
Effective Variable Fixing and Scoring Strategies
for Binary Quadratic Programming

Yang Wang1, Zhipeng Lü1, Fred Glover2, and Jin-Kao Hao1

1 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
2 OptTek Systems, Inc., 2241 17th Street Boulder, CO 80302, USA
{yangw,lu,hao}@info.univ-angers.fr, glover@opttek.com

Abstract. We investigate two variable fixing strategies and two vari-
able scoring strategies within a tabu search algorithm, using the uncon-
strained binary quadratic programming (UBQP) problem as a case study.
In particular, we provide insights as to why one particular variable fixing
and scoring strategy leads to better computational results than another
one. For this purpose, we perform two investigations, the first analyzing
deviations from the best known solution and the second analyzing the
correlations between the fitness distances of high-quality solutions. We
find that one of our strategies obtains the best solutions in the literature
for all of the test problems examined.

1 Introduction

The strategy of fixing variables within optimization algorithms (also sometimes
called backbone guided search) often proves useful for enhancing the performance
of methods for solving constraint satisfaction and optimization problems [10, 11].
Such a strategy was proposed in early literature [1] as a means for exploiting
critical variables identified as strongly determined and consistent, and has come
to be one of the basic strategies associated with tabu search. Two of the most
important features of this strategy are to decide how to score the variables
(variable scoring) and which variables should be fixed (variable fixing).

In this paper, we provide a case study of variable fixing and scoring strategies
within a tabu search variable fixing and scoring (TS/VFS) algorithm designed
to solve the Unconstrained Binary Quadratic Programming problem

UBQP: Maximize f(x) = x′Qx
x binary

where Q is an n by n matrix of constants and x is an n-vector of binary variables.
The formulation UBQP is notable for its ability to represent a wide range of

important problems, as noted in the survey of [6]. Motivated by this extensive
range of applications, a number of advanced heuristic and metaheuristic algo-
rithms have been devised for solving the UBQP problem ([2, 7–9]). However, to
date there exist no studies of methods that employ variable fixing and scoring
strategies within these algorithms. In this work, we investigate different variable
fixing and scoring strategies within our TS/VFS algorithm and undertake to

answer related questions such as: why does one particular variable fixing and
scoring strategy lead to better computational results than another one? Which
aspects are more important in designing effective optimization algorithms using
variable fixing and scoring?

To this end, we present an experimental analysis of two variable fixing strate-
gies and two variable scoring strategies within the TS/VFS algorithm. The anal-
ysis shows that the computational results strongly depend on the variable fixing
strategies employed but are not very sensitive to the variable scoring methods.
Moreover, the analysis sheds light on how different fixing and scoring strategies
are related with the search behavior and the search space characteristics.

2 The TS Variable Fixing and Scoring Algorithm

Algorithm 1 describes the framework of our TS/VFS algorithm. It begins with
a randomly constructed initial solution xs and repeatedly alternates between a
tabu search procedure and a phase that either fixes or frees variables until a
stop criterion is satisfied. The TS procedure is employed for maxIter iterations
to improve the input solution and to obtain p best solutions cached in P as the
reference solutions, which are used to score and fix variables.

Algorithm 1 Pseudo-code of the TS/VFS algorithm for UBQP
1: Input: matrix Q
2: Output: the best binary n-vector x∗ found so far
3: x∗ = ø; f(x∗) = −∞; fp = −∞; C = ø
4: repeat
5: Construct an initial solution xs (xs

j = x0
j , j ∈ C) (Section 3.2)

6: x′ ← TabuSearch(xs, maxIter) (Section 2.2)
7: Keep p best solutions found during TabuSearch in population P , |P | = p
8: if f(x′) > f(x∗) then
9: x∗ = x′

