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Abstract 

 

A vital task facing government agencies and commercial organizations that report data is to 
represent the data in a meaningful way and simultaneously to protect the confidentiality of critical 
components of this data. The challenge is to organize and disseminate data in a form that prevents 
such critical components from being inferred by groups bent on corporate espionage, to gain 
competitive advantages, or having a desire to penetrate the security of the information underlying 
the data. Controlled tabular adjustment is a recently developed approach for protecting sensitive 
information by imposing a special form of statistical disclosure limitation on tabular data. The 
underlying model gives rise to a mixed integer linear programming problem involving both 
continuous and discrete (zero-one) variables. We develop stratified ordered (s-ordered) heuristics 
and a new meta-heuristic learning approach for solving this model, and compare their performance 
to previous heuristics and to an exact algorithm embodied in the state-of-the-art ILOG- CPLEX 
software. Our new approaches are based on partitioning the problem into its discrete and 
continuous components, first creating an s-ordered heuristic that reduces the number of binary 
variables through a grouping procedure that combines an exact mathematical programming model 
with constructive heuristics. To gain further advantages we then replace the mathematical 
programming model with an evolutionary scatter search approach that makes it possible to extend 
the method to large problems with over 9000 entries. Finally, we introduce a new metaheuristic 
learning method that significantly improves the quality of solutions obtained.  

Keywords: confidentiality, mixed integer optimization, metaheuristics, adaptive 
learning, mathematical programming, evolutionary computation. 
 
An earlier, incomplete, and abbreviated version of this paper appears with the title 
"Exact,Heuristic and Metaheuristic Methods for Confidentiality Protection by Controlled 
Tabular Adjustment," International Journal of Operations Research, Vol. 5, No. 2, pp. 
117-128, 2008.  
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1 Introduction 
Data confidentiality is an essential component of statistical surveys, for three 
reasons.  The first involves laws or government regulations pertaining to a 
particular survey (or to the agency collecting the data) that require responses 
provided to the survey be held confidential by the agency.  Such laws can be very 
broad, as for the Australian statistical system, that in essence require due 
diligence. They can alternatively be very specific, as for the U.S. Internal Revenue 
Service, requiring that "fact of filing" not be divulged and prescribing a "rule of 
three" for aggregations, or for the U.S. Census Bureau, requiring that "no 
information provided under (this act) be divulged" to a third party.  Recently, the 
U.S. Confidential Information Protection and Statistical Efficiency Act (CIPSEA) 
has imposed a blanket confidentiality protection requirement on all U.S. statistical 
data collections.  This Act does not supplant existing stronger individual acts, but 
rather assures uniform minimum level of protection across agencies. 

The second reason is ethical.  Confidentiality protection is regarded as 
ethical statistical practice and appears specifically in the Codes of Ethical Conduct 
of the International Statistical Institute, the American Statistical Association, and 
other statistical organizations.  The paradigm for statistical data collection is the 
"social contract" between the respondent and the data collector.  In return for 
something of value from the respondent (confidential information), the data 
collector ("honest broker of information") provides assurance that the data are 
necessary to achieve something of value to society (and, presumably, the 
respondent) but in any case will hold individual data confidential. 

The third reason is practical.  Respondents would not respond, or at least 
would not do so as completely and truthfully as they might otherwise, if they did 
not have faith in the intent and ability of the data collector to preserve 
confidentiality.  This is true even for surveys where response is mandatory.  In 
essence, it is important on a practical as well as legal and ethical level for the data 
collector to make and keep promises of confidentiality.  This trust is reflected in 
many U.S. government surveys where response rates exceed 80%. 
  Government agencies and commercial organizations that collect, store and 
report data typically have a responsibility to protect the confidentiality of these 
data. Tabular data are a staple of official government statistics, encompassing two 
data classifications: count data and magnitude data.   Magnitude data are 
ubiquitous, referring to data on costs, receipts or sales, number of hospital 
admissions or days in hospital, tonnage of materials shipped or tons of pollutants 
emitted, etc.  Many thousands of tables of magnitude data of economic, social and 
political importance are published each year and, based in whole or in part on 
these data, many key economic and policy decisions are made daily by 
governmental, business and community organizations.  

Firms and individuals make use of these tables of economic and social data 
for a wide range of important purposes. Examples are as follows: (1) to study 
industry and business markets: gauge the competition, calculate market share, 
locate business markets, design sales territories and set sales quotas, etc; (2) to 
evaluate investment opportunities, as by assessing new business opportunities, 
enhancing business opportunity presentations, etc; (3) to support public sector 
initiatives, as by maintaining local tax bases, assisting local businesses, and 
making public policies. 
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The need to safeguard the confidentiality of such data presents a 
monumental task, and government agencies such as the U.S. Bureau of Census 
and the U.S. National Center for Health Statistics that regularly report such data 
must wrestle with the confidentiality problem on a continuing basis. Inadvertent 
disclosure of sensitive corporate information could injure a large commercial 
enterprise financially and in other ways, while at the same time government 
reporting agencies are duty-bound to provide figures that convey meaningful and 
accurate information about the state of our national economy and its component 
industries and sectors. Consequently, the confidentiality problem looms as a major 
challenge with far-reaching consequences. The continuing challenge is to 
maximize data quality and usability while preserving confidentiality. 

The importance of the confidentiality protection problem is confounded by 
its computational complexity.  The primary mechanisms, cell suppression, data 
rounding and controlled tabular adjustment, are expressed as binary decision 
problems subject to linear constraints involving potentially many binary variables.  
Moreover, reporting agencies must solve such problems on an ongoing basis in 
potentially many (survey) settings.  Thus, the confidentiality problem for tabular 
data is in most cases not solvable optimally or even feasibly by standard 
algorithmic approaches. 

The purpose of this paper is to propose a new method for solving data 
confidentiality problems. We demonstrate that we are able to achieve a significant 
advance over previous methods by building on a recently proposed modeling 
approach called controlled tabular adjustment (CTA). Our study includes an 
extensive empirical investigation of alternative methods for handling the 
underlying mixed integer/continuous optimization formulation that is derived 
from the CTA model. Our study compares previously proposed heuristics to the 
state-of-the-art ILOG-CPLEX optimizer, and then creates additional methods 
consisting of a hybrid approach, a combined hybrid scatter search approach and a 
new metaheuristic learning approach. Our computational investigations disclose 
the remarkable difficulty of solving the basic problem due to the inherent 
combinatorial complexity of effective confidentiality protection, and show how 
the new procedures provide advances over previous methods. Most significantly, 
we show that the metaheuristic learning method succeeds in improving the 
solutions to a degree that establishes this class of models not only as a theoretical 
contribution but as a truly practical advance for safeguarding sensitive 
information. 

 
Model Considerations 
 
In tabular data, a cell is considered sensitive if the publication of the true cell 
value is likely to disclose a contributor’s data to the public or a competitor.  For 
example, in an economic survey, if a cell contains data from one respondent, then 
publication of the cell value would disclose confidential data pertaining to a single 
respondent.  As identities of companies associated with individual cells are 
publicly available, publication of cell values would breach the pledge of 
confidentiality made to the company by the statistical office collecting the data.  
Similarly, if a cell contains data from two respondents, or if the cell total is 
dominated by the contributions of two respondents, then either respondent could 
subtract its own contribution from the cell value to obtain a tightly bounded 
estimate of the other’s contribution. 
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Confidentiality protection for tabular data is based on assuring that all 
released tabular cells satisfy an appropriate disclosure rule (Cox 1981; Cox 2001; 
Willenborg and Waal 1996; 2001).  Cells failing to satisfy the rule (sensitive cells) 
are assigned protection ranges defined by lower and upper bounds on the true cell 
value computed from the disclosure rule.  Published or derived estimates of the 
original values of sensitive cells that lie within the protection range are considered 
unacceptable.  

