
Algorithmic Operations Research Vol.6 (2011) 0–8

The AID Method for Global Optimization

Mahamed G. H. Omrana and Fred Gloverb

aGulf University for Science and Technology, Kuwait, Kuwait.
bOptTek Systems, Inc., 2241 17th Street, Boulder, CO 80302 USA.

Abstract

An Alternating Intensification/Diversification (AID) method is proposed to tackle global optimization problems, focusing
here on global function minimization over continuous variables. Our method is a local search procedure that is particularly
easy to implement, and can readily be embedded as a supporting strategy within more sophisticated methods that make
use of population-based designs. We perform computationaltests comparing the AID method to 20 other algorithms,
many of them representing a similar or higher level of sophistication, on a total of 28 benchmark functions. The results
show that the new approach generally obtains good quality solutions for unconstrained global optimization problems,
suggesting the utility of its underlying notions and the potential value of exploiting its multiple avenues for generalization.

Key words: PLEASE PROVIDE KEY WORDS

1. Introduction

Consider the nonlinear optimization problem

(P )Minimizef(x) : x ∈ X = {x : U ≥ x ≥ L}
(1)

where f(.) is a nonlinear function, x = (x1, . . . , xn) is a
vector of real-valued (continuous) variables, and L and
U are n-vectors of constants whose entries are assumed
finite.

Our method for (P) is an easy-to-implement approach
from the local search class, which does not make use of
solution pools as employed in evolutionary population-
based search. Because of its straightforward character,
and the fact that it requires (almost) no tuning, it can
readily be embedded as a subroutine within evolution-
ary procedures. In fact, our method makes use of proce-
dures for combining pairs of solutions using strategies
derived from scatter search and path relinking, often
considered as methods belonging to the evolutionary
class, but makes no recourse to the population-handling
mechanisms embodied in these approaches.

Various local search types of procedures previously
applied to function optimization include, for example,
Nelder and Mead simplex search [16], tabu search

Email: Mahamed G. H. Omran [omran.m@gust.edu.kw],
Fred Glover [ glover@opttek.com].

[5,6], iterated local search [22], simultaneous pertur-
bation stochastic approximation [20], reactive affine
shaker [2], among numerous others. Well-known meth-
ods belonging to the evolutionary category that have
been applied to function optimization include genetic
algorithms [9], evolution strategies [1], particle swarm
optimization [15], differential evolution [21], and scat-
ter search [7], to cite just a small sampling. A unidi-
mensional approach that shows promise for solving
some classes of high-dimensional problems by succes-
sive examination of single coordinate dimensions is
given in [4].

Our present study performs computational tests on
28 benchmark problems comparing the AID method to
20 other algorithms for function optimization (including
algorithms reported in the well-known IEEE CEC2005
competition). The outcomes disclose that AID performs
well compared with these alternative methods. The out-
comes invite the speculation that procedures based on
generalizing the AID method or integrating it within a
more advanced method that exploits population pools
may prove more promising yet.

The reminder of the paper is organized as follows:
Section 2 introduces the fundamental ideas of AID, ac-
companied by pseudo-code. Methods used for compu-
tational comparisons and results of the experiments are
presented in Section 3, and Section 4 summarizes our
conclusions.

c© 2011 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.



Mahamed G. H. Omran & Fred Glover – Algorithmic Operations Research Vol.6 (2011) 0–8 1

2. The Alternating Intensification/Diversification
(AID) Method

Our proposed optimizer starts by generating a se-
ries of initiating solutions. The best initiating solution
is subjected to an intensification (local search) method
to produce a better initiating solution. This solution is
submitted to a simple diversification step that comple-
ments the initiating solution relative to the bounds on
the variables. The resulting pair of solutions is then
processed by a method SSPRCombine that consists of
mechanisms for combining solutions derived from scat-
ter search (SS) and path relinking (PR). Finally, the best
solution obtained from SSPRCombine is subjected to
an intensification method to produce the solution that
becomes the initiating solution for the next iteration,
and the entire process is repeated until a stopping crite-
rion is met. The framework of AID is shown in Alg. 1.