10: end if
11: if f(x′) > fp then
12: V arScore ← FixingScoringStrategy(P) (Section 2.1 & 3.1)
13: V arSorted ← FixingScoreSorting(V arScore)
14: FixedV ar ← FixingStrategy(V arSorted, FixedNum) (Section 3.2)
15: else
16: V arScore ← FreeingScoringStrategy(P) (Section 2.1 & 3.1)
17: V arSorted ← FreeingScoreSorting(V arScore)
18: FixedV ar ← FreeingStrategy(V arSorted, DroppedNum) (Section 3.2)
19: end if
20: fp = f(x∗)
21: until a stop criterion is satisfied

If the objective value f(x′) obtained by the current round of TS is better
than the previous one fp, a variable fixing phase is launched. Specifically, the

fixing phase consists of three steps: FixingScoringStrategy, FixingScoreSorting
and FixingStrategy. FixingScoringStrategy is used to give score values to variables
and then FixingScoreSorting to sort the variables according to these values.
FixingStrategy determines a number FixedNum of variables that go into a set
FixedVar of variables to be fixed whose index set F is referenced in Algorithm
1. Consequently, the set of variables FixedVar will not be allowed to change
its composition during the next round of TS, although conditionally changing
the value of a fixed variable is another interesting strategy worthy of further
investigation. It is understood that the values of variables xs

j in the starting
solution xs are selected randomly except for j ∈ F .

On the contrary, if the TS procedure fails to find an improved solution relative
to fp, the algorithm performs the freeing phase to release some of the fixed
variables to permit these variables to change their values during the next round
of TS. Similar to the fixing phase, the freeing phase also consists of three steps.
To describe these steps we make use of the following definitions.

2.1 Definitions

Definition 1. Relative to a given solution x′ = {x′
1, x

′
2, ..., x

′
n} and a variable

xi, the (objective function) contribution of xi in relation to x′ is defined as:

V Ci(x′) = (1 − 2xi)(qii +
∑

j∈N\{i}

qijxj) (1)

As noted in [2] and in a more general context in [4], V Ci(x′) identifies the
change in f(x) that results from changing the value of x′

i to 1 - x′
i; i.e.,

V Ci(x′) = f(x′′) − f(x′) (2)

where x′′
j = x′

j for j ∈ N − {i} and x′′
i = 1 − x′

i. We observe that under a
maximization objective if x′ is a locally optimal solution, as will typically be the
case when we select x′ to be a high quality solution, then V Ci(x′) ≤ 0 for all
i ∈ N , and the current assignment xi = x′

i will be more strongly determined as
V Ci(x′) is “more negative”.

Definition 2. Relative to a given population of solutions P = {x1, . . . , xp}
and their corresponding objective values FV = {f(x1), . . . , f(xp)} indexed by
I = {1, . . . , p}, and relative to a chosen variable xi, let Pi(0) = {k ∈ I : xk

i = 0}
and Pi(1) = {k ∈ I : xk

i = 1}, the (objective function) contribution of xi in
relation to P is defined as follows.

Contribution for xi = 0:

V Ci(P : 0) =
∑

k∈Pi(0)

(β · V Ci(xk) + (1 − β) · Ã(f(xk)) · V Ci(xk)) (3)

Contribution for xi = 1:

V Ci(P : 1) =
∑

k∈Pi(1)

(β · V Ci(xk) + (1 − β) · Ã(f(xk)) · V Ci(xk)) (4)

where fmin and fmax are respectively the minimum and maximum objective
values of the set FV and Ã(·) represents the normalized function:

Ã(f(xk)) = (f(xk) − fmin)/(fmax − fmin + 1) (5)

Notice that this scoring function not only considers the contributions of the
variables but also the relative quality of the solution with respect to other refer-
ence solutions in the population P . Relative to variable xi and a population P ,
The score of xi is then defined as:

Score(i) = max{V Ci(P : 0), V Ci(P : 1)} (6)

2.2 Tabu Search

Our TS procedure begins from a starting solution xs as indicated in Algorithm 1
and uses a neighborhood defined by the simple one-flip move. Once the method is
launched, the variables in FixedV ar are held fixed during the execution of the TS
procedure. The method incorporates a tabu list as a “recency-based” memory
structure to assure that solutions visited within a certain span of iterations,
called the tabu tenure, will not be revisited [3]. In our implementation, we elected
to set the tabu tenure by the assignment TabuTenure(i) = tt+ rand(10), where
tt is a given constant (n/100) and rand(10) takes a random value from 1 to 10.
Interested readers are referred to [4, 7] for more details.

