

 232 Int. J. Metaheuristics, Vol. 1, No. 3, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

Polynomial unconstrained binary optimisation –
Part 1

Fred Glover*
OptTek Systems, Inc.,
2241 17th St., Boulder, CO 80302, USA
E-mail: glover@opttek.com

Jin-Kao Hao
Laboratoire d’Etude et de Recherche en Informatique (LERIA),
Université d’Angers,
2 Boulevard Lavoisier,
49045 Angers Cedex 01, France
E-mail: jin-kao.hao@univ-angers.fr

Gary Kochenberger
School of Business Administration,
University of Colorado at Denver,
Denver, CO 80217, USA
E-mail: gary.kochenberger@cudenver.edu

Abstract: The class of problems known as quadratic zero-one (binary)
unconstrained optimisation has provided access to a vast array of combinatorial
optimisation problems, allowing them to be expressed within the setting of a
single unifying model. A gap exists, however, in addressing polynomial
problems of degree greater than 2. To bridge this gap, we provide methods for
efficiently executing core search processes for optimisation problems in the
general polynomial unconstrained binary (PUB) domain. A variety of search
algorithms for quadratic optimisation can take advantage of our methods to be
transformed directly into algorithms for problems where the objective functions
involve arbitrary polynomials.
 In this Part 1 paper, we give fundamental results for carrying out the
transformations. We also describe coding and decoding procedures that are
relevant for efficiently handling sparse problems, where many coefficients are
0, as typically arise in practical applications. In a sequel to this paper, Part 2,
we provide special algorithms and data structures for taking advantage of the
basic results of Part 1. We also disclose how our designs can be used to
enhance existing quadratic optimisation algorithms.

Keywords: zero-one optimisation; unconstrained polynomial optimisation;
metaheuristics; computational efficiency.

Reference to this paper should be made as follows: Glover, F., Hao, J-K. and
Kochenberger, G. (2011) ‘Polynomial unconstrained binary optimisation –
Part 1’, Int. J. Metaheuristics, Vol. 1, No. 3, pp.232–256.

 Polynomial unconstrained binary optimisation – Part 1 233

Biographical notes: Fred Glover is a Distinguished Professor at the University
of Colorado and is the Chief Technology Officer for OptTek Systems, Inc. He
has authored or co-authored more than 400 published articles and eight books
in the fields of mathematical optimisation, computer science and artificial
intelligence. He is the recipient of the Distinguished von Neumann Theory
Prize. He is an elected member of the National Academy of Engineering and
has received honorary awards and fellowships from the American Association
for the Advancement of Science (AAAS), the NATO Division of Scientific
Affairs, the Miller Institute of Basic Research in Science and numerous other
organisations.

Jin-Kao Hao is a Full Professor in the Computer Science Department of the
University of Angers (France) and is currently the Director of the LERIA
Laboratory. His research lies in the design of effective heuristic and
metaheuristic algorithms for solving large-scale combinatorial search problems.
He is interested in various application areas including bioinformatics,
telecommunication networks and transportation. He has co-authored more than
100 peer-reviewed publications in international journals, book chapters and
conference proceedings.

Gary Kochenberger is a Full Professor of Decision Science at the University of
Colorado at Denver and is a Co-director of the Decision Science programme.
His research focuses on designing and testing metaheuristics methods for large
scale optimisation problems. He has co-authored more than 70 refereed papers
and three books.

1 Introduction

1.1 Problem representation

We formulate the polynomial unconstrained binary (PUB) optimisation problem as

()

: :o o p px binary
PUB Minimise x c c F p P= + ∈∑

The vector x = (x1,x2,…,xn) consists of binary variables, xi ∈ {0,1} for i ∈ N = {1,…,n},
and the coefficients cp for p ∈ P = {1,…,po} are non-zero scalars. Fp is a product of
components of the x vector given by

(): where .p i p pF x i N N N= Π ∈ ⊂

Each variable xi in the product defining Fp appears only once, noting that h
i ix x= for xi

binary, which renders powers h of xi other than h = 1 irrelevant.
A seemingly more general formulation arises by replacing the sets Np, p ∈ P by

vectors ,o
pN p ∈ Po and writing Fp = xi1xi2…xih for ()1 2, , , ,o

h pi i i N=… which allows

different coefficients cp for different permutations of the same set of indexes. However,
as noted in the following observation, such a formulation in terms of permutations can be
readily converted into a formulation in terms of sets, with the advantage of reducing the
number of non-zero coefficients (and thereby increasing the sparsity of the problem
representation).

 234 F. Glover et al.

Remark 1: In a polynomial representation based on permutations, where two
permutations ()1 2, , ,o

p hN i i i= … and ()1 2, , , ,o
q hN j j j= … are over the same set of

indexes, and the associated costs o
pc and o

qc are both non-zero, an equivalent problem

results by redefining :o o o
p p qc c c= + and 0,o

qc = thus eliminating the term for the vector

.o
qN

The validity of the remark follows simply from the fact that the product xi1xi2…xih has the
same value as the product xj1xj2…xjh. By summing the costs for different permutations as
indicated, the remark gives a basis for a preprocessing step enabling any
permutation-based formulation of PUB to be converted into the form shown. Such a
preprocessing step may also be viewed as equivalent to producing a restricted
permutation formulation where each permutation ()1 2, , ,o

p hN i i i= … has the ascending

index property i1 < … < ih.
To see how the PUB formulation relates to more classical formulations that

embody the ascending index property, consider the cubic polynomial given
by () () (): : : .i i ij i j ijk i j kq x i N q x x i j N q x x x i j k N∈ + < ∈ + < < ∈∑ ∑∑ ∑∑∑

Let N(1) = {i ∈ N: qi ≠ 0}, N(2) = {(i,j): i < j ∈ N: qij ≠ 0}, N(3) = {(i,j,k): i < j < k ∈ N:
qijk ≠ 0}. Then the representation is completed by assigning the index p the consecutive
integer values p = 1 to po = |N(1)| + |N(2)| + |N(3)|, and letting each consecutive p take the
associated value qi or qij or qijk, together with Np = {i} or {i,j} or {i,j,k}, for i ∈ N(1),
(i,j) ∈ N(2), (i,j,k) ∈ N(3).

The next remark is useful to facilitate certain operations of our method.

Remark 2: We assume Pj = {j} for j ∈ N without regard to the value of cj, thus providing
an exception to the rule of only including terms with non-zero coefficients in the PUB
representation.

1.1.1 Illustration of the PUB representation

Consider the PUB problem whose objective function is given by
2 3

1 2 2 3 1 1 2 2 1 1 2 37 5 2 – 3 – 4 5 – 2 3 .ox x x x x x x x x x x x x= + + + +

First, since 2 3
2 2 1 1 1 2 2 1, ,x x x x and x x x x= = = we can re-write xo in ascending index

notation, including only the non-zero coefficients, as

1 2 1 3 1 2 1 2 37 5 – – 4 3 3 .ox x x x x x x x x x= + + +

By Remark 2, we include the x3 term in the representation, even though it has a 0
coefficient, to give

1 2 3 1 3 1 2 1 2 37 5 – 0 – 4 3 3 .ox x x x x x x x x x x= + + + +

Assigning indexes p = 1 to 6 to the terms in sequence, we identify the indexes of the
variables in these terms by

1 2 3 4 5 6{1}, {2}, {3}, {1,3}, {1,2}, {1,2,3}N N N N N N= = = = = =

 Polynomial unconstrained binary optimisation – Part 1 235

The cost coefficients associated with these terms, including the constant term co, are
given by

1 2 3 4 5 67, 5, –1, 0, –4, 3, 3.oc c c c c c c= = = = = = =

(Note that while we assume the indexes of any set Np are in ascending order, we do not
assume the sets themselves are organised in a lexicographic ascending order. Hence, in
the example it is acceptable to give a smaller p index to the set {1,3} than to the set
{1,2}.)