Different procedures have been used by statistical offices to protect 
confidentiality of sensitive cells in tabular data.  The most popular method is 
complementary cell suppression (Cox 1980; Kelly et al. 1992; Fischetti and 
Salazar 1999; 2000).  The complementary cell suppression method suppresses 
both primary (sensitive) and secondary (nonsensitive) cells to protect the 
confidentiality of the sensitive cells.  Although suppression is widely used, it has 
serious limitations.  Complementary cell suppression is an NP hard problem 
(Kelly et al. 1992).  More important, it produces tables with data missing not-at-
random and therefore difficult to analyze by standard and all but the most 
advanced statistical methods. 

To overcome the limitations of complementary cell suppression, we 
propose new methods that are designed to exploit the model called Controlled 
Tabular Adjustment (CTA) which affords an opportunity to overcome many of 
the problems associated with traditional cell suppression and perturbation 
methods.  CTA introduces controlled perturbations (adjustments) into tabular data 
that satisfy the protection ranges and tabular constraints (additivity) while 
minimizing data loss as measured by one of several linear measures of overall 
data distortion, such as the sum of the absolute values of the individual cell value 
adjustments.  CTA replaces each sensitive cell by either of the two endpoints of 
its protection range.  These values are sometimes referred to as the minimally safe 
values.  Selected nonsensitive cell values are then adjusted from their true values 
by small amounts to restore additivity.  Additionally, nonsensitive cell 
perturbations are constrained to be small or insignificant, such as limiting them to 
be within sampling variability, and cell values for which adjustment is deemed 
undesirable can be held fixed.  Cox (2000) provides a mixed integer programming 
formulation for CTA.  Danderkar and Cox (2002) provide heuristics for solving 
the integer variables to be examined here. 

The end result of CTA is a tabular system without suppressions meeting 
the disclosure rule, which is optimally close to the original system with respect to 
distortion measure.  Thus, if the model can be solved effectively, CTA provides a 
safe, completely populated and fully analyzable tabular system. An additional 
potential advantage of the model is that the intruder is stymied by the fact that 
sensitive cells are not highlighted as they may appear to be under cell suppression. 
From the modeling standpoint, CTA is scaleable to large, multi-dimensional and 
complex tabular systems and provides confidentiality protection in such a way 
that the outside observer has no information on how the data were modified, thus 
reducing risk of disclosure and controlling information loss.  CTA therefore offers 
the promise of enhancing data access while protecting confidentiality, motivating 
the development of an algorithmic design capable of unlocking its computational 
complexity.  

The empirical evaluations of methods for CTA conducted in this paper 
begin by comparing heuristic procedures proposed by Danderkar and Cox (2002) 
to the commercial CPLEX solver. These analyses disclose both useful features 
and significant limitations of these approaches (including severe limitations to 
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CPLEX as problem size increases to dimensions often encountered in practice). 
This leads to our development and analysis of two new alternative methods 
embodying strategies of grouping and evolutionary scatter search, which prove 
more powerful than the previous heuristic approaches. Scatter search offers 
particular advantages by running far more efficiently than CPLEX, and 
significantly extending the size of problems that can be addressed, yet still 
encounters limitations shared with its predecessors in generating solutions of high 
quality. Finally, we develop a new metaheuristic learning method that performs 
far more effectively than all of the other methods and provides a reliable and 
efficient approach for producing high-quality solutions for problems of practical 
size. 

Our development is organized as follows. Section 2 presents the mixed 
integer/continuous optimization model for CTA.  Section 3 describes numerical 
tests using the heuristic approaches suggested by Danderkar and Cox (2002), 
including an examination of multiple objective functions and an evaluation of 
their impact on the CTA process.  Section 4 describes a new hybrid heuristic, 
based on reducing the number of binary variables through grouping and 
combining the exact CPLEX solution approach with principles embodied in the 
heuristics.  Section 5 introduces an evolutionary scatter search approach that 
replaces CPLEX and extends the method to large problems with over 9000 
entries.  Section 6 introduces the metaheuristic learning algorithm that produces 
additional improvement by dramatically enhancing the quality of solutions 
obtained. Finally, Section 7 summarizes our findings. 

2 Mathematical Formulation for Optimal Controlled 
Tabular Adjustment 
The objective of synthetic tabular data is to closely mimic the original data, 
subject to obscuring sensitive cell values to a sufficient extent.  By setting 
sensitive values to minimally safe values and constraining adjustments both 
locally (individual cells) and globally (overall measure of distortion), controlled 
tabular adjustment (CTA) is aimed at replacing original data by data that are 
comparable from a data analysis perspective. Cox and Danderkar (2004) provide 
additional approaches to preserving data accuracy and ease of use.  Extensions 
that address statistical data analytic issues directly are presented in Cox and Kelly 
(2004) and Cox et al. (2004).  

The underlying concept of CTA is simple:  The value of each sensitive cell 
is replaced by an adjusted value selected to be at a safe distance from the original 
value.  Danderkar and Cox (2002) suggest minimal adjustment, viz., to either the 
sensitive cell’s lower or upper protection limit.  Some or all nonsensitive cell 
values are then adjusted from their true values by small amounts to restore 
additivity to totals within the tabular system. 

Within this framework, adjustments to nonsensitive cell values can be 
controlled in various ways.  Selected nonsensitive cells, e.g., certain zero cells or 
totals, can be exempt from change through imposition of capacity constraints.  
Capacities are also used to confine nonsensitive adjustments to within meaningful 
limits such as sampling variability or total measurement error. One of several 
linear objective functions can be used to measure and assure minimum deviation.  
Some approaches, not discussed here, do not strictly adhere to the use of 
minimally safe values, replacing sensitive values by “safer” values (Cox and 
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Kelly 2004) or by “less safe” values based on enhanced protective capabilities of 
CTA (Cox and Danderkar 2004). 

Tabular data systems with marginal entries can be represented by their 
system of linear equations in matrix form:  Ax = 0. Column vector x  represents 
the tabulation cells of the system; ∗x  represents the original data.  Matrix A is the 
aggregation matrix representing the tabular structure among the cells. The entries 
of A are –1, 0 or +1; each row of A corresponds to one aggregation (tabular 
equation) in which “+1” denotes a contributing internal cell and “–1” a total 
(marginal) cell.  The mathematical structure of optimal synthetic tabular data is 
specified below by a mixed integer linear programming (MILP) formulation, 
containing binary and continuous variables, analogous to that introduced in Cox 
(2000). 