2.3 Reference Solutions

Reference solutions are used for fixing or freeing variables. We conjecture that
there exists a subset of variables, of non-negligible size, whose optimal values are
often also assigned to these same variables in high quality solutions. Thus, our
goal is to identify such a critical set of variables and infer their optimal values
from the assignments they receive in high quality solutions. Our expectation is
that this will reduce the search space sufficiently to enable optimal values for the
remaining variables to be found more readily. On the basis of this conjecture,
we maintain a set of reference solutions consisting of good solutions obtained
by TS. Specifically, we take a given number p of the best solutions from the
current round of TS (subject to requiring that these solutions differ in a minimal
way), which then constitute a solution population P for the purpose of fixing
or freeing variables. In our implementation, we empirically set p = 20. (A more
refined analysis is possible by a strategy of creating clusters of the solutions in
the reference set and of considering interactions and clusterings among subsets
of variables as suggested in [1].)

2.4 Variable Fixing Procedure

Given the reference solutions, our variable fixing procedure consists of three
steps: FixingScoringStrategy, FixingScoreSorting and FixingStrategy. Variables

are scored using Eq. (6) and sorted according to their scores in a non-decreasing
order. We then decide how many variables with the smallest contribution scores
should be fixed at their associated values x′

i at the current level and fix them so
that these variables are compelled to receive their indicated values upon launch-
ing the next round of TS.

Let Fix(h) denote the number of new variables (na) that are assigned fixed
values and added to the fixed variables at fixing phase h. We begin with a
chosen value Fix1 for Fix(1), referring to the number of fixed variables at the
first fixing phase and then generate values for higher fixing phases by making
use of an “attenuation fraction” g as follows. We select the value Fix1 = 0.25n
and the fraction g = 0.4.

Fix(1) = Fix1
Fix(h) = Fix(h − 1) · g for h > 1

2.5 Variable Freeing Procedure

Experiments demonstrate that in most cases, the fixed variables match well with
the putative optimal solution. Nevertheless, it is possible that some of these
variables are wrongly fixed, resulting in a loss of effectiveness of the algorithm.
In order to cope with this problem, it is imperative to free the improperly fixed
variables so that the search procedure can be put on the right track.

Like the fixing procedure, the freeing procedure also consists of three steps:
FreeingScoringStrategy, FreeingScoreSorting and FreeingStrategy. Contrary to
the fixing phase, the number of the variables freed from their assignments at
each freeing phase is not adjusted, due to the fact that at each phase only a
small number of variables are wrongly fixed and need to be freed. Specifically,
we set the number nd of fixed variables to free to 60. Then, these selected fixed
variables are free to receive new values when initiating the next round of TS.

3 Variable Scoring and Fixing Strategies

3.1 Variable Scoring Strategy

We introduce two variable scoring strategies: the first one only considers the
contribution of the variables (Definition 1) in the reference solutions while the
second one simultaneously considers this contribution and the quality of refer-
ence solutions. By Definition 2 in Section 2.1, the part of the equation multiplied
by 1−β is obviously equal to 0 if β is 1.0, which implies that the objective values
of the reference solutions are neglected. This constitutes our first variable scoring
strategy. We introduce the second variable scoring strategy by simultaneously
considering the solution quality of the reference solutions, implemented by as-
signing a value to β from the interval [0, 1), selecting β = 0.4 in our experiment.