Algorithm 1 A general framework for the AID method

Generate an initiating solution x. (Each initiating
solution is a candidate for the best solution,
subsequently denoted x*.)
Improve x using a local search.
repeat

Generate the complement y of x to create the
diverse solution pair (x,y).
Create z = SSPRCombine(x,y)
if f(z) < f(x) then

x = z {assuming a minimization problem}
end if
Improve x using a local search to yield a new
initiating solution.

until a stopping criterion is met

The framework of Alg. 1 needs to be tailored for
the problem at hand. A variety of methods can be
used to produce a solution that takes the role of the
” complement” solution y, depending on the problem
context. For example, a diversifying mechanism that
can produce such a solution y in the setting of the
quadratic assignment problem, and which can be used
in many other problem settings, appears in Kelly [14].
Similarly, alternative combination methods can be used
in the role we have given to SSPRCombine1 .

1 Normally a diversification process would be designed to
produce new solutions that are diverse relative to a collec-
tion of given solutions, but here we simplify the notion of

We give a detailed description of the version of AID
we have produced for continuous function optimization
in the following subsections.

3. Generating the first initiating solution

An initiating solution to launch the method can be
generated randomly or by choosing a good starting point
in a more strategic manner. In this paper, P solutions are
randomly generated and the best one (defined in terms
of f) is used as the first initiating solution.

Improvement method

The Enhanced Unidimensional Search (EUS) algo-
rithm [4] is used in the intensification process. EUS
is an enhanced variant of the Classical Unidimensional
Search (CUS) for solving (P), and hence operates as a
line search algorithm that runs dimension by dimension.
The method is easy to implement and good in handling
high dimensional problems. In this paper we use inter-
val scanning to find the best value for theratio param-
eter of EUS for each problem.

Generating the complement solution

We generate the complement solution by defining
complementation relative to the bounds on the variables
embodied in the vectors L and U. The rationale behind
using this form of the complement is that it may be
conceived as the ” opposite” of the solution from which
it derives (adopting a view often used in the context of
binary optimization).

The inequalityL ≤ x ≤ U(i.e., xi ∈ [Li, Ui], i =
1, 2, . . . , n), gives rise to the complement y of x given
by

yi = Li + Ui − xi (2)

It is important to note in applying this definition that
L and U may give exceedingly ” loose” bounds on the
problem variables, and hence our use of the complement
could be improved by a process that successively revises
L and U based on solution history. We do not undertake
to do this in our present study.

diversification to consider a new solution that is “diverse”in
the sense of being suitably different from a single current
solution.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

2 Mahamed G. H. Omran & Fred Glover – The AID Method for Global Optimization

Generating the combined solution z

Given two solutions x and y, the combination method
SSPRCombine(x,y) used to generate the solution z is
inspired by the scatter search and path relinking tem-
plate of [7] . Two solutions are generated, the first one
based on scatter search and the second based on path
relinking. The scatter search combination is given by:

C1:z = x+0.5r(y−x) where r is a random number
in the range (0,1).

This solution was used in the study of [8] and adds
some randomness to our method. The path relinking
approach we employ may be described as follows.

C2: A randomized version of path relinking pro-
posed by [24] is used as a diversification strategy
that exhibits elements of intensification. To generate
a path, the path relinking operation progressively
introduces elements (here, values of variables) of x
into y, where x and y are renamed if need be so that
f(x) ≤ f(y). One element of x is randomly chosen
at each relinking step and produces the current z by
replacing the corresponding element of y, generating
a new solution z that lies ” between” x and y. This
process is repeated until z = x. The path is then
extended by introducing an element randomly into
z. The best solution found over the whole path is
returned as the result of the path relinking process.

Path relinking processes typically exclude solutions
from consideration as candidates for a ” best solution”
on the path if they are less than a specified minimum
distance from x and y. Although such a refinement has
proved useful in a variety of settings (see, e.g., the sur-
vey of [17]), we did not attempt to make use of it here.

The two solutions produced by C1 and C2 are then
compared and the best (in terms of f) is returned as the
result of combining x and y.

It can be seen that on each AID iteration there is
a balance between diversification (via the complement
and path relinking) and intensification (via path relink-
ing and EUS). Furthermore, AID requires no parame-
ter tuning except for selecting a stopping criterion and
choosing the number of iterations allotted as a limit for
the improving method. This represents an important ad-
vantage for AID. A description of the version of AID
implemented in this paper is shown in Alg. II.

