter 68 + SA 1966

•• Clasen SHARE Out-af-kilter 6N + 7A 1966

>. Control Data NETFLOW OUt-af-kilter 6N + 7A 1970 Corporation

6. Gavish and Schweitzer Primal Simplex 8N + 3A 1972
Transportation

7. General HoC-ors GH Primal-dual 7N + SA , 1970-72
Transporta t ion

•• Glover. Karney • PTRANS
Klingman Primal Simplex 58 + 2A 1970-71

Transportation

•• Glover, Karney, DTRANS Dual Simplex 8N + 2A
Klingman 1970-72

Transportation

10. Glover, Karney, PNET Primal S1lIlplex 6N + 2A 1972-73 Klingman Transshipment

11. Glover, Karney, DNET Dual Simplex 9M + 2A 1972-73 Klingman Transshipment

12. Graves and McBride Primal Simplex 14K + 2A 1972-73

13. Grlgol'iadls • .!!. a1.
Transshipment

Rosen's Dual Method
1966-68

1 •• Kenning ton snd Primal Simplex 8N + cost matrix Langley 1972-73
Transportation

15. Karney and Klingman I/O PHET Primal Simplex 7N + Buffer 1,973

16. Srinivasan and
Transshipment

S-T
Thoillpson Primal Simplex ION + cost matrix 1970-72

Transportation
17. Texas Water Devel- TWB Out-of-kilter 4N + N2 + 7A opment Board 1968

1 •• UNIVAC UKILT Ou t-of-ktl ter 4N + 9A 1973
3M + 5A

N - number of nodes
A - number of arcs

Note: All of these are in-core codes coded in FORTRAN.

large scale transshipment computer codes and applications 75

<melhod" [30] by providing an efficient method for characterizing successive basis trees wilh
minimal relabeling. The augmenled predecessor list slruclure has been a major contributor to Ihe
.iJhprovements in the computalional efficiency of S9lution algorithms. Wilh its use, the primal
t:;'nsportation code by Glover et al. [23] executes a pivot on a 600 node problem in 6 ms compared
w'th the early breakthrough (1952) of reducing Ihe time per pivot to 3 min. While Ihis reduction is
largely due to improvements in computers and the in-core nature of these codes, this is not the
whiM reason. For instance, the first accelerated primal transportation code developed by
Srinivasan and Thompson [51] employed a list structure for proceeding in a forward direction
tb!ough a spanning tree similar 10 Dennis' procedure. Upon comparing solution times of the
!rinivasan and Thompson code with the Glover, Kamey, and Klingman code on Ihe same
i roblems and machine, the efficiencies of Ihe augmented index slructure became apparent.
Srinivasan and Thompson recoded using the augmented list structure and cut Iheir solution times
by more than half. Similarly, Gavish and Schweitzer[19] improved their solution times by a factor
6t3 after adopting the predecessor list structure.

The code development and comparison of Srinivasan and Thompson[SI] provides an
important computational analysis of several primal start procedures and pivot criteria. The
pt rpose of this study was to determine a design for an in-core uncapacitated primal
iIansportation and assignment code which optimally combines start procedures and pivot criteria
l~r maximum solution efficiency. The study disclosed that the best start method is the "modified
r~w minimum start" procedure and the best pivol selection criterion is the "row most negative
rule." This pivot rule was also found to be best by Dennis [141. Maximum problem size solved was
350 nodes (origins plus destinations). This node limitation is due to the fact that it is an in-core code
which stores a complete cost matrix. The average solution time on 175 origin by 175 destination
transportation and assignment problems was 7·8 s.

The code development and comparison by Glover, Karney, Klingman, and Napier (1970-72)
performed similar analyses on a broad profile of dense and nondense problems. The underlying

IC.Ode PTRANS was specially designed for solving both capacitated and uncapacitated problems
Wilh nondense cost matrices (i.e. , transportation problems where some cells may not be allowable).
_:nus study also found the modified row minimum start and row most negative pivot rule 10 be best,
_bus casting doubt on the folklore of the superiority of V AM starts. In addition, using 100 problems,

.!he study compared PTRANS to several other codes including Clasen's SHARE code (1966), the
)Glover, Karney, and Klingman dual code DTRANS (1970), and the state-of-the-art linear
(programming code OPHELlE/LP. As indicated in Table 2 this comparison revealed that the
WTRANS Code was at leasl eight limes fasler than Ihe SHARE and DTRANS codes, and 150 times
laster Ihan OPHELlE/LP. Thus Ihe old folklore about the superiority of out-of-kilter methods,

..and a new folklore among computer service divisions about equivalence of general purpose and
'sPecial purpose solution codes for transportation and transshipment problems were upended. (The
_times indicated in Table 2 for PTRANS in 1973 have been made three times faster in 1974. Thus the
superiority of primal simplex codes appear even more pronounced than suspected.)