3.2 Variable Fixing Strategy

In order to describe the variable fixing and freeing strategies more precisely, the
following is useful. Let F denote the index set for the fixed variables and U
the index set for the free (unfixed) variables. Note that F and U partition the
index set N = {1, . . . , n}, i.e., F ∪ U = N , F ∩ U = ∅. Let na be the number
of variables to be added when new variables are fixed and nd the number of
variables to be dropped when new variables are freed. In addition, let xF

i , for
i ∈ F , denote the current values assigned to the fixed variables, and let xs denote
the starting solution at each run of TS. Then, at each iteration our algorithm
begins by setting: xs

i = xF
i for i ∈ F and xs

i = Rand[0, 1] for i ∈ U and the tabu
search procedure is launched to optimize this constructed initial solution. The
two variable fixing strategies are described as follows:

Variable Fixing Strategy 1 (FIX1):
Order the elements of i ∈ U such that score(i1) ≤ . . . ≤ score(i|U |)
Let F (+) = i1, . . . , ina

F := F ∪ F (+) (|F | := |F | + na)
U := U − F (+) (|U | := |U | − na)
xF

i = x0
i for i ∈ F (+), (xF

i is already determined for i ∈ “previousF ′′ :=
F − F (+) and x0

i represents the value that xi should be assigned to according
to Eq. (6), i.e., x0

i = 0 if V Ci(P : 0) < V Ci(P : 1) and x0
i = 1 otherwise.)

Variable Freeing Strategy 1 (FREE1):
Order the elements of i ∈ F such that score(i1) ≥ . . . ≥ score(i|F |)
Let F (−) = i1, . . . , ind

F := F − F (−)(|F | := |F | − nd)
U := U

∪
F (−)(|U | := |U | + nd)

Variable Fixing Strategy 2 (FIX2):
Set |F | := |F | + na
Order the elements of i ∈ N such that score(i1) ≤ . . . ≤ score(in)
(We only need to determine the first |F | elements of this sorted order.)
Let F = i1, . . . , i|F |
U := N − F (|U | := |U | − na)
xF

i = x0
i for i ∈ F

Variable Freeing Strategy 2 (FREE2):
Set |F | := |F | − nd
Order the elements of i ∈ N such that score(i1) ≤ . . . ≤ score(in)
(We only need to determine the first F elements of this sorted order.)
Let F = i1, . . . , i|F |
U := N − F (|U | := |U | + nd)
xF

i = x0
i for i ∈ F

The strategy FIX1 differs in two ways from FIX2. At each fixing phase, FIX2
fixes |F | variables, while FIX1 only fixes na new variables since |F |−na variables
are already fixed. In other words, once a variable is fixed by the strategy FIX1,
its value cannot be changed unless a freeing phase frees this variable. Instead of
inheriting the previously fixed variable assignment as in FIX1, FIX2 selects all
|F | variables to be fixed at each fixing phase.

In the freeing phase, the strategy FREE1 only needs to score variables be-
longing to F and then to select those with the highest scores to be freed, while
FREE2 redetermines the variables to be freed each time.

3.3 Four Derived Algorithms

Our four key variants of the TS/VFS algorithm consist of the combination of the
two variable fixing strategies and the two variable scoring strategies. Specifically,
using β = 1.0 as our scoring strategy, we employ the variable fixing strategies
FIX1 and FIX2 to get the first two algorithms, respectively. Likewise, the third
and fourth algorithms are derived by combining the scoring strategy β = 0.4
with FIX1 and FIX2, respectively.

