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1. INTRODUCTION

Scatter search (SS) was first introduced in 
Glover (1977) as a heuristic approach for general 
integer programming problems. SS systemati-
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ABSTRACT
Scatter search (SS) and path relinking (PR) are evolutionary methods that have been successfully applied 
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embedded in other evolutionary methods to yield improved performance. This paper examines the scatter 
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certain connections between their strategies and those adopted more recently by particle swarm optimiza-
tion. The authors describe key elements of the SS & PR approaches and apply them to a hard combinatorial 
optimization problem: the minimum linear arrangement problem, which has been used in applications of 
structural engineering, VLSI and software testing.

cally generates and updates a set of reference 
points that includes good solutions obtained 
by prior problem-solving efforts together with 
solutions that are screened to add diversity to 
the reference set. Path relinking (PR) was subse-
quently proposed in Glover (1989) and Glover 
and Laguna (1993) as an analog making use 
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of neighborhood spaces in place of Euclidean 
spaces. Interesting relationships exist between 
the SS/PR approaches and the more recent 
particle swarm optimization methodology 
introduced by Kennedy and Eberhart (1995).

The SS and PR template (Glover, 1997) 
has served as a foundation for most of the SS 
and PR implementations to date, underscoring 
processes to take advantage of the flexibility 
of the SS and PR methodologies. Through 
these processes, each of the basic components 
can be implemented in a variety of ways and 
degrees of sophistication, and hence can be 
adapted conveniently to a variety of different 
problem settings. Advanced options derive 
from the way that five pivotal elements of the 
methods are implemented. We can find a large 
number of papers on both the SS method and 
the PR method and their applications. Glover 
and Laguna (1997) provide overviews and a 
variety of references on these methods and the 
monographic book on Scatter Search (Laguna & 
Martí, 2003) together with the feature cluster of 
the European Journal of Operational Research 
(Martí, 2006), which includes 19 papers, provide 
the reader with the elements to design successful 
SS implementations. A recent survey of SS and 
PR methods appears in Resende et al. (2010).

The following principles summarize the 
foundations of the scatter search and path relink-
ing methodologies as evolved from its origins:

•	 Useful information about the form (or 
location) of optimal solutions is typically 
contained in a suitably diverse collection 
of elite solutions.

•	 When solutions are combined as a strategy 
for exploiting such information, it is im-
portant to provide mechanisms capable of 
constructing combinations that extrapolate 
beyond the regions spanned by the solu-
tions considered.

•	 The manner of combining solutions may 
be viewed as forming paths between (and 
beyond) them (using Euclidean spaces 
in SS and neighborhood spaces in PR). 
Each path results in introducing attributes 
of one elite solution into another, by a 

process where the trajectory for a given 
solution is influenced by the guidance of 
other solutions.

•	 It is likewise important to incorporate heu-
ristic processes to map combined solutions 
into new solutions. The purpose of these 
combination mechanisms is to incorporate 
both diversity and quality.

•	 Taking account of multiple solutions si-
multaneously, as a foundation for creating 
combinations, enhances the opportunity to 
exploit information contained in the union 
of elite solutions.

A connection between the SS & PR ap-
proaches and particle swarm optimization 
(PSO) arises through the SS & PR strategy of 
combining solutions in a manner that may be 
interpreted as generating trajectories of selected 
elite solutions by reference to directions deter-
mined by other elite solutions (called guiding 
solutions in path relinking). In contrast to PSO, 
the solutions guided by SS & PR are initially 
generated and subsequently updated after the 
combination process by the application of asso-
ciated heuristic or metaheuristic processes. PSO 
methods characteristically guide the progress 
of solutions in different streams of search by 
reference to the personal best of each stream 
and the global best overall streams.

The evolving reference set of elite solutions 
used by SS & PR always includes the global 
best, and hence each solution in the set likewise 
enters into combinations with the global best to 
provide one of the influences on its trajectory, 
inviting a direct comparison with the PSO ap-
proach. However, each solution in SS & PR also 
enters into combinations with other members 
of the reference set, as would be analogous to a 
form of PSO guided by additional personal best 
solutions beyond those deriving from a single 
stream in question. Another apparent contrast is 
that SS & PR employ solution streams outside 
of those guided by other elite solutions, drawing 
on improving methods (such as iterated descent 
or tabu search) to yield new members to enter 
the elite reference set. Parallel versions of SS 
& PR which generate such streams simultane-
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ously set up a master slave relationship where 
the maintenance of the reference set and the 
combinations produced from it yield the mas-
ter processes than spawn candidate solutions 
passed to the slaves employing local search. 
Aside from the differences in strategic detail, 
there are evidently intriguing similarities in 
overall conceptual design between SS & PR 
approaches and PSO methods when viewed 
from a higher level.

In this paper we consider the scatter search 
and path relinking methodologies applied to 
solve combinatorial optimization problems by 
targeting an NP-hard problem based on graphs. 
the minimum linear arrangement problem. We 
adapt three elements from the five in the SS 
and PR template that are context-dependent 
(i.e., that are conveniently susceptible to being 
customized for specific problem settings): the 
diversification generation method, the improve-
ment method and the combination method. 
Accompanying this, we apply a standard design 
for the other two methods (which usually are 
context-independent): the reference set update 
and the subset generation methods. We begin 
by focusing on the SS method and later include 
elements of the PR method.

2. PROBLEM FORMULATION

The minimum linear arrangement problem 
may be described as follows. Let G=(V,E) be a 
graph with a vertex set V (|V|=n) and an edge 
set E (|E|=m). A labeling or linear layout f of G 
assigns the integers 1, 2, …, n to the vertices of 
G. Let f(v) be the label of vertex v, where each 
vertex has a different label. The contribution 
of a vertex v, L(v,f), to the objective function 
is the sum of the absolute values of the differ-
ences between f(v) and the labels of its adjacent 
vertices. That is:

L v f f v f u
u N v

,( ) = ( )− ( )
∈ ( )
∑ 	

where N(v) is the set of vertices adjacent to v. 
The value of a linear arrangement of a graph 
G with respect to a labeling f is then:

LA G f L v f
v V

, ,( ) = ( )
∈
∑1
2

	

Figure 1 shows an example of a linear 
arrangement and the associated computation 
of the objective function value. The optimum 
linear arrangement LA(G) of graph G is then 
the minimum LA(G,f) value over all possible 
labelings f – i.e., the Linear Arrangement Mini-
mization problem (MinLA) consists of finding a 
labeling f that minimizes LA(G,f). This NP-hard 
problem (Garey & Johnson, 1979) is related 
to two other well-known layout problems, the 
bandwidth and profile minimization problems. 
However, as pointed out by McAllister (1999), 
an optimal solution for one of these problems 
is not necessarily optimal for the other related 
problems.

