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Abstract: The class of problems known as quadratic zero-one (binary) 
unconstrained optimisation has provided access to a vast array of combinatorial 
optimisation problems, allowing them to be expressed within the setting of a 
single unifying model. A gap exists, however, in addressing polynomial 
problems of degree greater than 2. To bridge this gap, we provide methods for 
efficiently executing core search processes for optimisation problems in the 
general polynomial unconstrained binary (PUB) domain. A variety of search 
algorithms for quadratic optimisation can take advantage of our methods to be 
transformed directly into algorithms for problems where the objective functions 
involve arbitrary polynomials. 
 In this Part 1 paper, we give fundamental results for carrying out the 
transformations. We also describe coding and decoding procedures that are 
relevant for efficiently handling sparse problems, where many coefficients are 
0, as typically arise in practical applications. In a sequel to this paper, Part 2, 
we provide special algorithms and data structures for taking advantage of the 
basic results of Part 1. We also disclose how our designs can be used to 
enhance existing quadratic optimisation algorithms. 

Keywords: zero-one optimisation; unconstrained polynomial optimisation; 
metaheuristics; computational efficiency. 

Reference to this paper should be made as follows: Glover, F., Hao, J-K. and 
Kochenberger, G. (2011) ‘Polynomial unconstrained binary optimisation –  
Part 1’, Int. J. Metaheuristics, Vol. 1, No. 3, pp.232–256. 

 



   

 

   

   
 

   

   

 

   

    Polynomial unconstrained binary optimisation – Part 1 233    
 

    
 
 

   

   
 

   

   

 

   

       
 

Biographical notes: Fred Glover is a Distinguished Professor at the University 
of Colorado and is the Chief Technology Officer for OptTek Systems, Inc. He 
has authored or co-authored more than 400 published articles and eight books 
in the fields of mathematical optimisation, computer science and artificial 
intelligence. He is the recipient of the Distinguished von Neumann Theory 
Prize. He is an elected member of the National Academy of Engineering and 
has received honorary awards and fellowships from the American Association 
for the Advancement of Science (AAAS), the NATO Division of Scientific 
Affairs, the Miller Institute of Basic Research in Science and numerous other 
organisations. 

Jin-Kao Hao is a Full Professor in the Computer Science Department of the 
University of Angers (France) and is currently the Director of the LERIA 
Laboratory. His research lies in the design of effective heuristic and 
metaheuristic algorithms for solving large-scale combinatorial search problems. 
He is interested in various application areas including bioinformatics, 
telecommunication networks and transportation. He has co-authored more than 
100 peer-reviewed publications in international journals, book chapters and 
conference proceedings. 

Gary Kochenberger is a Full Professor of Decision Science at the University of 
Colorado at Denver and is a Co-director of the Decision Science programme. 
His research focuses on designing and testing metaheuristics methods for large 
scale optimisation problems. He has co-authored more than 70 refereed papers 
and three books. 

 

1 Introduction 

1.1 Problem representation 

We formulate the polynomial unconstrained binary (PUB) optimisation problem as 

( )
 

:  :o o p px binary
PUB Minimise x c c F p P= + ∈∑  

The vector x = (x1,x2,…,xn) consists of binary variables, xi ∈ {0,1} for i ∈ N = {1,…,n}, 
and the coefficients cp for p ∈ P = {1,…,po} are non-zero scalars. Fp is a product of 
components of the x vector given by 

( ):  where .p i p pF x i N N N= Π ∈ ⊂  

Each variable xi in the product defining Fp appears only once, noting that h
i ix x=  for xi 

binary, which renders powers h of xi other than h = 1 irrelevant. 
A seemingly more general formulation arises by replacing the sets Np, p ∈ P by 

vectors ,o
pN  p ∈ Po and writing Fp = xi1xi2…xih for ( )1 2, , , ,o

h pi i i N=… which allows 

different coefficients cp for different permutations of the same set of indexes. However, 
as noted in the following observation, such a formulation in terms of permutations can be 
readily converted into a formulation in terms of sets, with the advantage of reducing the 
number of non-zero coefficients (and thereby increasing the sparsity of the problem 
representation). 
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Remark 1: In a polynomial representation based on permutations, where two 
permutations ( )1 2, , ,o

p hN i i i= …  and ( )1 2, , , ,o
q hN j j j= …  are over the same set of 

indexes, and the associated costs o
pc  and o

qc  are both non-zero, an equivalent problem 

results by redefining :o o o
p p qc c c= +  and 0,o

qc =  thus eliminating the term for the vector 

.o
qN  

The validity of the remark follows simply from the fact that the product xi1xi2…xih has the 
same value as the product xj1xj2…xjh. By summing the costs for different permutations as 
indicated, the remark gives a basis for a preprocessing step enabling any  
permutation-based formulation of PUB to be converted into the form shown. Such a 
preprocessing step may also be viewed as equivalent to producing a restricted 
permutation formulation where each permutation ( )1 2, , ,o

p hN i i i= …  has the ascending 

index property i1 < … < ih. 
To see how the PUB formulation relates to more classical formulations that  

embody the ascending index property, consider the cubic polynomial given  
by ( ) ( ) ( ): : : .i i ij i j ijk i j kq x i N q x x i j N q x x x i j k N∈ + < ∈ + < < ∈∑ ∑∑ ∑∑∑  

Let N(1) = {i ∈ N: qi ≠ 0}, N(2) = {(i,j): i < j ∈ N: qij ≠ 0}, N(3) = {(i,j,k): i < j < k ∈ N:  
qijk ≠ 0}. Then the representation is completed by assigning the index p the consecutive 
integer values p = 1 to po = |N(1)| + |N(2)| + |N(3)|, and letting each consecutive p take the 
associated value qi or qij or qijk, together with Np = {i} or {i,j} or {i,j,k}, for i ∈ N(1),  
(i,j) ∈ N(2), (i,j,k) ∈ N(3). 

The next remark is useful to facilitate certain operations of our method. 

Remark 2: We assume Pj = {j} for j ∈ N without regard to the value of cj, thus providing 
an exception to the rule of only including terms with non-zero coefficients in the PUB 
representation. 

1.1.1 Illustration of the PUB representation 

Consider the PUB problem whose objective function is given by 
2 3

1 2 2 3 1 1 2 2 1 1 2 37 5 2 – 3 – 4 5 – 2 3 .ox x x x x x x x x x x x x= + + + +  

First, since 2 3
2 2 1 1 1 2 2 1,    ,x x x x and x x x x= = = we can re-write xo in ascending index 

notation, including only the non-zero coefficients, as 

1 2 1 3 1 2 1 2 37 5 – – 4 3 3 .ox x x x x x x x x x= + + +  

By Remark 2, we include the x3 term in the representation, even though it has a 0 
coefficient, to give 

1 2 3 1 3 1 2 1 2 37 5 – 0 – 4 3 3 .ox x x x x x x x x x x= + + + +  

Assigning indexes p = 1 to 6 to the terms in sequence, we identify the indexes of the 
variables in these terms by 

1 2 3 4 5 6{1},  {2},  {3},  {1,3},  {1,2},  {1,2,3}N N N N N N= = = = = =  
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The cost coefficients associated with these terms, including the constant term co, are 
given by 

1 2 3 4 5 67,  5,  –1,  0,  –4,  3,  3.oc c c c c c c= = = = = = =  

(Note that while we assume the indexes of any set Np are in ascending order, we do not 
assume the sets themselves are organised in a lexicographic ascending order. Hence, in 
the example it is acceptable to give a smaller p index to the set {1,3} than to the set 
{1,2}.) 

1.2 Applications and motivation 

The special case where the polynomial objective of PUB is a quadratic function  
(hence the polynomial has a degree of 2) has been widely studied. In this case, PUB 
already represents a broad range of important problems, including those from social 
psychology (Harary, 1953), financial analysis (Laughunn, 1970; McBride and Yormack, 
1980), computer aided design (Krarup and Pruzan, 1978), traffic management (Gallo et 
al., 1980; Witsgall, 1975), machine scheduling (Alidaee et al., 1994), cellular radio 
channel allocation (Chardaire and Sutter, 1994) and molecular conformation (Phillips and 
Rosen, 1994). Moreover, many combinatorial optimisation problems pertaining to graphs 
such as determining maximum cliques, maximum cuts, maximum vertex packing, 
minimum coverings, maximum independent sets, and maximum independent weighted 
sets are known to be capable of being formulated by PUB in the quadratic case as 
documented in papers of Pardalos and Rodgers (1990), and Pardalos and Xue (1994). A 
review of additional applications and formulations can be found in Kochenberger et al. 
(2004). 