4 Experimental Results

4.1 Instances and Experimental Protocol

To evaluate the variable scoring and fixing strategies, we test the four variants of
the TS/VFS algorithm on a set of 21 large and difficult random instances with
3000 to 7000 variables from the literature [9]. These instances are known to be
much more challenging than those from ORLIB. Our algorithm is programmed
in C and compiled using GNU GCC on a PC running Windows XP with Pentium
2.66GHz CPU and 512MB RAM. Given the stochastic nature of the algorithm,
problem instances are independently solved 20 times. The stop condition for a
single run is respectively set to be 5, 10, 30, 30, 50 minutes on our computer for
instances with 3000, 4000, 5000, 6000 and 7000 variables, respectively.

4.2 Computational Results

We present in Tables 1 and 2 the computational results with β equaling to 1.0
and 0.4, respectively. Each table reports the results of both FIX1 and FIX2
variable fixing strategies. Columns 2 gives the density (dens) and Column 3
gives the best known objective values (f∗) obtained by all previous methods
applied to these problems, as reported in [4, 7]. The remaining columns give the
results of one of the two versions (FIX1 and FIX2) according to four criteria:
(1) the best solution gap, gbest, to the previous best known objective values
(i.e., gbest = f∗ − fbest where fbest denotes the best objective value obtained by
our algorithm), (2) the average solution gap, gavr, to the previous best known
objective values (i.e., gavr = f∗−favr where favr represents the average objective

Table 1. Results of TS/VFS algorithms with variable fixing strategies FIX1 and FIX2 (β = 1.0)

FIX1 FIX2
Instance dens f∗

gbest gavr suc tavr tbest gbest gavr suc tavr tbest
Sd

p3000.1 0.5 3931583 0 413 15 172 40 0 3193 5 54 63 Y
p3000.2 0.8 5193073 0 0 20 62 2 0 397 12 26 5 Y
p3000.3 0.8 5111533 0 71 18 115 6 0 1144 2 43 4 Y
p3000.4 1.0 5761822 0 114 16 93 5 0 3119 7 61 7 Y
p3000.5 1.0 5675625 0 372 8 86 5 0 1770 2 147 16 Y
p4000.1 0.5 6181830 0 0 20 65 14 0 319 19 74 16 N
p4000.2 0.8 7801355 0 1020 11 295 64 0 2379 5 81 59 Y
p4000.3 0.8 7741685 0 181 18 201 17 0 1529 9 58 20 Y
p4000.4 1.0 8711822 0 114 18 171 56 0 1609 9 209 39 Y
p4000.5 1.0 8908979 0 1376 9 231 58 0 2949 2 231 134 Y
p5000.1 0.5 8559680 0 670 1 999 999 368 2429 0 1800 1800 Y
p5000.2 0.8 10836019 0 1155 6 740 47 582 2528 0 1800 1800 Y
p5000.3 0.8 10489137 0 865 3 1037 279 354 4599 0 1800 1800 Y
p5000.4 1.0 12252318 0 1172 3 1405 1020 608 4126 0 1800 1800 Y
p5000.5 1.0 12731803 0 268 13 1003 192 0 2941 3 588 279 Y
p6000.1 0.5 11384976 0 914 6 451 68 0 4694 4 550 209 Y
p6000.2 0.8 14333855 0 1246 1 739 739 88 3332 0 1800 1800 Y
p6000.3 1.0 16132915 0 2077 2 1346 1267 2184 8407 0 1800 1800 Y
p7000.1 0.5 14478676 0 2315 1 2470 2470 744 4155 0 3000 3000 Y
p7000.2 0.8 18249948 716 2340 0 3000 3000 2604 6164 0 3000 3000 Y
p7000.3 1.0 20446407 0 2151 7 981 478 0 8150 5 1836 149 Y
Average 34 897 9.3 746 516 359 3330 4.0 988 848 Y

value), (3) the success rate, suc, for reaching the best result f∗ and (4) the CPU
time, consisting of the average time and the best time, tavr and tbest (in seconds),
for reaching the best result f∗. The last column Sd indicates the superiority of
FIX1 over FIX2 when a 95% confidence t-test is performed in terms of the
objective values. Furthermore, the last row “Average” indicates the summary of
the algorithm’s average performance.