1.2 Applications and motivation

The special case where the polynomial objective of PUB is a quadratic function
(hence the polynomial has a degree of 2) has been widely studied. In this case, PUB
already represents a broad range of important problems, including those from social
psychology (Harary, 1953), financial analysis (Laughunn, 1970; McBride and Yormack,
1980), computer aided design (Krarup and Pruzan, 1978), traffic management (Gallo et
al., 1980; Witsgall, 1975), machine scheduling (Alidaee et al., 1994), cellular radio
channel allocation (Chardaire and Sutter, 1994) and molecular conformation (Phillips and
Rosen, 1994). Moreover, many combinatorial optimisation problems pertaining to graphs
such as determining maximum cliques, maximum cuts, maximum vertex packing,
minimum coverings, maximum independent sets, and maximum independent weighted
sets are known to be capable of being formulated by PUB in the quadratic case as
documented in papers of Pardalos and Rodgers (1990), and Pardalos and Xue (1994). A
review of additional applications and formulations can be found in Kochenberger et al.
(2004).

The more general PUB formulation given here is of interest for its ability to
encompass a significantly expanded range of problems. The cubic case, for example,
permits PUB to represent the important class of satisfiability problems known as 3-SAT,
and offers the advantage of providing a representation whose size does not depend on the
number of logical clauses, which stands in contrast to the case for customary binary
integer programming formulations of 3-SAT (see Kochenberger, 2010). The availability
of procedures for efficiently handling and updating move evaluations for instances of
PUB involving polynomials of degree greater than 2, as identified in the following
sections, provides an impetus to uncover additional problems that can be usefully given
binary polynomial formulations.

Our procedures, which apply to moves that flip (complement) the values of one
or more variables xj in progressing from one solution to another, constitute a
generalisation of procedures for generating 1-flip moves described in Glover et al.
(1998) and extended to 2-flip and multi-flip moves Glover and Hao (2010a, 2010b).
Important recent contributions of a similar nature for the quadratic problem are provided
in Hanafi et al. (2010). A principle outcome of our development is that a variety of search
methods which currently incorporate procedures to evaluate flip moves for the quadratic
problem can replace these procedures by the methods described here, thereby producing
methods capable of solving general PUB problems without any other changes in their
structure.

 236 F. Glover et al.

2 Preliminary relationships

We start by making some basic observations that directly generalise observations given in
Glover and Hao (2010a, 2010b). These observations provide a basis for a more
encompassing framework given in the next section which is particularly useful for
exploiting sparsity.

Let 'x and "x represent two binary solutions and define

() ()' ' ' ': , where :o p p p k px c F p P F x k N= ∈ = Π ∈∑

() ()" " " ": , where : .o p p p k px c F p P F x k N= ∈ = Π ∈∑

" '–o o ox x xΔ =

The objective function change Δxo thus discloses whether the transition (move) from 'x
to "x will cause xo to improve or deteriorate (respectively, decrease or increase) relative
to the minimisation objective.

We identify the variables xi that are complemented in going from the solution 'x to
the solution ",x and the subsets for which " 1ix = and 0 by defining

{ }" ': 1–c
i iN i N x x= ∈ =

{ }"(1) : 1c c
iN i N x= ∈ =

{ }"(0) : 0c c
iN i N x= ∈ =

{ }() : , where is an arbitrary subset of .pP M p P N M M N= ∈ ⊂

Observation 1: If ()' " ' "0 0 or 0i i i ix x x x= = = for each i ∈ N, then

()() ()(): (1) – : (0)c c
o p px c p P N c p P NΔ = ∈ ∈∑ ∑

Proof: The identity () ()" ': – :o p p px cpF p P c F p PΔ = ∈ ∈∑ ∑ may be rewritten as

() ()() () ()()" ' " '– : – : – .c c
p p p p p pc F F p P N c F F p P P N∈ + ∈∑ ∑ If p ∈ P – P(Nc),

then Np must contain at least one k such that ' " 0,k kx x= = and hence
" ' 0.p pF F= = Consequently, () ()()" '– : .c

o p p px c F F p P NΔ = ∈∑

We rewrite the latter as

() ()() () ()()
() () () ()()

" ' " '

" '

– : (1) – : (0)

– : – (1) – (0) .

c c
p p p p p p

c c c
p p p

c F F p P N c F F p P N

c F F p P N P N P N

∈ + ∈ +

∈

∑ ∑
∑

 Polynomial unconstrained binary optimisation – Part 1 237

For each p in the range of this latter summation, Np is not a subset of Nc(1) and also not a
subset of Nc(0), which implies Np must contain a pair {j,k} such that " '1, 0j jx x= = and

" '0, 1.k kx x= =

Thus, " ' 0p pF F= = for each of the terms of this latter summation, and we are left with

() ()() () ()()" ' " '– : (1) – : (0) .c c
o p p p p p px c F F p P N c F F p P NΔ = ∈ + ∈∑ ∑ But " 1pF =

and ' 0pF = for p ∈ P(Nc(1)) while " 0pF = and ' 1pF = for p ∈ P(Nc(0)). This completes

the proof.

In each of the following two corollaries, we make the more restrictive assumption that
' 0.x = Let { } () { }()"" : 1 hence " : "i pN i N x P N p P N N= ∈ = = ∈ ⊂ to identify those

sets Np such that " 1ix = for all i ∈ Np. Thus, if { }1" , , ,hN i i= … then (")P N is the index
set for all those sets Np composed of one or more of the elements i1,…,ih.

Corollary 1.1: If ' 0,x = then ()(): "o px c p P NΔ = ∈∑

Proof: The result follows directly from Observation 1, by noting that for ' 0x = we
have " (1)cN N= and { }"(1) : 1 .c c

iN i N x= ∈ = At the same time, the definition

{ }"(0) : 0 ,c c
iN i N x= ∈ = which implies { }'(0) : 1 ,c c

iN i N x= ∈ = showing that Nc(0) is

empty.

To simplify the statement of the next result, it is useful to isolate the coefficients cp of the
product terms Fp that refer only to a single variable xj. As previously noted, we suppose
Np = {p} for p ∈ N, although cp = 0 is possible for some of these indexes. Hence, the
product term Fp for p ∈ N is the single variable term Fp = xp. If we denote indexes p ∈ N
instead by j ∈ N to conform to the practice of referring to variables xj for j ∈ N, our
indexing convention identifies the ‘xj component’ of the objective function xo to be just
cjxj.

Corollary 1.2: If ' 0,x = and "x results from 'x by flipping the single variable xj, then
Δxo = cj.

Proof: This result is an immediate consequence of Corollary 1.1 where " { }.N j=

Corollary 2 can also be established directly by noting that the solution "" ' j jx x x e= +

yields " 0pF = for all p ∈ P except for p = j, since each term "
pF other than for p = j

contains a variable xk such that " ' 0.k kx x= = Hence, Δxo reduces to " '– ,j j j jc x c x which is

just cj, as stipulated.

In the context of Corollaries 1.1 and 1.2, cj gives the change in xo that results from
flipping a single variable xj, while (): (")pc p P N∈∑ is the change that results from
flipping all variables xi for ".i N∈ Hence, Corollary 1.2 gives an evaluation of a 1-flip
move and Corollary 1.1 gives an evaluation of a q-flip move by letting the set "N
represent the indexes for a selected set of q variables that are flipped from 0 to 1.

 238 F. Glover et al.

3 Exploiting and updating problem transformations

The preceding corollaries have an important implication: provided we start from a
solution ' 0,x = the amount of effort to evaluate a move involving any number of flips,
from 1 to q, is the same for any polynomial of degree d for d ≥ q (the degree d may be
defined by d = max(|Np|: p ∈ P). Thus, by this stipulation, the work to evaluate a 1-flip is
the same for all polynomials, the work to evaluate a 2-flip is the same for all polynomials
of degree 2 or greater, and so on. It also follows that the work to evaluate a q-flip for a
polynomial of degree d ≥ q only requires a single addition operation beyond the work to
evaluate a q-flip for a polynomial of degree d = q – 1. Consequently, a 3-flip in a
polynomial of degree 3 or larger can be evaluated by using only one addition operation
beyond that required to evaluate a 3-flip in a polynomial of degree 2.