The more general PUB formulation given here is of interest for its ability to 
encompass a significantly expanded range of problems. The cubic case, for example, 
permits PUB to represent the important class of satisfiability problems known as 3-SAT, 
and offers the advantage of providing a representation whose size does not depend on the 
number of logical clauses, which stands in contrast to the case for customary binary 
integer programming formulations of 3-SAT (see Kochenberger, 2010). The availability 
of procedures for efficiently handling and updating move evaluations for instances of 
PUB involving polynomials of degree greater than 2, as identified in the following 
sections, provides an impetus to uncover additional problems that can be usefully given 
binary polynomial formulations. 

Our procedures, which apply to moves that flip (complement) the values of one  
or more variables xj in progressing from one solution to another, constitute a 
generalisation of procedures for generating 1-flip moves described in Glover et al.  
(1998) and extended to 2-flip and multi-flip moves Glover and Hao (2010a, 2010b). 
Important recent contributions of a similar nature for the quadratic problem are provided 
in Hanafi et al. (2010). A principle outcome of our development is that a variety of search 
methods which currently incorporate procedures to evaluate flip moves for the quadratic 
problem can replace these procedures by the methods described here, thereby producing 
methods capable of solving general PUB problems without any other changes in their 
structure. 
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2 Preliminary relationships 

We start by making some basic observations that directly generalise observations given in 
Glover and Hao (2010a, 2010b). These observations provide a basis for a more 
encompassing framework given in the next section which is particularly useful for 
exploiting sparsity. 

Let 'x  and "x  represent two binary solutions and define 

( ) ( )' ' ' ': ,  where :o p p p k px c F p P F x k N= ∈ = Π ∈∑  

( ) ( )" " " ": , where : .o p p p k px c F p P F x k N= ∈ = Π ∈∑  

" '–o o ox x xΔ =  

The objective function change Δxo thus discloses whether the transition (move) from 'x  
to "x will cause xo to improve or deteriorate (respectively, decrease or increase) relative 
to the minimisation objective. 

We identify the variables xi that are complemented in going from the solution 'x  to 
the solution ",x  and the subsets for which " 1ix =  and 0 by defining 

{ }" ': 1–c
i iN i N x x= ∈ =  

{ }"(1) : 1c c
iN i N x= ∈ =  

{ }"(0) : 0c c
iN i N x= ∈ =  

{ }( ) : ,  where  is an arbitrary subset of .pP M p P N M M N= ∈ ⊂  

Observation 1: If ( )' " ' "0 0 or 0i i i ix x x x= = =  for each i ∈ N, then 

( )( ) ( )( ): (1) – : (0)c c
o p px c p P N c p P NΔ = ∈ ∈∑ ∑  

Proof: The identity ( ) ( )" ': – :o p p px cpF p P c F p PΔ = ∈ ∈∑ ∑  may be rewritten as 

( ) ( )( ) ( ) ( )( )" ' " '– : – : – .c c
p p p p p pc F F p P N c F F p P P N∈ + ∈∑ ∑  If p ∈ P – P(Nc), 

then Np must contain at least one k such that ' " 0,k kx x= =  and hence 
" ' 0.p pF F= = Consequently, ( ) ( )( )" '– : .c

o p p px c F F p P NΔ = ∈∑  

We rewrite the latter as 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

" ' " '

" '

– : (1) – : (0)

– : – (1) – (0) .

c c
p p p p p p

c c c
p p p

c F F p P N c F F p P N

c F F p P N P N P N

∈ + ∈ +

∈

∑ ∑
∑
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For each p in the range of this latter summation, Np is not a subset of Nc(1) and also not a 
subset of Nc(0), which implies Np must contain a pair {j,k} such that " '1,  0j jx x= =  and 

" '0,  1.k kx x= =  

Thus, " ' 0p pF F= =  for each of the terms of this latter summation, and we are left with 

( ) ( )( ) ( ) ( )( )" ' " '– : (1) – : (0) .c c
o p p p p p px c F F p P N c F F p P NΔ = ∈ + ∈∑ ∑  But " 1pF =  

and ' 0pF =  for p ∈ P(Nc(1)) while " 0pF = and ' 1pF =  for p ∈ P(Nc(0)). This completes 

the proof. 

In each of the following two corollaries, we make the more restrictive assumption that 
' 0.x =  Let { } ( ) { }( )"" : 1 hence " : "i pN i N x P N p P N N= ∈ = = ∈ ⊂  to identify those 

sets Np such that " 1ix =  for all i ∈ Np. Thus, if { }1" , , ,hN i i= …  then ( ")P N  is the index 
set for all those sets Np composed of one or more of the elements i1,…,ih. 

Corollary 1.1: If ' 0,x =  then ( )( ): "o px c p P NΔ = ∈∑  

Proof: The result follows directly from Observation 1, by noting that for ' 0x =  we  
have " (1)cN N=  and { }"(1) : 1 .c c

iN i N x= ∈ =  At the same time, the definition 

{ }"(0) : 0 ,c c
iN i N x= ∈ =  which implies { }'(0) : 1 ,c c

iN i N x= ∈ =  showing that Nc(0) is 

empty. 

To simplify the statement of the next result, it is useful to isolate the coefficients cp of the 
product terms Fp that refer only to a single variable xj. As previously noted, we suppose 
Np = {p} for p ∈ N, although cp = 0 is possible for some of these indexes. Hence, the 
product term Fp for p ∈ N is the single variable term Fp = xp. If we denote indexes p ∈ N 
instead by j ∈ N to conform to the practice of referring to variables xj for j ∈ N, our 
indexing convention identifies the ‘xj component’ of the objective function xo to be just 
cjxj. 

Corollary 1.2: If ' 0,x =  and "x  results from 'x  by flipping the single variable xj, then 
Δxo = cj. 

Proof: This result is an immediate consequence of Corollary 1.1 where " { }.N j=  

Corollary 2 can also be established directly by noting that the solution "" ' j jx x x e= +  

yields " 0pF =  for all p ∈ P except for p = j, since each term "
pF  other than for p = j 

contains a variable xk such that " ' 0.k kx x= =  Hence, Δxo reduces to " '– ,j j j jc x c x  which is 

just cj, as stipulated. 

In the context of Corollaries 1.1 and 1.2, cj gives the change in xo that results from 
flipping a single variable xj, while ( ): ( ")pc p P N∈∑  is the change that results from 
flipping all variables xi for ".i N∈  Hence, Corollary 1.2 gives an evaluation of a 1-flip 
move and Corollary 1.1 gives an evaluation of a q-flip move by letting the set "N  
represent the indexes for a selected set of q variables that are flipped from 0 to 1. 
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3 Exploiting and updating problem transformations 

The preceding corollaries have an important implication: provided we start from a 
solution ' 0,x =  the amount of effort to evaluate a move involving any number of flips, 
from 1 to q, is the same for any polynomial of degree d for d ≥ q (the degree d may be 
defined by d = max(|Np|: p ∈ P). Thus, by this stipulation, the work to evaluate a 1-flip is 
the same for all polynomials, the work to evaluate a 2-flip is the same for all polynomials 
of degree 2 or greater, and so on. It also follows that the work to evaluate a q-flip for a 
polynomial of degree d ≥ q only requires a single addition operation beyond the work to 
evaluate a q-flip for a polynomial of degree d = q – 1. Consequently, a 3-flip in a 
polynomial of degree 3 or larger can be evaluated by using only one addition operation 
beyond that required to evaluate a 3-flip in a polynomial of degree 2. 