Table 1 shows the computational results of variable fixing strategies FIX1
and FIX2 where β = 1.0. One observes that for all the considered criteria, FIX1
outperforms FIX2 for almost all the instances. Specifically, FIX1 is able to reach
the previous best known objectives for all instances except one (p7000.2) while
FIX2 fails for 8 cases. Moreover, FIX1 has an average success rate of 9.3 over
20 runs, more than two times larger than FS2’s 4.0. FIX1 is also superior to
FIX2 when it comes to the average gap to the best known objective values. In
addition, FIX1 performs slightly better than FIX2 in terms of the CPU time to
reach the best values. The T-test also demonstrates that FIX1 is significantly
better than FIX2 except only one case (p4000.1).

Table 2 gives the computational results of variable fixing strategies FIX1
and FIX2 when β is set to be 0.4 instead of 1.0. From Table 2, we observe that
FIX1 outperforms FIX2 in terms of all the considered criteria, including gbest,
gavr, suc, tavr and tbest. One also notices that this is quite similar to the case
of β = 1.0. Therefore, we can conclude that the variable fixing strategy FIX1
is generally superior to FIX2 when using the two variable scoring strategies
considered in this paper. In other words, the two variable scoring strategies have
a similar influence on the computational results. The ability of the tabu search
method using FIX1 to obtain all of the best known solutions in the literature
places this method on a par with the best methods like [4, 7], while its solution
times are better than those obtained in [4].

Table 2. Results of TS/VFS algorithms with variable fixing strategies FIX1 and FIX2 (β = 0.4)

FIX1 FIX2
Instance dens f∗

gbest gavr suc tavr tbest gbest gavr suc tavr tbest
Sd

p3000.1 0.5 3931583 0 308 16 98 4 0 3315 5 75 2 Y
p3000.2 0.8 5193073 0 0 20 59 9 0 488 13 50 3 Y
p3000.3 0.8 5111533 0 166 17 108 2 0 1355 4 28 5 Y
p3000.4 1.0 5761822 0 19 19 109 24 0 1684 10 74 2 Y
p3000.5 1.0 5675625 0 275 11 147 14 0 1796 3 154 40 Y
p4000.1 0.5 6181830 0 0 20 61 13 0 354 19 78 3 N
p4000.2 0.8 7801355 0 783 11 369 44 0 2722 3 382 106 Y
p4000.3 0.8 7741685 0 254 17 234 29 0 1474 8 75 29 Y
p4000.4 1.0 8711822 0 75 19 250 13 0 2537 7 158 12 Y
p4000.5 1.0 8908979 0 1769 8 361 275 0 3112 3 101 41 Y
p5000.1 0.5 8559680 0 791 2 721 228 325 2798 0 1800 1800 Y
p5000.2 0.8 10836019 0 860 4 540 37 0 2397 1 45 45 Y
p5000.3 0.8 10489137 0 1698 5 702 292 354 4939 0 1800 1800 Y
p5000.4 1.0 12252318 0 1123 2 103 76 444 3668 0 1800 1800 Y
p5000.5 1.0 12731803 0 455 12 747 261 0 3250 3 145 114 Y
p6000.1 0.5 11384976 0 1450 9 1014 432 0 5405 2 1178 768 Y
p6000.2 0.8 14333855 0 1079 3 911 515 0 4923 1 192 192 Y
p6000.3 1.0 16132915 0 2320 3 1000 642 0 6137 1 147 147 Y
p7000.1 0.5 14478676 0 1784 2 1519 785 1546 4556 0 3000 3000 Y
p7000.2 0.8 18249948 0 2743 1 2238 2238 1710 5986 0 3000 3000 Y
p7000.3 1.0 20446407 0 3971 3 1457 870 0 11604 1 1113 1113 Y
Average 0 1044 9.7 607 324 209 3548 4.0 733 668 Y

5 Discussion and Analysis

We now turn our attention to discussing and analyzing some key factors which
may explain the performance difference of algorithms when using different vari-
able fixing and scoring strategies. For this purpose, we examine the Variables
Fixing Errors (number of wrongly fixed variables) relative to the putative opti-
mal solution and show a fitness landscape analysis of high-quality solutions.