Algorithm 2 Pseudo code of AID for continuous opti-
mization

Generate P solutions randomly
Evaluate the solutions in P
Set the first initiating solution, x, to be the best
solution in P according to f
Apply an intensification process
x = EUS(x)
repeat

Generate the complement
y = L+ U − x
Generate two solutions
z1 = x+0.5r(y−x) wherer is a random number
in the range(0, 1)
z2 = path relinking(x, y)
Set the ultimate solution z to be the best ofz1 and
z2; i.e.,
z = arg max (f(z1), f(z2)).
if f(z) < f(x) then

x = z {assuming a minimization problem}
endif
Apply an intensification process
x = EUS(x)

until a stopping criterion is met

Note that it is possible for x to go through this pro-
cess without changing. We did not incorporate a device
to exclude such a possibility. It would intuitively be
beneficial to incorporate additional controls within Al-
gorithm II to insure that x changes before applying the
intensification process.

4. Experimental Results

In this section we first compare the performance of
AID with that of the simultaneous perturbation stochas-
tic approximation (SPSA) method [19] and the reactive
affine shaker (RASH) method [2] when applied to 17
test problems with n ranging from 2 to 30. The initial-
ization ranges for each problem are the same as in their
“ original sources”:

http://www.cyberiad.net/realbench.html
http://solon.cma.univie.ac.at//glopt.html

For AID, the number of iterations assigned to EUS
is set to 2000. For SPSA,A = 0, α = 1, γ = 1/6,
a = 0.4 and c = 1. For RASH, ρe = 1.2 andρr =
0.8. The results reported in this section are averages



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

Mahamed G. H. Omran & Fred Glover – Algorithmic Operations Research Vol.6 (2011) 0–8 3

and standard deviations over 30 simulations. Each sim-
ulation was allowed to run for 100,000 evaluations of
the objective function if n< 10 and for 500,000 func-
tion evaluations otherwise. The statistically significant
best solutions have been shown in bold (using the non-
parametric statistical test called Wilcoxon’s rank sum
test for independent samples [23] withα = 0.05).

All the tests are run on an Apple MacBook computer
with Intel Core Due 2 processor running at 2.0 GHz with
2GB of RAM. Mac OS X 10.5.6 is the operating system
used. All programs are implemented using MATLAB
version 7.6.0.324 (R2008a) environment.

Table I summarizes the results obtained by applying
SPSA, RASH and AID to the benchmark functions.
The table reports the average gap, Avg. GAP, where
the optimality gap for a given solution x and the best
solution x* is defined as:

GAP = |f(x)− f(x∗)|. (3)

The results show that AID generally outperformed
both SPSA and RASH on all the benchmark functions
except for the Quartic function where SPSA performed
better (the expected reason is the presence of noise).

Table II shows the count (as a percentage) of how
often a given type of combination employed by our
method (SS from C1 or PR from C2) finds the best
solution for representative functions. The results show
that PR is the combination method that often yields the
best solution. Note that these outcomes do not truly dis-
close the importance of a given combination approach,
since a combination that did not find the best solution
still could have been essential for giving a solution at
some stage that allowed another combination to find a
best solution.

We next compared AID against seven more advanced
algorithms, starting with the Dialectic Search method
and Simulated Annealing (in two variants) as reported
in [13].

In order to compare AID with these Dialectic search
and SA methods, AID was run 250 times and the aver-
age fitness and average number of function evaluations
were recorded in Table III for the three functions with
dimensions 20 and 50. Table III shows that AID reached
better solutions faster than both Dialectic search and SA
in each of the test cases.

In addition, we tested the AID algorithm on the six
function suite in [11] and compared the results to those
of the five popular metaheuristics reported in detail in
that paper: a Simple Genetic Algorithm (SGA) [12],

Evolutionary Programming (EP) [3], Evolution Strate-
gies (ES) [18], Particle Swarm Optimization (PSO) [15]
and the more recently-proposed Group Search Opti-
mizer (GSO) [11]. These algorithms are population-
based, stochastic search approaches. Table IV summa-
rizes AID’s results (over 50 independent runs as in [11]).
Results in the table for SGA, EP, ES, PSO and GSO are
reproduced from [11]. AID, GSO, SGA and CPSO use
150,000 FEs, EP uses 300,000 FEs and ES uses 600,000
FEs. The results show that AID returned the best ob-
jective values on five functions and the fourth best ob-
jective value on one function (the Schwefel’s Problem
2.26 function).