Corollaries 1.1 and 1.2 therefore provide a natural motivation to manipulate the 
formulation of PUB so that a current solution 'x  may always be treated as if it were the 0 
solution. To do this we use the common device of transforming the x vector into another 
binary vector y by complementing selected components of x; in this case, specifically 
complementing those components of x such that ' 1,jx =  thus causing the assignment 

'x x=  to yield a corresponding assignment 'y y=  for which ' 0.y =  
For greater precision, we refer to the formulation PUB as PUB(x), and consider the 

alternative equivalent formulation PUB(y) based on the transformed vector y. To express 
PUB(y), let 

{ } { }' ''(1) : 1  and '(0) : 0i iN i N x N i N x= ∈ = = ∈ =  

and define the relationship between y and x by 

1– ,  '(1)i iy x i N= ∈  

,  '(0)j jy x i N= ∈  

This transformation of variables causes the objective for PUB(y) to include different 
terms than the objective of PUB(x). We demonstrate how this occurs by decomposing the 
transition from the formulation PUB(x) to the formulation PUB(y) into a series of 1-flip 
steps, each consisting of implementing the complementation operation for a single 
variable, i.e., for a single index '(1),i N∈  and then repeating until the operation has been 
completed for all '(1).i N∈  

The amended terms cpFp for PUB(y) require altering the identity of the set P, in order 
that it may continue to refer strictly to sets Np such that cp ≠ 0 with the exception that we 
include the sets Nj = {j} for j ∈ N even if cj = 0 as noted earlier. In other words, the 
methods we describe will result in changing P by identifying certain terms cpFp for which 
the coefficient cp for p > n will change from cp = 0 to cp ≠ 0, and certain other terms for 
which the coefficient cp for p > n will change from cp ≠ 0 to cp = 0. Thus, in the former 
case p will not belong to P, and will be added to P (by setting P := P ∪ {p}) while in the 
latter case p will be dropped from P (by setting P := P – {p}). 

The maintenance of P in this manner, so that it always refers to terms having  
non-zero coefficients for p > n, is important for exploiting sparsity, which is a 
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characteristic feature of many PUB problems, particularly those of moderate to large size. 
To treat sparsity effectively we implicitly refer to an additional set of indexes, denoted by 
Pα, which includes relevant indexes p for which cp = 0, i.e., specifying that the collection 
{Np: p ∈ Pα} consists of all subsets Np of N containing from 1 to d indexes of N. Later, 
we provide a compact coding mechanism that makes it possible to identify elements of Pα 
that are relevant for algorithmic updates without needing to rely on searches to carry out 
this identification. 

To broaden the generality of our results, we introduce a special set No and a 
corresponding ‘product term’ Fo associated with the objective function variable xo, where 
we stipulate that No = ∅. By the standard convention that the product of variables over 
the empty set equals 1, we have Fo = 1 (applying the definition Fp = Π(xk: k ∈ Np) to the 
case where Np = No). This yields coFo = co, and hence coFo is just the constant term 
associated with the objective function xo. These conventions allow us to express changes 
in xo using the same notation employed to express changes in general terms of the form 
cpFp. Consequently, we understand that Pα includes the index p = 0, in order to include 
reference to xo and co. The relevance of these stipulations will become clear in an 
illustration subsequently provided. 

To address the 1-flip case we denote the variable that is flipped by xj, hence yielding 
yj = 1 – xj. Then we define the following for each j ∈ N: 

{ }( ) : pP j p P j N= ∈ ∈  

( )( )
[ ]

[ ] [ ]

[ ]  the unique index in  such that –{ } 

,  : –{ } ,  and 0 if [ ] .

p j p

p j k p p j

p j P N N j

hence F x k N j c p j P

α= =

= Π ∈ = ∉
 

( )[ ][ ]  hence, [ ] is the same as  except that  replaces .p j p j p p j jF j y F F j F y x=  

We observe that P(j), which identifies the index set for all sets Np that contain j, is 
effectively a special case of P(M) = {p ∈ P: Np ⊂ M}, by taking M = {j}. 

3.1 Illustration of the set P(j) 

The set P(j) plays a pivotal role in several parts of our development, and hence we 
illustrate its composition by reference to the example polynomial used earlier to illustrate 
the notational conventions underlying the PUB representation. After applying these 
conventions the polynomial took the form 

1 2 3 1 3 1 2 1 2 37 5 – 0 – 4 3 3 .ox x x x x x x x x x x= + + + +  

which gave rise to the sets 

1 2 3 4 5 6{1},  {2},  {3},  {1,3},  {1,2},  {1,2,3}.N N N N N N= = = = = =  

Then the sets P(j) for j ∈ N = {1,2,3} are given by 

(1) {1, 4,5,6},  (2) {2,5,6},  (3) {3,4,6}.P P P= = =  

(The terms p[j] and Fp[j] are readily understood by reference to the composition of P(j).) 
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Observation 2: Flipping xj to replace xj by yj = 1 – xj produces the following changes for 
each index p ∈ P(j): 

( )( )[ ] [ ] [ ] [ ] [ ] [ ]: changing  to become .p j p j p p j p j p j p p jc c c c F c c F= + +  

: –p pc c=  

( ): [ ] changing  to become [ ] for the new  value .p p p p p p pF F j c F c F j c=  

Moreover, these changes are independent, so that the change for one index p ∈ P(j) does 
not affect the change for another p ∈ P(j). 

Proof: The term cpFp for p ∈ P(j) can be written as 

( ) [ ]: –{ } .p p j k p j p p jc F x x k N j x c F= Π ∈ =  

Flipping xj, which corresponds to substituting 1 – yj for xj thus transforms cpFp into  
(1 – yj)cpFp[j] = cpFp[j] – yjcpFp[j] = cpFp[j] – cpFp[j]. 

Hence, the term (cp[j] + cp)Fp[j] replaces the term cp[j]Fp[j], defined over the index set 
Np[j] = Np – {j}, and after setting cp := –cp the term cpFp[j] replaces the previous term cpFp, 
defined over the same index set Np. 

The independence of these changes follows from the fact that each set Np for p ∈ P(j) 
is unique and hence each set Np[j] = Np – {j} is also unique. 

It is important to observe that some or all of the indexes p[j] may not belong to P  
(as occurs when cp[j] = 0). If p[j] ∉ P, then except for the special case where Np contains 
the index of a single variable, p ∈ P implies cp ≠ 0, and hence the new coefficient  
cp[j] := cp[j] + cp must be non-zero. This compels P to be enlarged for the representation 
PUB(y) by setting P := P ∪ {p[j]}. On the other hand, if p[j] ∈ P, then it is possible that 
the new value cp[j] + cp of cp[j] may become 0, and in this case P must be reduced by 
setting P := P – {p[j]}. Again, we later give processes for handling such operations 
efficiently. 

The update produced by Observation 2 is completed by redefining x to be y (hence, 
redefining xj := 1 – xj) so that we may treat the current solution as ' 0,x =  and apply 
Observation 2 again to repeat the process. A record of the true solution x is kept 
throughout these operations, but the algorithm does not have to know this solution, and 
by means of the currently updated formulation only ‘sees’ a current collection of terms 
cpFp and their associated sets Np for p ∈ P (referring to the current P). 

We clarify these comments by means of the following example. We continue to 
employ the convention Np = {p} for p ∈ N, including the case where p may not belong to 
P (i.e., when cp = 0). 

3.2 Illustration of Observation 2 

Let j = 3 denote the index of the variable xj that is flipped, and let 

{ }( ) (3) 3,30,40,50,60P j P= =  
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where1 

3 30 40 50 60{3},  {3,7},  {1, 2,3},  {2,3,5},  {1, 2,3,5,7}.N N N N N= = = = =  

From the definition Np[j] = Np – {j}, we have 

3[3] 30[3] 40[3] 50[3] 60[3]{ },  {7},  {1, 2},  {2,5}, {1,2,5,7}.N N N N N= ∅ = = = =  

In accordance with conventions mentioned earlier, we refer to the special case Np[p], here 
N3[3], by No = {∅}, taking the index 3[3] to be 0. To assign specific p indexes to the 
remaining indexes p[j] = p[3], suppose 

30[3] 7,  40[3] 15,  50[3] 25 and 60[3] 55.= = = =  

Note that 30[3] = 7 satisfies the convention N7 = {7}, i.e., Np = {p} for p ≤ n, given that 
N30[3] = {7}. The remaining indexes p = 15, 25 and 55 are chosen simply for purposes of 
illustration. 