The largest problems solved in the study[231 were 1000 origin by 1000 destinalion problems
with an average solution time of 17 s. This study also tested the primal code on four computers,
JBM 360/65, UNIVAC 1108, CDC 6400, and CDC 6600 in order to provide insights into
·conclusions based on comparing times on different machines and compilers. It was discovered
Ihat standard guidelines concerning the relalive efficiencies of differenl compulers were

·completely misleading, since Ihe primal code ran only 10-12% faster on the CDC 6600 than on the
UN IV AC 1108 and the IBM 360/65 differing substantially from the eslimales one would obtain by
'comparing inslruclion execution times of the machines.

MOlivated by the fact that out-of-kilter codes were found to be subslantially slower than the
special primal code, Barr el al. [51 developed an improved version of the out-of-kilter method
which was subsequently coded . This code was found to be only 40% slower (on the same
problems and machine) than the primallransportation code of Glover, Karney, and Klingman on
Iransportalion problems. This code was also compared againsl Clasen's SHARE Code, Boeing's
code, and the Texas Water Development Board code and found 10 be alleast six limes faster than
the best of these (which differed from problem to problem). The study also examined a total of
215 capacitated and uncapacitated transhipment problems demonstraling the superiority of the
improved version of the out-of-killer code over the other out-of-kilter codes in all cases. The

76 A. CHARNES tt al.

Table 2. Solution times (sec) (or Out-ol-Kilter, OPHELIE/LP, primal and dual ailorithm,'

SHARE ._IIS OPtlELU/LP Out-of-
Mean Pd_! Solution Kilter

Problell She Densley Solution Tillie Solution
TtMl Ti ..

10 X 10 0 . 3.5 0.016 0.155 0.10

20 X 20 0.65 0.104 4.012 0.68

30 X)0 0.60 0.242 2.04

40 X 40 0.36 0.282 39 . 375 2.42

50 X SO 0.054 0.611 5.70

6OX6O 0.20 0.692 05.28

70 X 70 0.28 0.92.5 9.46

80 X 80 0.31 1.467 22.10

90 X 90 0.28 1.917 26.35

100 X 100 0.20 1.907 216 . 90 21.17

sao x sao 0.011 5.98]

1000 x 1000 0.005 17 .081

ITh ••• times have been improved by a fac tor of thTee in 1974.

2All t1111ea are median tilles with five problems per group.

D_NS
Solution
Ti ..

0.025

0.226

0 . 689

0.903

3.053

3. 026

7.022

9.829

15.180

14.622

largest problems solved were 1500 node transshipment problems. The mean solution time wi
34 s.

StiD more recently, Glover et al.[2I) have developed a general primal transshipment Cod!;!
Computational comparison of this code with the out-of-kilter code by Barr et al. reveals that t '
primal code is 30% faster on transshipment problems. This is rather startling since the Barr et dL ,
code is probably the fastest out-of-kilter code in the world and conventional wisdom has it th'
labelina techniques are inherently more efficient than simplex techniques. The prirn8J"
transshipment code was also tested against the negative cycle code by Bennington[6] and fouM
to be ten times faster. This computational study also showed the superiority of the new primM
transshipment code in terms of central memory requirements for storing network data:!
Specifically, the out-of-kilter codes discussed earlier require ~IO arc-length arrays and ~f
node-length arrays as compared to 3 arc-length arrays and 8 node-length arrays for the prirn~
code. The substantially increased problem size that can be accomodated by the new primal cod~
is illustrated in the study by the solution of an 8000 node problem.