Notation: i = 1,…, p: denotes the p sensitive cells; i = p+1,…, n: denotes 
the n-p nonsensitive cells; bi = a binary (zero/one) variable denoting selection of 
the lower/upper limit for sensitive cell 1,..., ;i p= il  = lower deviation required to 
protect sensitive cell i = 1,…,p; iu = upper deviation required to protect sensitive 
cell i = 1,…,p; iy+  = a nonnegative continuous variable identifying a “positive 
adjustment” for the gap to cell value ;i  iy−  = a nonnegative continuous variable 
identifying a “negative adjustment” for the gap to cell value ;i  UBi, LBi = 
upper/lower cell bounds on change to cell ;i ic  = cost per unit change in cell .i  
 
MILP for Optimal Controlled Tabular Adjustment  

1
( )

n

i i i
i

Min c y y+ −

=

+∑                                                                                               (1) 

Subject to: 

( )+ −− = 0A y y                                                                                              (2) 

For 1,..., :i n=  

0 i iy UB+≤ ≤                                                                                                          (3) 

0 i iy LB−≤ ≤                                                                                               (4)
        
For 1,..., :i p=  

i i iy u b+ =  (bi binary)                                                               (5)                       
         

(1 )i i iy l b− = −                                                                                    (6)
       
After solving the MILP, the synthetic tabular data ( )it=t  is: i i i it x y y∗ + −= + − . 
Equation (1) is the objective function, which minimizes the cost due to cell 
deviations.  Two linear cost functions are commonly used, usually defined over 
deviation variables i iy y+ −+ .  The first involves coefficients 1,ic =  corresponding 
to minimizing the distortion measure “total absolute adjustment,” and the other 

1/ ,i ic x∗=  corresponding to minimizing total percent absolute adjustment. CTA 
perturbs the sensitive cells until they are safe, i.e., until sensitive cell values are 
sufficiently far from their original values.  Unless changes are carefully 
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coordinated, this can create inconsistency in the tabular system, by causing the 
sums to no longer balance.  Equation (2) maintains tabular consistency.  Equations 
(3) and (4) are used to constrain the non-sensitive cell deviations.  Usually, the 
upper bounds are computed using the estimated measurement errors for non-
sensitive cells.  Equations (5) and (6) ensure that the sensitive cells are set at their 
safe values.  This is achieved by setting these cells at either their lower or upper 
protection limits.  The protection limits for the cell include the minimum amount 
that must be added or subtracted from the true value to make the sensitive cells 
“safe”. It can be noted that CTA offers increased immunity to disclosure attack 
because in CTA the sensitive cells are not highlighted and are replaced with a 
value.  More importantly, sensitive cells are set at either their lower or upper 
limits. The intruder has no idea about the direction of perturbation. (Cox 1980; 
2001) 

It is possible that the CTA model gives rise to an infeasible problem if the 
number of sensitive cells in a particular row or column is large. The sensitive cell 
constraints in the model can be relaxed in the following manner to virtually 
eliminate these types of problems. Such a solution is acceptable since the 
constraints do not violate the important confidentiality protection condition. 

  
i i iy u b+ ≥                                                                                                                 (7)                        
_ (1 )i i iy l b≥ −                                                                                                          (8) 

 
Consider the following example, which illustrates how the mathematical 
programming formulation can be used to protect the sensitive cells in a 2-
dimensional table as shown in Table 1.  Cells (3, 1), (1, 2), and (3, 2) shown in 
bold have been identified as sensitive cells and the associated protection limits are 
shown in brackets. The upper and lower bounds for the non-sensitive cells are set 
at 20% of the original cell value. Table 2 shows the tabular data after solving the 
mathematical program. Cells with * indicate that they have been adjusted. 
 
Table 1  Tabular Data before CTA 
74 17[0,37] 85 176 
71 51 30 152 
1[0,21] 9[0,29] 36 46 
146 77 151 374 

 
Table 2  Tabular Data after CTA 
75* 0* 85 160* 
71 51 30 152 
0* 29* 36 65* 
146 80* 151 377* 

 
The corresponding mathematical programming formulation is: 
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+ −
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41 41 22 22

42 42 13 13

0 , 15 0 , 14

0 , 29 0 , 10

0 , 15 0 , 17

y y y y

y y y y

y y y y

+ − + −
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0 , 6 0 , 7

0 , 30 0 , 35

y y y y
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+ − + −
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44 44

0 , 30 0 , 25

0 , 75 [0,1]ij

y y y y

y y b

+ − + −

+ −

≤ ≤ ≤ ≤

≤ ≤ ∈
 

 
The foregoing MILP formulation unfortunately can not be solved to optimality 
except for very small problems. As we show, the CPLEX solver for MILP 
problems requires an excessive amount of time to solve a problem of size no 
larger than 10x10x20. 
 

3 Earlier Proposed Heuristics and Preliminary 
Numerical Testing  
We first examine the simple heuristic methods proposed in the literature for the 
CTA problem and evaluate their effectiveness relative to a set of 2- and 3-
dimensional test tables.  The test problems include tables with varying attributes.  
To carry out the evaluation, forty-four 2-dimensional and six 3-dimensional tables 
are randomly generated using the following specifications: 
• 2-dimensional tables range in size from 4x4 to 25x25.  3-dimensional tables 

have sizes: 5x5x2, 5x5x3, 5x5x4, 5x5x5, 5x5x6, and 5x5x7.  The dimensions 
include only internal entries (not sums). 

• Data values for internal tabular entries range from 0 to 1000 and are selected 
from a uniform distribution. 

• 10% of the internal entries are selected randomly (uniformly distributed) and 
are assigned a value of 0. This is done to generate tables that closely resemble 
the real-life economic and social tabular data.   

• For the 2-dimensional tables, two sets of tables are generated.  The first set has 
10% of the internal entries defined as sensitive.  The second set has 30% of 
the internal entries defined as sensitive.  The sensitive cells are distributed 
randomly (uniform) throughout the table.  Marginal or sum cells are not 
defined as sensitive. 
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• For the 3-dimensional tables, 30% of the internal entries are defined as 
sensitive.  The sensitive cells are distributed randomly (uniform) throughout 
the table.  Marginal cells are not defined as sensitive. 

• Sensitive entries must be assigned a value 20% greater than the original value 
or 20% smaller than the original value.  All nonsensitive cells can be modified 
to values within 20% of their original values. 

For 2-dimensional tables, the coefficient matrix is unimodular when the sensitive 
entries are integer, and consequently nonsensitive entries are automatically 
assigned to integer values.  Solutions for 3-dimensional and other tables can 
produce fractional entries in nonsensitive cells.  Integer values are often preferred 
for cosmetic purposes, and a typical and simple way to deal with this is to round 
fractional internal entries to their nearest integers and recompute totals. 

For each method tested, two objective functions are evaluated.  The first 
measure (Unweighted) minimizes the sum of the absolute changes.  The second 
measure (Weighted) minimizes a relative measure that weights the absolute 
changes by the factor 1/ ix∗ .  The methods are summarized below: 
• The ILOG-CPLEX 8.1 Optimizing (Exact) Solver 
• Random Heuristic: Sensitive entries are set to either their low value or high 

value with 0.5 probability.  The nonsensitive entries are computed using a 
linear programming formulation. The simulation is run 100 times and the 
results are analyzed for worst, mean (average), and best case performance.  In 
practice, the Best Random case is selected. 

• Ordered Heuristic: Sensitive entries are ordered from smallest to largest 
value.  Adjusted sensitive data values are assigned by alternating between the 
low value and the high value of the sensitive cell while moving through the 
ordered list.  The one exception is when a cell value equals one or more of its 
corresponding totals, in which case both are assigned the same direction. The 
nonsensitive entries are computed using a linear programming formulation to 
evaluate the nonsensitive cells.  

To evaluate the performance of the random and ordered heuristics, the results are 
compared to the optimal solutions found using the branch and bound procedure of 
CPLEX.  For unweighted cases, the objective function is computed as the sum of 
the absolute perturbations, whereas weighted results are based on an objective 
function that normalizes the summands by (1/ ix∗ ).  Percent error equals: 100% 
(heuristic objective – optimal objective)/optimal objective. 