Going through the sets Np and Np[3] in the sequence given by P(3) = {3,30,40,50,60} 
generates the following changes. The symbol ‘→‘ is used to denote ‘becomes’, and the 
variables are listed in ascending index order. The first case below, for N3 = {3}, utilises 
the convention that Fo = 1. The stipulations for this case may be understood more clearly 
by comparing them to the stipulations for the second case where N30 = {3,7}. 

• for N3 = {3} and N3[3] = No = {∅} 

( ) ( )3 3:o o o o o o oc F c c c c c c c= → + → = +  

( )3 3 3 3 3 3 3 3 3 3– : –c F c x c y c y c c= → → =  

• for N30 = {3,7} and N30[3] = N7 = {7} 

( ) ( )7 7 7 7 7 30 7 7 7 7 7 30:c F c x c c x c x c c c= → + → = +  

( )30 30 30 3 7 30 3 7 30 3 7 30 30– : –c F c x x c y x c y x c c= → → =  

• for N40 = {1,2,3} and N40[3] = N15 = {1,2} 

( ) ( )15 15 15 1 2 15 40 1 2 15 2 5 15 15 40:c F c x x c c x x c x x c c c= → + → = +  

( )40 40 40 1 2 3 50 1 2 3 40 1 2 3 40 40– : –c F c x x x c x x y c x x y c c= → → =  

• for N50 = {2,3,5} and N50[3] = N25 = {2,5} 

( ) ( )25 25 25 2 5 25 50 2 5 25 2 5 25 25 50:c F c x x c c x x c x x c c c= → + → = +  

( )60 60 50 2 3 5 50 2 3 5 50 2 3 5 50 50– : –c F c x x x c x y x c x y x c c= → → =  

• for N60 = {1,2,3,5,7} and N60[3] = N55 = {1,2,5,7} 

( ) ( )55 55 55 1 2 5 7 55 60 1 2 5 7 55 1 2 5 7 55 55 60:c F c x x x x c c x x x x c x x x x c c c= → + → = +  

( )60 60 60 1 2 3 5 7 60 1 2 3 5 7 60 1 2 3 5 7 60 60– : –c F c x x x x x c x x y x x c x x y x x c c= → → =  
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Once all changes indicated in the preceding illustration are implemented, y3 is redefined 
to be x3, allowing the process to be applied anew to flip additional variables. The 
illustration demonstrates how the conventions No = {∅} and Fo = 1 permit Observation 2 
to identify the update to the objective function constant co. By this device, Observation 2 
subsumes Corollary 1.2. However, the simpler statement of Corollary 1.2 is convenient 
for evaluating 1-flips. 

3.3 Update to handle multiple flips simultaneously 

We now consider the generalisation of Observation 2 that gives the form of the update for 
performing an arbitrary collection of flips. Let M be the index set for the variables 
flipped; i.e., M = {j ∈ N: yj = 1 – xj}. We will generate a collection of terms from M and 
those sets Np having a non-empty intersection with M, i.e., for which the set Mp, defined 
by Mp = Np ∩ M, is non-empty. Each term produced from pairing M with a set Np derives 
from expanding the current term cpFp as a result of complementing the elements of M 
(which is the reason for stipulating Mp ≠ ∅) and has the form γpFp[y], where γp = cp or  
–cp as subsequently explained, and Fp[y] is the product of a y component Π(yk: k ∈ N[y]) 
and an x component Π(xk: k ∈ Rp), where Rp is defined to be the ‘residual set’  
given by Rp = Np – M. To identify these updates for all relevant indexes p,  
we define Po(M) = {p ∈ P: Mp ≠ ∅} (hence, P(M) ⊂ Po(M) by the definition  
P(M) = {p ∈ P: Np ⊂ M}). 

The sets N[y] vary according to rules that depend on the particular term cpFp 
expanded, generating a term γpFp[y] as N[y] ranges over the subsets of Mp. We include 
reference to the empty subset, which yields Π(yk: k ∈ N[y]) = Π(yk: k ∈ ∅) = 1 (again by 
the convention that a product over the empty set equals 1). The set Rp can also be empty, 
which occurs in the case where Np = Mp, giving Rp = Np – Np = ∅ (which arises because 
Np itself is a subset of Np). Then we have Π(xk: k ∈ Rp) = 1 for this case as well. 

The stipulation of whether γp = cp or –cp is determined by the number of elements in 
N[y], so that γp = cp if |N[y]| is even and γp = –cp if |N[y]| is odd. We identify the different 
compositions of N[y] and the associated coefficients γp by letting Sh(Mp) denote the 
collection of all h-element subsets of Mp, for h = 0,1,…,|Mp|. Then the outcome of 
flipping the variables xj for j ∈ M is identified by specifying the form of F[y] as N[y] 
ranges over the subsets contained in Sh(Mp) for each h = 0 to |Mp|. The case for h = 0 is 
the one that gives rise to a set N[y] = ∅, since there are no 0-element subsets of the set 
Mp. Thus, for this case we have So(Mp) = {∅} (the set whose only element is the empty 
set), and we note that this identity is independent of the set Mp. 

Observation 3: Flipping xj for each j ∈ M produces the following changes for each set Np 
such that p ∈ Po(M), and given p, for each q = 0 to |Mp| (where Mp = Np ∩ M and  
Po(M) = {p ∈ P: Mp ≠ ∅}). Let γpq = cp if q is even and γpq = –cp if q is odd and let  
δpq = ∑(γpqFpq(K): K ∈ Sq(Mp)) where Fpq(K) = Π(xk: k ∈ Rp) Π(yk: k ∈ K)). Then the 
change for set Np is given by 

( ): 0 to p pq pq Mθ δ= =∑  

and the total change for the entire polynomial is given by 

( ): ( )p op P Mθ ∈∑  
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Proof: The proof of Observation 3 results by iteratively applying the analysis given in the 
proof of Observation 2. The derivation is straightforward but rather cumbersome and so 
we omit the details. 

The essential elements of Observation 3 may be demonstrated by means of the following 
example. 

3.4 Illustration of Observation 3 

Let M = {1,2,3}, and for simplicity suppose the sets Np that have non-empty intersections 
with M are indexed so that Po(M) = {1,2,3,4}, where the sets N1,…,N4 (and their 
associated sets Mp and Rp, p = 1,2,3,4) are given by: 

N1 = {1,2,3,4,5} M1 = {1,2,3} R1 = {4,5} 
N2 = {1,2,4} M2 = {1,2} R2 = {4} 
N3 = {2,3} M3 = {2,3} R3 = ∅ (Π xk: k ∈ R3) = 1) 
N4 = {1} M4 = {1} R4 = ∅ (Π xk: k ∈ R4) = 1) 

 
Index sets Associated terms γpqFpq(K): K ∈ Sq(Mp) 

For p = 1  
 So(M1) = ∅ c1x4x5(γpq = cp) 

 S1(M1) = {{1},{2},{3}} –c1y1x4x5 – c1y2x4x5 – c1y1x4x5 (γpq = –cp) 
 S2(M1) = {{1,2},{2,3},{1,3}} c1y1y2x4x5 + c1y2y3x4x5 + c1y1y3x4x5 (γpq = cp) 
 S3(M1) = {{1,2,3}} –c1y1y2y3x4x5(γpq = –cp) 
For p = 2  
 So(M2) = ∅ c2x4(γpq = cp) 

 S1(M2) = {{1},{2}} –c2y1x4 –c2y2x4(γpq = –cp) 
 S2(M2) = {{1,2}} c2y1y2x4(γpq = cp) 
For p = 3  
 So(M3) = ∅ c3(γpq = cp) 

 S1(M3) = {{2},{3}} –c3y2 – c3y3(γpq = –cp) 
 S2(M3) = {{2,3}} c3y2y3(γpq = cp) 
For p = 4  
 So(M4) = ∅ c4(γpq = cp) 

 S1(M4) = {{1}} –c4y1(γpq = –cp) 

As stipulated in Observation 3, these quantities are accumulated and then added to the 
current coefficients of the corresponding product terms. 