Corollaries 1.1 and 1.2 therefore provide a natural motivation to manipulate the
formulation of PUB so that a current solution 'x may always be treated as if it were the 0
solution. To do this we use the common device of transforming the x vector into another
binary vector y by complementing selected components of x; in this case, specifically
complementing those components of x such that ' 1,jx = thus causing the assignment

'x x= to yield a corresponding assignment 'y y= for which ' 0.y =
For greater precision, we refer to the formulation PUB as PUB(x), and consider the

alternative equivalent formulation PUB(y) based on the transformed vector y. To express
PUB(y), let

{ } { }' ''(1) : 1 and '(0) : 0i iN i N x N i N x= ∈ = = ∈ =

and define the relationship between y and x by

1– , '(1)i iy x i N= ∈

, '(0)j jy x i N= ∈

This transformation of variables causes the objective for PUB(y) to include different
terms than the objective of PUB(x). We demonstrate how this occurs by decomposing the
transition from the formulation PUB(x) to the formulation PUB(y) into a series of 1-flip
steps, each consisting of implementing the complementation operation for a single
variable, i.e., for a single index '(1),i N∈ and then repeating until the operation has been
completed for all '(1).i N∈

The amended terms cpFp for PUB(y) require altering the identity of the set P, in order
that it may continue to refer strictly to sets Np such that cp ≠ 0 with the exception that we
include the sets Nj = {j} for j ∈ N even if cj = 0 as noted earlier. In other words, the
methods we describe will result in changing P by identifying certain terms cpFp for which
the coefficient cp for p > n will change from cp = 0 to cp ≠ 0, and certain other terms for
which the coefficient cp for p > n will change from cp ≠ 0 to cp = 0. Thus, in the former
case p will not belong to P, and will be added to P (by setting P := P ∪ {p}) while in the
latter case p will be dropped from P (by setting P := P – {p}).

The maintenance of P in this manner, so that it always refers to terms having
non-zero coefficients for p > n, is important for exploiting sparsity, which is a

 Polynomial unconstrained binary optimisation – Part 1 239

characteristic feature of many PUB problems, particularly those of moderate to large size.
To treat sparsity effectively we implicitly refer to an additional set of indexes, denoted by
Pα, which includes relevant indexes p for which cp = 0, i.e., specifying that the collection
{Np: p ∈ Pα} consists of all subsets Np of N containing from 1 to d indexes of N. Later,
we provide a compact coding mechanism that makes it possible to identify elements of Pα
that are relevant for algorithmic updates without needing to rely on searches to carry out
this identification.

To broaden the generality of our results, we introduce a special set No and a
corresponding ‘product term’ Fo associated with the objective function variable xo, where
we stipulate that No = ∅. By the standard convention that the product of variables over
the empty set equals 1, we have Fo = 1 (applying the definition Fp = Π(xk: k ∈ Np) to the
case where Np = No). This yields coFo = co, and hence coFo is just the constant term
associated with the objective function xo. These conventions allow us to express changes
in xo using the same notation employed to express changes in general terms of the form
cpFp. Consequently, we understand that Pα includes the index p = 0, in order to include
reference to xo and co. The relevance of these stipulations will become clear in an
illustration subsequently provided.

To address the 1-flip case we denote the variable that is flipped by xj, hence yielding
yj = 1 – xj. Then we define the following for each j ∈ N:

{ }() : pP j p P j N= ∈ ∈

()()
[]

[] []

[] the unique index in such that –{ }

, : –{ } , and 0 if [] .

p j p

p j k p p j

p j P N N j

hence F x k N j c p j P

α= =

= Π ∈ = ∉

()[][] hence, [] is the same as except that replaces .p j p j p p j jF j y F F j F y x=

We observe that P(j), which identifies the index set for all sets Np that contain j, is
effectively a special case of P(M) = {p ∈ P: Np ⊂ M}, by taking M = {j}.

3.1 Illustration of the set P(j)

The set P(j) plays a pivotal role in several parts of our development, and hence we
illustrate its composition by reference to the example polynomial used earlier to illustrate
the notational conventions underlying the PUB representation. After applying these
conventions the polynomial took the form

1 2 3 1 3 1 2 1 2 37 5 – 0 – 4 3 3 .ox x x x x x x x x x x= + + + +

which gave rise to the sets

1 2 3 4 5 6{1}, {2}, {3}, {1,3}, {1,2}, {1,2,3}.N N N N N N= = = = = =

Then the sets P(j) for j ∈ N = {1,2,3} are given by

(1) {1, 4,5,6}, (2) {2,5,6}, (3) {3,4,6}.P P P= = =

(The terms p[j] and Fp[j] are readily understood by reference to the composition of P(j).)

 240 F. Glover et al.

Observation 2: Flipping xj to replace xj by yj = 1 – xj produces the following changes for
each index p ∈ P(j):

()()[] [] [] [] [] []: changing to become .p j p j p p j p j p j p p jc c c c F c c F= + +

: –p pc c=

(): [] changing to become [] for the new value .p p p p p p pF F j c F c F j c=

Moreover, these changes are independent, so that the change for one index p ∈ P(j) does
not affect the change for another p ∈ P(j).

Proof: The term cpFp for p ∈ P(j) can be written as

() []: –{ } .p p j k p j p p jc F x x k N j x c F= Π ∈ =

Flipping xj, which corresponds to substituting 1 – yj for xj thus transforms cpFp into
(1 – yj)cpFp[j] = cpFp[j] – yjcpFp[j] = cpFp[j] – cpFp[j].

Hence, the term (cp[j] + cp)Fp[j] replaces the term cp[j]Fp[j], defined over the index set
Np[j] = Np – {j}, and after setting cp := –cp the term cpFp[j] replaces the previous term cpFp,
defined over the same index set Np.

The independence of these changes follows from the fact that each set Np for p ∈ P(j)
is unique and hence each set Np[j] = Np – {j} is also unique.

It is important to observe that some or all of the indexes p[j] may not belong to P
(as occurs when cp[j] = 0). If p[j] ∉ P, then except for the special case where Np contains
the index of a single variable, p ∈ P implies cp ≠ 0, and hence the new coefficient
cp[j] := cp[j] + cp must be non-zero. This compels P to be enlarged for the representation
PUB(y) by setting P := P ∪ {p[j]}. On the other hand, if p[j] ∈ P, then it is possible that
the new value cp[j] + cp of cp[j] may become 0, and in this case P must be reduced by
setting P := P – {p[j]}. Again, we later give processes for handling such operations
efficiently.

The update produced by Observation 2 is completed by redefining x to be y (hence,
redefining xj := 1 – xj) so that we may treat the current solution as ' 0,x = and apply
Observation 2 again to repeat the process. A record of the true solution x is kept
throughout these operations, but the algorithm does not have to know this solution, and
by means of the currently updated formulation only ‘sees’ a current collection of terms
cpFp and their associated sets Np for p ∈ P (referring to the current P).

We clarify these comments by means of the following example. We continue to
employ the convention Np = {p} for p ∈ N, including the case where p may not belong to
P (i.e., when cp = 0).

3.2 Illustration of Observation 2

Let j = 3 denote the index of the variable xj that is flipped, and let

{ }() (3) 3,30,40,50,60P j P= =

 Polynomial unconstrained binary optimisation – Part 1 241

where1

3 30 40 50 60{3}, {3,7}, {1, 2,3}, {2,3,5}, {1, 2,3,5,7}.N N N N N= = = = =

From the definition Np[j] = Np – {j}, we have

3[3] 30[3] 40[3] 50[3] 60[3]{ }, {7}, {1, 2}, {2,5}, {1,2,5,7}.N N N N N= ∅ = = = =

In accordance with conventions mentioned earlier, we refer to the special case Np[p], here
N3[3], by No = {∅}, taking the index 3[3] to be 0. To assign specific p indexes to the
remaining indexes p[j] = p[3], suppose

30[3] 7, 40[3] 15, 50[3] 25 and 60[3] 55.= = = =

Note that 30[3] = 7 satisfies the convention N7 = {7}, i.e., Np = {p} for p ≤ n, given that
N30[3] = {7}. The remaining indexes p = 15, 25 and 55 are chosen simply for purposes of
illustration.

Going through the sets Np and Np[3] in the sequence given by P(3) = {3,30,40,50,60}
generates the following changes. The symbol ‘→‘ is used to denote ‘becomes’, and the
variables are listed in ascending index order. The first case below, for N3 = {3}, utilises
the convention that Fo = 1. The stipulations for this case may be understood more clearly
by comparing them to the stipulations for the second case where N30 = {3,7}.