In our concluding set of experiments, we compare
AID with the 11 methods reported on the CEC 2005
competition. Nine functions have been chosen from the
CEC 2005 benchmark set. Functions F1, F2 and F6 are
unimodal functions, F4 is a noisy unimodal function,
F9, F10 and F12 are multimodal functions and F8 and
F13 are never-solved multimodal functions. All meth-
ods use 100,000 function evaluations and are run for 25
independent runs as suggested by [10]. The effective-
ness of the methods is measured based on the number of
successful runs (a run is successful if GAP≤ 1 e−8).
On the other hand, efficiency is measured in terms of
the number of function evaluations (FEs) as defined by

FEs= mean(fevals)× (25÷ #successful runs). (4)

wherefevalsincludes only successful runs.

Table V shows the results of applying AID to the
CEC functions. From the effectiveness point of view,
AID ranks joint first on 3 functions (F1, F2 and F9).
AID ranks 5th on one (F12), it ranks 6th on another
(F6) and AID ranks 8th on F4. On three functions (F8,
F10 and F13) AID could not find the solution within the
desired precision. However, two of these functions (i.e.
F8 and F13) are never solved problems. If we compare
AID with the 11 methods when applied to F8 and F13
based on the Avg. GAP value, we can see that AID
ranks joints first on F8 and 3rd on F13.

If we consider now the efficiency, AID was the fastest
approach on F9, 2nd fastest method on F12, 4th fastest
algorithm on F1, F2, F4 and F6.

Thus, in general, despite its simplicity, AID managed
to perform very well compared to 11 well-known (gen-
erally more complicated and population-based) meth-
ods when applied to this set of difficult problems.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

4 Mahamed G. H. Omran & Fred Glover – The AID Method for Global Optimization

Table I

Function SPSA RASH AID

Goldstein and Price (n =
2)

1.056917e+00
(5.384539e-01)

6.649372e-01
(1.491853e+00)

3.557155e-14
(1.577324e-14)

Shubert (n = 2) 1.495288e+01
(1.168565e+01)

7.549889e+00
(8.758797e+00)

8.831024e-06
(2.955870e-14)

Branin (n = 2) 1.121405e-03
(3.581681e-03)

4.550881e-02
(6.020034e-02)

3.577297e-07
(0.000000e+00)

Easom (n = 2) 7.333304e-01
(4.497734e-01)

7.438125e-01
(3.717542e-01)

3.666369e-01
(4.900928e-01)

Six Hump Camel back (n
= 2)

2.965881e-02
(8.264845e-02)

3.954712e-02
(7.322557e-02)

4.534899e-07
(1.580884e-16)

Hartmann(3,4) (n = 3) 4.006554e-02
(3.732602e-02)

3.016177e-02
(2.849831e-02)

2.126673e-07
(1.126690e-16)

Shekel (n = 4) 4.248490e+00
(3.441910e+00)

7.864224e+00
(9.883646e-01)

2.904562e+00
(3.468383e+00)

Michalewicz (n = 10) 3.549294e+00
(6.828568e-01)

5.443982e+00
(2.901188e-01)

5.861889e-02
(5.387001e-02)

Rosenbrock(n = 30) 2.101477e+01
(1.065353e+01)

3.677846e+03
(8.032824e+02)

1.239540e-09
(1.688920e-09)

Levy (n = 30) 4.407136e+01
(8.614072e+00)

1.418438e+02
(1.653082e+01)

1.499760e-32
(1.113480e-47)

Rastrigin (n =30) 4.179089e+01
(1.152411e+01)

3.631780e+02
(2.361351e+01)

3.429553e-13
(1.330866e-13)

Normalized Schwefel (n
=30)

2.951031e+02
(1.099462e+01)

9.562784e+01
(4.349717e+01)

5.362229e-13
(9.163700e-14)

Griewank (n =30) 4.585298e+02
(4.629519e+01)

4.510160e+02
(4.640301e+01)

0(0)

Salomon (n =30) 2.266324e+01
(1.058797e+00)

2.224619e+01
(1.530951e+00)

3.329112e-03
(1.823429e-02)

Step (n =30) 7.055667e+02
(2.166790e+02)

4.757237e+04
(5.694358e+03)

0(0)

Quartic function (n =30) 7.508891e-04
(3.317812e-04)

6.310150e+01
(1.393730e+01)

6.115969e-02
(5.304495e-02)

Sphere (n =30) 4.569992e-02
(2.029247e-02)

4.947104e+04
(4.268285e+03)

3.557155e-14
(1.577324e-14)

Mean and standard deviation (SD) of the function optimization results.