Observation 3 allows the update of a multi-flip move to be carried out with greater 
efficiency than the update of a single flip move, because it avoids updating sets P(i) that 
may lose or gain elements as a result of coefficients cp that may change from non-zero to 
zero or vice versa, when this may occur more than once for the same index p. However, 
because of the need for expanded data structures to keep track of accumulated terms in 
such a multi-flip update, we anticipate that it is preferable in most circumstances to 
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decompose such an update into a series of component updates performed by reference to 
Observation 2. In our following development, therefore, we focus on an implementation 
that is organised specifically to exploit such component updates. 

We now turn to the question of how to perform these processes efficiently, giving 
particular emphasis to the situation in which the polynomial is sparse; i.e., where P 
represents only a small subset of all possible index sets (equivalently, when many terms 
Fp have associated costs cp = 0 and hence do not explicitly appear in the polynomial). 

4 Overall structure of the algorithm 

We draw on Observation 2 as the core observation for evaluating and updating moves 
that transform one solution to another. Consequently, we treat multi-flip moves as 
composed of a sequence of 1-flip moves rather than seeking to gain efficiencies using 
Observation 3. 

Following such a design, a generic method for the PUB problem may be summarised 
as follows. 

4.1 Generic PUB method 

0 Create the initial PUB data structures and select a starting solution. Transform the problem 
representation so that this solution becomes the current 0 solution. 

  

While a chosen termination condition is not satisfied 

 1 Select one or more variables xj to be flipped, by employing the cj values to identify  
Δxo for 1-flip moves as in Corollary 1.2, or the cp values to identify Δxo for multi-flip 
moves as in Corollary 1.2.  

 2 Apply Observation 2 to update the current problem representation by treating the 
selected moves as a series of 1-flips. Maintain the appropriate composition of P, and the 
sets Np and P(i), for each 1-flip replacing xj by 1 – xj, executed as follows for  

  p* = p[j] where p* > n: 

  If cp* = 0 then 

   Create the set Np* and add p* to the set P(i) for each i ∈ Np*. 

  ElseIf cp* + cp = 0 (cp* ≠ 0) then 

   Remove reference to the set Np* and drop p* from P by removing p* from the set  
P(i) for each i ∈ Np*. 

  Endif 

EndWhile 

The use of the cj and cp values as criteria for selecting a move in Step 1 above may of 
course be accompanied by additional criteria, such as employing tabu restrictions and 
aspiration incentives derived from recency and frequency memory in a tabu search 
method  (see, e.g., Glover and Laguna, 1997). 

An alternative foundation for describing and justifying the preceding algorithm is 
given in Appendix 1, which does not rely on employing transformations of variables. We 
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additionally note that the literature provides a different type of transformation mechanism 
with the goal of reducing a cubic or higher degree polynomial to a quadratic, and 
therefore enabling the problem in principle to be solved by a quadratic algorithm. We 
point out complications that arise by using this quadratic reduction approach by 
comparison with using our current approach in Appendix 2, causing the quadratic 
reduction to require multi-flip evaluations to achieve the effect of 1-flip and 2-flip 
evaluations when using our current approach. 

A key challenge for implementing the Generic PUB Algorithm is to specify the 
manner of structuring the sets P(i) = {p ∈ P: i ∈ Np) for i ∈ N. As intimated by the 
algorithm’s description, the operations of maintaining the entire problem representation 
reduce to just the operations of updating the sets P(i), together with maintaining a 
representation of the sets Np themselves. In particular, explicit knowledge of the set P is 
unnecessary, since all relevant knowledge about P is contained in the sets P(i). 

In the next section, we show a way to identify the elements of the sets Np without 
explicitly listing them, while maintaining a list of cp values that is dramatically smaller 
than would be created by allocating a multidimensional matrix to this task (by creating a 
cost matrix C(i1,i2,…,id)). To accomplish this requires a means to code vectors of the 
form (i1,…,ih) as single numbers v, and to decode such numbers v back into the vectors 
(i1,…,ih) from which they were derived. 

5 Coding and decoding index vectors for product terms 

We reiterate the convention that the indexes of product terms are written in the form a 
vector of indexes (i1,i2,…,ih) where i1 < i2 < … ih (hence corresponding to the product 
term Π(xk: k = ir: r = 1,…,h) where h takes a value between 1 and the degree d of the 
polynomial). Note that we use the symbol i in this representation because each element ir 
identifies an index rather than a variable such as xk. We first discuss the procedure for 
coding each such vector of indexes as a single value V. This corresponds to generating 
the set of indexes p belonging to the set Pα as discussed in Section 3. 

5.1 Coding procedure 

5.1.1 Organisation 

Partition the terms into groups, G(1) to G(d), where each group is a collection of vectors 
(i1,…,ih) for h = 1,…,d, identifying the indexes of all possible terms containing h 
elements (the elements of these vectors constitute the ordered form of the sets Np that 
may potentially be created, in a case where the problem is fully dense): 

( )
( )
( )

( ) ( )

1 1

1 2 1 2 1

1 2 3 1 2 1 3 2

1 1 2 1

1 2

(1) : : 1, ,

(2) : , : 1, , –1;  1, ,

(3) : , , : 1, , – 2;  1, , –1;  1, ,

( ) : , , : 1, , – –1 ;  1, , – ; ;
                            1, , –1;  

d

d d d d

G i i n

G i i i n i i n

G i i i i n i i n i i n

G d i i i n d i i n d
i i n i i− − −

=

= = +

= = + = +

= = +

= + =

…

… …

… … …
……

… … … …
… 1 1, , n+ …
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Step 1 Create a base cardinality Δ(h) and a cumulative cardinality n(h) for each group 
G(h), h = 1,…,d (the cumulative cardinality is the number of vectors in group Gh 
added to the number of vectors in all preceding groups). 

(1) : (1) ;                                             (1) (1)
(2) : (2) ( –1) / 2;                             (2) (1) (2)
(3) : (3) ( –1)( – 2) / 6;                   (3) (2) (3)
(4) : (4) ( –1)(

G n n
G n n n n
G n n n n n
G n n n

Δ = = Δ
Δ = = + Δ
Δ = = + Δ
Δ = – 2)( – 3) / 24;      (4) (3) (4)

( ) : ( ) ( –1) ( – ( –1)) / ! ( ) ( –1) ( )  

n n n

G d d n n n d d n d n d d

= + Δ

Δ = = + Δ
……

…

 

Step 2 Create the base coding v(h) for an arbitrary vector (i1,…,ih), for each group G(h): 

( )( )
( )( )( )
( )( )( )( )

( )

1

2 2

3 3 3

4 4 4 4

(1) : (1)
(2) : (2) –1 – 2 / 2 (1)

(3) : (3) –1 – 2 – 3 / 6 (2)

(4) : (4) –1 – 2 – 3 – 4 / 24 (3)

( ) : ( ) – : 1, , ) / ! ( –1)d

G v i
G v i i v

G v i i i v

G v i i i i v

G d v d i q q d d v d

=

= +

= +

= +

= Π = +

……
…

 

Step 3 Create the full coding V(h), by adding the cumulative cardinality n(h – 1) to v(h) 
for an arbitrary vector (i1,…,ih), for each group G(h): 

( ) ( )
( )
( )
( )

( )

1 1

1 2

1 2 3

1 2 3 4

1

(1) : : (1) (1)

(2) : , : (2) (1) (2)

(3) : , , : (3) (2) (3)

(4) : , , , : (4) (3) (4)

( ) : , , : ( ) ( –1) ( )d

G For i V v i

G For i i V n v

G For i i i V n v

G For i i i i V n v

G d For i i V d n d v d

= =

= +

= +

= +

= +

……
…

 

The cumulative cardinality n(d) is the maximum value of |P| for a polynomial of degree 
d, hence, the maximum number of non-zero coefficients cp when the polynomial is 
represented in ascending index order. The coding operation assigns a unique index  
p = V[M] to each set M = {i1,…,ih} for h = 1,…,d, where i1 < … < ih. We use the notation 
V[M] to distinguish the value produced by coding M from the value V(h) that represents 
the coding value previously defined. Thus, in particular, V[M] = V(h) for the value V(h) 
calculated by reference to M = {i1,…,ih} in Step 3 above (because of the ascending index 
ordering i1 < … < ih, M may strictly speaking be considered a vector, though we continue 
to refer to it as a set for convenience). The indexes p = V[M] are exactly those from the 
set {1,2,…,n(d)}. 
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5.2 Using the coding for inputting initial problem data 

The coding procedure of Section 5.1 is implemented immediately upon inputting the 
initial problem data, thereby providing a compact representation to take advantage of 
situations where the data is sparse. 

