
1

Integrated Exact, Hybrid and Metaheuristic
Learning Methods for Confidentiality
Protection
Fred Glover
OptTek Systems, Inc.; Boulder; CO; Glover@OptTek.com

Lawrence H. Cox

National Center for Health Statistics, Centers for Disease Control and
Prevention, Hyattsville, MD; LCox@CDC.gov

Rahul Patil
SJMSOM, Indian Institute of Technology, Bombay, India; rahul.patil@iitb.ac.in,
ph: 091-22-25767784

James P. Kelly
OptTek Systems, Inc.; Boulder, CO; Kelly@OptTek.com

Abstract

A vital task facing government agencies and commercial organizations that report data is to
represent the data in a meaningful way and simultaneously to protect the confidentiality of critical
components of this data. The challenge is to organize and disseminate data in a form that prevents
such critical components from being inferred by groups bent on corporate espionage, to gain
competitive advantages, or having a desire to penetrate the security of the information underlying
the data. Controlled tabular adjustment is a recently developed approach for protecting sensitive
information by imposing a special form of statistical disclosure limitation on tabular data. The
underlying model gives rise to a mixed integer linear programming problem involving both
continuous and discrete (zero-one) variables. We develop stratified ordered (s-ordered) heuristics
and a new meta-heuristic learning approach for solving this model, and compare their performance
to previous heuristics and to an exact algorithm embodied in the state-of-the-art ILOG- CPLEX
software. Our new approaches are based on partitioning the problem into its discrete and
continuous components, first creating an s-ordered heuristic that reduces the number of binary
variables through a grouping procedure that combines an exact mathematical programming model
with constructive heuristics. To gain further advantages we then replace the mathematical
programming model with an evolutionary scatter search approach that makes it possible to extend
the method to large problems with over 9000 entries. Finally, we introduce a new metaheuristic
learning method that significantly improves the quality of solutions obtained.

Keywords: confidentiality, mixed integer optimization, metaheuristics, adaptive
learning, mathematical programming, evolutionary computation.

An earlier, incomplete, and abbreviated version of this paper appears with the title
"Exact,Heuristic and Metaheuristic Methods for Confidentiality Protection by Controlled
Tabular Adjustment," International Journal of Operations Research, Vol. 5, No. 2, pp.
117-128, 2008.

2

1 Introduction
Data confidentiality is an essential component of statistical surveys, for three
reasons. The first involves laws or government regulations pertaining to a
particular survey (or to the agency collecting the data) that require responses
provided to the survey be held confidential by the agency. Such laws can be very
broad, as for the Australian statistical system, that in essence require due
diligence. They can alternatively be very specific, as for the U.S. Internal Revenue
Service, requiring that "fact of filing" not be divulged and prescribing a "rule of
three" for aggregations, or for the U.S. Census Bureau, requiring that "no
information provided under (this act) be divulged" to a third party. Recently, the
U.S. Confidential Information Protection and Statistical Efficiency Act (CIPSEA)
has imposed a blanket confidentiality protection requirement on all U.S. statistical
data collections. This Act does not supplant existing stronger individual acts, but
rather assures uniform minimum level of protection across agencies.

The second reason is ethical. Confidentiality protection is regarded as
ethical statistical practice and appears specifically in the Codes of Ethical Conduct
of the International Statistical Institute, the American Statistical Association, and
other statistical organizations. The paradigm for statistical data collection is the
"social contract" between the respondent and the data collector. In return for
something of value from the respondent (confidential information), the data
collector ("honest broker of information") provides assurance that the data are
necessary to achieve something of value to society (and, presumably, the
respondent) but in any case will hold individual data confidential.

The third reason is practical. Respondents would not respond, or at least
would not do so as completely and truthfully as they might otherwise, if they did
not have faith in the intent and ability of the data collector to preserve
confidentiality. This is true even for surveys where response is mandatory. In
essence, it is important on a practical as well as legal and ethical level for the data
collector to make and keep promises of confidentiality. This trust is reflected in
many U.S. government surveys where response rates exceed 80%.
 Government agencies and commercial organizations that collect, store and
report data typically have a responsibility to protect the confidentiality of these
data. Tabular data are a staple of official government statistics, encompassing two
data classifications: count data and magnitude data. Magnitude data are
ubiquitous, referring to data on costs, receipts or sales, number of hospital
admissions or days in hospital, tonnage of materials shipped or tons of pollutants
emitted, etc. Many thousands of tables of magnitude data of economic, social and
political importance are published each year and, based in whole or in part on
these data, many key economic and policy decisions are made daily by
governmental, business and community organizations.