Table II

Function C1 C2
Easom (n = 2) 13.3333 86.6667
Six Hump Camel back (n = 2) 0 100
Hartmann(3,4) (n = 3) 0 100
Shekel (n = 4) 0.4167 99.5833
Michalewicz (n = 10) 0 100
Rosenbrock(n = 30) 0 100
Salomon (n =30) 23.1871 76.8129
Quartic function (n =30) 31.6667 68.3333

This table shows the count of how often a given type of
combination finds the best solution for AID when repre-
sentative problems.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

Mahamed G. H. Omran & Fred Glover – Algorithmic Operations Research Vol.6 (2011) 0–8 5

Table III

AID Dialectic SA-0.98 SA-0.99

Function Value FEs Value FEs Value FEs Value FEs

Rastrigin (n=20) < 10−12 10.745K < 10−3 208K 24.4 3.4M 22.4 6.8M

Rastrigin(n=50) < 10−12 11.858K < 10−3 818K 87.3 8.3M 86.8 9.9M

DeJong (n=20) = 0 6K < 10−3 848 < 10−3 946 < 10−3 946

DeJong (n=50) = 0 6K < 10−3 3.7K < 10−3 2.5K < 10−3 2.5K

Alpine (n=20) < 10−14 6K < 10−3 86K < 10−3 1M < 10−3 2M

Alpine (n=50) < 10−13 6K < 10−3 458K < 10−3 2.9M < 10−3 5.8M

Average minimum value and average number of function evaluations (FEs) over 250 runs for
continuous function minimization with dimensions 20 and 50. SA cooling factors are set to
0.98 and 0.99. The results of the Dialectic search and SA methods are reproduced from [13].

Table IV

Function
(n=30)

SGA EP ES CPSO GSO AID

Sphere 37.9109
(12.8125)

1.5752e-02
(9.6308e-03)

0.1541
(0.7470)

1.4638e-20
(5.2324e-20)

9.1120e-09
(1.5094e-08)

0(0)

Rosenbrock 1387.0214
(664.5327)

60.1078
(37.0862)

170.9490
(341.0239)

1958.190
(12720.2231)

49.1093 (31.217) 1.903042e-09
(2.901381e-09)

Schwefel’s
Problem
2.26

-12296.4843
(182.4633)

-7313.6252
(708.4178)

-7424.6424
(654.6766)

-9717.1033
(714.7694)

-12569.4848
(0.021968)

-9.634095e+03
(1.995549e+02)

Rastrigin 38.7142
(8.5158)

17.2683
(4.7685)

71.3950
(15.4787)

56.5377
(19.6147)

2.6736 (1.6404) 4.024514e-13
(1.635588e-13)

Ackley 2.6070
(0.2984)

0.1082
(2.8982e-02)

3.9424
(1.4460)

0.3260
(0.6127)

2.4871e-05
(2.1946e-02)

3.925749e-14
(6.733153e-15)

Griewank 1.3301
(0.1323)

0.1405
(0.2580)

2.5573e-02
(2.9625e-02)

1.5848e-02
(2.1320e-02)

2.5030e-02
(2.9514e-02)

0(0)

Mean and standard deviation (SD) of the function optimization results over 50 runs. The results of SGA, EP, ES, PSO and GSO
are reproduced from [11].

Table V

CEC Function
(n=10)

Avg. GAP #successful
runs

FEs

F1 5.456968e-14(1.996275e-14) 25 6.000000e+03

F2 1.705303e-13(1.333096e-13) 25 6.000000e+03

F4 3.723694e+00(1.767073e+01)23 4.4594e+04

F6 1.594632e-01(7.973158e-01) 24 3.2605e+04

F8 2.000000e+01(1.192652e-11) 0 –

F9 1.136868e-13(4.019437e-14) 25 6.000000e+03

F10 3.414685e+01(2.046458e+01)0 –

F12 6.382937e+01(2.995944e+02)16 1.5246e+04

F13 4.446956e-01(1.722232e-01) 0 –

Performance of AID when applied to 9 CEC test problems with n=10.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

6 Mahamed G. H. Omran & Fred Glover – The AID Method for Global Optimization

4.1. AID variants

Several variants of AID are examined in this sub-
section, to get a better picture of how the method may
work when different SS and PR options are selected for
generating combinations:

a) AID-1
In this variant, only PR is used as a combination

method (SS is removed). The rationale behind this mod-
ification is to see whether PR by itself is responsible for
the good behavior of AID.