To handle this as part of the data input procedure is quite simple: 

5.2.1 Input procedure 

1 Initialise cp = 0 for p = 1 to n(d) 

2 Read problem data and simultaneously generate the coding: let M denote the current 
set of indexes input from the problem data to become a set Np, and let c denote the 
cost associated with M that is to become the value cp attached to the product term 
Π(xk: k ∈ Np) for Np = M. 

3 Produce the index p = V[M] by applying the full coding rule to the elements of M, 
and let cp = c. 

We next identify the operation that is the inverse of the coding operation, and which is a 
bit more subtle. 

5.3 Decoding a coded value p = V to obtain the index set M such that V[M] = V 

Let V denote the (full) coded value of an index set M = {i1,…,ih}, where V is the index p 
of the unknown set Np = M. We seek to identify each component i1,…,ih of M (hence of 
Np) by performing appropriate operations on the value V. 

For an arbitrary real number z, let [z] denote the greatest integer ≤ z, and let <z> 
denote the least integer ≥ z (hence, when z is a positive non-integer value, then [z] rounds 
z down and <z> rounds z up). 

Then for each value r from 2 to the degree d of the polynomial, we make reference to 
a constant β(r) determined by the following formula 

( ) 1– ( !)1/ .r r r rβ = + < >  

The ‘rounding up’ operator < > is essential to the correctness of this formula. The values 
β(r), for r = 2,…,d, may be computed in advance and stored, thus avoiding the need to  
re-compute these values multiple times when applying the decoding algorithm. For 
example, if d = 10, the relevant β(r) values obtained by the preceding formula are as 
follows: β(2) = 1, β(3) = 2, β(4) = 2, β(5) = 3, β(6) = 4, β(7) = 4, β(8) = 5, β(9) = 5,  
β(10) = 6 (these values disclose that when r ≤ 5, β(r) can be computed from the simpler 
formula c(r) = [(r + 1)/2]). 

We now state the full decoding algorithm. 

5.3.1 Decoding algorithm 

Step 1 (Identify the group h associated with V.) 

The group is G(1) if V ≤ n(1); G(2) if n(1) < V ≤ n(2); and in general is G(h) if  
n(h – 1) < V ≤ n(h). 



   

 

   

   
 

   

   

 

   

   248 F. Glover et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Step 2 (Convert V to a base code value v) 

– ( –1)v V n h=  

Step 3 (Determine the vector (i1,i2,…,ih) from the base code value by generating its 
components ir in reverse order, for r = h, h – 1,…,1.) 

r h=  

while r > 1 
 If v = 1 Then 
  ir = r 
 Else 
  w = (v – 1)r! 
  u = [w1/r] 
  i* = u + β(r) 
   (ir = i* or i* + 1, depending on which of these gives the largest value of ir satisfying 
    Π ≤ w for Π = (ir – 1)(ir – 2)…(ir – r)) 
  Πo = (i* – 1)(i* – 2)…(i* – r + 1) 
  Π1 = (i* – r) Πo (the value of Π if ir = i*) 
  Π2 = i*Πo (the value of Π if ir = i* + 1) 
  If Π2 ≤ w then 
   Π = Π2 
   ir = i* + 1 
  Else 
   Π = Π1 
   ir = i* 
  Endif 
  v := v – Π/r! (giving the ‘residual v’ to determine the next component ir for r := r – 1.) 
 Endif 
r := r – 1 
EndWhile  
i1 = v 

We sketch the justification of the decoding method as follows: the validity of Steps 1 and 
2 is apparent. The rationale underlying Step 3 derives from the requirement that ir be the 
largest integer satisfying 

( )( ) ( ) for –1 – 2 –r r rw i i i rΠ ≤ Π = …  

This value must clearly be unique and hence, if successfully identified as valid, will 
uniquely determine each component ir of the decoded vector. The fact that the iteration 
over r = h, h – 1,…,1 actually generates the proper values for Π derives from first 
observing that setting ir = r gives ir the correct value for v = 1, and then additionally 
observing that ir is appropriately determined for v = 2 as a result of the definition of β(r) 



   

 

   

   
 

   

   

 

   

    Polynomial unconstrained binary optimisation – Part 1 249    
 

    
 
 

   

   
 

   

   

 

   

       
 

(which applies in particular for v = 2 in association with setting ir = i* + 1). The validity 
of the determination of ir for larger values of v can then be established by induction. 

The following example illustrates how the coding and decoding processes are 
implemented. 

5.3.2 Illustration of the coding and decoding processes 

Assume d = 4 and n = 50. 

5.3.2.1 Coding 

We first code the set M = {i1,i2,i3} = {4,6,11}, in order to obtain the index p = V[M] 
(hence giving the index p of the set Np = M). Applying Step 1, to determine the n(h) 
values gives: 

1: (1) 50
2 : (2) (1) ( –1) / 2 50 1,225 1,275
3 : (3) (2) ( –1)( – 2) / 6 1,275 19,600 296,500
4 : (4) (3) ( –1)( – 2)( – 3) / 24 296,500 230,300 526,800

G n n
G n n n n
G n n n n n
G n n n n n n

= =
= + = + =
= + = + =
= + = + =

 

Applying Step 2 to give the base coding vector v(3) for {4,6,11} we obtain: 

( )( )
( )( )( )

1

2 2

3 3 3

(1) 4
(2) (1) –1 – 2 / 2 4 20 / 2 14

(3) (2) –1 – 2 – 3 / 6 14 720 / 6 134

v i
v v i i

v v i i i

= =

= + = + =

= + = + =

 

Since {i1,i2,i3} is in the group G(3), by Step 3 we obtain the full coding V(3) of {4,6,11} 
from V(3) = n(2) + v(3) = 1,275 + 134 = 1,409. The value V(3) = 1,409 is therefore the 
value p = V[M] that is sought. 

5.3.2.2 Decoding 

For this part of the illustration we decode the full coding value V = 1298 to find the set M 
such that V[M] = V. Step 1 of the decoding method checks for membership in one of the 
groups. Since 1,298 is greater than n(2) = 1,275 and not more than n(3) = 296,500, we 
conclude h = 3, and hence V represents a vector in the group G(3). 

Step 2 generates the basic score v = V – n(2) = 1,298 – 1,275 = 23. 
We decompose Step 3 into its successive iterations. 

• The first iteration of the While loop starts with v = 23 and r = h = 3. 

1/ 1/3

1

2

( –1) ! (23 –1)3! 22 6 132

[1,32 ] 5

* ( ) 5 (3) 5 2 7
( * –1)( * –2) ( * – 1) ( * –1)( * –2) 6 5 30
( * – ) 4 30 120

* 7 30 210

r

o

o

o

w v r

u w

i u r
i i i r i i
i r
i

β β

= = = × =

⎡ ⎤= = =⎣ ⎦
= + = + = + =

Π = + = = × =
Π = Π = × =

Π = Π = × =

…
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Since Π2 > w (210 > 132), we have Π = Π1 = 120 and i3 = i* = 7. 

Finally v := v – Π/r! gives v = 23 – 120/6 = 23 – 20 = 3. 

• The second iteration, for r = 2, gives 

1/ 1/2

1

2

( –1) ! (3 –1)2! 2 2 4

4 2

* ( ) 2 (2) 2 1 3
( * –1)( * –2) ( * – 1) ( * –1) 2
( * – ) 1 2 2

* 3 2 6

r

o

o

o

w v r

u w

i u r
i i i r i
i r
i

β β

= = = × =

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦
= + = + = + =

Π = + = =

Π = Π = × =

Π = Π = × =

…
 

Since Π2 > w (6 > 4), we have Π = Π1 = 2 and i2 = i* = 3. 