• for N3 = {3} and N3[3] = No = {∅}

() ()3 3:o o o o o o oc F c c c c c c c= → + → = +

()3 3 3 3 3 3 3 3 3 3– : –c F c x c y c y c c= → → =

• for N30 = {3,7} and N30[3] = N7 = {7}

() ()7 7 7 7 7 30 7 7 7 7 7 30:c F c x c c x c x c c c= → + → = +

()30 30 30 3 7 30 3 7 30 3 7 30 30– : –c F c x x c y x c y x c c= → → =

• for N40 = {1,2,3} and N40[3] = N15 = {1,2}

() ()15 15 15 1 2 15 40 1 2 15 2 5 15 15 40:c F c x x c c x x c x x c c c= → + → = +

()40 40 40 1 2 3 50 1 2 3 40 1 2 3 40 40– : –c F c x x x c x x y c x x y c c= → → =

• for N50 = {2,3,5} and N50[3] = N25 = {2,5}

() ()25 25 25 2 5 25 50 2 5 25 2 5 25 25 50:c F c x x c c x x c x x c c c= → + → = +

()60 60 50 2 3 5 50 2 3 5 50 2 3 5 50 50– : –c F c x x x c x y x c x y x c c= → → =

• for N60 = {1,2,3,5,7} and N60[3] = N55 = {1,2,5,7}

() ()55 55 55 1 2 5 7 55 60 1 2 5 7 55 1 2 5 7 55 55 60:c F c x x x x c c x x x x c x x x x c c c= → + → = +

()60 60 60 1 2 3 5 7 60 1 2 3 5 7 60 1 2 3 5 7 60 60– : –c F c x x x x x c x x y x x c x x y x x c c= → → =

 242 F. Glover et al.

Once all changes indicated in the preceding illustration are implemented, y3 is redefined
to be x3, allowing the process to be applied anew to flip additional variables. The
illustration demonstrates how the conventions No = {∅} and Fo = 1 permit Observation 2
to identify the update to the objective function constant co. By this device, Observation 2
subsumes Corollary 1.2. However, the simpler statement of Corollary 1.2 is convenient
for evaluating 1-flips.

3.3 Update to handle multiple flips simultaneously

We now consider the generalisation of Observation 2 that gives the form of the update for
performing an arbitrary collection of flips. Let M be the index set for the variables
flipped; i.e., M = {j ∈ N: yj = 1 – xj}. We will generate a collection of terms from M and
those sets Np having a non-empty intersection with M, i.e., for which the set Mp, defined
by Mp = Np ∩ M, is non-empty. Each term produced from pairing M with a set Np derives
from expanding the current term cpFp as a result of complementing the elements of M
(which is the reason for stipulating Mp ≠ ∅) and has the form γpFp[y], where γp = cp or
–cp as subsequently explained, and Fp[y] is the product of a y component Π(yk: k ∈ N[y])
and an x component Π(xk: k ∈ Rp), where Rp is defined to be the ‘residual set’
given by Rp = Np – M. To identify these updates for all relevant indexes p,
we define Po(M) = {p ∈ P: Mp ≠ ∅} (hence, P(M) ⊂ Po(M) by the definition
P(M) = {p ∈ P: Np ⊂ M}).

The sets N[y] vary according to rules that depend on the particular term cpFp
expanded, generating a term γpFp[y] as N[y] ranges over the subsets of Mp. We include
reference to the empty subset, which yields Π(yk: k ∈ N[y]) = Π(yk: k ∈ ∅) = 1 (again by
the convention that a product over the empty set equals 1). The set Rp can also be empty,
which occurs in the case where Np = Mp, giving Rp = Np – Np = ∅ (which arises because
Np itself is a subset of Np). Then we have Π(xk: k ∈ Rp) = 1 for this case as well.

The stipulation of whether γp = cp or –cp is determined by the number of elements in
N[y], so that γp = cp if |N[y]| is even and γp = –cp if |N[y]| is odd. We identify the different
compositions of N[y] and the associated coefficients γp by letting Sh(Mp) denote the
collection of all h-element subsets of Mp, for h = 0,1,…,|Mp|. Then the outcome of
flipping the variables xj for j ∈ M is identified by specifying the form of F[y] as N[y]
ranges over the subsets contained in Sh(Mp) for each h = 0 to |Mp|. The case for h = 0 is
the one that gives rise to a set N[y] = ∅, since there are no 0-element subsets of the set
Mp. Thus, for this case we have So(Mp) = {∅} (the set whose only element is the empty
set), and we note that this identity is independent of the set Mp.

Observation 3: Flipping xj for each j ∈ M produces the following changes for each set Np
such that p ∈ Po(M), and given p, for each q = 0 to |Mp| (where Mp = Np ∩ M and
Po(M) = {p ∈ P: Mp ≠ ∅}). Let γpq = cp if q is even and γpq = –cp if q is odd and let
δpq = ∑(γpqFpq(K): K ∈ Sq(Mp)) where Fpq(K) = Π(xk: k ∈ Rp) Π(yk: k ∈ K)). Then the
change for set Np is given by

(): 0 to p pq pq Mθ δ= =∑

and the total change for the entire polynomial is given by

(): ()p op P Mθ ∈∑

 Polynomial unconstrained binary optimisation – Part 1 243

Proof: The proof of Observation 3 results by iteratively applying the analysis given in the
proof of Observation 2. The derivation is straightforward but rather cumbersome and so
we omit the details.

The essential elements of Observation 3 may be demonstrated by means of the following
example.

3.4 Illustration of Observation 3

Let M = {1,2,3}, and for simplicity suppose the sets Np that have non-empty intersections
with M are indexed so that Po(M) = {1,2,3,4}, where the sets N1,…,N4 (and their
associated sets Mp and Rp, p = 1,2,3,4) are given by:

N1 = {1,2,3,4,5} M1 = {1,2,3} R1 = {4,5}
N2 = {1,2,4} M2 = {1,2} R2 = {4}
N3 = {2,3} M3 = {2,3} R3 = ∅ (Π xk: k ∈ R3) = 1)
N4 = {1} M4 = {1} R4 = ∅ (Π xk: k ∈ R4) = 1)

Index sets Associated terms γpqFpq(K): K ∈ Sq(Mp)

For p = 1
 So(M1) = ∅ c1x4x5(γpq = cp)

 S1(M1) = {{1},{2},{3}} –c1y1x4x5 – c1y2x4x5 – c1y1x4x5 (γpq = –cp)
 S2(M1) = {{1,2},{2,3},{1,3}} c1y1y2x4x5 + c1y2y3x4x5 + c1y1y3x4x5 (γpq = cp)
 S3(M1) = {{1,2,3}} –c1y1y2y3x4x5(γpq = –cp)
For p = 2
 So(M2) = ∅ c2x4(γpq = cp)

 S1(M2) = {{1},{2}} –c2y1x4 –c2y2x4(γpq = –cp)
 S2(M2) = {{1,2}} c2y1y2x4(γpq = cp)
For p = 3
 So(M3) = ∅ c3(γpq = cp)

 S1(M3) = {{2},{3}} –c3y2 – c3y3(γpq = –cp)
 S2(M3) = {{2,3}} c3y2y3(γpq = cp)
For p = 4
 So(M4) = ∅ c4(γpq = cp)

 S1(M4) = {{1}} –c4y1(γpq = –cp)

As stipulated in Observation 3, these quantities are accumulated and then added to the
current coefficients of the corresponding product terms.

Observation 3 allows the update of a multi-flip move to be carried out with greater
efficiency than the update of a single flip move, because it avoids updating sets P(i) that
may lose or gain elements as a result of coefficients cp that may change from non-zero to
zero or vice versa, when this may occur more than once for the same index p. However,
because of the need for expanded data structures to keep track of accumulated terms in
such a multi-flip update, we anticipate that it is preferable in most circumstances to

 244 F. Glover et al.

decompose such an update into a series of component updates performed by reference to
Observation 2. In our following development, therefore, we focus on an implementation
that is organised specifically to exploit such component updates.

We now turn to the question of how to perform these processes efficiently, giving
particular emphasis to the situation in which the polynomial is sparse; i.e., where P
represents only a small subset of all possible index sets (equivalently, when many terms
Fp have associated costs cp = 0 and hence do not explicitly appear in the polynomial).