In addition to these code development efforts and computational comparisons, an extensivl
study of the effects of parameter values was conducted for transportation problems by Klingm ,
et al. [36). This study performed a detailed examination of the effects of problem dimensionalit~
on solution times. The study included over 1000 randomly generated problems with 185 different
combinations of number of origins, number of destinations and number of variables (not all ceJls~
beillg considered admissible). Every problem was solved using three starting procedures. Over J
10,000 pieces of data were analyzed, providing numerous insights into the computational effects
of the number of constraints, the degree of "rectangularity", and the number of variables.

Some of the conclusions drawn from this study are:
(I) For problems with a constant number of variables and a constant number of constraints,

total solution time decreases as the problems become more rectangular. Additionally, the basis
equivalent paths in a rectangular problem are shorter.

(2) For a constant density and a constant number of variables the total solution time increases
as rectangularity increases.

(3) Total solution time increases slightly greater than in proportion to the change in the square
of the number of constraints for problems with a fixed density and a fixed ratio of min.

Larae scale transshipment computer codes and applications

(4) For a fixed number of origins and a fixed density, the total solution time increases in
,proportion to an increase in the number of destinations. (The paper contains least square solution
,rime 'estimators,)

(5) For a fixed degree of rectangularity, increasing the number of constraints for a fixed
number of variables has a greater effect on total solution time than increasing the number of
;~ariables for a fixed number of constraints,

(6) As variance increases in the cost distribution, solution time increases. Thus problems
]whose costs are randomly generated using a uniform probability distribution are hardest to solve
'for a fixed cost range.

These studies on the effect of parameter values and code comparisons repeatedly reinforced
:the conclusion that in order for researchers to compare their codes in a meaningful way it is
iil.ecessary that they use exactly the same problems. This is due to the fact that, even if two
'l andomly generated problems have the same parameter values, a generator inherently builds
,structure into the problems, particularly transshipment and transportation problems in which
.some arcs do not exist. This point is underscored in the computational study (5) and has been
<further demonstrated by the comparison of the codes due to Bennington; Glover, Klingman, and
,Karney; and Srinivasan and Thompson which yielded unexpected results when tested on the
;same problems and the same computer.

To enable researchers to meaningfully compare their solution codes, Klingman et al. [37)
, ,~eveloped a code which generates assignment problems, and capacitated and uncapacitated
,transportation and transshipment problems. In addition to producing structurally different classes
lof transshipment problems, the code permits the user to vary structural characteristics within a
Iclass. By means of this code, researchers can generate identical transshipment problems
(independent of the computer). Advantages of the transshipment generator, which is available
with documentation to researchers for a nominal handling charge, are its ease of use (requiring
o,nly two data cards per transshipment problem) and the standardization of its output (generating
.p,roblems for use by other codes in SHARE input format). In addition, the latter part of the
:lI\1"umentation provides the user with the data on 40 assignment, transportation, and
.transshipment problems varying in size from 200 nodes to 8000 nodes and from 1300 arcs to
XS;OOO arcs. The objective function value and solution time for these problems are also provided
for the SHARE, Boeing, TWB, GM, SUPERK, PNET, and BENN code .

. (conclusions and limitations of mid-I973 testing
The code development and testing conducted between 1970 and mid-I973 produced

implementations of all widely known transportation and transshipment solution methods except
'for the Busacker and Gowen method, Extensive computational comparisons of these methods
\lave been made using the same problems, computer, and compiler[21, 23, 33, 37). The results of
this testing showed that the primal simplex transportation method embodied in PTRANS (23) was
the most efficient transportation code in terms of both computer memory space and solution time.
Similarly, the primal simplex transshipment code PNET[21) was the most efficient code for
transshipment problems. PNET runs only 10% slower than PTRANS on transportation
problems, for which the latter was especially designed. This raises the question "Is it worth
developing both transportation and transshipment codes?"