Then v := v – Π/r! gives v = 3 – 2/2 = 2. 

• Hence, on the third iteration, for r = 1, we have i1 = v = 2 and the method terminates. 

In summary, the index set generated is given by M = {i1,i2,i3} = {2,3,7} (hence, from the 
original V = 1,298, we have N1,298 = {2,3,7}). 

5.4 Illustration of memory required for the cost values cp and the associated 
sets Np 

The amount of memory required to store the costs cp and the associated sets Np using the 
foregoing processes is equal to the value n(d) for a polynomial of degree d when using an 
ascending index order representation. For purposes of illustration, we calculate these 
values for the cases d = 1 to 5, assuming n = 100 in each case. For comparison, we show 
the amount of memory required by using a cost matrix of the form C(i1,…,id), which 
entails a storage space of nd. 

Values of d 1 2 3 4 5 
Cost matrix memory nd 100 10,000 1,000,000 100,000,000 10,000,000,000 
Coded memory n(d) 100 5,050 166,750 4,087,957 79,375,495 

The rapid growth in the size of memory depicted by this illustration suggests that a 
polynomial of degree 4 or 5 may be the largest that is practical to work with. However, 
we note that this memory does not take account of the fact that the problem will generally 
be sparse, so that only a few percent of the total number of possible product terms may 
actually exist at any given time in the problem formulation. We address the challenges of 
taking advantage of our results within the context of exploiting sparsity, which is a 
hallmark of real world problems, in Part 2 of this paper. 

6 Conclusions 

We have provided basic relationships for developing efficient algorithms to solve PUB 
problems, and have identified coding and decoding processes that give the raw materials 
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for creating special algorithms to exploit practical problems that contain sparse matries. 
The sequel to this work in Part 2 will give special types of memory structures and 
associated updating algorithms to take advantage of the foundations laid in Part 1, to 
yield significant improvements both in memory consumed and in the speed of executing 
an algorithm for the PUB problem. 
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Notes 
1 The indexing selected for this illustration is based on supposing that n < 30, to support the 

convention that Np = {p} for p ≤ n (as illustrated by N3 = {3}). We have taken the liberty of 
choosing the indexes p > n for the preceding sets Np by making them somewhat smaller than 
they would likely be under ordinary circumstances. 

Appendix 1 

Alternative foundation for the generic PUB method 

The main results that support the generic PUB method can be based on a different 
foundation, which does not rely on creating a problem transformation to recast each 
iteration as starting from the solution x = 0. To express this, we introduce cross product 
terms Fp(i) and values v(i) associated with the sets P(i) = {p ∈ P: i ∈ Np} for PUB as 
follows: 

( )( ) : –{ }p k pF i x k N i= Π ∈  

( )( ) ( ) : ( )p pv i c F i p P i= ∈∑  

As before, we begin our analysis from the 1-flip perspective, and let 'x  and "x  represent 
two binary solutions where "x  is obtained from 'x  by flipping the value of a single 
variable xi from 0 to 1 or from 1 to 0. Similarly, we define ( )' ' : ,o p px c F p P= ∈∑  

where ( )' ' :p p pF x i N= Π ∈  and ( )" : ,o p px c F p P= ∈∑  where ( )" " : ,p i pF x i N= Π ∈  

and define ' " '– .o o ox x xΔ =  

Let ' ( )pF i  and '( )v i  and be the instances of Fp(i) and v(i) that result for 'x x=  and let 
" ( )pF i  and "( )v i  be the corresponding instances that result for ",x x=  hence, 

( )' '( ) : –{ } ,p k pF i x k N i= Π ∈  ( )''( ) ( ) : ( ) ,p pv i c F i p P i= ∈∑  etc. 

Proposition 1: ( )' '1– 2 '( ),  .o ix x v i i MΔ = ∈  

Proof: Write xo in the form 

( ) ( ): ( ) : – ( )o p p p px c F p P i c F p P P i= ∈ + ∈∑ ∑  

Given that the sets Np for p ∈ P(i) are precisely those that contain the index i, the 
foregoing may be re-written as 

( ) ( )( ) : ( ) : – ( )o i p p p px x c F i p P i c F p P P i= ∈ + ∈∑ ∑  

The value ' " ' –o o ox x xΔ =  therefore can be written 

( ) ( )' " ' " " ' ' – ( ) : ( ) – ( ) : ( )o o o i p p i p px x x x c F i p P i x c F i p P iΔ = = ∈ ∈∑ ∑  
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since ( ) ( )' ": – ( ) : – ( )p p p pc F p P P i c F p P P i∈ = ∈∑ ∑  as a consequence of the fact 

that xi is not a part of any Fp for p ∈ P – P(i). Moreover, since xi is not represented in 
either " ( )pF i  or ' ( )pF i  for p ∈ P(i), and xi is the only variable that changes its value, we 

have " '( ) ( )p pF i F i=  for p ∈ P(i). Hence, 

( ) ( )' " ' '– ( ) : ( )o i i p px x x c F i p P iΔ = ∈∑  

Finally from ( )''( ) ( ) : ( )p pv i c F i p P i= ∈∑  we obtain ( )' '1– 2 '( ),  ,o ix x v i i MΔ = ∈  as 

stipulated. 

Proposition 1, which effectively constitutes an alternative formulation of Corollary 2 in 
Section 2, directly generalises the corresponding result of Glover and Hao (2010a) for 
quadratic problems, and likewise shows that the amount of effort to compute '

oxΔ  is the 
same for general polynomial objective functions as for quadratic objective functions. 
Thus, in particular, by this representation, when the problem data is first  
set up, and we have a starting solution ',x  we compute and save the values 

( )''( ) ( ) : ( )p pv i c F i p P i= ∈∑  for each i ∈ M. The critical element for exploiting this 

proposition in the most effective manner is to identify a way to update the '( )v i  values 
efficiently from one iteration to the next, as 'x  is updated to become the solution 
previously denoted by ".x  

Next define 

{ } { }
( )
( )

( : ) ( ) : : , ( ) ( )

( : ) : –{ , } for ( : )

( : ) ( : ) : ( : )

p p

p k p

p p

P i j p P i j N p P i j N P i P j

F i j x k N i j p P i j

v i j c F i j p P i j

= ∈ ∈ = ∈ ∈ = ∩

= Π ∈ ∈

= ∈∑
 

We are interested in identifying the new value "( )v i  that replaces '( )v i  when "x  results 

from 'x  by " '1– .j jx x=  

Proposition 2: ( )'"( ) '( ) 1– 2 '( : )jv i v i x v i j= +  

Proof: From the definition ( )( ) ( ) : ( ) ,p pv i c F i p P i= ∈∑  we may break the summation 

into two components to give 

( ) ( )( ) ( ) : ( : ) ( ) : ( ) – ( : )p p p pv i c F i p P i j c F i p P i P i j= ∈ + ∈∑ ∑  

Since the sets Np for p ∈ P(i: j) are precisely those for p ∈ P(i) that include the index j, 
the summation on the left may be rewritten as ( ) ( )( ): : : .j p px c F i j p P i j∈∑  By the 

same token, none of the components of the summation on the right will change when 
replacing 'x  by ",x  hence the value '( ) "( ) – '( )v i v i v iΔ =  will be given by 
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( ) ( )" " ' ''( ) ( : ) : ( : ) – ( : ) : ( : ) .j p p j p pv i x c F i j p P i j x c F i j p P i jΔ = ∈ ∈∑ ∑  

However, by definition, Fp(i: j) excludes reference to the index j, and hence 
" '( : ) ( : ).p pF i j F i j=  Consequently, we obtain: 

( ) ( )" ' ''( ) – ( : ) : ( : ) .j j p pv i x x c F i j p P i jΔ = ∈∑  

and finally by the substitution '1– jx  for "
jx  and '( : )v i j  for 

( )' ( : ) : ( : )p pc F i j p P i j∈∑  gives ( )''( ) 1– 2 '( : )jv i x v i jΔ =  

which yields the value ( )'"( ) '( ) 1– 2 '( : )jv i v i x v i j= +  for "( )v i  stated in the proposition. 