Figure 1 displays the results obtained for the unweighted case with 2-
dimensional tables that contain 10% sensitive entries.  The figure shows results 
for tables ranging in size from 4x4 to 25x25.  There is a single curve for the 
ordered heuristic and three curves for the random heuristic.  The curves for the 
random heuristic provide mean, worst, and best solutions found during the 100 
simulations. 
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Fig. 1  Comparison of heuristics on 2-dimensional tables based on percent error  
 
Figure 1 shows that best random performed best among the heuristics, but 
produces solutions that are far from optimal.  It is interesting to note that the 
ordered heuristic method produces solutions of similar quality to the mean 
random result.  Finally, it appears that error increases slightly with table size. 

Figure 2 compares the approaches using the average relative change equal 
to the average of the absolute values obtained from (original value – new 
value)/original value. 
  

Relative Change per Entry - Unweighted (10% Sensitive)
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Fig. 2  Comparison of heuristics on 2-dimensional tables based on average percent change 
 
Figure 2 shows that when considering relative changes, the best algorithm using 
an unweighted objective function is not clearly defined.  Of course, a weighted 
objective function may provide more definitive results. 

Next, 2-dimensional tables with 30% sensitive entries were processed.  
Except for the errors being larger, the results are analogous to those found for the 
tables with 10% sensitive entries.  The relative changes for the 30% sensitive cell 
tables are also very similar to those found for the 10% sensitive cell tables, and 
thus are not included. 

Figure 3 shows results for 3-dimensional tables ranging in size from 5x5x2 
to 5x5x7 and containing 30% sensitive entries.  The results that are obtained using 
an unweighted objective function are very similar to the results obtained for 2-
dimensional tables. 
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Heuristic Error - Unweighted (30% Sensitive)
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Fig. 3  Comparison of heuristics on 3-dimensional tables based on average percent error 
 
The relative changes per entry for the 30% cases were found to be analogous to 
the results obtained for the 2-dimensional tables. 

As discussed earlier, the linear programming solution for 3- and higher 
dimensional problems can produce solutions that contain fractional values.  Figure 
4 shows the percentage of tables for which the linear program produced computed 
fractional solutions when executing the random heuristic (100 runs).  Clearly, the 
number of fractional values increases with table size.   The random heuristic only 
produced fractional values for approximately 10% of the solutions generated.  The 
best solution from 90% non-fractional solutions is reported. As mentioned earlier, 
when integer values are preferred in order to create cosmetically appealing entries 
for tables, then additional adjustment is appropriate, which fortunately has not 
been found difficult to perform. 
 

Fractional Solutions - Unweighted (30% Sensitive)
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Fig. 4  Fractional solutions obtained for 3-dimensional tables using Random heuristic 
 
To assess the impact of the type of objective function used, the previous analyses 
are also done using weighted objective functions.  Figure 5 indicates that the best 
random heuristic is superior to the ordered heuristic, but still produces significant 
errors.  
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Heuristic Error - Weighted (10% Sensitive)
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Fig. 5  Comparison of heuristics based on percent error using a weighted objective function 
 
Figure 6 indicates all solution techniques produce similar quality solutions as the 
size of the table increases for tables with a larger percentage of sensitive cells 
when relative change per entry is used for comparison. This implies that the 
heuristics are a good option for such tables if the objective is to minimize the 
relative change per entry.  
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Fig. 6  Comparison of heuristics based on percent change using a weighted objective function 
 
Results for 3-dimensional tables using weighted objective functions are consistent 
with the 2-dimensional results.  In particular, weighted objective function causes 
larger perturbations but reduces relative perturbations.  The number of fractional 
solutions is reduced when using the relative objective function.  In fact, only the 
largest table (5x5x7) exhibited a 9% fractional solution, whereas the smaller 
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tables did not produce any fractional solutions.  It appears that the relative 
objective has an advantage in this regard. 

The results of evaluating previously proposed heuristics for controlled 
tabular adjustment support the following observations: 
• A weighted objective function that considers relative perturbation produces 

solutions with small average relative perturbation, but can potentially produce 
large absolute perturbations;  

• The weighted objective function reduces the occurrence of fractional solutions 
when applied to 3-dimensional tables; 

• The best random solution obtained over 100 random executions was shown to 
be superior to the best solution from the ordered heuristic in most cases; 

• When objective function values were considered, the performance of all of the 
heuristics was poor, having errors in excess of 50%; 

• As would be expected, for these problems of significantly limited size, the 
CPLEX solver produces the best solution regardless of the objective function 
used. 
These results confirm that the exact solution approach works better than the 

heuristic approaches for small problems, but unfortunately CPLEX cannot be used 
to solve large problems, due to consuming excessive amounts of computation 
time.  We hypothesize that the earlier heuristic methods evaluated here suffer 
because finding a feasible set of binary variables may be very hard.  In particular, 
the heuristics may fail to generate a feasible solution for problems that have large 
numbers of sensitive cells.  To combat this situation, we propose a new heuristic 
method that produces better results by combining the mathematical programming 
approach with the principles embodied in the Danderkar and Cox (2002) 
heuristics.   
 

4 Stratified-Ordered Heuristic 
The principle that underlies the two heuristics tested in the previous section is that 
in a good solution to the CTA problem approximately half of the sensitive cells 
will be set to their high values and the remainder will be set to their low values. 
This tends to reduce distortions to nonsensitive cells as balanced upper and lower 
adjustments to sensitive cells cancel adverse effects on the totals. Also, ordering 
the sensitive cells and alternatively setting them to their minimally low or high 
protection values tends to produce a solution whose grand total, and hence the 
overall mean, remains nearly unchanged. In this section, we endeavor to embed 
this ordering principle within the mathematical model previously described in 
Section 2.  

Because computational requirements for our MILP roughly double with 
the addition of each binary variable, a sensible approach towards a 
computationally efficient, near-optimal algorithm is to group the sensitive cells 
and assign a unique binary variable to the entire group, with the result that all cells 
in a group are adjusted in the same direction. We first tried random grouping, 
which performed poorly.  We then experimented with the idea of using a stratified 
ordered heuristic (or s-ordered heuristic) which orders sensitive cells from largest 
to smallest, and creates the groups by “skipping” through the ordering. This 
ensures greater group-to-group homogeneity so that large cells are less likely to be 
adjusted predominantly in the same direction. This produces an improvement in 
the optimum value of the objective function.  As before, the exception is when a 
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sensitive cell value equals one of its totals, in which case only a single cell is 
assigned to the group. 

More precisely, let m ≥ 2 be the number of groups.  We add the following 
constraints to the original mathematical program. 
 
For i=1 to m:  bi = bi+m = bi+2m =  … bi+km    where (i+km) ≤ p     
 

The addition of these constraints to the original mathematical model 
reduces the number of binary variables to m.  If m = p then the solution is optimal, 
and if m < p then the solution may or may not be optimal. However, for m ≤ 20, 
the mathematical program can be solved in a reasonable amount of computer 
time.  This set of constraints generated by s-ordered heuristic combines the power 
of the mathematical program with logical principles embodied in the heuristics.   

Furthermore, the mathematical program can be enhanced with additional 
constraints (Cox and Kelly 2004; Cox et al. 2004) to improve the statistical 
characteristics of the solution.  We apply the s-ordered heuristic with this model.  
In particular, we use groups of size, m, m-1, m-2, … to  produce a range of results 
from which to choose a superior solution.  The s-ordered heuristic overcomes a 
weakness of the ordered heuristic by not predefining the direction of change for 
each group.  Whereas the ordered heuristic only evaluates one possible set of 
assignments, the s-ordered heuristic implicitly evaluates 2m possible assignments. 
The assignment refers to the allocation of up and down directions to the sensitive 
cells by fixing the binary variables.   