The MinLA problem was first stated by 
Harper (1964), and through the years many 
different algorithms have been proposed for 
solving it, with varying degrees of success.

The remainder of this paper is organized 
as follows. In Section 3 we first give a brief 
summary of some of the leading methods pre-
viously developed from the MinLA problem. 
Section 4 covers the basics of the scatter search 
procedure, introducing the SS methodology and 
describing how we apply it to solve the MinLA 
problem. Section 5 describes the diversifica-
tion generation methods we have incorporated 
which are based on the GRASP methodology 
and in Section 6 we describe an improvement 
method based on local search. Section 7 presents 
a mechanism to selectively apply the improve-
ment method within Scatter Search in order to 
save computational effort. Finally, Section 8 
introduces a path relinking procedure which 
fulfills the role of a combination method in our 
scatter search algorithm. The paper finishes with 
the computational experiments in Section 9 and 
associated conclusions in Section 10.
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3. BRIEF SUMMARY OF 
PREVIOUS MINLA METHODS

We chiefly restrict attention to more modern 
solution approaches proposed since 1990.

Juvan and Mohar (1992) introduced the 
Spectral Sequencing method (SSQ). This 
method computes the eigenvectors of the La-
placian matrix of G. It then orders the vertices 
according to the second smallest eigenvector. 
As stated by Petit (2003a), the rationale behind 
the SSQ heuristic is that vertices connected with 
an edge will tend to be assigned numbers that 
are close to each other, thus providing a good 
solution to the MinLA problem.

McAllister (1999) proposed a heuristic 
method for the MinLA which basically consists 
of a constructive procedure that labels vertices 
in a sequential order. Vertices are selected ac-
cording to their degree with respect to previ-
ously labeled vertices. This method compares 
favorably with previous methods for this and 
related problems.

Petit (2003a) reviewed lower bounds and 
heuristic methods, proposed new ones and 
introduced a set of 21 small and medium size 
instances (62 ≤ n ≤ 10240) for the MinLA 
problem. Among the methods reviewed were the 
Juvan-Mohar method (Juvan & Mohar, 1992), 
the Gomory-Hu tree method (Adolphson and Hu 

1973) and the Edge method to which he added 
a Degree method for improved lower bounds. 
Petit concluded that the Juvan-Mohar method 
and the Degree method provide the best lower 
bounds; however, their values are far from those 
of the best known solutions, and therefore they 
are of very limited interest from a practical 
point of view. Petit additionally introduced 
both a constructive and a local search proce-
dure. The Successive Augmentation (SAG) is 
a greedy heuristic that constructs step by step 
a solution extending a partial layout until all 
vertices have been enumerated. At each step, the 
best free label is assigned to the current vertex. 
Vertices are examined in the order given by a 
breadth-first search. Once a solution has been 
constructed, different improvement methods are 
considered. The author studied three different 
heuristics based on local search: Hill-climbing, 
Full-search and Simulated Annealing (SA). In 
the Hill-climbing method moves are selected at 
random; in the Full-search the entire neighbor-
hood of a solution is examined, at each iteration, 
in search of the best available move. Finally, 
the SA algorithm implements the temperature 
parameter as described in Kirkpatrick, Gelatt, 
and Vecchi (1983) for move selection. Petit 
considered two neighborhoods, called flip2 and 
flip3. The former exchanges the label of two 

Figure 1. Objective function computation for a graph G and an arrangement f
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vertices, while the latter “rotates” the label of 
three vertices.

The experimentation in Petit (2003a) shows 
that the neighborhood based on the exchange of 
two labels (flip2) produces better results than 
the rotation (flip3). Overall experimentation 
concludes that the SA method outperforms the 
others, although it employs much longer running 
times (not reported in the paper). Therefore, 
the author recommends employing the Hill-
climbing as well as the Spectral Sequencing 
methods. In Petit (2003b), a more elaborate 
Simulated Annealing algorithm is proposed. 
The author introduces a new neighborhood, 
flipN, based on the Normal distribution of the 
distances between the labels of vertices. The 
Simulated Annealing algorithm based on the 
flipN neighborhood (SAN) improves upon 
the previous SA method. Moreover, to speed 
up the method, the initial solution is obtained 
with the SSQ algorithm. The combined method, 
SSQ+SAN, is able to outperform previous 
methods.

Rodriguez-Tello, Hao, and Torres-Jimenez 
(2008) proposed a new algorithm based on 
the Simulated Annealing methodology. The 
Two-Stage Simulated Annealing (TSSA) per-
forms two steps. In the first one a solution is 
constructed with the procedure by McAllister 
(1999); then in the second step it performs a 
Simulated Annealing procedure based on ex-
changes of labels. This method introduces two 
new elements to solve the MinLA: a combined 
neighborhood and a new evaluation function. 
Given a vertex v, the first neighborhood, se-
lected with a probability of 0.9, examines the 
vertices u such that their label f(u) is close to 
the median of the vertices’ labels adjacent to 
v (at a maximum distance of 2). The second 
neighborhood, selected with a probability 0.1, 
exchanges the labels of two vertices selected at 
random with diversification (exploration) pur-
poses. The method evaluates the solutions with 
a function that is more discriminating than the 
original LA. The authors compared their TSSA 
method with the best known algorithms and 
they concluded that their method outperforms 
previous algorithms.

4. SCATTER SEARCH 
METHODOLOGY

We begin by summarizing the “five-method 
template” for implementing SS and then dis-
cuss the relationships among its component 
processes. These key components are as follows:

1. 	 A diversification-generation method to 
generate a collection of diverse trial solu-
tions, using an arbitrary trial solution (or 
seed solution) as an input.

2. 	 An improvement method to transform a trial 
solution into one or more enhanced trial 
solutions. Neither the input nor the output 
solutions are required to be feasible, though 
the output solutions will more usually be 
expected to be so. If no improvement of the 
input trial solution results, the “enhanced” 
solution is considered to be the same as the 
input solution.

3. 	 A reference-set update method to build and 
maintain a reference set consisting of the b 
“best” solutions found (where the value of 
b is typically small, e.g. no more than 20), 
organized to provide efficient accessing by 
other parts of the method. Solutions gain 
membership to the reference set according 
to their quality or their diversity.

4. 	 A subset-generation method to operate on 
the reference set, to produce several sub-
sets of its solutions as a basis for creating 
combined solutions.