Proposition 2 likewise generalises the corresponding result of Glover and Hao (2010a) 
for quadratic problems. By this Proposition 2, we identify the value '( : )v i j  and then 
obtain the updated "( )v i  value that becomes '( )v i on the next iteration. If '( : )v i j  itself 
has been maintained in updated form, this likewise is a O(1) operation. 

In general, consider a sequence of terms P(i:j:k:…), Fp(i,j,k:…) and v(i:j:k:…), which 
go as far as necessary to carry out the updates needed at each level. The structure for 
doing this is as follows. 

Let I be a subset of N that does not contain index j and let J = I ∪ {j}. Then define 

{ }
( )
( )

( ) : ( ) ( )

( ) : – for ( )

( ) ( ) : ( )

p

p k p

p p

P J p P J N P I P j

F J x k N J p P J

v J c F J p P J

= ∈ ⊂ = ∩

= Π ∈ ∈

= ∈∑
 

(Note P(∅) = P, Fp(∅) = Fp and v(∅) = v) If J contains a single element,  
J = {j}, then I = ∅, and we for simplicity we denote P(J) by P(j), hence, yielding  
P(j) = {p ∈ P: j ∈ Np}, Fp(j) = Π(xk: k ∈ Np – {j}), ( )( ) ( ) : ( ) ,p pv j c F j p P j= ∈∑  

corresponding to our earlier definition. 
We want to obtain "( )v i  for all i ∈ No after flipping xj. Consider first the sets J that 

are the maximal sets Np containing j. Let Pmax(j) = {p ∈ P: j ∈ Np and Np is maximal  
(no set Nq strictly contains Np for q ∈ P)}. 

Lemma: If J is a maximal set Np containing j, i.e., p* ∈ Pmax(j), and J = Np*, then  
v(J) = cp* for all x (hence, in particular, *'( ) ).pv J c=  

Proof: J = Np* where p* ∈ Pmax(j) implies P(J) = {p*}, since Np* is the unique  
set containing J. In turn, the definition Fp(J) = Π(xk: k ∈ Np – J) implies  
Fp(J) = 1, since J is maximal and hence Np – J = ∅. Finally, by the definition 

( )( ) ( ) : ( )p pv J c F J p P J= ∈∑  we have v(J) = cp*Fp*(J), which gives v(J) = cp*. 

Now we obtain the following. 
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General proposition: ( )'"( ) '( ) 1– 2 '( )jv I v I x v J= +  

Proof: From the definition ( )( ) ( ) : ( ) ,p pv I c F I p P I= ∈∑  we may break the summation 

into two components to give 

( ) ( )( ) ( ) : ( ) ( ) : ( ) ( )p p p pv I c F I p P J c F I p P I P J= ∈ + ∈ −∑ ∑  

Since the sets Np for p ∈ P(J) are precisely those for p ∈ P(I) that include the index j, the 
summation on the left may be rewritten as ( )( ) : ( ) .j p px c F J p P J∈∑  By the same 

token, none of the components of the summation on the right will change when replacing 
'x  by ",x  hence the value '( ) "( ) – '( )v I v I v IΔ =  will be given by 

( ) ( )" " ' ''( ) ( ) : ( ) – ( ) : ( ) .j p p j p pv I x c F J p P J x c F J p P JΔ = ∈ ∈∑ ∑  

However, by definition, Fp(J) excludes reference to the index j, and hence 
" '( ) ( ).p pF J F J=  Consequently, the expression for '( )v IΔ  reduces to 

( ) ( )" ' ''( ) – ( ) : ( ) .j j p pv I x x c F J p P JΔ = ∈∑  

and finally by the substitution '1– jx  for "
jx  and '( )v J  for ( )' ( ) : ( )p pc F J p P J∈∑  

gives 

( )''( ) 1– 2 '( )jv I x v JΔ =  

and hence 

( )'"( ) '( ) 1– 2 '( ) for "( )jv I v I x v J v I= +  

as stated in the proposition. 
The methods of this paper and of the Part 2 sequel can likewise use the preceding 

results as a starting point. 

Appendix 2 

Transformation for reducing a higher degree polynomial to a quadratic 

Boros and Hammer (2002) provide a penalty transformation approach that can be applied 
iteratively to reduce a higher degree polynomial to a quadratic. The mechanism can be 
depicted by considering the case where we seek to replace a cubic formulation by a 
quadratic formulation. The rules of the approach for this case are as follows. 

a identify a cubic term xixjxk for reduction 

b choose a two variable product term within the cubic term, say xixj, which will be 
replaced by a new binary variable xij (Every cubic term xixjxh that contains the 
product xixj will become replaced by the associated term xijxk. Of course, the 
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variables may appear in a different order in the original cubic terms, as for example 
xjxhxi or xhxjxi.) 

c add a quadratic penalty term P(xixj – 2xixij – 2xjxij + 3xij) 

By means of this transformation, the penalty impact on the objective function is zero 
when xij = xixj and is P otherwise. 

We now analyse the effect of this approach in relation to using the PUB approach of 
the present paper. Consider the use of 1-flip moves with the quadratic reduction 
procedure in the situation where the product xixj introduces a variable xij by the 
transformation indicated above. As long as both xi and xj equal 0 there is no problem. 
However, a complication ensues when at least one of xi and xj equals 1. First suppose, for 
instance that xi = 1 and xj = 0 (together with xij = 0, as appropriate). Upon attempting to 
evaluate the 1-flip xj = 0 → 1, we incur a penalty of P. The same thing happens if we 
instead evaluate the 1-flip xij = 0 → 1. Thus, to accurately evaluate the move xj = 0 → 1 
we must in fact evaluate the 2-flip move that simultaneously executes xj = 0 → 1 and  
xij = 0 → 1. 

Next, suppose both xi and xj equal 1 (together with xij = 1, as appropriate). If we now 
evaluate either the 1-flip xi = 1 → 0 or the 1-flip xj = 1 → 0, we again incur a penalty of P 
(and the same thing happens if we instead evaluate 1-flip xij = 1 → 0). In this situation, it 
is again necessary to evaluate a 2-flip move to accurately identify the outcome of the 
considered change, hence either simultaneously executing xi = 1 → 0 and xij = 1 → 0 or 
executing xj = 1 → 0 and xij = 1 → 0. 

The complications do not stop here, however. Suppose that xj is contained in two 
product terms xixj and xhxj that have undergone a transformation, producing the variables 
xij and xhj. In addition to the need to evaluate 2-flip moves in the situation described 
above (which applies to xh and xj as well as to xi and xj), an additional difficulty is 
encountered if both xi = 1 and xh = 1. Then for the case where xj = 0, to accurately 
evaluate the 1-flip xj = 0 → 1 requires evaluating the 3-flip xj = 0 → 1, xij = 0 → 1,  
xhj = 0 → 1. On the other hand, for the case where xj = 1, to accurately evaluate the 1-flip 
xj = 1 → 0 requires evaluating the 3-flip xj = 1 → 0, xij = 1 → 0, xhj = 1 → 0. 

Situations can similarly arise requiring the evaluation of still higher-order flip moves 
in order to determine an accurate evaluation of changing the value of a single variable. 
By contrast, the PUB approach we propose permits all of these situations to be handled 
by only evaluating 1-flip moves. If we allow the use of 2-flip moves with the 
transformation approach and our PUB approach, in the hope of thereby reducing the 
number of problematical situations encountered by the transformation approach, we 
discover instead that the number of these situations increases. For example, a 2-flip that 
implicates two variables xij and xpq can require four flips to evaluate accurately in the 
transformation approach, and interrelated product terms can produce even greater 
complications, all of which are handled directly by a 2-flip in the PUB approach. 

When the Boros and Hammer transformation is applied iteratively to reduce 
polynomials of degree greater than 3 to quadratics, each reduction in the degree d 
compounds the effects illustrated for reducing d from 3 to 2. The result therefore incurs 
complex combinations of penalties that produce inaccurate evaluations of 1-flip and  
2-flip moves that can only be rectified by evaluating moves that flip additional variables. 