b) AID-2
AID-2 replaces C1 with the following combination

methods:
C1A: z1 = (1/3)x+ (2/3)y

C1B: z2 = (2/3)x+ (1/3)y

The rationale behind examining C1A and C1B is that
they give a small number of points to look at on the line
between x and y that are evenly separated from the end-
points. (This separation is for diversification purposes.)
Thus, we want to see whether C1 can be replaced by
simple combination methods that do not rely on ran-
domization. (C2 remains intact in this test.)

c) AID-3
In AID-3, PR is modified to alternate the choice of

initiating and guiding solutions. A detailed algorithm
for the alternating path relinking is shown in Alg. III.

d) AID-4
In this variant, C2 is replaced by the following com-

bination methods:
C2A: pathrelinking(y, x)
C2B: pathrelinking(x, y)
C2C: alternatingpath relinking(x, y)
The path relinking method used in C2A and C2B is

different from the one used in AID’s C2. In C2,f(x) ≤
f(y)while C2A and C2B make no reference to objective
values (i.e. the guiding solution could be better or worse
than the initiating solution).

e) AID-5
AID-5 is the same as AID except that C2 is replaced

by:
C2A: pathrelinking(y, x)
C2A’: path relinking(y, x)
C2A”: path relinking(y, x)

Algorithm 3 Pseudo code of the alternating path relink-
ing algorithm.

Notation:

x* = the best solution found during the alternating
path relinking approach, excluding the two
solutions x and y since we don’t want to choose
one of these solutions.

f∗ = f(x∗)

Alternating Path Relinking Algorithm:

Setxa = x;xb = y.

f∗ = a large positive value
I = {i xa(i) 6= xb(i)}.
GuideIsXb = True

while I is not emptydo
Select an index i from I (randomly or strategically)
if GuideIsXb = True then

(xb is the guiding solution)
xa(i) = xb(i)
if f(xa) < f∗ then

x∗ = xa

f∗ = f(x∗)
end if
GuideIsXb = False

else
xa is the guiding solution
xb(i) = xa(i)
iff(xb) < f∗ then

x∗ = xb

f∗ = f(x∗)
end if
GuideIsXb = True

end if
I = I - {i}

end while

C2A’ and C2A” are just two repetitions of C2A, but
will get different results because of the randomization
within these methods.

The above variants performed nearly the same or
slightly worse than AID and consequently we do not
report their outcomes in detail.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

Mahamed G. H. Omran & Fred Glover – Algorithmic Operations Research Vol.6 (2011) 0–8 7

5. Conclusion

We have proposed an Alternating Intensifica-
tion/Diversification (AID) local search method that
makes use of solution combination strategies from scat-
ter search and path relinking. In contrast to the custom-
ary SS and PR procedures, however, these combination
strategies are applied to a single pair of solutions at
each iteration, rather than to a collection of pairs (or
triples, etc.) drawn from a population of solutions. The
pair that is combined consists of an initiating solution
x and its complement y, where in the present setting
we define complementation relative to the vectors L
and U of lower and upper bounds. The best combi-
nation z takes the role of a new vector x submitted
to a local improvement (intensification) method. (In
this study, the EUS method was used as the improve-
ment method.) The outcome of this intensification step
finally becomes the new initiating solution x.

Our method was compared against 20 different
methods from the literature. Specifically, we compared
against the SPSA and RASH methods on 17 bench-
mark functions, against the recently proposed dialectic
search and SA on six test cases, and against five other
popular metaheuristic methods on six benchmark func-
tions. AID in general outperformed all of the other
methods on the benchmark functions. In addition, AID
was compared with 11 methods when applied to 9
CEC benchmark functions. AID generally obtains good
quality solutions on these functions. Finally, we intro-
duced five other variants of AID, though we found that
their performance was not significantly different than
that of our basic approach.

Given the straightforward character of our procedure,
we envision that it may advantageously be embedded
as a subroutine to yield an enhancement for more com-
plex methods. Appealing avenues for future work in-
clude investigating the use of other combination meth-
ods and intensification processes, and the incorporation
of additional controls to avoid re-visiting regions that
are exceedingly close to previously generated solutions.
Additional opportunities for future research consist of
generalizing AID to handle constrained problems, and
applying these generalized procedures to engineering
optimization problems from real-world settings.