5. 	 A solution-combination method to trans-
form a given subset of solutions produced 
by the Subset Generation Method into one 
or more combined solution vectors.

Figure 2 shows the interaction among these 
five components and highlights the central role 
of the reference set. This basic design starts 
with the creation of an initial set of solutions P, 
and then extracts the reference set (RefSet) of 
solutions from it. The shaded circles represent 
improved solutions resulting from the applica-
tion of the improvement method.

The diversification-generation method is 
used to build a large set P of diverse solutions. 
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The size of P (PSize) is typically at least 10 
times the size of RefSet. The initial reference 
set is built according to the reference-set-update 
method, which takes the b “best” solutions from 
P to compose the RefSet, which typically is of 
modest size, e.g., containing between 10 and 
30 solutions in all. The qualifier “best” is not 
restricted to referring to solution quality (i.e., 
the objective function value of a solution), but 
often embraces an expanded form of evaluation 
that accounts for diversity. This evaluation can 
change throughout the application of the pro-
cedure. For example, during a phase that is 
specifically devoted to diversification, the 
reference-set update method can consist of 
selecting b distinct and maximally diverse 
solutions from P. Regardless of the rules used 
to select the reference solutions, the solutions 
in RefSet are ordered according to quality, where 
the best solution is the first one in the list.

The search is then initiated by applying the 
subset-generation method that, in its simplest 
form, involves generating all pairs of reference 

solutions. The pairs of solutions in RefSet are se-
lected one at a time and the solution-combination 
method is applied to generate one or more trial 
solutions which are subjected to the improve-
ment method. The reference-set update method 
is applied once again to build the new RefSet 
with the best solutions, according to the objec-
tive function value, from the current RefSet and 
the set of trial solutions. The basic procedure 
terminates after all the subsets generated are 
subjected to the combination method and none 
of the improved trial solutions are admitted 
to RefSet under the rules of the reference-set-
update method.

In our approach, we use a simple mecha-
nism to construct an initial reference set and 
then update it during the search. The size of the 
reference set is denoted by |RefSet| = b1 + b2= 
b. The construction of the initial reference-set 
starts with the selection of the best b1 solutions 
from P. These solutions are added to RefSet and 
deleted from P. For each solution in P \ RefSet, 
the minimum of the distances to the solutions 

Figure 2. Schematic representation of a basic SS design
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in RefSet is computed. The solution with the 
maximum of these minimum distances is then 
selected. This solution is added to the RefSet and 
deleted from P, and the minimum distances are 
updated. The process is repeated b2 times, where 
b2 = b – b1. The resulting reference set has b1 
high-quality solutions and b2 diverse solutions.

Of the five SS components, only four are 
strictly required. The improvement method is 
usually needed if high-quality outcomes are de-
sired, but an SS procedure can be implemented 
without it. On the other hand, the SS method 
could incorporate tabu search or another com-
plex metaheuristic as the improvement method 
(usually demanding more running time).

5. DIVERSIFICATION 
GENERATION METHODS

A straightforward scheme to construct a solution 
consists of performing n steps, labeling a vertex 
at each step with the lowest available label. At 
a higher level of sophistication, the so-called 
Frontal Increase Minimization (FIM) starts by 
creating a list of unlabeled vertices U, which 
at the beginning consists of all the vertices in 
the graph (i.e. initially U=V). The first vertex v 
is randomly selected from all those vertices in 
U and labeled as 1. In subsequent construction 
steps, the candidate list CL consists of all the 
vertices in U that are adjacent to at least one 
labeled vertex. A vertex v is randomly selected 
from CL, labeled with the next available label 
and deleted from U. The method finishes after n 
steps, when all the vertices have received a label.

McAllister (1999) proposed the follow-
ing refinement of the FIM construction. Let 
L be the set of labeled vertices and let d(v) be 
the degree of vertex v, then dL(v) represents 
the number of labeled vertices adjacent to v 
and dU(v) represents the number of unlabeled 
vertices adjacent to v. This variant of the FIM 
construction is based on the computation of 
sf(v)=dU(v)-dL(v) as a way to measure the at-
tractiveness of vertex v for selection. Figure 3 
shows a pseudo-code of this method, denoted 

C1, in which the vertex with the lowest sf-value 
is selected from CL and assigned the lowest 
available label in each construction step. The 
procedure specifies a tie-breaking mechanism in 
step 7 of Figure 3. When more than one vertex 
in CL has the minimum sf-value, the method 
selects the oldest one (the vertex with maximum 
number of iterations in CL). McAllister (1999) 
tested this method against previous constructive 
methods based on the FIM strategy, showing 
its superiority.

We propose now a GRASP construction 
based on the computation of sf(v). GRASP, 
Greedy Randomized Adaptive Search Proce-
dure, is a multi-start or iterative process in which 
each iteration consists of two phases: construc-
tion and local search. The construction phase 
builds a feasible solution, whose neighborhood 
is explored until a local optimum is found after 
the application of the local search phase (Re-
sende & Ribeiro, 2003). At each iteration of 
the construction phase, GRASP maintains a set 
of candidate elements CL that can be feasibly 
added to the partial solution under construction. 
All candidate elements are evaluated according 
to a greedy function (sf(v) in our case) in order 
to select the next element to be added to the 
construction. A restricted candidate list (RCL) 
is created with the best elements in CL. This is 
the greedy aspect of the method. The element 
to be added to the partial solution is randomly 
selected from those in the RCL. This is the 
probabilistic aspect of the heuristic. Once the 
selected element is added to the partial solution, 
the candidate list CL is updated and its elements 
evaluated. This is the adaptive aspect of the 
heuristic. Figure 4 shows the pseudo-code of 
this GRASP construction, which we will call 
C2.

In the GRASP construction above, the 
parameter th represents a threshold on the qual-
ity of the elements. Specifically, the elements 
in CL with an sf-value lower than th are admit-
ted to become part of RCL. This search param-
eter is computed as a fraction α of the rank of 
sf in CL:
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th = msf + α (Msf-msf), msf sf v
v CL

=
∈
min ( ) ,	  

Msf sf v
v CL

=
∈
max ( ) 	

Note that if α is equal to 0, then th=msf, 
and the GRASP construction is equivalent to 
the McAllister method. On the other hand, if 
α is equal to 1, then RCL=CL and the GRASP 
construction is equivalent to the FIM strategy. 
In the computational study reported in Section 
9, we test the effect of changes in α to the solu-
tions with this method.