4 Overall structure of the algorithm

We draw on Observation 2 as the core observation for evaluating and updating moves
that transform one solution to another. Consequently, we treat multi-flip moves as
composed of a sequence of 1-flip moves rather than seeking to gain efficiencies using
Observation 3.

Following such a design, a generic method for the PUB problem may be summarised
as follows.

4.1 Generic PUB method

0 Create the initial PUB data structures and select a starting solution. Transform the problem
representation so that this solution becomes the current 0 solution.

While a chosen termination condition is not satisfied

 1 Select one or more variables xj to be flipped, by employing the cj values to identify
Δxo for 1-flip moves as in Corollary 1.2, or the cp values to identify Δxo for multi-flip
moves as in Corollary 1.2.

 2 Apply Observation 2 to update the current problem representation by treating the
selected moves as a series of 1-flips. Maintain the appropriate composition of P, and the
sets Np and P(i), for each 1-flip replacing xj by 1 – xj, executed as follows for

 p* = p[j] where p* > n:

 If cp* = 0 then

 Create the set Np* and add p* to the set P(i) for each i ∈ Np*.

 ElseIf cp* + cp = 0 (cp* ≠ 0) then

 Remove reference to the set Np* and drop p* from P by removing p* from the set
P(i) for each i ∈ Np*.

 Endif

EndWhile

The use of the cj and cp values as criteria for selecting a move in Step 1 above may of
course be accompanied by additional criteria, such as employing tabu restrictions and
aspiration incentives derived from recency and frequency memory in a tabu search
method (see, e.g., Glover and Laguna, 1997).

An alternative foundation for describing and justifying the preceding algorithm is
given in Appendix 1, which does not rely on employing transformations of variables. We

 Polynomial unconstrained binary optimisation – Part 1 245

additionally note that the literature provides a different type of transformation mechanism
with the goal of reducing a cubic or higher degree polynomial to a quadratic, and
therefore enabling the problem in principle to be solved by a quadratic algorithm. We
point out complications that arise by using this quadratic reduction approach by
comparison with using our current approach in Appendix 2, causing the quadratic
reduction to require multi-flip evaluations to achieve the effect of 1-flip and 2-flip
evaluations when using our current approach.

A key challenge for implementing the Generic PUB Algorithm is to specify the
manner of structuring the sets P(i) = {p ∈ P: i ∈ Np) for i ∈ N. As intimated by the
algorithm’s description, the operations of maintaining the entire problem representation
reduce to just the operations of updating the sets P(i), together with maintaining a
representation of the sets Np themselves. In particular, explicit knowledge of the set P is
unnecessary, since all relevant knowledge about P is contained in the sets P(i).

In the next section, we show a way to identify the elements of the sets Np without
explicitly listing them, while maintaining a list of cp values that is dramatically smaller
than would be created by allocating a multidimensional matrix to this task (by creating a
cost matrix C(i1,i2,…,id)). To accomplish this requires a means to code vectors of the
form (i1,…,ih) as single numbers v, and to decode such numbers v back into the vectors
(i1,…,ih) from which they were derived.

5 Coding and decoding index vectors for product terms

We reiterate the convention that the indexes of product terms are written in the form a
vector of indexes (i1,i2,…,ih) where i1 < i2 < … ih (hence corresponding to the product
term Π(xk: k = ir: r = 1,…,h) where h takes a value between 1 and the degree d of the
polynomial). Note that we use the symbol i in this representation because each element ir
identifies an index rather than a variable such as xk. We first discuss the procedure for
coding each such vector of indexes as a single value V. This corresponds to generating
the set of indexes p belonging to the set Pα as discussed in Section 3.

5.1 Coding procedure

5.1.1 Organisation

Partition the terms into groups, G(1) to G(d), where each group is a collection of vectors
(i1,…,ih) for h = 1,…,d, identifying the indexes of all possible terms containing h
elements (the elements of these vectors constitute the ordered form of the sets Np that
may potentially be created, in a case where the problem is fully dense):

()
()
()

() ()

1 1

1 2 1 2 1

1 2 3 1 2 1 3 2

1 1 2 1

1 2

(1) : : 1, ,

(2) : , : 1, , –1; 1, ,

(3) : , , : 1, , – 2; 1, , –1; 1, ,

() : , , : 1, , – –1 ; 1, , – ; ;
 1, , –1;

d

d d d d

G i i n

G i i i n i i n

G i i i i n i i n i i n

G d i i i n d i i n d
i i n i i− − −

=

= = +

= = + = +

= = +

= + =

…

… …

… … …
……

… … … …
… 1 1, , n+ …

 246 F. Glover et al.

Step 1 Create a base cardinality Δ(h) and a cumulative cardinality n(h) for each group
G(h), h = 1,…,d (the cumulative cardinality is the number of vectors in group Gh
added to the number of vectors in all preceding groups).

(1) : (1) ; (1) (1)
(2) : (2) (–1) / 2; (2) (1) (2)
(3) : (3) (–1)(– 2) / 6; (3) (2) (3)
(4) : (4) (–1)(

G n n
G n n n n
G n n n n n
G n n n

Δ = = Δ
Δ = = + Δ
Δ = = + Δ
Δ = – 2)(– 3) / 24; (4) (3) (4)

() : () (–1) (– (–1)) / ! () (–1) ()

n n n

G d d n n n d d n d n d d

= + Δ

Δ = = + Δ
……

…

Step 2 Create the base coding v(h) for an arbitrary vector (i1,…,ih), for each group G(h):

()()
()()()
()()()()

()

1

2 2

3 3 3

4 4 4 4

(1) : (1)
(2) : (2) –1 – 2 / 2 (1)

(3) : (3) –1 – 2 – 3 / 6 (2)

(4) : (4) –1 – 2 – 3 – 4 / 24 (3)

() : () – : 1, ,) / ! (–1)d

G v i
G v i i v

G v i i i v

G v i i i i v

G d v d i q q d d v d

=

= +

= +

= +

= Π = +

……
…

Step 3 Create the full coding V(h), by adding the cumulative cardinality n(h – 1) to v(h)
for an arbitrary vector (i1,…,ih), for each group G(h):

() ()
()
()
()

()

1 1

1 2

1 2 3

1 2 3 4

1

(1) : : (1) (1)

(2) : , : (2) (1) (2)

(3) : , , : (3) (2) (3)

(4) : , , , : (4) (3) (4)

() : , , : () (–1) ()d

G For i V v i

G For i i V n v

G For i i i V n v

G For i i i i V n v

G d For i i V d n d v d

= =

= +

= +

= +

= +

……
…

The cumulative cardinality n(d) is the maximum value of |P| for a polynomial of degree
d, hence, the maximum number of non-zero coefficients cp when the polynomial is
represented in ascending index order. The coding operation assigns a unique index
p = V[M] to each set M = {i1,…,ih} for h = 1,…,d, where i1 < … < ih. We use the notation
V[M] to distinguish the value produced by coding M from the value V(h) that represents
the coding value previously defined. Thus, in particular, V[M] = V(h) for the value V(h)
calculated by reference to M = {i1,…,ih} in Step 3 above (because of the ascending index
ordering i1 < … < ih, M may strictly speaking be considered a vector, though we continue
to refer to it as a set for convenience). The indexes p = V[M] are exactly those from the
set {1,2,…,n(d)}.

 Polynomial unconstrained binary optimisation – Part 1 247

5.2 Using the coding for inputting initial problem data

The coding procedure of Section 5.1 is implemented immediately upon inputting the
initial problem data, thereby providing a compact representation to take advantage of
situations where the data is sparse.

To handle this as part of the data input procedure is quite simple:

5.2.1 Input procedure

1 Initialise cp = 0 for p = 1 to n(d)

2 Read problem data and simultaneously generate the coding: let M denote the current
set of indexes input from the problem data to become a set Np, and let c denote the
cost associated with M that is to become the value cp attached to the product term
Π(xk: k ∈ Np) for Np = M.

3 Produce the index p = V[M] by applying the full coding rule to the elements of M,
and let cp = c.

We next identify the operation that is the inverse of the coding operation, and which is a
bit more subtle.

5.3 Decoding a coded value p = V to obtain the index set M such that V[M] = V

Let V denote the (full) coded value of an index set M = {i1,…,ih}, where V is the index p
of the unknown set Np = M. We seek to identify each component i1,…,ih of M (hence of
Np) by performing appropriate operations on the value V.