0 10 20 30
0

5

10

15

Fixing or freeing phases

V
ar

ia
bl

e
F

ix
in

g
E

rr
or

s

β = 0.4

FIX1
FIX2

0 10 20 30
0

5

10

15

Fixing or freeing phases

V
ar

ia
bl

e
F

ix
in

g
E

rr
or

s

β = 1.0

FIX1
FIX2

Fig. 1. Comparison of variable fixing errors between two fixing strategies

5.1 Variable Fixing Errors

As previously demonstrated, the variable fixing strategy FIX1 dominates FIX2
with both scoring strategies (with β = 1.0 and β = 0.4). In order to ascertain

why this is the case, we conduct an experiment to compare the total number of
wrongly fixed variables during the search using these two variable fixing strate-
gies. For this, we carry out our experiment on instance p5000.5 and repeat the
experiment 20 times. For each run, we count, after each fixing or freeing phase,
the number of mismatched variables of the current (possibly partial) solution
with respect to the best known solution3. Figure 1, where each point represents
the accumulated Variable Fixing Errors over 20 runs, shows how the variable
fixing strategies affect the Variable Fixing Errors at each fixing or freeing phase
under two variable scoring strategies: the left one is for β = 0.4 and the right is
for β = 1.0. From Figure 1, one observes that the number of variable fixing errors
induced by FIX1 and FIX2 (with both scoring strategies) increases rapidly at the
beginning of the search and then decreases gradually when the search progresses.
However, the number of the Variable Fixing Errors of FIX1 is much smaller than
that of FIX2 throughout the search process. This observation together with the
results in Tables 1 and 2 demonstrate that the variable fixing strategy plays a
vital role in our TS/VFS algorithm for both β = 1.0 and β = 0.4.

5.2 Fitness Distance Correlation Analysis

0 200 400 600 800
0

1

2

3
x 10

4 FIX1 (β = 0.4)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3
x 10

4 FIX1 (β = 1.0)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3
x 10

4 FIX2 (β = 0.4)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3
x 10

4 FIX2 (β = 1.0)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

Fig. 2. Fitness distance correlation: instance p5000.1

In this section, we show a search landscape analysis using the fitness dis-
tance correlation [5], which estimates how closely the fitness and distance are
related to the nearest optimum in the search space. For this purpose, we collect

3 The best known solutions are obtained by different algorithms, sharing exactly the
same assignment. Thus, we assume that it is very likely to be the optimal solution.

a large number of high-quality solutions by performing 20 independent runs of
our TS/VFS algorithm, each run being allowed 30 fixing and freeing phases,
where each phase has 20 elite solutions recorded in the population P . Thus,
20 ∗ 30 ∗ 20 = 12, 000 solutions are collected and plotted. Figures 2 and 3 show
the hamming distance between these solutions to the best known solution against
the fitness difference ∆f = f∗ - f(xk) of these high-quality solutions for instances
p5000.1 and p5000.5, respectively.

Figure 2 discloses that the majority of the high quality solutions produced by
variable fixing strategy FIX1 (two upper sub-figures) has a much wider distance
range than the solutions produced by strategy FIX2 (two bottom sub-figures),
which indicates that the search space of FIX1 is more dispersed than that of
FIX2. Moreover, the high-quality solutions of FIX1 are much closer to the x-
axis than FIX2, implying that FIX1 can obtain better objective values than
FIX2. In sum, this indicates the higher performance of the FIX1 strategy.