To determine the effectiveness of the s-ordered heuristic, sets of 2- and 3-
dimensional test tables are randomly generated using the following specifications: 
• 2-dimensional tables ranging in size from 4x4 to 25x25;   
• 3-dimensional tables having sizes: nxnxn for n = 5,6,…,11,12…20; 
• 3-dimensional tables having sizes: 10x10xn for n = 3,4,…,19,20; 
• Data values for internal tabular entries range from 0 to 1000 and are selected 

from a uniform distribution; 
• 10% of the internal entries are selected randomly (uniformly distributed) and 

are assigned a value of 0; 
• For all tables, 30% of the internal entries are defined as sensitive.  The 

sensitive cells are distributed randomly (uniform) throughout the table.  
Marginal cells are not defined as sensitive. 

• Sensitive entries must be assigned a value 20% greater than the original value 
or 20% smaller than the original value.  All nonsensitive cells can be modified 
to values within 20% of their original values. 

• In all tables, an objective that minimizes the sum of absolute changes 
(unweighted) is used. 

 Figure 7 shows the performance of the heuristics compared to the optimal 
solution for moderately sized 2-dimensional tables. The optimal solution curve is 
not displayed because its information is embodied in the report of the percent 
error of heuristic solutions with respect to optimal.   The random-100 and random-
1000 results are obtained using one hundred random assignments and one 
thousand random assignments, respectively.  The s-ordered heuristic (16) results 
are obtained using the s-ordered heuristic with m=16, which was chosen to 
provide solutions in approximately the same time as required by random-1000.  
The results indicate that the s-ordered heuristic is superior. 
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Heuristic Errors: 2-Dimensional (NxN) Tables - Unweighted (30% Sensitive) 
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Fig. 7  S-ordered heuristic performance on 2-dimensional tables based on percent error 
 
Figure 8 shows results for 3-dimensional tables.  In these cases, optimal solutions 
could not be obtained for the larger tables.  Thus, the results are compared to the 
best heuristic solution, which, in almost every case, is achieved by the s-ordered 
heuristic. 
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Fig. 8  S-ordered heuristic performance on 3-dimensional tables based on percent error 
 
These results indicate that creating groupings of sensitive cells can significantly 
extend the applicability of the integer programming model.  By using an ordering 
defined by cell value, reasonable solutions are produced. 

In a final experiment with the s-ordered heuristic, we explored an 
advanced approach for building groups of cells.  The principle here is to minimize 
the number of potential conflicts within each group so that assignments do not 
produce large perturbations to totals entries.  First, the cells are grouped into m 
groups using the previous approach.  For each group, we calculate the number of 
totals that are in common with each pair of cells.  The number of internal totals 
interactions within a group is the group score.  We then swap cells between 
groups to decrease the grand total of all group scores.  Swaps are continued until 
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no further score reduction is possible.  The resulting groups are then used to 
populate the mixed integer program.  This procedure is referred to as the s-ordered 
heuristic-with-swaps.  Figure 9 (at the end of Section 5) demonstrates that this 
process improves the solutions approximately 10% on average.   
 

5 Scatter Search for Enhancing the S-Ordered 
Heuristic 
Using the mixed integer programming based approach becomes impractical when 
the number of tabular entries exceeds a thousand. For example, the 10x10x20 
table reported in Fig 8 required 76 minutes of computational time on 2.8GHz, 
Pentium 4, 512 MB machine to process.  To overcome this limitation, we 
implemented an evolutionary scatter search procedure to find solutions in 
reasonable time (Laguna and Marti 2003).   Scatter search is designed to operate 
on a set of points, called reference points, which constitute good solutions 
obtained from previous efforts.   The basis for defining "good" includes special 
criteria - typically related to diversity - that go beyond the objective function 
value.  New points are then systematically generated combinations of the 
reference points.  These combinations are generalized forms of linear 
combinations, accompanied by processes to adaptively enforce constraint-
feasibility. 

The set of points is considered diverse if its elements are "significantly" 
different from one another.  We use Euclidean distances to determine how "close" 
a potential new point is from those in the reference set, in order to decide whether 
the point is included or discarded.  The number of new solutions created depends 
on the quality of the solutions being combined.  Specifically, when the best two 
reference solutions are combined, we generate up to five new solutions from their 
combinations, while when the worst two are combined we generate only one new 
solution. 

In the process of searching for a global optimum, the combination method 
may not be able to generate solutions of sufficiently high quality to become 
members of the reference set.  If the reference set does not change and all the 
combinations of solutions have been explored, a diversification step is triggered. 
 This step consists of rebuilding the reference set to create a balance between 
solution quality and diversity.  To preserve quality, a small set of the best (elite) 
solutions in the current reference set is used to seed the new reference set.  Then, 
the diversification method is used to repopulate the reference set with solutions 
that are diverse with respect to the elite set.  This reference set is used as the 
starting point for a new round of combinations.  This method guarantees that a 
very good solution is found quickly. 

We used the OptQuest solver to implement our scatter search method for 
the CTA problem. OptQuest uses a mixture of techniques including scatter search 
and advanced tabu search to find the right combination of decision variables to 
achieve the best possible results. During the search process, it also uses adaptive 
and neural network procedures to learn from past optimizations so that better 
solutions are obtained in a lesser amount of time (Laguna and Marti 2003).  

Figure 9 shows the results of the scatter search method used in 
combination with the s-ordered heuristic-with-swaps. The proposed heuristic 
performed very well on all instances compared to the ordered and random 
heuristics.  Figure 9 also provides results from taking the best solution obtained 
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from OptQuest-2000 using 9,10,...,16m =  (which encompasses the cases 
1,...,8).m =  Hence, it is also referred to as OptQuest-2000-swap9-16. This 

experiment provided the best solutions in all cases, except that it doubled the 
computation time required to run the problem for m=16.  It should be noted that 
for all tables for N≤ 10 the scatter search heuristic solutions were shown to be 
optimal.  In the case of tables for larger N, CPLEX could not be used to determine 
the possible optimality of the scatter search solutions due to its inordinate solution 
time requirements. So, the results are compared to the best heuristic solution, 
which, in almost every case, is achieved by the s-ordered heuristic. 
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Fig. 9  Performance of scatter search combined with the s-ordered heuristic-with-swaps on cubic 
3-dimensional tables 

 

6 Meta-heuristic Learning Algorithm for Forecasting 
Directions for Binary Variables 

6.1 Learning Algorithm  

The grouping heuristics proposed in the previous section significantly reduced the 
problem size and thereby quickly solved the resulting integer program. However, 
these methods nevertheless failed to produce satisfactory solutions for problems 
beyond a relatively limited size. The best heuristic solution was at least 50% 
inferior to the optimal solution for all moderately large 2-dimensional problems. 
Moreover, the heuristics exhibited considerable variation in the solution quality 
produced (see Figure 10). These experiments demonstrate the importance of 
reducing the size of the integer programs for gaining computational efficiency. 
We attribute the inferior performance of these methods on larger problems to their 
inability to predict and set appropriate values for a subset of variables. In this 
section, we show that a metaheuristic learning strategy for fixing a subset of 
variables to appropriate values offers an opportunity to generate high-quality 
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solutions without confronting the typical drawback of consuming vast amounts of 
computer time to discover such solutions.  