References

[1] T. Bäck, F. Hoffmeister, and H. P. Schwefel. A survey
of evolution strategies. Proceedings of the Fourth

International Conference on Genetic Algorithms and
their Applications, pages 2–9, 1991.

[2] M. Brunato and R. Battiti. R.: RASH: a self-
adaptive random search method.Adaptive and multilevel
metaheuristics, studies in computational intelligence,
page 136, 2008.

[3] D. B. Fogel. Evolutionary computation: toward a new
philosophy of machine intelligence. Wiley-IEEE Press,
2006.

[4] V. Gardeux, R. Chelouah, P. Siarry, and F. Glover.
Unidimensional search for solving continuous high-
dimensional optimization problems. InIntelligent
Systems Design and Applications, 2009. ISDA’09. Ninth
International Conference on, pages 1096–1101. IEEE,
2009.

[5] F. Glover. Tabu Search–Part i.Informs journal on
computing, 1(3):190–206, January 1989.

[6] F. Glover. Tabu Search–Part II.Informs journal on
computing, 2(1):4–32, January 1990.

[7] F. Glover. A template for scatter search and path
relinking. In Artificial evolution, pages 1–51. Springer,
1998.

[8] F. Glover, M. Laguna, and R. Marti. Scatter search.
In Advances in evolutionary computing, pages 519–537.
Springer-Verlag New York, Inc., 2003.

[9] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-wesley,
1989.

[10] N. Hansen. Compilation of results on the 2005 CEC
benchmark function set. Computational Laboratory
(CoLab), Institute of Computational Science, ETH
Zurich, Tech. Rep, 2006.

[11] S. He, Q. H. Wu, and J. R. Saunders. A novel group
search optimizer inspired by animal behavioural ecology.
In Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 1272–1278. IEEE, 2006.

[12] J. H. Holland. Adaptation in natural and artificial
systems. MIT Press Cambridge, MA, USA, 1992.

[13] S. Kadioglu and M. Sellmann. Dialectic search. In
Proceedings of the 15th international conference on
Principles and practice of constraint programming,
pages 486–500. Springer-Verlag, 2009.

[14] J. P. Kelly, M. Laguna, and F. Glover. A study of
diversification strategies for the quadratic assignment
problem.Computers & Operations Research, 21(8):885–
893, 1994.

[15] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proceedings of IEEE international
conference on neural networks, volume 4, pages 1942–
1948. Perth, Australia, 1995.

[16] J. A. Nelder and R. Mead. A simplex method for function
minimization. The computer journal, 7(4):308, 1965.

[17] M. G. C. Resende, C. C. Ribeiro, F. Glover,
and R. Martı́. Scatter search and path-relinking:
Fundamentals, advances, and applications.Handbook of
Metaheuristics, pages 87–107, 2010.



Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  Galley AlgOR  --  

8 Mahamed G. H. Omran & Fred Glover – The AID Method for Global Optimization

[18] H. P. P. Schwefel.Evolution and Optimum Seeking: The
Sixth Generation. John Wiley & Sons, Inc. New York,
NY, USA, 1993.

[19] J. C. Spall. Multivariate stochastic approximation using
a simultaneous perturbation gradient approximation.
Automatic Control, IEEE Transactions on, 37(3):332–
341, 2002.

[20] W. Spears, K. De Jong, T. Bäck, D. Fogel, and H. De
Garis. An overview of evolutionary computation. In
Machine Learning: ECML-93, pages 442–459. Springer,
1993.

[21] R. Storn and K. Price. Differential evolution-a simple

Received 16-2-2010; revised 30-8-2010; accepted 20-11-2010

and efficient adaptive scheme for global optimization
over continuous spaces.International computer science
institute-publications-TR, 1995.

[22] T. Stützle. Iterated local search for the quadratic
assignment problem.European Journal of Operational
Research, 174(3):1519–1539, 2006.

[23] F. Wilcoxon. Individual comparisons by ranking
methods.Biometrics Bulletin, 1(6):80–83, 1945.

[24] P. Y. Yin, F. Glover, M. Laguna, and J. X.
Zhu. Cyber swarm Algorithms-Improving particle
swarm optimization using adaptive memory strategies.
European Journal of Operational Research, 201(2):377–
389, 2010.