For an arbitrary real number z, let [z] denote the greatest integer ≤ z, and let <z>
denote the least integer ≥ z (hence, when z is a positive non-integer value, then [z] rounds
z down and <z> rounds z up).

Then for each value r from 2 to the degree d of the polynomial, we make reference to
a constant β(r) determined by the following formula

() 1– (!)1/ .r r r rβ = + < >

The ‘rounding up’ operator < > is essential to the correctness of this formula. The values
β(r), for r = 2,…,d, may be computed in advance and stored, thus avoiding the need to
re-compute these values multiple times when applying the decoding algorithm. For
example, if d = 10, the relevant β(r) values obtained by the preceding formula are as
follows: β(2) = 1, β(3) = 2, β(4) = 2, β(5) = 3, β(6) = 4, β(7) = 4, β(8) = 5, β(9) = 5,
β(10) = 6 (these values disclose that when r ≤ 5, β(r) can be computed from the simpler
formula c(r) = [(r + 1)/2]).

We now state the full decoding algorithm.

5.3.1 Decoding algorithm

Step 1 (Identify the group h associated with V.)

The group is G(1) if V ≤ n(1); G(2) if n(1) < V ≤ n(2); and in general is G(h) if
n(h – 1) < V ≤ n(h).

 248 F. Glover et al.

Step 2 (Convert V to a base code value v)

– (–1)v V n h=

Step 3 (Determine the vector (i1,i2,…,ih) from the base code value by generating its
components ir in reverse order, for r = h, h – 1,…,1.)

r h=

while r > 1
 If v = 1 Then
 ir = r
 Else
 w = (v – 1)r!
 u = [w1/r]
 i* = u + β(r)
 (ir = i* or i* + 1, depending on which of these gives the largest value of ir satisfying
 Π ≤ w for Π = (ir – 1)(ir – 2)…(ir – r))
 Πo = (i* – 1)(i* – 2)…(i* – r + 1)
 Π1 = (i* – r) Πo (the value of Π if ir = i*)
 Π2 = i*Πo (the value of Π if ir = i* + 1)
 If Π2 ≤ w then
 Π = Π2
 ir = i* + 1
 Else
 Π = Π1
 ir = i*
 Endif
 v := v – Π/r! (giving the ‘residual v’ to determine the next component ir for r := r – 1.)
 Endif
r := r – 1
EndWhile
i1 = v

We sketch the justification of the decoding method as follows: the validity of Steps 1 and
2 is apparent. The rationale underlying Step 3 derives from the requirement that ir be the
largest integer satisfying

()() () for –1 – 2 –r r rw i i i rΠ ≤ Π = …

This value must clearly be unique and hence, if successfully identified as valid, will
uniquely determine each component ir of the decoded vector. The fact that the iteration
over r = h, h – 1,…,1 actually generates the proper values for Π derives from first
observing that setting ir = r gives ir the correct value for v = 1, and then additionally
observing that ir is appropriately determined for v = 2 as a result of the definition of β(r)

 Polynomial unconstrained binary optimisation – Part 1 249

(which applies in particular for v = 2 in association with setting ir = i* + 1). The validity
of the determination of ir for larger values of v can then be established by induction.

The following example illustrates how the coding and decoding processes are
implemented.

5.3.2 Illustration of the coding and decoding processes

Assume d = 4 and n = 50.

5.3.2.1 Coding

We first code the set M = {i1,i2,i3} = {4,6,11}, in order to obtain the index p = V[M]
(hence giving the index p of the set Np = M). Applying Step 1, to determine the n(h)
values gives:

1: (1) 50
2 : (2) (1) (–1) / 2 50 1,225 1,275
3 : (3) (2) (–1)(– 2) / 6 1,275 19,600 296,500
4 : (4) (3) (–1)(– 2)(– 3) / 24 296,500 230,300 526,800

G n n
G n n n n
G n n n n n
G n n n n n n

= =
= + = + =
= + = + =
= + = + =

Applying Step 2 to give the base coding vector v(3) for {4,6,11} we obtain:

()()
()()()

1

2 2

3 3 3

(1) 4
(2) (1) –1 – 2 / 2 4 20 / 2 14

(3) (2) –1 – 2 – 3 / 6 14 720 / 6 134

v i
v v i i

v v i i i

= =

= + = + =

= + = + =

Since {i1,i2,i3} is in the group G(3), by Step 3 we obtain the full coding V(3) of {4,6,11}
from V(3) = n(2) + v(3) = 1,275 + 134 = 1,409. The value V(3) = 1,409 is therefore the
value p = V[M] that is sought.

5.3.2.2 Decoding

For this part of the illustration we decode the full coding value V = 1298 to find the set M
such that V[M] = V. Step 1 of the decoding method checks for membership in one of the
groups. Since 1,298 is greater than n(2) = 1,275 and not more than n(3) = 296,500, we
conclude h = 3, and hence V represents a vector in the group G(3).

Step 2 generates the basic score v = V – n(2) = 1,298 – 1,275 = 23.
We decompose Step 3 into its successive iterations.

• The first iteration of the While loop starts with v = 23 and r = h = 3.

1/ 1/3

1

2

(–1) ! (23 –1)3! 22 6 132

[1,32] 5

* () 5 (3) 5 2 7
(* –1)(* –2) (* – 1) (* –1)(* –2) 6 5 30
(* –) 4 30 120

* 7 30 210

r

o

o

o

w v r

u w

i u r
i i i r i i
i r
i

β β

= = = × =

⎡ ⎤= = =⎣ ⎦
= + = + = + =

Π = + = = × =
Π = Π = × =

Π = Π = × =

…

 250 F. Glover et al.

Since Π2 > w (210 > 132), we have Π = Π1 = 120 and i3 = i* = 7.

Finally v := v – Π/r! gives v = 23 – 120/6 = 23 – 20 = 3.

• The second iteration, for r = 2, gives

1/ 1/2

1

2

(–1) ! (3 –1)2! 2 2 4

4 2

* () 2 (2) 2 1 3
(* –1)(* –2) (* – 1) (* –1) 2
(* –) 1 2 2

* 3 2 6

r

o

o

o

w v r

u w

i u r
i i i r i
i r
i

β β

= = = × =

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦
= + = + = + =

Π = + = =

Π = Π = × =

Π = Π = × =

…

Since Π2 > w (6 > 4), we have Π = Π1 = 2 and i2 = i* = 3.

Then v := v – Π/r! gives v = 3 – 2/2 = 2.

• Hence, on the third iteration, for r = 1, we have i1 = v = 2 and the method terminates.

In summary, the index set generated is given by M = {i1,i2,i3} = {2,3,7} (hence, from the
original V = 1,298, we have N1,298 = {2,3,7}).

5.4 Illustration of memory required for the cost values cp and the associated
sets Np

The amount of memory required to store the costs cp and the associated sets Np using the
foregoing processes is equal to the value n(d) for a polynomial of degree d when using an
ascending index order representation. For purposes of illustration, we calculate these
values for the cases d = 1 to 5, assuming n = 100 in each case. For comparison, we show
the amount of memory required by using a cost matrix of the form C(i1,…,id), which
entails a storage space of nd.

Values of d 1 2 3 4 5
Cost matrix memory nd 100 10,000 1,000,000 100,000,000 10,000,000,000
Coded memory n(d) 100 5,050 166,750 4,087,957 79,375,495

The rapid growth in the size of memory depicted by this illustration suggests that a
polynomial of degree 4 or 5 may be the largest that is practical to work with. However,
we note that this memory does not take account of the fact that the problem will generally
be sparse, so that only a few percent of the total number of possible product terms may
actually exist at any given time in the problem formulation. We address the challenges of
taking advantage of our results within the context of exploiting sparsity, which is a
hallmark of real world problems, in Part 2 of this paper.

6 Conclusions

We have provided basic relationships for developing efficient algorithms to solve PUB
problems, and have identified coding and decoding processes that give the raw materials

 Polynomial unconstrained binary optimisation – Part 1 251

for creating special algorithms to exploit practical problems that contain sparse matries.
The sequel to this work in Part 2 will give special types of memory structures and
associated updating algorithms to take advantage of the foundations laid in Part 1, to
yield significant improvements both in memory consumed and in the speed of executing
an algorithm for the PUB problem.