In the adaptation above of the GRASP 
construction to the MinLA problem, we only 
consider the evaluation given by the sf function. 
We now propose a second variant, C3, in which 
we include the contribution of the selected 
vertex to the objective function. Specifically, 
let C(v,l) be the contribution of v, when v is 
labeled with label l, to the current solution (and 

the labels 1 to l-1 have already been assigned). 
In mathematical terms:

C v l f u l
u N v L

( , ) ( )
( )

= −
∈ ∩
∑ 	

The GRASP construction C3 only con-
siders the vertices with minimum sf-value at 
each step. The restricted candidate list RCL is 
now formed with the vertices with minimum 
sf-value and with a C-value below a threshold 
thC. In this way we can say that the C-value is 
used as a tie-breaking mechanism when more 
than one vertex in CL reaches the minimum 
sf-value. Figure 5 shows the pseudo-code of 
this construction.

The parameter thC in C3 is the threshold 
that establishes the vertices with a relatively 
low contribution to the current solution. It is 
computed as a fraction β of its range in the 
candidate list CLmsf:

Figure 3. Pseudo-code of the constructive method C1

Figure 4. Pseudo-code of the constructive method C2
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th   dm    (dM  - dm )
C L L L
= + b ,	  

dm C v l
L v CLmsf
=

∈
min ( , ) , dM C v l

L v CLmsf
=

∈
max ( , ) 	

If the parameter β in C3 takes the value 1, 
thC equals dML and all the vertices in CLmsf 
are in RCL, thus resulting in a random selec-
tion among them. On the other hand, if it takes 
the value 0, thC equals dmL, thus resulting in a 
greedy selection. In Section 9 we will compare 
the three constructive methods C1, C2 and C3 
described in this section and study the influ-
ence of their parameters on their performance.

6. IMPROVEMENT METHOD

Exchanges are used as the primary mechanism 
to move from one solution to another in our 
implementation. We have considered an im-
provement method based on the ejection chain 
methodology often used in association with 
tabu search (see Glover and Laguna, 1997). As 
a basis for describing our approach, it is useful 
to first discuss a type of move commonly used 
in heuristics for the MinLA problem.

Given a labeling f and two vertices u and v 
with labels f(u) and f(v) respectively, we define 
move(u,v) as the exchange of the labels f(u) 
and f(v). Let g be the resulting labeling when 
move(u,v) is performed. We can then compute 
the value of g, LA(G,g), from the value of f, 
LA(G,f), as:

LA(G,g)=LA(G,f) - MoveValue(u,v)	

where:

MoveValue(u,v) = L(u,f)+L(v,f)-L(u,g)-L(v,g).

Therefore, the larger the MoveValue, the 
better the move. Previous heuristics for MinLA 
based on this exchange move include the ap-
proach by Rodríguez-Tello et al. (2008), which, 
given a vertex u, considers the median of the 
vertices’ labels adjacent to u as the best label 
for exchange. Although assigning the median 
label med(u) to u minimizes the sum of the 
absolute values of differences between this 
label and the labels of adjacent vertices, it is of 
course necessary to give u a label different from 
med(u) unless the adjacent vertex v with f(v) 
= med(u) is given a new assignment different 
from med(u). This will occur if vertex u and 
vertex v exchange labels, but then the rationale 
of reassigning u the label med(u) is destroyed. 
The following example (see Figure 6) illustrates 
that an exchange with the “median label” is not 
necessarily the best choice.

Consider the partial graph depicted in 
Figure 6 in which vertex u has a relatively large 
contribution value L(u, f )=|23-2|+ |23-7|+
|23-14|=46, and we consider exchanging its 
label, 23, with another one. According to the 
rule above, we would consider the median of 
the labels of its adjacent vertices, med(u), as 

Figure 5. Pseudo-code of the constructive method C3
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the best label for exchange. In this example, 
med(u) is 7 and corresponds to vertex v. Let g 
be the labelling after the exchange (g(v) = 23 
and g(u) = 7); we then obtain L(u, g) = 28, thus 
reducing the contribution of u to the objective 
function LA. However, if we assign label 8 to 
vertex u (instead of 7), the contribution of u 
will be |8-2|+|8-7|+|8-14|=13. This motivates 
an exchange between f(u) and a label f(v*), 
where v* is not adjacent to u and where f(v*) 
is close to the value med(u). (In the present 
case, f(u) = 23 and f(v*) = 8.) Of course, this is 
only a first order consideration, because it would 
be entirely possible that exchanging the indi-
cated f(u) and f(v*) could produce an unfavour-
able result – as where, for example, the vertices 
adjacent to v* contain the labels 5, 6, 9 and 10. 
(Then assigning the label 23 to f(v*) would 
cause the new labeling of v* to increase its LA 
value by 62, causing the value of the complete 
solution to deteriorate significantly.) Neverthe-
less, we abide by the principle that it is usually 
better to consider a label close to the “median-
label” and not assigned to an adjacent vertex, 
than the “median-label” itself.

The situation illustrated in Figure 6 appears 
in all the cases in which the vertex considered 
for exchange has an odd degree (and thus the 
median value corresponds to the label of one 
of its adjacent vertex). This can be particularly 
problematic when the vertex u has only one 
adjacent vertex (|N(u)|=1). In that case, the 
selection of the median-label could even cycle 
the search. In line with this, previous papers 
(Rodríguez-Tello et al., 2008), do not limit the 
move to only considering med(u), but examine 
a set of candidate labels close to the median 

at a maximum distance of 2. Therefore, they 
indirectly overcome this situation. We now 
propose to extend this set of “good labels” for 
exchanging including a search parameter width 
and avoiding the labels of adjacent vertices. The 
set CL(u) contains the candidate labels for u:

CL(u)={l / |l-med(u)|≤ width, l≠f(v) 	
∀v∈N(u)}.	

The ejection chain methodology we employ 
follows the general form indicated in Glover 
(1992) and Glover (1996), which is “based on 
the notion of generating compound sequences 
of moves, leading from one solution to another, 
by linked steps in which changes in selected 
elements cause other elements to be ejected 
from their current state, position or value as-
signment.” In this section we make use of this 
notion as follows:

In the MinLA problem, suppose that we 
want to exchange the label of a vertex u with 
the label f(v) of another vertex v because this 
exchange results in a reduction of L(u, f ). How-
ever, this exchange could produce an increase in 
L(v, f ), thus resulting in a non-improving move 
(MoveValue(u,v)<0). We can therefore consider 
labeling v with f(u) but, instead of labeling u 
with f(v), examine another vertex w and check 
whether the label f(v) may be advantageously 
assigned to w and whether, to complete the 
process, the label f(w) is appropriate to assign to 
u (as by reducing L(u, f )). In terms of ejection 
chains, we may say that the assignment of f(u) 
to v caused f(v) to be “ejected” from v to w (and 
concluding by assigning f(w) to u). The outcome 

Figure 6. Move illustration
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defines a compound move of depth two that we 
can represent as move(u,v)+move(v,w)). We can 
then repeat this logic to build longer chains.