Testing and code development after mid·I973
During the summer of 1973, Glover, Klingman, and Stutz developed a new list structure for

storing and updating spanning trees called the Augmented Threaded Index Method (AT!) (26).
The A TI is the only list structure that uses only two pointers per node (in a non-binary tree) while
providing the ability to traverse the tree both upward and downward efficiently. The ATI[26) is
thus more efficient than the API [22) in terms of both computer memory requirements and
solution speed. Following this development a number of new codes were developed (see Table 3).
All of the codes in Table 3 use the A TI method except Edmonds and Karp, Graves, and Rao and
Fong. Computational testing has shown all of these codes to be inferior to the A TI codes. (An
interesting point which Jack Edmonds mentioned at the Combinatorial Conference at Versaille in
September 1974 was that some computational testing on the streamlined version[lS) of the
Busacker and Gowen algorithm had been done and the results indicated that the algorithm in [15)

CAOIt Vol. 2 No. 2-8

78 A. CHAJtNES t f al.

Table 1 Code development completed aCler mid-I973

Developec N •• e Type Array Sh e X' i!.t

1. A~ lys 1s . Res earch, ARC PPN In-Con Pri •• l 6N + 21. 1974
a nd Computat ion S~plex Trans sh i pment

2. """ SUPE}!'T In-Core Primal 4 (Ill + n) + 1913
Simp lex Transportation 2d(lIIn)

... C IOVttf • Ka rney, P'Nn - I In-Core Primal 5N + 21. 1973
Klingman Simplex Transshipment

t, • (:ravtlS In-Core rTfm81 7N + 2#. 1974
Simplex Transshipment

K" nl\~y mvJ Kllnl;.lIW.n I/O PN!T-l In-Core Ou t - of-Core 'IN + Buff eT 1"174 ,.
Primal Siaplex
Tran • • hi patent

.. ~Iu lvt!y LP- NEt In-Core Primal 6" + 2A ' 974
St.pl~x TTans 9h l~nt

I. tt • .lIwl Flmg Prilw.l-Dual In-Core 6 (. + n) + 1')1"\

Tran5pot"tation 30n

t\, r triln~s iplll~nt probl L ... N is t he nUlllbe r of nodel'l and A Is tbe nUflb('t' or a r \',", ,
Fur transportation prob l ellls _, is che nu.b~r o f o f lgins, 11 is tht! Ill ullh~r ('I f d." ", i ll.l t i . 'Il .';

a nd d is tht! density of the adllliBlt tbh.' cells .

is inferior to SUPERK [5].) Thus. after testing all of the basic network solution algorithms. it
has been established that primal simplex based network codes are the fastest. Further;
computational testing indicates that the fastest primal simplex transshipment code is the one by
Analysis. Research. and Computation. Inc. m and the fastest transportation code is the one by
Barr [4]. Both codes use the ATI method [26] augmented by a depth factor degeneracy
check[42, 51] and a candidate list pivot selection procedure[42].

A significant recent finding by Mulvey[42] is that the best pivoting procedure determined in
[14,21.23.51] for small and medium size problems is not the most efficient for large problems.
Mulvey's fiinding is that by using an appropriate candidate list pivot selection procedure (i.e .• a
multi·pricing procedure) when solving large problems. solution time can be cut in half over the
pivot criteria used in [14, 21 . 23,51]. Another recent computational conclusion [19, 42] is that
avoiding and/or exploiting degenerate privots can significantly enhance simplex based codes
since degeneracy is as high as 99% in large problems.

Due to these important computational aspects of large problems. Glover and Klingman [271
very recently developed another list structure which extends the A TI method to directly
incorporate information needed to exploit both degeneracy and depth. This new list structure has
the disadvantage of requiring one more computer memory array than the A TI method augmented
by the depth factor but offers substantial computational advantage. In particular. the new list
structure requires significantly fewer computer operations (e.g .• array references and arithmetic
operations) to update the basis tree than the latter. In addition. the new list structure minimizes
the efforts required to update dual information. Thus. it is quite likely that this list structure wiD
produce another breed of primal simplex codes similar to the developments followine the API
and ATI developments [22.261.

FUTURE
In spite of the major recent gains in the development and testing of network codes , significant

avenues remain to be explored. In particular. most of the codes currently in vogue are in-core
codes. all are coded in FORTRAN. most have not fully exploited problem size capability of third
generation computers. Thus. we shall probably see codes developed in other languages (e.s .•
ALGOL and APL) in order to rigorously determine which language is best in network
applications. Assembly language codes are also quite conceivably in the offing. but of course wiD
be machine specific and sacrifice portability.