6.2 Parametric Image Learning Metaheuristic 

Our learning procedure is an adaptive memory learning metaheuristic that creates 
a strategic image of part of the problem to generate information about problem 
characteristics. Such processes have been used successfully in the fixed charge 
context (Glover et al. 2004), and are the basis for a class of adaptive memory 
metaheuristic procedures for mixed integer programming proposed in Glover 
(2006). Adapted to the present setting, the basic idea is to introduce parameters 
that penalize a variable’s violation of integer feasibility, and to drive selected 
subsets of variables in preferred directions, e.g., toward 0 or 1, under 
metaheuristic guidance.  

In the CTA problem, we are interested in identifying appropriate directions 
for selected subsets of binary variables, which are then tentatively fixed at their 
preferred values. The resulting reduced problem is then solved much more readily 
than the original problem, providing an iterative process that results in high-
quality (optimal or near optimal) solutions while expending only a small fraction 
of the computational effort required by a more traditional integer programming 
solution approach. We utilize this strategy to develop a parametric objective 
function approach to generate information about behavior of binary variables in 
the following manner.  

We represent the objective function in the compact form: Minimize 
0x cx= , where x is a set of binary variables used to protect sensitive cells. We 

refer to the “1” direction as UP and the “0” direction as DN in our framework. 
These are called goal conditions (denoted as '

jx ) because we do not seek to 
enforce UP and DN directions by imposing them as constraints in the manner of 
customary branch and bound method, but rather indirectly by incorporating them 
into the objective function of the linear programming relaxation. Let +N  and −N  
denote selected subsets of N whose union is denoted by 'N  and whose elements 
contain UP and DN goal conditions, respectively. Let 'x  denote the associated 
goal imposed solution vector and let M denote a very large positive number used 
to impose the goal conditions.  

 

)( 'LP Minimize ( ) ( )
)

0
'

(

j j j j j j
Nj N j N j

N N

x c M x c M x c x
− +

+ −∈ ∈ ∈
+

= + + − +∑ ∑ ∑           (9) 

 
Problem )( 'LP targets imposed down and up goal conditions by using incentive 
mechanism driven by the  penalty M. Binary variables included in subset −N  are 
induced to go in the DN direction and binary variable in subset +N  are induced to 
go in UP direction. Remaining variables are free to select their own favorable 
directions or to receive values between 0 and 1. Thus, in short, we are solving a 
continuous linear programming problem with penalty coefficients in the objective 
as a way to gain insight about good values to assign to the binary variables. 
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6.3 Goal Infeasibility and Resistance 

If a variable indeed favors a particular direction, then it will achieve its targeted 
goal. Otherwise, we say that it demonstrates resistance to its imposed goal. We 
say that an optimal LP solution x = "x  is goal infeasible if one of the following 
two “violations” occurs: 
 
For some '", jj xxNj <∈ +   (V-UP) 
 
For some '", jj xxNj >∈ − (V-DN) 
 
We call a variable jx  associated with violation (V-UP) or (V-DN) a goal 
infeasible variable, and we create a measure called an overt resistance 
( β UP, β DN), based on goal conditions, to learn about variable predilection for a 
particular direction as follows.  
 
For (V-UP), "'

jjj xxUP −=β                                                                     (10)
                        
For (V-DN) '"

jjj xxDN −=β                                                                                (11)
                          
An absence of a goal violation means that zero overt resistance occurs. Sometimes 
it is possible that a variable may resist its goal condition even though it does not 
violate its goal condition. We can compute this effect by making use of reduced 
costs in the following manner. We call this resistance a potential resistance 
( DNUP δδ , ).  
 

jjj RCcMUP ++=δ                (12) 
)( jjj RCcMDN ++−−=δ                          (13) 

 
where jRC is the reduced cost for variable jx .  
 
The trial solution vector may also contain variables that have not yet been 
assigned penalties, or that have had previously assigned penalties removed. We 
use their solution values in the problem (LP) to create free resistances 
( DNUP αα , ) in the following manner. 
 

jj xUP −=1α                 (14) 

jj xDN =α                            (15) 

6.4 Experimental Design to Exploit the Parametric Image 

We incorporate experimental design in our approach as a foundation for its 
learning component. First, the parametric image of objective function is generated 
using a goal vector. A diversified sample of goal vectors is generated and 
resistance measures are recorded to estimate directional effects. We do not 
employ random sampling, as used in network design problems (Karger 1999), 
because it is not efficient in terms of the number of tests required to estimate a 
preferred value for each variable.  
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Experimental design methods are often used to identify significant factors 
controlling a performance measure (for example, to determine machine speed and 
pressure levels that will produce a product of desired quality) (Montgomery 
1984). These methods can also be used to estimate main effects and interaction 
effects of binary variables using a smaller number of unbiased samples than 
random sampling (Lewis 2004).  

The main effect of a binary variable can be defined as the mean value that 
the variable achieves on a performance measure. We incorporate the three types 
of resistance measures previously indicated in conjunction with the objective 
function value to provide measures for identifying preferred directions for the 
problem variables. A test run in our experimental design process is composed of 
creating and solving a continuous LP problem that takes (9) as its objective. These 
test runs are inexpensive in the sense that they can be implemented using efficient 
linear programming post optimizations rather than by restarting the LP solution 
from scratch.  

Despite the computational efficiency of individual runs, the number of test 
runs grows exponentially with the number of variables used for a full factorial 
design, and we seek a better alternative. The basic purpose of full factorial design 
is to estimate interaction effects as well as main effects. However, we hypothesize 
that interaction effects have a negligible influence compared to main effects, due 
to the sparsity of the variable effects in the integer programming context. Thus, 
we focus on estimating main effects without concern for interaction effects in the 
present setting.  

Fractional factorial design can be used to target desired variable effects 
using confounding techniques. This design has an ability to reduce the number of 
trial vectors considerably. For example, a problem with 10 binary variables will 
need 1024 test runs with full factorial design, but will need only 16 test runs to 
estimate main effects with fractional factorial design. If necessary, we can also 
add more runs to a fractional factorial design to improve the accuracy of the 
method, employing the strategy known as sequential experimentation.   

One possible method to implement a fractional factorial design is to 
generate a set of goal vectors over a complete set of binary variables. This method 
has the disadvantage that it would eliminate the use of free resistances as defined 
by (14) and (15). Instead, we prefer to partition binary variables into groups and 
run different experimental design runs over these subsets while keeping variables 
in other subsets free, thereby generating information on free resistances. This also 
makes it possible to analyze the problem from different angles by conducting 
different experimental design runs. Test runs provide information on goal 
resistances and objective values. Experimental design then identifies the main 
effect of each variable for each performance measure.  

Recently, Lewis (2004) has used experimental design techniques in integer 
programming, making use of elastic constraints to avoid problem infeasibility. 
However, our method differs from this approach at a fundamental level. Instead of 
resorting to elastic constraints, our parametric image approach avoids infeasibility 
in a way that allows us to focus on studying the behavior of variables in different 
circumstances to learn about their optimal directions. Second, in contrast to Lewis 
(2004), who used the objective function as the sole performance measure, we 
make use of measures based on different goal resistances in addition to the 
objective function.  

Our approach of selecting different performance measures for finding true 
main effects is motivated by the fact that information about the desirability of 
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different choices is captured in different forms by different rules.  This 
information can be used more effectively by means of a strategy that combines the 
rules in aggregation rather than by using a strategy of selecting different rules at 
different times (Glover and Laguna 1997).  The learning algorithm used to fix 
directions for a specified subset of variables can be summarized as below. The 
details for carrying out these steps are elaborated subsequently. 
 