In our local search procedure based on 
ejection chains, EC, we define moveEC(u,depth) 
as the ejection chain that starts the chain build-
ing process from vertex u. To restrict the search 
and to make it more efficient, we only scan the 
labels in CL(u). Let v be the vertex with an as-
sociated label f(v)∈ CL(u) with a maximum 
MoveValue(u,v). The chain starts by making 
moveEC(u,depth) = move(u,v), thus exchanging 
the labels f(u) and f(v). If move(u,v) is an im-
proving one, it is executed and the chain stops. 
Otherwise, we select the vertex v in CL(u) so 
that, when assigning its label f(v) to u, the con-
tribution of u to the objective function, L(u, f ) 
is minimized. We then search for a vertex w 
with a label f(w) in CL(v) which is adequate 
for v. We select the label f(w) in CL(v) with 
maximum MoveValue(v,w). If the compound 
move of depth two, move(u,v)+move(v,w), is 
an improving one (MoveValue(u,v)+MoveValu
e(v,w)≥0), the move is executed and the chain 
stops; otherwise the chain continues until the 
compound move becomes an improving one or 
the length of the chain reaches the pre-specified 
limit depth. If none of the compound moves from 
depth 1 to depth examined in moveEC(u,depth) is 
an improving move, no move is performed and 
the exploration continues with the next vertex 
to be considered for movement.

Note that we perform a move even when 
its value is 0. We have empirically found that 
this strategy permits the exploration of a larger 
number of solutions (compared to an imple-
mentation in which only moves with a positive 
value are performed), thus obtaining improved 
outcomes. On the other hand, we have also 
found that when we apply a move, we usually 
change a relatively large number of labels, and 
it is useful to apply the ejection chain from the 
same vertex again. Therefore, we move to the 
next vertex considered for movement when no 
exchange is performed in the ejection chain.

A global iteration of the EC method consists 
of first ordering the vertices in the opposite order 
to their labeling in the construction. We then 

examine the vertices in this order in search of an 
improving moveEC move. The rationale behind 
this ordering is to give priority to those vertices 
which are more constrained in the construction 
process. We have also considered a variant in 
which the vertices are ordered according to 
their contribution L(u, f ). However, this variant 
produces lower quality results compared with 
the former one. The method continues iterating 
only if in the previous iteration (i.e. the examina-
tion of all nodes) at least one improving move 
is performed. Otherwise, EC stops.

In addition to the parameter depth our ejec-
tion chain method EC includes the parameter 
width described previously. By this means we 
control both the number of vertices involved in 
the move and the distance between the labels. 
Both parameters together permit the application 
of EC with a moderate running time; however, 
they constrain the search to “small” moves in 
the sense that it only considers candidate labels 
close to the neighbor’s labels of the vertex 
selected for movement. In order to diversify 
the search and try more aggressive moves, we 
apply the Hill Climbing method (Petit, 2003a) 
in which moves are selected at random at the 
end of EC as a post-processing of the ejection 
chain for iter_Hc iterations. Section 9 reports 
on the experimentation in which we study these 
search parameters.

7. FILTERING SOLUTIONS

After a number of iterations, it is possible to 
estimate the fractional improvement achieved 
by the application of the improvement phase and 
use this information to increase the efficiency 
of the search (Laguna & Martí, 1999). Define 
the fractional improvement in the iteration i as:

P i =
LA G, f LA G, f

LA G, f
i i

i

( )
( ) ( )

( )

- *

*
	

where fi is the solution (labeling) constructed 
at iteration i, LA(G,fi) is its value, and fi* is 
the improved solution obtained applying the 
improvement method EC to fi (and LA(G,fi*) 
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is its value). After n iterations, the mean μP and 
standard deviation σP of P can be estimated as:

   	

Then, at a given iteration i, these estimates 
can be used to determine whether it is “likely” 
that the improvement phase will be able to 
improve the current construction enough to 
produce a better solution than the current best, 
fbest. In particular, we calculate the minimum 
fractional improvement imp(i) that is necessary 
for a construction fi to be better than fbest, as:

imp i =
LA G, f LA G, f

LA G, f
i best

i

( )
( ) ( )

( )

-
	

If the value of imp(i) is close to the es-
timation of μP, we can consider that when 
we apply the improvement method EC to the 
current solution fi, we will probably obtain a 
solution fi* which is better than fbest. Therefore, 
in order to save computational time, we only 
apply EC to promising solutions fi according 
to this estimation. In mathematical terms, if 

, then we apply EC to fi; 
otherwise, we discard fi. The value of δ is a 
search parameter representing a threshold on 
the number of standard deviations away from 
the estimated mean percentage improvement. 
In Section 9, we perform a set of preliminary 
experiments to test the effect of different δ 
values on solution quality and speed.

8. COMBINATION METHOD 
BASED ON PATH RELINKING

We consider a reference set with b =10 so-
lutions and apply a combination method to 
them. In our implementation for the linear 
arrangement problem we have considered the 
path relinking methodology to elaborate our 
combination method.

The initial reference set (RefSet) in standard 
scatter search implementations is constructed 
by selecting the |RefSet|/2 best solutions from 
a population of solutions P and adding to 
RefSet the |RefSet|/2 most diverse solutions 
in P \ RefSet one-by-one, where the concept 
of diversity is defined below. Instead of this 
one-by-one selection of diverse solutions we 
consider here solving the maximum diversity 
problem (MDP) in order to obtain the five most 
diverse solutions in P \ RefSet.

The MDP consists of finding, from a given 
set of elements and corresponding distances 
between elements, the most diverse subset of 
a given size. The diversity of the chosen subset 
is given by the sum of the distances between 
every pair of elements. Since the MDP is a 
computationally hard problem, we employ the 
GC2 method (Duarte & Martí, 2007) because 
it provides a good balance between solution 
quality and speed, attributes that are important 
in order to embed it as part of the overall solv-
ing procedure.