References
Alidaee, B., Kochenberger, G. and Ahmadian, A. (1994) ‘0-1 quadratic programming approach for

the optimal solution of two scheduling problems’, International Journal of Systems Science,
Vol. 25, pp.401–408.

Boros, E. and Hammer, P.L. (2002) ‘Pseudo-Boolean optimization’, Discrete Applied Mathematics,
Vol. 123, Nos. 1–3, pp.155–225.

Chardaire, P. and Sutter, A. (1994) ‘A decomposition method for quadratic zero-one
programming’, Management Science, Vol. 41, No. 4, pp.704–712.

Gallo, G., Hammer, P. and Simeone, B. (1980) ‘Quadratic knapsack problems’, Mathematical
Programming, Vol. 12, pp.132–149.

Glover, F. and Hao, J.K. (2010a) ‘Efficient evaluations for solving large 0-1 unconstrained
quadratic optimization problems’, International Journal of Metaheuristics, Vol. 1, No. 1,
pp.3–10.

Glover, F. and Hao, J.K. (2010b) ‘Fast 2-flip move evaluations for binary unconstrained quadratic
optimisation problems’, International Journal of Metaheuristics, Vol. 1, No. 2, pp.100–107.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers.
Glover, F., Kochenberger, G., Alidaee, B. and Amini, M. (1998) ‘Tabu search with critical event

memory: an enhanced application for binary quadratic programs’, in Voss, S., Martello, S.,
Osman, I.H. and Roucairol, C. (Eds.): Meta-Heuristics – Advances and Trends in Local
Search Paradigms for Optimization, pp.83–109, Kluwer Academic Publishers.

Hanafi, S., Rebai, A-R. and Vasquez, M. (2010) ‘Several versions of the devour digest tidy-up
heuristic for unconstrained binary quadratic problems’, Working paper, LAMIH, Université de
Valenciennes.

Harary, F. (1953) ‘On the notion of balanced of a signed graph’, Michigan Mathematical Journal,
Vol. 2, pp.143–146.

Kochenberger, G. (2010) ‘Notes on 3-SAT and max 3-SAT’, Working paper, University of
Colorado, Denver.

Kochenberger, G., Glover, F., Alidaee, B. and Rego, C. (2004) ‘A unified modeling and solution
framework for combinatorial optimization problems’, OR Spectrum, Vol. 26, pp.237–250.

Krarup, J. and Pruzan, A. (1978) ‘Computer aided layout design’, Mathematical Programming
Study, Vol. 9, pp.75–94.

Laughunn, D.J. (1970) ‘Quadratic binary programming’, Operations Research, Vol. 14,
pp.454–461.

McBride, R.D. and Yormack, J.S. (1980) ‘An implicit enumeration algorithm for quadratic integer
programming’, Management Science, Vol. 26, pp.282–296.

Pardalos, F. and Xue, J. (1994) ‘The maximum clique problem’, The Journal of Global
Optimization, Vol. 4, pp.301–328.

Pardalos, P. and Rodgers, G.P. (1990) ‘Computational aspects of a branch and bound algorithm for
quadratic zero-one programming’, Computing, Vol. 45, pp.131–144.

Phillips, A.T. and Rosen, J.B. (1994) ‘A quadratic assignment formulation of the molecular
conformation problem’, Journal of Global Optimization, Vol. 4, pp.229–241.

Witsgall, C. (1975) ‘Mathematical methods of site selection for electronic system (EMS)’, NBS
Internal Report.

 252 F. Glover et al.

Notes
1 The indexing selected for this illustration is based on supposing that n < 30, to support the

convention that Np = {p} for p ≤ n (as illustrated by N3 = {3}). We have taken the liberty of
choosing the indexes p > n for the preceding sets Np by making them somewhat smaller than
they would likely be under ordinary circumstances.

Appendix 1

Alternative foundation for the generic PUB method

The main results that support the generic PUB method can be based on a different
foundation, which does not rely on creating a problem transformation to recast each
iteration as starting from the solution x = 0. To express this, we introduce cross product
terms Fp(i) and values v(i) associated with the sets P(i) = {p ∈ P: i ∈ Np} for PUB as
follows:

()() : –{ }p k pF i x k N i= Π ∈

()() () : ()p pv i c F i p P i= ∈∑

As before, we begin our analysis from the 1-flip perspective, and let 'x and "x represent
two binary solutions where "x is obtained from 'x by flipping the value of a single
variable xi from 0 to 1 or from 1 to 0. Similarly, we define ()' ' : ,o p px c F p P= ∈∑

where ()' ' :p p pF x i N= Π ∈ and ()" : ,o p px c F p P= ∈∑ where ()" " : ,p i pF x i N= Π ∈

and define ' " '– .o o ox x xΔ =

Let ' ()pF i and '()v i and be the instances of Fp(i) and v(i) that result for 'x x= and let
" ()pF i and "()v i be the corresponding instances that result for ",x x= hence,

()' '() : –{ } ,p k pF i x k N i= Π ∈ ()''() () : () ,p pv i c F i p P i= ∈∑ etc.

Proposition 1: ()' '1– 2 '(), .o ix x v i i MΔ = ∈

Proof: Write xo in the form

() (): () : – ()o p p p px c F p P i c F p P P i= ∈ + ∈∑ ∑

Given that the sets Np for p ∈ P(i) are precisely those that contain the index i, the
foregoing may be re-written as

() ()() : () : – ()o i p p p px x c F i p P i c F p P P i= ∈ + ∈∑ ∑

The value ' " ' –o o ox x xΔ = therefore can be written

() ()' " ' " " ' ' – () : () – () : ()o o o i p p i p px x x x c F i p P i x c F i p P iΔ = = ∈ ∈∑ ∑

 Polynomial unconstrained binary optimisation – Part 1 253

since () ()' ": – () : – ()p p p pc F p P P i c F p P P i∈ = ∈∑ ∑ as a consequence of the fact

that xi is not a part of any Fp for p ∈ P – P(i). Moreover, since xi is not represented in
either " ()pF i or ' ()pF i for p ∈ P(i), and xi is the only variable that changes its value, we

have " '() ()p pF i F i= for p ∈ P(i). Hence,

() ()' " ' '– () : ()o i i p px x x c F i p P iΔ = ∈∑

Finally from ()''() () : ()p pv i c F i p P i= ∈∑ we obtain ()' '1– 2 '(), ,o ix x v i i MΔ = ∈ as

stipulated.

Proposition 1, which effectively constitutes an alternative formulation of Corollary 2 in
Section 2, directly generalises the corresponding result of Glover and Hao (2010a) for
quadratic problems, and likewise shows that the amount of effort to compute '

oxΔ is the
same for general polynomial objective functions as for quadratic objective functions.
Thus, in particular, by this representation, when the problem data is first
set up, and we have a starting solution ',x we compute and save the values

()''() () : ()p pv i c F i p P i= ∈∑ for each i ∈ M. The critical element for exploiting this

proposition in the most effective manner is to identify a way to update the '()v i values
efficiently from one iteration to the next, as 'x is updated to become the solution
previously denoted by ".x

Next define

{ } { }
()
()

(:) () : : , () ()

(:) : –{ , } for (:)

(:) (:) : (:)

p p

p k p

p p

P i j p P i j N p P i j N P i P j

F i j x k N i j p P i j

v i j c F i j p P i j

= ∈ ∈ = ∈ ∈ = ∩

= Π ∈ ∈

= ∈∑

We are interested in identifying the new value "()v i that replaces '()v i when "x results

from 'x by " '1– .j jx x=

Proposition 2: ()'"() '() 1– 2 '(:)jv i v i x v i j= +

Proof: From the definition ()() () : () ,p pv i c F i p P i= ∈∑ we may break the summation

into two components to give

() ()() () : (:) () : () – (:)p p p pv i c F i p P i j c F i p P i P i j= ∈ + ∈∑ ∑

Since the sets Np for p ∈ P(i: j) are precisely those for p ∈ P(i) that include the index j,
the summation on the left may be rewritten as () ()(): : : .j p px c F i j p P i j∈∑ By the

same token, none of the components of the summation on the right will change when
replacing 'x by ",x hence the value '() "() – '()v i v i v iΔ = will be given by

 254 F. Glover et al.

() ()" " ' ''() (:) : (:) – (:) : (:) .j p p j p pv i x c F i j p P i j x c F i j p P i jΔ = ∈ ∈∑ ∑

However, by definition, Fp(i: j) excludes reference to the index j, and hence
" '(:) (:).p pF i j F i j= Consequently, we obtain:

() ()" ' ''() – (:) : (:) .j j p pv i x x c F i j p P i jΔ = ∈∑

and finally by the substitution '1– jx for "
jx and '(:)v i j for

()' (:) : (:)p pc F i j p P i j∈∑ gives ()''() 1– 2 '(:)jv i x v i jΔ =

which yields the value ()'"() '() 1– 2 '(:)jv i v i x v i j= + for "()v i stated in the proposition.