Large scale transshipment computer codes and applications 79

In tbe near future, we will undoubtedly see super large scale in-core out-of-core network
codes developed which will be capable of solving network problems of almost unlimited size. For
~xample, the Analysis, Researcb and Computation code, ARC-PPN,[I] is being extended and
fifgbly special~ed to solve a 50,000 node, 62 million arc transportation problem on a UNIVAC
IIOS for the u.s. Treasury Department. This Extended Transportation System (which is to
jnclude sucb special features as primal generated percent optimality bounds and dynamic
c'l1Wdidate list selection pivot procedures) will probably determine future algorithm needs and
provide important insights on current solution bounds.
, Wbile tbe transsbipment generator[37] is a start towards belping bencbmark tbese codes, we
'lielieve tbat a bureau needs to be established to enable standardized comparisons. We have been
rniormed by Richard Jackson (at tbe National Bureau of Standards) tbat tbe Matbematical
Programming Society in conjunction with various researchers, is considering the feasibility of
U!!~blisbing a service facility to accomplisb tbis. The benefit of establishing such a service is

' apparent; however, numerous problems must be overcome. For example, Input-Output formats
r of codes and methods for timing codes must be standardized. While such matters may appear to
il'o nuite simple, they are not. To iUustrate, every code benchmarked by the authors, (e.g., those
~j l"'J:

due to Clasen, Boeing, the Texas Water Development Board, General Motors, Bennington, and
Sr'inivasan and Thompson), used a different input format, and considerable effort was required to
accommodate these differences. Also, while a valid criterion for the timing of in-core codes is

';j~ite easy to define (namely central processing time exclusive of data input and output),
establishing an acceptable measure for the timing of in-core out-of-core codes in a
mUlti-processing environment is far more complex. In any case, we believe some criteria need to
be'developed.

Other short range future developments which we foresee include:

(a) development of network computer systems similar to general linear programming systems.
These systems will include such things as a command language (wbich allows the user to add,
_~l'lete, and modify arcs), matrix generators, report generators, user subroutine control of
individual components of the system, and interactive coupling witb data base management
fruormation systems. The Control Data Corporation NETFLOW [45] system and the UNIVAC
PKILT-llOO[52] system are forerunners of such systems.

(b) establishment of numerous special purpose integer programming codes using efficient
network codes as the main computational vehicle, e.g. plant location codes, fixed charge network
codes, integer generalized network codes, constrained network codes, multi-commodity (integer)
network codes, constrained generalized network codes, and multi-commodity (integer)
Reneralized network codes.
r This integer programming development will be (and must be) integrated with the following

analysis:

(1) find efficient ways to match data organization and manipUlation schemes of network
related Problems with integer programming information requirements.

(2) just as researchers have found in the past that there are different integer programming
.ormulations for the same problem, researchers [25,43] now are discovering that there are
different types of network relaxations within formulations. Thus researchers need to test whicb
of these relaxations are best along several dimensions. For example, studies must be conducted
to determine the trades-offs between the strength of relaxation, solution time, and usability of
special penalty calculations.

Looking farther into the future, we anticipate the following as possible developments:

(a) an efficient graph computer language wbich allows a user to write special purpose network
codes in half a day. A forerunner is the GROPE language at the University of Texas.

(b) network and related optimization codes which modify tbemselves; for example, computer
network codes whicb "learn" how to effiCiently solve particular types of problems through
experience in solving them. (Preliminary investigations of this type have now been going on for
more than a decade.)

(c) mUlti-page linear programming codes which use special purpose codes (e.g., network
codes) to solve pages (components) which have a special structure.

80 A.. CHARNES et al.

REFERENCES
I. Analysis, Research and Computation, Inc., Development and computational [estiDa on a capacitated primal simple!;,

transshipment code. ARC Technical Research Rept., P. O. Box 4067. Austin, Tex. 78765.
2. E. Balas and P. L. Hammer, On the transportation problem-part It Cabiers du Centre d'Etlldes de Recherc,."