In order to define a distance function we 
need to consider that reverse labelings (permu-
tations) define equivalent MinLA solutions. In 
mathematical terms, let p=(p1, p2, …, pn) and 
q=(q1, q2, .., qn) be two labelings of a set of n 
vertices in which qi=n-pi+1, then we say that p 
and q are reverse permutations and equivalent 
MinLA solutions with the same value (it is easy 
to check that LA(G,p)=LA(G,q)). In order to 
measure the distance between pairs of MinLA 
solutions, we want equivalent solutions to have 
a distance of 0. We then propose the following 
function:

d(p,q) =
i

i=

n

∂∑
1

where:	  

∂ =
≠ ≠ − +







i
i i i i

if p q and p n q

otherwise

1 1

0
	

To illustrate this distance function, 
consider for example p=(6,1,2,3,4,5) and 
q=(1,2,3,4,5,6), then d(p,q)=0+1+1+0+1+1=4. 
Therefore, we build the RefSet with the five best 
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solutions and the five most diverse solutions 
(according to the distance above) from the set 
of solutions P obtained with the application of 
the GRASP method.

We apply the relinking process to each pair 
of solutions in the RefSet. Given the pair (f,g), 
we consider the path from f to g (where f is the 
initiating solution and g the guiding one). In this 
path we basically assign each vertex label one 
by one in the guiding solution to the initiating 
solution. Given the pair (f,g), let C(f,g) be the 
candidate list of vertices to be examined in the 
relinking process from f to g. At each step in 
this process, a vertex v is chosen from C(f,g) 
and labeled in the initiating solution with its 
label g(v) in the guiding solution. To do this, 
in the initiating solution we look for the vertex 
u with label g(v) and perform move(u,v), then 
vertex v is removed from C(f,g). The candidate 
set C(f,g) is initialized with a randomly selected 
vertex. In subsequent iterations, each time a 
vertex is selected and removed from C(f,g), its 
adjacent vertices are included in this candidate 
set of vertices.

In the Path Relinking methodology, it is 
convenient to add a local search exploration 
from some of the solutions visited in order to 
produce improved outcomes (Laguna & Martí, 
1999; Piñana et al., 2004). We have applied the 
local search method based on ejection chains 
EC to some of the solutions generated in the 
path. Note that two consecutive solutions after a 
relinking step only differ in the labeling of two 
vertices. Therefore, it does not seem efficient 
to apply the local search exploration at every 
step of the relinking process. We introduce the 
parameter pr to control the application of the EC 
method. In particular, EC is applied pr times in 
the relinking process. We report on the effec-
tiveness of the procedure with different values 
of this parameter in the computational testing 
that follows. After the application of the Path 
Relinking strategy, we return the best solution 
found as the output of the method.

9. COMPUTATIONAL 
EXPERIMENTS

This section describes the computational ex-
periments that we performed to compare our 
proposed procedure with previous methods for 
solving the MinLA problem. We first describe 
our preliminary experimentation to compare 
the alternative solving methods proposed in 
previous sections. We also adjust the search 
parameters in order to establish a good combi-
nation of the proposed elements and strategies 
in our “final” algorithm. All experiments were 
performed on a personal computer with a 3.2 
GHz Intel Xenon processor and 2.0 GB of RAM. 
We consider a set of twenty one instances (62 ≤ 
n ≤ 10,240 and 125 ≤ m ≤ 30,380) introduced in 
Petit (2003a). They are designed to be difficult; 
i.e. in that they cannot be optimally solved by 
an explicit enumeration of all their feasible 
solutions. This set includes random graphs and 
three families of “real-world” graphs: VLSI, 
graph-drawing and engineering (fluid-dynamics 
and structural mechanics).

We perform the preliminary experimenta-
tion on four instances: randomA1, c1y, bintree10 
and mesh33x33 selected at random from the 
original set. In our first preliminary experiment 
we compare the previous constructive method 
C1 (McAllister, 1999) with our two methods 
C2(α) and C3(β) described in Section 5. We test 
five values for the search parameters α and β: 
0.1, 0.2, 0.3, 0.4 and 0.5. We also test a variant 
C2(rand) in which the value of α is randomly 
selected from among these five values in each 
construction (and similarly with β in C3(rand)). 
Table 1 shows the results of these three methods 
on the four Petit instances mentioned above. We 
construct 100 solutions with each method on 
each instance and report the average across the 
four instances of the best solution found, Best, 
and the average of the worst solution found, 
Worst. We also report the average percentage 
deviation of the best solution obtained with 
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each method from the best known solution, Dev. 
Best, as well as the average running time, Time.

The results in Table 1 indicate that the two 
proposed methods, C2 and C3, obtain better 
solutions than the previous method C1. Moreover, 
as shown in the average percentage deviation, 
the best results are obtained with the C3 method 
with a random selection of the parameter β 
(C3(rand)). However, in this experiment we have 
empirically found that some methods system-
atically obtain better solutions on some in-
stances than other methods (although on average, 
across all the instances C3, is the best one). For 
example, C1 always obtains the best solutions 
in the bintree instances and C2 always obtains 
the best in the random ones. Therefore we have 
considered a mixed method, called C4, in which 
we randomly select C1, C2(rand) or C3(rand) 
in each construction. C4 is able to obtain an 
average percentage deviation of 11.26% across 
the four problems of our preliminary experimen-
tation, thus improving upon the other methods. 
We will then consider C4 as the constructive 
method in the rest of our experimentation.

In our second preliminary experiment we 
undertake to compare the effectiveness of the 
improvement method described in Section 5. 

As a baseline method, we consider the con-
struction method C4 without any improvement 
run for 500 seconds. We compare it with the 
combination of C4 and the ejection-chain-based 
improvement method EC with several values 
for its two parameters: width and depth. To 
do this, we run C4+EC(width,depth) for 500 
seconds on each instance and report, as in 
the previous experiment, the Best, Worst and 
Dev. Best average values. Table 2 shows that 
the best combination of the search parameters 
is obtained with width=10 and depth=5 in our 
ejection-chain procedure, since C4+EC(10,5) 
presents an average percentage deviation from 
the best known solution of 10.37. It should be 
noted that previous studies (Rodriguez-Tello et 
al., 2008) are limited to a width value of 5 in the 
local search method, and we are obtaining the 
best results with width set to 10. On the other 
hand, the variant C4+EC(1,1) is simply C4 plus 
a local search and surprisingly obtains worse 
solutions (13.34 average percentage deviation 
from best) than C4 by itself (which as shown 
in the previous experiment obtains an 11.26 
average percentage deviation from best). This 
is explained by the fact that the local search 
method is extremely time-consuming in this 

Table 1. Comparison of constructive methods 

Method Best Worst Dev. Best Time (seconds)