6.5 Parametric Image Learning Algorithm 
 

1. Group p binary variables into lastK subsets of size n such that 
       lastK= |_p / n_|  
2. Construct goal vectors for parametric image process using fractional 

factorial design. (Refer to Appendix  for further details.) 
3. Set an upper bound on the objective function to induce trial solutions to 

come from better regions. 
4. Run fractional factorial experimental design as: 

For subsets K = 1… lastK 
For test runs T = 1…lastT 

Construct the parametric image of the objective function 
using a partial goal vector. 
Solve the resulting linear programming relaxation. 
Compute overt, potential, free resistances and objective 
function value. 
Record these performance measures into pertinent 
performance recording vectors [PV]. 

  End T 
 End K 

5. Relative to each variable, compute the main effect of  measures except 
free resistance measures as: 
For performance attribute A = 1…lastA (except free resistance) 

For variables P=1…lastP 
Compute main effect ME [A][P] of variable ‘p’ in attribute 
‘a’ as : 
   { 

    For Experiment K = 1… lastK  
For test runs T = 1…lastT 
 If  ( /

px  = DN)  then 
         ME[A][P] = ME[A][P] - 

PV[A[K][T] 
 If  ( /

px  = UP)  then 
         ME[A][P] = ME[A][P] + 

PV[A][K][T] 
End T 

    End K 
      } 
  End P 
 End A 

6. Relative to each variable, compute main effect of the free resistance 
measures as: 

For variables P=1…lastP  
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Compute main effect ME[A][P] as  
    {  

For experiment K = 1…lastK  
For test runs T= 1…lastT 
 If ( px  < 0.5 ) then 
  ME[A][P] = ME[A][P] + 1 
 If ( px  > 0.5 ) then 

    ME[A][P] = ME[A][P]  - 1 
  

End T 
    End K 
      } 
  End P  

7. Compute final score for each variable using persistent voting principle as: 
For variables P=1…lastP 

Final Score [P] = 0 
For A = 1…lastA (includes free resistance measure) 

If  (ME [A][P] > 0) then 
  Final Score [P] = Final Score [P] + 1 

If  (ME [a][p] < 0) then 
  Final Score [P] = Final Score [P] – 1 

    End A  
 End P 

8. Rank variables P = 1…lastP in descending order of the absolute values of 
final scores. 

9. Set cutoff  ‘c’ to fix direction for the variables. 
10.  Fix directions for binary variables as: 

For variables P=1…c 
 If (Final Score [P] > 0) then 
  px  = 0 
 If (Final Score [P] < 0) then 
  px  = 1 
End P 

11. Solve the resulting mixed integer programming problem.  

6.6 Discussions and Elaboration of the Method 

Variables are grouped into K subsets in step 1 in a random manner. The rationale 
for using a random assignment is to avoid generating an interaction effect. By 
contrast, a process of grouping variables from a particular row or column together 
can produce significant interaction effects because of tabular additivity. The 
fractional factorial design we employ confounds interaction effects with the aim 
of reducing the number of test runs. Selecting sensitive cells in a random fashion 
encourages them to exhibit minor interaction effects because of weak tabular 
connectivity.  

The logic of our earlier ordered heuristic, which assigns up and down 
directions for ordered cells in an alternating fashion, is consistent with this 
finding. Thus, the ordered heuristic tries to capitalize on a positive two-factor 
interaction effect.  The heuristic embodies a subtle limitation, however, which 
serves to undermine its efficacy. Sometimes, the heuristic may assign either plus 
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or minus directions to all cells in a row or a column, thereby increasing the 
absolute adjustment. For example, consider a 4x4 table in which cells (1,1), (2,4), 
(3,1), and (4,4) are sensitive with protection limits of 40,35,30,25 respectively. 
The ordered heuristic would cause very large adjustments to nonsensitive cells in 
this case. This might be a primary reason why the ordered heuristic did not 
perform well in our experiments. We overcome this deficiency in our present 
approach by exploiting the following design. 

A parametric image of the objective function is generated as follows. A 
typical test run contains target directions for a subset of variables and free 
directions for remaining variables. We can use these targeted directions to 
generate a parametric image of the objective function as: 
 

( ) ( ) j
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+−++=
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The new model has the effect of inducing variables with a DN goal condition to 
receive a value of 0 and variables with an UP goal condition to receive a value of 
1, while allowing remaining variables to take arbitrary values (without being 
induced to move in a particular direction).  

Steps 5 and 6 compute the average effect of a variable for a given measure. 
This basically computes the average change in the performance measure when a 
binary variable is changed from 0 to 1. This method is widely used in 
experimental design to compute average effects (Montgomery 1984) because it 
groups observations into two sets and then checks on average whether there is any 
difference in performance between the two sets.  For example, if the DN direction 
sum is higher than the UP direction sum, this signals a negative effect, implying 
that a performance measure would decrease if a binary variable were set to 1 
instead of 0.  

We record performance measures in 3-dimensional vectors for each 
variable, where row dimension refers to the performance measure, column 
dimension refers to the experiment and page dimension refers to the test run from 
the experiment. As shown in steps 5 and 6, to calculate the main effect for a 
measure, we sum over performance values computed with respect to all test runs 
from all experiments for that measure. We subsequently record the main effects of 
variables in a 2-dimensional vector in which row dimension refers to the 
performance measure and column dimension refers to a binary variable. 

We rank binary variables in descending order according to the absolute 
values of their final scores and select a subset of these variables to receive fixed 
directions. The cutoff level was decided using experimental evaluation. We found 
45% and 70% as cutoff levels for “small” and “big” tables respectively, in the 
sense that these levels generated high-quality solutions in a reasonable amount of 
time. If the size of the table is below (above) 15x15, then it is referred to as a 
small (large) table, respectively. The results section shows in detail how the 
percentage of fixed variables affected solution quality and time. Use of 0 as 
threshold in the final step is mainly conceptual in nature, as it means that variables 
with positive final scores prefer the DN direction and those with negative final 
scores prefer the UP direction. The chosen cutoff level ensures that variables 
chosen to be fixed will be those that have sufficiently high absolute final scores, 
thereby offering adequate support for the chosen directions.  
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6.7 Performance of the Learning Algorithm for 2-Dimensional Tables 

We implemented the learning algorithm using C++, ILOG-Concert Technology 
1.2, and ILOG-CPLEX 8.1. Figure 10 shows the performance of our proposed 
method compared to other variable fixing heuristics. It was extremely time-
consuming to run larger problem instances to optimality using the version of 
default CPLEX. For example, we ran the 25x25 problem using the default CPLEX 
method on a 2GB RAM and 3.2GHz workstation for 24 hours. Unfortunately, the 
best solution found by CPLEX (after 19 hours and 35 minutes) still exhibited an 
optimality gap of 9.6%.    

Consequently, we needed a computationally efficient alternative to 
compute a better lower bound, which is essential for measuring the optimality 
gap. Cox et al. (2005) proposed a set partitioning relaxation for generating a 
tighter lower bound on the objective in the CTA context. We used the lower 
bound as a proxy for an optimum value for computing the optimality gap for 
larger instances. Lower bounds were reliable in the sense that they were 
consistently very close to the optimal values for those problems where an optimal 
solution could be verified (by running CPLEX for a period of time that does not 
exceed practical feasibility). In particular, for these problems involving 2-
dimensional tables, restricted in size to no more than 18 rows and columns to 
permit them to be solved by CPLEX, the optimality gap was verified to be 
approximately 1%. For example, for the 18x18 problem, the computed lower 
bound was 9736 compared to the optimum value of 9850, representing a gap of 
1.15%.  In Figure 10, the “Learning Method (optimal)” curve identifies the 
optimality gap with respect to the known optimal value, and the “Learning 
Method (lower bound)” curve identifies the optimality gap with respect to the 
lower bound.  