Operation,II" 4 (2), 98-116 (1962).
3. E. Balas and P. L. Hammer, On the transportation problem-part II. Cabiers du Centrt d'Etudes de Rtcherrllt

Optnion"'t, 4 (l), 1J1-160 (1962). •
4. R. S. Barr, Streamlining primal simpiel:1ransportation codes. Research Repl. to appear in Centef (or Cybernetic St~

University of Teus. Austin.
S. R. S. Barr, F. Glover and D. Klineman, An improved version of the out-of-kilter method and a comparative study 0(.

computer codes, Mathl Programmin, 7 (1), 60-87 (1914).
6. G. E. Bennington, An efficient minimal cost flow a1goritbm. Mgml Sci. 19 (9). 1021-1O~1 (1973).
1. R. G. Busacker and P. 1. Gowen. A procedure {or determining a (amily of minimal-cost network flow patterns. ORO!

Tecbnica1 Rept. IS. Operational Research Office, lohns Hopkins University (1961).
8. A. Chames and W. W. Cooper. The stepping stone method of explaining linear programming calculation3 ~

transpottation problems, Mst Sci. 7, 49-69 (1954).
9. A. Chames and W. W. Cooper. Mallagtm1l11 Models and Industrial Applicatiolls of Linear Programming. 2 Vols. JoJMi

Wiley (1961). '
10. A. C\>arnes and M. Kirby, The dual method aod the method 01 Balas and lvanescu (Hammer) lor the transpor1a'"'l

model. CabieN du Ctlltre d'Eludes de Recherche Operationtlle. , 0), 5-18 (1964).
II, R. 1. Clasen, The numerical solution o{ network problems using the out-of-kilter algorithm. RAND CorporaliOl(

Memorandum RM-S45~PR, Santa Monica, Cali{ornia, (1968). ..t,

12. G. Dantzig. Activity Analysis 0/ Production and Allocation, Ch. XXIII. (Edited by T. Co. Koopmans), John Wiley (19511.;
13. O. Dantzig, Linear Programming and Extensions. Princeton University Press (1963). 01

14. 1. B. DcMis, A high-speed computer technique for the transportation problem, 1. Assoc. compul. Mach. 8, 132-lSl
(19S8~

IS. 1. Edmonds and R. M. Karp, Theorettcal improvements in aJaorithmic efficiency for network ftow problems. I . AJ.J
Comp.'. Mach. I', 2~264 (1m).

16. M. M. Flood, A transportation .\aorithm and code, No •. R Loglst. Q. 8, 2l7-276 (l96\).
17. L. R, Ford and D. Fulkerson. A primal-duaJ algorithm (or the capacitated Hitchcock probkm. Nov. Res. Log;st. Q.41j

47-l4 (l9l7).
18. D. R. Fulkerson, An out-of-kilter method for solving minimal cost flow problems, I. Soc. lndust. appl. Math. 9, 18-271

(1961).
19. B. Govish and P. Schweitzer. An aleorithm for combiniol truck trips. Transportation Sci. 8, 11-24 (1914).
20. S. Glickman, L.lohnson and L. Eselson, Coding and Transportation problem, Nav. Res. Logist. Q.1, 169-183 (960).
21 . F. Glover, D. Karney and D. Klinaman, Implementation and computational study on start procedures and basis cbanP '

criteria tor a primal network code. Networks" 191-212 (t974~
22. F. Glover. D. Kameyand D. KJineman, The augmented predecessor index method (or Iota tina stepping stone paths aac'

assicnmg dual prices in distribution proWems. Trtuuportalion Sci. 6, 171-180 (1m).
21 F. Glover. D. Karney. D. Klingman and A, Napier, A computational study on start procedures. basis change criteria. atd

solution a1gorithms for transportation problems, Algmt Sci. ~. 793--819 (1974).
24. F. Glover and D. Klingman, Double-pricing dual and {eatible start algorithms (or the capacitated transportation

(distribution) problem, University o{ Texas at Austin (1970).
25. F. Glover and D. Klingman. Equivalence of mixed inteaer proarams and mixed integer generalized networks. Research

Rept. to appear Center For Cybernetics Studies. University of Texas. BEB-6I3, Austin 1974).
26. F. Glover. D. Klingman and 1. Stutz, Augmented threaded index method (or network optimization. to appear in INFOR

October, (1974).
21. F. Glover and D. Klinptan. E:Jt:tenstons of the augmented threaded index method. Research Rept. C. S. 190, Center for