C1 539,734.5 365,513.4 174.79% 2.25

C2(rand) 279,603.8 313,168.7 16.50% 2.75

C2(0.1) 279,516.6 313,168.7 16.50% 2.50

C2(0.2) 279,331.3 312,248.5 20.12% 2.75

C2(0.3) 279,401.6 312,932.7 19.97% 2.75

C2(0.4) 279,401.6 312,932.7 19.97% 2.75

C2(0.5) 279,344.8 313,168.2 16.50% 2.75

C3(rand) 282,040.0 327,343.5 13.77% 2.75

C3(0.1) 266,755.0 315,570.2 29.04% 2.50

C3(0.2) 266,852.7 322,400.5 31.71% 2.75

C3(0.3) 266,534.5 320,361.7 39.10% 2.75

C3(0.4) 265,768.2 321,176.7 36.76% 2.75

C3(0.5) 262,767.2 324,549.7 37.04% 2.75
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problem, and within 500 seconds the method 
can only construct and improve less than 50 
solutions in some instances.

As described in Section 5 the application 
of the improvement method finishes with a 
post-processing consisting of the Hill climbing 
method (HC). It is performed for iter_Hc it-
erations. Table 3 reports the statistics Best, 
Worst, Dev. Best as well as the CPU running 
time, Time, of the C4+EC+HC procedure with 
iter_Hc=0, |V| /20, |V| /15, |V| /10 and |V| /5.

Table 3 clearly shows that the application 
of the HC post-processing in the EC improve-
ment method presents a marginal improvement 
in the final quality of the solution. Specifically, 
the application of the Hill climbing method for 
n/15 iterations reduces the average percentage 
deviation from 10.12% to 9.64% consuming 
the same running time. In the reminder of our 
experimentation we select the constructive 
method C4 and the improvement method 
EC(10,5) with the post-processing HC.

In the third preliminary experiment we test 
the effect of the filter mechanism described in 

Section 7 to skip the improvement method when 
the value of the construction recommends it. 
During the first 20 constructions the method 
stores the fractional improvement achieved with 
the local search procedure EC. Then, when a 
solution is constructed, it computes its minimum 
fractional improvement imp that is necessary 
to improve the best solution known so far. If 

 we apply the improvement 
method; otherwise it is skipped, where  and 

 are the average and the standard deviation 
estimations of the percentage improvement. 
The parameter δ controls the number of 
standard deviations away from the estimated 
mean percentage improvement. To measure 
the effectiveness of this strategy and the best 
choice of δ, we populate the RefSet with 100 
solutions and apply this filter from iteration 21 
to 100. Table 4 reports the average, across the 
instances in the preliminary experimentation, 
of the number of iterations in which the test 
recommends not applying the improvement, 
Skip, the average percentage deviation from the 

Table 2. Comparison of C4 coupled with different improvement methods with a time limit of 500 sec 

Method Best Worst Dev. Best

C4 263,636.7 509,565.2 11.26%

C4+EC(1,1) 264,574.5 457,632.0 13.34%

C4+EC(1,5) 263,224.8 327,512.8 13.15%

C4+EC(1,10) 262,739.3 370,197.0 13.19%

C4+EC(1,15) 264,512.5 319,452.0 13.58%

C4+EC(1,20) 262,872.3 316,349.0 13.05%

C4+EC(5,1) 262,025.0 454,472.5 11.45%

C4+EC(5,5) 261,836.8 309,190.0 11.21%

C4+EC(5,10) 263,258.3 303,643.8 11.23%

C4+EC(5,15) 260,298.3 324,966.8 11.14%

C4+EC(5,20) 262,929.3 332,535.3 11.30%

C4+EC(10,1) 261,698.0 302,020.5 10.51%

C4+EC(10,5) 260,345.3 313,030.5 10.37%

C4+EC(10,10) 263,572.3 439,862.0 10.88%

C4+EC(10,15) 262,983.8 311,830.8 10.84%

C4+EC (10,20) 261,869.8 452,744.8 10.91%
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best known solution, Dev. Best and the average 
running time of the methods, Time.

Table 4 shows that as δ decreases the 
number of skipped improvement iterations 
increases. This is to be expected by definition 
of δ. However, the average percentage deviation 
from the best solution known, Dev. Best, does 
not present significant changes across different 
values of δ, thus indicating the robustness of 
the filter (i.e. solutions skipped for improvement 
hardly modify the final result). The best value 
for δ is 0.5, since it provides a saving in the 
CPU time without a significant deterioration 
of the quality of the final solution.

In our final preliminary experiment we test 
the path relinking (PR) algorithm to measure the 
contribution of the combination method within 
our scatter search procedure. We populate the 
RefSet with the solutions obtained by applying 
our GRASP algorithm for 100 iterations. We 
then apply the PR to all the pairs in RefSet and 
report the best solution found. As described in 
Section 8, we apply the improvement method 
(EC(10,5)+HC) to some of the solutions in the 
paths. In particular, it is applied pr times in each 
path. Table 5 reports the statistics Best, Dev. 

Best and Time of the SS+PR algorithm with 
different values of the pr parameter.

Results in Table 5 show that as pr in-
creases, the SS+PR algorithm is able to margin-
ally improve the quality of the final solution. 
However, as expected, running times also in-
crease since, as we have already mentioned, 
the application of the improvement method is 
time-consuming. We set pr=15 because it rep-
resents a good balance between solution qual-
ity and speed.

In the final experiment we compare our 
SS+PR algorithm with the best published 
methods: the McAllister constructive method 
C1 coupled with the Hill-climbing algorithm 
HC (Petit, 2003a), C1+HC, the simulated an-
nealing SAN (Petit, 2003) and the two stage 
simulated annealing TSSA (Rodriguez-Tello et 
al., 2008). Table 6 shows the results in the 21 
Petit instances. We run these methods once on 
each instance (with the exception of C1+HC 
that, considering its simplicity, is executed 1000 
times) with their parameters adjusted to run for 
about 1000 seconds of CPU time.