We found our learning method to yield significant improvements in 
reducing the optimality gap across the entire 2-dimensional test set, as 
demonstrated by Figure 10. Optimality gap values obtained by the methods 
described in preceding sections degraded considerably for the larger problem 
instances. For example, using these earlier methods, the mean gap for the 25x25 
table was 117.6% compared to the overall mean gap of 70% for smaller problems. 
In either case, the results were disappointing. By contrast, the learning method 
performed dramatically better, consistently generating high-quality solutions 
irrespective of the problem size, giving an overall mean gap of 6% and a total gap 
of 5.72% for the 25x25 problem.   

We define prediction accuracy to be the percentage of variables that are 
correctly assigned their optimal values, from a selected set of the “top” (highest 
scoring) variables identified. The prediction accuracy of our method, for a 14x14 
problem which contains 69 variables, was 85.5% for the top 10% of the problem 
variables (6 correct decisions out of 7 fixed variables). In order to analyze the 
tradeoff between solution quality and time, we fixed only the top 15% of the 
variables for the 17x17 problem. We found a better solution (objective value = 
9206) than our reported solution (objective value = 9460), although it was at the 
expense of computational efficiency. For this particular experiment, the result of 
fixing fewer variables caused the number of nodes processed to increase from 
2400 to 72600 and the solution time to increase from 16.38 sec to 520 sec.  We 
believe this increase in the computation time does not warrant reducing the 
number of fixed variables in order to achieve a modest gain in solution quality.  
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Fig. 10  Performance of proposed learning method on optimality gaps 
 

7 Conclusions and Remarks 
This study has undertaken an extensive set of comparative computations tests and 
analyses to evaluate the relative performance of alternative methods for the 
controlled tabular adjustment (CTA) model. Our preliminary tests compared 
previously proposed heuristics to the exact CPLEX method.  The outcomes 
showed that the exact procedure yields solutions superior to those of earlier 
heuristic approaches, but is unable to solve problems of modest size within a 
reasonable amount of time.  

To overcome these limitations of previous approaches, we have introduced 
a stratified (s-ordered) heuristic that combines the exact mathematical 
programming approach with constructive heuristics suggested in Danderkar and 
Cox (2002).  Numeric simulations indicate that the s-ordered technique has the 
ability to produce better solutions than the previous heuristics in reasonable time, 
and has the added advantage of being able to find reasonable solutions to highly 
constrained problems, but is limited to problems that remain of modest dimension. 
We then showed that using an evolutionary scatter search approach in place of the 
exact CPLEX solver yields improved results and makes it possible to handle 
problems of much greater size, though the approach still is unable to overcome the 
combinatorial complexity of these problems to achieve solutions that appear 
attractive in relation to optimality bounds.   

Finally, we demonstrate that a special metaheuristic learning method based 
on parametric image processes leads to significant additional improvements by 
generating solutions of greatly improved quality. In particular, the learning 
method succeeds in reducing the optimality gap for the problems tested from an 
overall average of 70% to an average of 6%.  The true distance from a theoretical 
optimum is likely to be somewhat smaller still, since the gap is based on an 
imprecise bound. 
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We anticipate that opportunities exist to improve our results further. 
Interactions between binary variables are likely to be present, especially variables 
corresponding to cells sharing the same tabular equation.  Our approach does not 
explicitly incorporate interactions into the factorial design portion of the learning 
procedure, because to do this would drastically multiply the number of trial 
solutions to be compared and tested. Instead, we address such interactions at 
another level through the solution of the partial integer program. Evidence of the 
ability to accommodate such interactions is provided by the significant 
improvements produced by our method compared to the heuristic and exact 
methods, including the extended variants in which these methods incorporate 
aggregated variables designed to capture interaction effects. 

Nevertheless, it seems likely that there may be benefits in examining 
interactions from additional perspectives in future research, by undertaking to 
account for dependencies in advance of solving the parametric LP problems. An 
appealing strategy comes from Cox et al. (2005), involving the solution of set 
partitioning sub-problems as a foundation for creating special types of aggregated 
variables. Extensions of the learning approach that rely more fully on ideas of 
parametric tabu search are also relevant to explore. 
 

Appendix 
Full factorial design is used to estimate main effects as well as interaction effects. 
This design uses all possible combinations of the levels of factors to estimate 
these effects. For a binary program, these test runs constitute all possible leaf 
nodes of a binary tree. The tree traversal methods can be used to compute these 
vectors. Another alternative is to use bit-wise operators to generate full factorial 
design.  The number of test runs in this design grows exponentially with the 
binary variables.  Fractional factorial design builds an experimental design on a 
smaller full factorial design of the chosen subset of binary variables, thereby 
requiring a smaller number of test runs. Our learning algorithm uses fractional 
factorial design to generate goal vectors. The method can be described as follows. 
See Montgomery (1984) for further details. 
 
1. Compute the minimum number of variables (r) needed to generate a basic 
design for the fractional factorial experiment (FFE) as  1|_log_| 2 += nr   
2. Compute the minimum number of test runs (t) needed for conducting FFE as 

rt 2=  test runs 
3. Compute the number of generators required to generate goals for remaining 
variables as m = n-r 
4. Generate a full factorial basic design for first r binary variables ( 1x … rx ). 
5. Use ‘m’ 2,3,…,h factorial interactions to compute values for remaining 
variables as. 
For M = r +1…LastM 
 For T= 1…LastT 

Code 0 as –1 and code 1 as 1 for binary variables values used in 
interaction. 
Compute the product of coded values of interacting variables for 
test t 

  If (product  > 0) then 
   x[m][t] = 1 
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  If (product  < 0) then 
   x[m][t] = 0 
 End T 
End M 

The following example, which contains six binary variables, illustrates the 
forgoing method. 

1. Minimum number of binary variables needed for basic design: r = 2+ 1=3 
2. Minimum number of test required: 823 ==t  
3. Number of generators required: m = 6-3 =3 
4. The resolution III design is feasible because 2 factor and 3 factor 

interactions suffice to complete FFE. 
5. A full factorial basic design for first r binary variables is 

 
Table 3  Full factorial design for 3 binary variables 

Test Run 1x  2x  3x  
1 0 0 0 
2 1 0 0 
3 0 1 0 
4 1 1 0 
5 0 0 1 
6 1 0 1 
7 0 1 1 
8 1 1 1 

6. Construct the FFE table using 2-factor and 3-factor interactions. We 
choose 1x 2x 3x , 1x 2x , and 1x 3x  interaction effects to generate values for 

4x , 5x , and 6x . For example, for test run 1 the value of 4x  is 0 because 
the value of coded product of 1x 2x 3x is 0. The complete FFE design is 
shown in Table 4.  

 
Table 4  Fractional Factorial design table for binary a program with 6 binary variables. 

Test Run 1x  2x  3x  4x = 1x 2x 3x  5x = 1x 2x  6x = 1x 3x  
1 0 0 0 0 1 1 
2 1 0 0 1 0 0 
3 0 1 0 1 0 1 
4 1 1 0 0 1 0 
5 0 0 1 1 1 0 
6 1 0 1 0 0 1 
7 0 1 1 0 0 0 
8 1 1 1 1 1 1 
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