Cybemettc Studies, University of Texas, BEB-6I3. Austin (19'14).
28. A. N. GleyzaJ, An algorithm for solvine the transportation problem, 1. Rts. Nat. Bur. Stand. 54, 123-216 (19S5) .
29. F. L. Hitchcock, The distribution o{ a product from severa) sources to numerous localities. J. Malh. Phys. 20, 224-23C

(1941).
30. E. Johnson, Networks and basic: solutions, Ops. Res. 14, 619-623 (1966).
31. L. V. Kantorovich, On the translocation of masses. Compl. rtndu. Acad. Sci .• U.S.S.R. 37, 199-201 (1942).
32. L. V. Kantorovich and M. K. Oavurin. The application of mathematical methods to problems of freight flow analysis.

Akadtmia Haule SSSR (1949).
31 D. Karney and D. Klingman. Implementation and computational study on in-core out-of..c;ore primal network code, to

appear in Ops. Rts.
J4. 1. L Kennington, R. W. Lan,ley and C. M. Shetty. Effictent computational deVK:e5 {Of the capacitated lransportalioa

problem, to appear in Now. Res, Logisl. Q. (1975).
35. M. Klein. A primal ffiCthod for minimal cost ftows. Mgml Sci. 14, 205-220 (1967).
36. D, Klinlman, A. Napier and G. Ross, A computational study on the effects of problem dimensions on solution time for

transportation problems, to appear in IACM.
37. D. Klinlman, A. Napier and 1. Stutz, NETGEN-a proaram for lenerating large scale (un) capacitated assignment,

transportation, and minimum cost flow network problems. Mgmt Sci 10, 814-822 (1974).
38. T. C. Koopmans. Activity Analysis of Production and Allocation, Cowles Commission Monoaraph N. 13. John Wiley

(19'1).
39. T. C. Koopmans and S. Reiter, A model of transportation, Actiuity analysis of Produclwn dnd Allocation, Cowin

Commission Monograph D, 222-2$9. Wiley. (l9ll).
40. H. W. Kuhn, The Hunprian method (or the assignment problem, NOI). Res. Legist. Q. 1, 83-97 (1955).
41. S. Lee. An ExperimentaJ Study of the Transportation Aleorithms, Master's Thesis, Graduate School of Business.

University of California at Los Aneeles (1968).
42. John Mulvey, Column weightin, {actors and other enhancements to the augmented threaded index method for network

optimization, Joint ORSArrIMS, San Juan De Puerto Rico, October (1974).

Large scale transshipment computer codes and applications 81

43. John Mulvey, Network relaxations for set covering, set partitioning and other integer programming problems, Research
Rept. to appear Center for Cybernetic Studies University of Texas, BE8·613, Austin, Tex. 78765.

44. 1. Munkres, Algorithms for the assignment and transportation problems, 1. SIAM,S, 32-38 (1957).
45. Network Flow ROlltine, VIM/FOCUS Library Number: H3 CODA NETFLOW; Control Data Corporation, Software

Mfg. and Distribution, 215 Moffett Park Drive, Sunnyvale, California.
46. Ollt·of·Kilter Network Routine, SHARE Distribution 3536, SHARE Distribution Agency, Hawthorne, New York (1967).
47. M. R. Rao and C. O. Fong, Accelerated labeling algorithms for the maximal flow problem with applications to

transportation and assignment problems, W. P. no. 7222, University of Rochester, N.Y. (1972).
48. N. V. Reinfeld and W. R. Vogel. Math. Programming. Prentice·Hall (1958).
49. L. W. Smith, Jr., CUrrent status of the industrial use of linear programming, Mgml Sci. 2, 156-158 (1956).
50. E. D. Stanley and L. Gainen, Linear programming in bid evaluation, Nav. Res. Logist. Q. 1,48-54 (1954).
51. V. Srinivasan and G. L. Thompson, Benefit-cost analysis of coding techniques for the primal transportation algorithm,

ACM, 20, 194-213 (1973).
52. UKILT-1I00 Programmer Reference Manual. UNIVAC, Data Processing Division, Roseville, Minnesota.

(Received July 1973; revised October 1974)

Acknowledgement-This research was partly supported by Project No. NR 047-021, ONR Contracts NOOOI4·67·A·OI26-0008
and NOOOI4·67·A·0126-0009 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