Proposition 2 likewise generalises the corresponding result of Glover and Hao (2010a)
for quadratic problems. By this Proposition 2, we identify the value '(:)v i j and then
obtain the updated "()v i value that becomes '()v i on the next iteration. If '(:)v i j itself
has been maintained in updated form, this likewise is a O(1) operation.

In general, consider a sequence of terms P(i:j:k:…), Fp(i,j,k:…) and v(i:j:k:…), which
go as far as necessary to carry out the updates needed at each level. The structure for
doing this is as follows.

Let I be a subset of N that does not contain index j and let J = I ∪ {j}. Then define

{ }
()
()

() : () ()

() : – for ()

() () : ()

p

p k p

p p

P J p P J N P I P j

F J x k N J p P J

v J c F J p P J

= ∈ ⊂ = ∩

= Π ∈ ∈

= ∈∑

(Note P(∅) = P, Fp(∅) = Fp and v(∅) = v) If J contains a single element,
J = {j}, then I = ∅, and we for simplicity we denote P(J) by P(j), hence, yielding
P(j) = {p ∈ P: j ∈ Np}, Fp(j) = Π(xk: k ∈ Np – {j}), ()() () : () ,p pv j c F j p P j= ∈∑

corresponding to our earlier definition.
We want to obtain "()v i for all i ∈ No after flipping xj. Consider first the sets J that

are the maximal sets Np containing j. Let Pmax(j) = {p ∈ P: j ∈ Np and Np is maximal
(no set Nq strictly contains Np for q ∈ P)}.

Lemma: If J is a maximal set Np containing j, i.e., p* ∈ Pmax(j), and J = Np*, then
v(J) = cp* for all x (hence, in particular, *'()).pv J c=

Proof: J = Np* where p* ∈ Pmax(j) implies P(J) = {p*}, since Np* is the unique
set containing J. In turn, the definition Fp(J) = Π(xk: k ∈ Np – J) implies
Fp(J) = 1, since J is maximal and hence Np – J = ∅. Finally, by the definition

()() () : ()p pv J c F J p P J= ∈∑ we have v(J) = cp*Fp*(J), which gives v(J) = cp*.

Now we obtain the following.

 Polynomial unconstrained binary optimisation – Part 1 255

General proposition: ()'"() '() 1– 2 '()jv I v I x v J= +

Proof: From the definition ()() () : () ,p pv I c F I p P I= ∈∑ we may break the summation

into two components to give

() ()() () : () () : () ()p p p pv I c F I p P J c F I p P I P J= ∈ + ∈ −∑ ∑

Since the sets Np for p ∈ P(J) are precisely those for p ∈ P(I) that include the index j, the
summation on the left may be rewritten as ()() : () .j p px c F J p P J∈∑ By the same

token, none of the components of the summation on the right will change when replacing
'x by ",x hence the value '() "() – '()v I v I v IΔ = will be given by

() ()" " ' ''() () : () – () : () .j p p j p pv I x c F J p P J x c F J p P JΔ = ∈ ∈∑ ∑

However, by definition, Fp(J) excludes reference to the index j, and hence
" '() ().p pF J F J= Consequently, the expression for '()v IΔ reduces to

() ()" ' ''() – () : () .j j p pv I x x c F J p P JΔ = ∈∑

and finally by the substitution '1– jx for "
jx and '()v J for ()' () : ()p pc F J p P J∈∑

gives

()''() 1– 2 '()jv I x v JΔ =

and hence

()'"() '() 1– 2 '() for "()jv I v I x v J v I= +

as stated in the proposition.
The methods of this paper and of the Part 2 sequel can likewise use the preceding

results as a starting point.

Appendix 2

Transformation for reducing a higher degree polynomial to a quadratic

Boros and Hammer (2002) provide a penalty transformation approach that can be applied
iteratively to reduce a higher degree polynomial to a quadratic. The mechanism can be
depicted by considering the case where we seek to replace a cubic formulation by a
quadratic formulation. The rules of the approach for this case are as follows.

a identify a cubic term xixjxk for reduction

b choose a two variable product term within the cubic term, say xixj, which will be
replaced by a new binary variable xij (Every cubic term xixjxh that contains the
product xixj will become replaced by the associated term xijxk. Of course, the

 256 F. Glover et al.

variables may appear in a different order in the original cubic terms, as for example
xjxhxi or xhxjxi.)

c add a quadratic penalty term P(xixj – 2xixij – 2xjxij + 3xij)

By means of this transformation, the penalty impact on the objective function is zero
when xij = xixj and is P otherwise.

We now analyse the effect of this approach in relation to using the PUB approach of
the present paper. Consider the use of 1-flip moves with the quadratic reduction
procedure in the situation where the product xixj introduces a variable xij by the
transformation indicated above. As long as both xi and xj equal 0 there is no problem.
However, a complication ensues when at least one of xi and xj equals 1. First suppose, for
instance that xi = 1 and xj = 0 (together with xij = 0, as appropriate). Upon attempting to
evaluate the 1-flip xj = 0 → 1, we incur a penalty of P. The same thing happens if we
instead evaluate the 1-flip xij = 0 → 1. Thus, to accurately evaluate the move xj = 0 → 1
we must in fact evaluate the 2-flip move that simultaneously executes xj = 0 → 1 and
xij = 0 → 1.

Next, suppose both xi and xj equal 1 (together with xij = 1, as appropriate). If we now
evaluate either the 1-flip xi = 1 → 0 or the 1-flip xj = 1 → 0, we again incur a penalty of P
(and the same thing happens if we instead evaluate 1-flip xij = 1 → 0). In this situation, it
is again necessary to evaluate a 2-flip move to accurately identify the outcome of the
considered change, hence either simultaneously executing xi = 1 → 0 and xij = 1 → 0 or
executing xj = 1 → 0 and xij = 1 → 0.

The complications do not stop here, however. Suppose that xj is contained in two
product terms xixj and xhxj that have undergone a transformation, producing the variables
xij and xhj. In addition to the need to evaluate 2-flip moves in the situation described
above (which applies to xh and xj as well as to xi and xj), an additional difficulty is
encountered if both xi = 1 and xh = 1. Then for the case where xj = 0, to accurately
evaluate the 1-flip xj = 0 → 1 requires evaluating the 3-flip xj = 0 → 1, xij = 0 → 1,
xhj = 0 → 1. On the other hand, for the case where xj = 1, to accurately evaluate the 1-flip
xj = 1 → 0 requires evaluating the 3-flip xj = 1 → 0, xij = 1 → 0, xhj = 1 → 0.

Situations can similarly arise requiring the evaluation of still higher-order flip moves
in order to determine an accurate evaluation of changing the value of a single variable.
By contrast, the PUB approach we propose permits all of these situations to be handled
by only evaluating 1-flip moves. If we allow the use of 2-flip moves with the
transformation approach and our PUB approach, in the hope of thereby reducing the
number of problematical situations encountered by the transformation approach, we
discover instead that the number of these situations increases. For example, a 2-flip that
implicates two variables xij and xpq can require four flips to evaluate accurately in the
transformation approach, and interrelated product terms can produce even greater
complications, all of which are handled directly by a 2-flip in the PUB approach.

When the Boros and Hammer transformation is applied iteratively to reduce
polynomials of degree greater than 3 to quadratics, each reduction in the degree d
compounds the effects illustrated for reducing d from 3 to 2. The result therefore incurs
complex combinations of penalties that produce inaccurate evaluations of 1-flip and
2-flip moves that can only be rectified by evaluating moves that flip additional variables.