0 200 400 600 800
0

1

2

3

x 10
4 FIX1 (β = 0.4)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3

x 10
4 FIX1 (β = 1.0)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3

x 10
4 FIX2 (β = 0.4)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

0 200 400 600 800
0

1

2

3

x 10
4 FIX2 (β = 1.0)

Distance to the best known solution

F
itn

es
s

di
ffe

re
nc

e

Fig. 3. Fitness distance correlation: instance p5000.5

Figure 3 presents a trend quite similar to that of Figure 2 in terms of the
solutions’ distance range and the percentage of high quality solutions when com-
paring the two variable fixing strategies FIX1 (two upper sub-figures) and FIX2
(two bottom sub-figures). However, a clear difference from Figure 2 is that high
quality solutions are distributed in a wider range. In particular, the distribu-
tion of solutions is more continuous and does not produce the “isolated cluster
effect” shown in Figure 2. This indicates that instance p5000.5 is much easier
than p5000.1 to solve as shown in Tables 1 and 2. Indeed, for instance p5000.5,
the search space seems smoother, enabling the search to traverse easily from
solutions that are far from optimal to the best known solution.

6 Conclusions

To build better algorithms that make use of variable fixing and scoring, it is
important to understand and explain the performance variations produced by
different variable scoring and fixing strategies. We undertook to analyze the in-
trinsic characteristics of two variable fixing strategies and two variable scoring
strategies for UBQP. To this end, we compared the Variable Fixing Errors pro-
duced in the course of obtaining a (near) optimal solution and identified the
correlations between fitness distances of high quality solutions to characterize
the search behavior of the variable fixing and scoring strategies. Our experimen-
tation discloses that our TS method indeed performs differently according to
the variable fixing strategy employed, but is much less sensitive to the variable
scoring strategy. The finding that the fixing strategy FIX1 obtains the best solu-
tions in the literature to the challenging test problems examined underscores the
relevance of variable fixing strategies and the value of analyzing their impacts.

Acknowledgement

We are grateful for the referees for their comments and questions which helped
us to improve the paper. The work is partially supported by “Pays de la Loire”
Region (France) through RaDaPop and LigeRO projects (2009-2013).

References

1. Glover F. (1977) Heuristics for Integer Programming Using Surrogate Constraints.
Decision Sciences 8(1):156–166

2. Glover F., Kochenberger G.A., Alidaee B. (1998) Adaptive memory tabu search for
binary quadratic programs. Management Science 44:336–345

3. Glover F., Laguna M. (1997) Tabu Search. Kluwer Academic Publishers, Boston
4. Glover F., Lü Z., Hao J.K. (2010) Diversification-driven tabu search for uncon-

strained binary quadratic problems. 4OR 8(3): 239–253
5. Jones T., Forrest S. (1995) Fitness Distance Correlation as a Measure of Problem

Difficulty for Genetic Algorithms. Proceedings of the 6th International Conference
on Genetic Algorithms, Morgan Kaufmann, 184–192

6. Kochenberger G.A., Glover F., Alidaee B., Rego C. (2004) A unified modeling and
solution framework for combinatorial optimization problems. OR Spectrum 26:237-
250

7. Lü Z., Glover F., Hao J.K. (2010) A Hybrid Metaheuristic Approach to Solving the
UBQP Problem. European Journal of Operational Research 207(3): 1254–1262

8. Merz P., Katayama K. (2004) Memetic algorithms for the unconstrained binary
quadratic programming problem. BioSystems 78:99-118

9. Palubeckis G. (2004) Multistart tabu search strategies for the unconstrained binary
quadratic optimization problem. Annals of Operations Research 131:259-282

10. Wilbaut C., Salhi S., Hanafi S. (2009) An iterative variable-based fixation heuristic
for 0-1 multidimensional knapsack problem. European Journal of Operation Research
199:339–348

11. Zhang W. (2004) Configuration landscape analysis and backbone guided local
search: Satisfiability and maximum satisfiability. Artificial Intelligence 158:1–26