Table 6 is split into two parts. In the upper 
part we can find the results of each algorithm 

Table 3. Hill climbing post-processing in the improvement method 

iter_Hc Best Worst Dev. Best Time

0 261,538.5 434,911.3 10.12% 505.8

|V|/20 255,043.3 288,956.0 10.02% 502.0

|V|/15 254,594.5 298,544.3 9.64% 504.8

|V|/10 255,680.8 285,602.0 10.47% 508.5

|V|/5 253,935.5 284,989.3 9.96% 505.3

Table 4. Filtering solutions 

δ # Skip Dev. Best Time

0.5 51.7 10.51% 292.0

1 37.5 10.40% 550.2

1.5 30.0 10.90% 485.2

2 25.7 10.86% 485.7
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Table 5. Scatter search with path relinking (SS+PR) 

pr best Dev. Best Time

5 254,964.5 9.59% 824.5

10 253,773.5 8.51% 1,041.7

15 253,516.5 8.00% 1,268.0

20 252,476.5 8.04% 1,521.7

Table 6. Comparison of best methods 

SS+PR C4+HC SAN TSSA

Value Dev. Value Dev. Value Dev. Value Dev.

randomA1 914882 2.31 950394 6.28 894205 0.00 948868 6.11

randomA2 6572444 0.00 6708192 2.07 6596880 0.37 6625307 0.80

randomA3 14336736 0.00 14463797 0.89 14346700 0.07 14441751 0.73

randomA4 1779181 1.17 1824564 3.75 1758560 0.00 1816732 3.31

randomG4 179138 0.00 206123 15.06 299571 67.23 185912 3.78

bintree10 4267 0.00 13951 226.95 14247 233.89 4440 4.05

hc10 523776 0.00 538116 2.74 540512 3.20 523776 0.00

mesh33x33 32703 0.00 35509 8.58 38481 17.67 33464 2.33

3elt 431737 0.00 1369880 217.30 867560 100.95 509337 17.9

airfoil1 322611 0.00 867560 168.92 1369880 324.62 392989 21.8

whitaker3 1307540 0.00 4857190 271.48 4857190 271.48 1313857 0.48

c1y 65084 4.23 70896 13.54 73867 18.30 62441 0.00

c2y 82665 4.38 89029 12.41 89029 12.41 79199 0.00

c3y 136103 9.66 144902 16.75 163785 31.96 124117 0.00

c4y 125720 9.19 146651 27.36 146651 27.36 115144 0.00

c5y 109279 12.71 122652 26.51 123891 27.79 96952 0.00

gd95c 506 0.00 529 4.55 506 0.00 507 0.20

gd96a 114377 18.83 107945 12.15 111144 15.47 96253 0.00

gd96b 1421 0.35 1527 7.84 1483 4.73 1416 0.00

gd96c 519 0.00 531 2.31 519 0.00 523 0.77

gd96d 2414 0.84 2399 0.21 2421 1.13 2394 0.00

Avg. Time 529.14 552.90 1274.14 870.57

Avg. Dev. 3.03% 49.89% 55.17% 2.97%

#Best 11 0 4 9
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on each particular instance in the Petit set. 
Specifically, we report the value of the best 
solution found, Value, and the percentage de-
viation, Dev., between Value and the value of 
the best solution found with the four methods 
under consideration. In the lower part of Table 
6 we report the average running time of each 
method across the 21 instances, Avg. Time, as 
well as the average percentage deviation, Avg. 
Dev., and the number of best solutions, #Best 
that each method is able to obtain.

Table 6 shows that C4+HC and SAN are 
clearly inferior to the other two methods con-
sidered in this comparison, since they obtain 
an average percentage deviation from the best 
known solution of 49.89 and 55.17 respectively. 
Our SS+PR method obtains the greatest number 
of best solutions found by any of the methods, 
11, followed by the TSSA method which obtains 
9 best solutions. SS+PR and TSSA obtain an 
average percentage deviation of 3.03 and 2.97 
respectively. It should be noted that our SS+PR 
algorithm presents a running time of 529.14 
seconds on average, which compares favorably 
with the 870.57 seconds of TSSA. Moreover, 
TSSA would demand more than four hours of 
CPU time in some instances if we adjusted its 

parameters as in Rodriguez-Tello et al. (2008), 
although the average percentage deviation 
from employing such lengthy runs would be 
reduced to 0.05.

We finish our experimentation studying 
the contribution of the different SS elements in 
the evolution of the best solution. Specifically, 
Figure 7 depicts, for each SS iteration, the value 
of the best solution in the RefSet (Best RefSet), 
the value of the best solution obtained with the 
combination of the solutions in the RefSet (Best 
Comb), and the value of the best solution result-
ing from the application of the improvement 
method to the combined solutions (BestLS).

Figure 7 shows the contribution of the 
combination and improvement methods to the 
best solution found. This figure clearly shows 
that the solutions obtained by combination are 
not able to improve themselves the value of the 
best solution in the RefSet; however, they con-
stitute good seeds for the application of the 
improvement method. This is especially true 
in iterations 1, 2 and 7 in which the application 
of the improvement method to the combined 
solutions is able to improve the best solution 
in the RefSet, thus generating a new best solu-
tion overall.

Figure 7. Evolution of the best SS solution
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10. CONCLUSION

We have developed a heuristic procedure based 
on the SS methodology to illustrate how this 
methodology can be applied to an intensively 
studied problem in combinatorial optimization 
– the linear arrangement minimization problem. 
Although our development is tutorial in nature, 
our illustrative method nevertheless performs 
highly effectively compared to the leading 
methods in the literature.

Overall experiments with previously re-
ported instances were performed to first identify 
the contribution of the different elements in our 
procedure and then to compare the outcomes 
with those of previous methods. Our preliminary 
experiments illustrate the merit of the proposed 
mechanisms, such as the use of ejection chains 
(Section 6), the filter of low quality construc-
tions (Section 7) and the selection of diverse 
solutions for Path Relinking (Section 8), that 
we hope other researchers might find useful in 
different combinatorial optimization problems. 
The efficacy of the resulting scatter search with 
path relinking implementation is demonstrated 
by surpassing the best procedures in the litera-
ture in the number of best solutions obtained 
when solving the problem within moderate 
running times (1000 seconds on medium sized 
instances). An immediate opportunity for ob-
taining still better results may be noted to arise 
by employing a self-adjusting mechanism for 
choosing parameter values, rather than relying 
on fixed values that represent a compromise 
between competing considerations. To carry the 
basic foundations of this work further, a sequel 
will examine more finely tuned versions of the 
illustrated strategies, and additionally focus on 
longer term strategies, thus exposing options for 
obtaining improved solutions when time limits 
are made substantially longer.
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ENDNOTE
1 	 In the case where a vertex has an even number 

of adjacent neighbors, so that the labels of two 
of these neighbors could be considered candi-
dates for a median, then selecting any value 
between and including the two candidates will 
minimize the sum of the absolute values of the 
differences. This property is not restricted to 
label values that are positive integers, but holds 
for any finite collection of real valued labels.
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