Firms and individuals make use of these tables of economic and social data
for a wide range of important purposes. Examples are as follows: (1) to study
industry and business markets: gauge the competition, calculate market share,
locate business markets, design sales territories and set sales quotas, etc; (2) to
evaluate investment opportunities, as by assessing new business opportunities,
enhancing business opportunity presentations, etc; (3) to support public sector
initiatives, as by maintaining local tax bases, assisting local businesses, and
making public policies.

3

The need to safeguard the confidentiality of such data presents a
monumental task, and government agencies such as the U.S. Bureau of Census
and the U.S. National Center for Health Statistics that regularly report such data
must wrestle with the confidentiality problem on a continuing basis. Inadvertent
disclosure of sensitive corporate information could injure a large commercial
enterprise financially and in other ways, while at the same time government
reporting agencies are duty-bound to provide figures that convey meaningful and
accurate information about the state of our national economy and its component
industries and sectors. Consequently, the confidentiality problem looms as a major
challenge with far-reaching consequences. The continuing challenge is to
maximize data quality and usability while preserving confidentiality.

The importance of the confidentiality protection problem is confounded by
its computational complexity. The primary mechanisms, cell suppression, data
rounding and controlled tabular adjustment, are expressed as binary decision
problems subject to linear constraints involving potentially many binary variables.
Moreover, reporting agencies must solve such problems on an ongoing basis in
potentially many (survey) settings. Thus, the confidentiality problem for tabular
data is in most cases not solvable optimally or even feasibly by standard
algorithmic approaches.

The purpose of this paper is to propose a new method for solving data
confidentiality problems. We demonstrate that we are able to achieve a significant
advance over previous methods by building on a recently proposed modeling
approach called controlled tabular adjustment (CTA). Our study includes an
extensive empirical investigation of alternative methods for handling the
underlying mixed integer/continuous optimization formulation that is derived
from the CTA model. Our study compares previously proposed heuristics to the
state-of-the-art ILOG-CPLEX optimizer, and then creates additional methods
consisting of a hybrid approach, a combined hybrid scatter search approach and a
new metaheuristic learning approach. Our computational investigations disclose
the remarkable difficulty of solving the basic problem due to the inherent
combinatorial complexity of effective confidentiality protection, and show how
the new procedures provide advances over previous methods. Most significantly,
we show that the metaheuristic learning method succeeds in improving the
solutions to a degree that establishes this class of models not only as a theoretical
contribution but as a truly practical advance for safeguarding sensitive
information.

Model Considerations

In tabular data, a cell is considered sensitive if the publication of the true cell
value is likely to disclose a contributor’s data to the public or a competitor. For
example, in an economic survey, if a cell contains data from one respondent, then
publication of the cell value would disclose confidential data pertaining to a single
respondent. As identities of companies associated with individual cells are
publicly available, publication of cell values would breach the pledge of
confidentiality made to the company by the statistical office collecting the data.
Similarly, if a cell contains data from two respondents, or if the cell total is
dominated by the contributions of two respondents, then either respondent could
subtract its own contribution from the cell value to obtain a tightly bounded
estimate of the other’s contribution.

4

Confidentiality protection for tabular data is based on assuring that all
released tabular cells satisfy an appropriate disclosure rule (Cox 1981; Cox 2001;
Willenborg and Waal 1996; 2001). Cells failing to satisfy the rule (sensitive cells)
are assigned protection ranges defined by lower and upper bounds on the true cell
value computed from the disclosure rule. Published or derived estimates of the
original values of sensitive cells that lie within the protection range are considered
unacceptable.

Different procedures have been used by statistical offices to protect
confidentiality of sensitive cells in tabular data. The most popular method is
complementary cell suppression (Cox 1980; Kelly et al. 1992; Fischetti and
Salazar 1999; 2000). The complementary cell suppression method suppresses
both primary (sensitive) and secondary (nonsensitive) cells to protect the
confidentiality of the sensitive cells. Although suppression is widely used, it has
serious limitations. Complementary cell suppression is an NP hard problem
(Kelly et al. 1992). More important, it produces tables with data missing not-at-
random and therefore difficult to analyze by standard and all but the most
advanced statistical methods.

To overcome the limitations of complementary cell suppression, we
propose new methods that are designed to exploit the model called Controlled
Tabular Adjustment (CTA) which affords an opportunity to overcome many of
the problems associated with traditional cell suppression and perturbation
methods. CTA introduces controlled perturbations (adjustments) into tabular data
that satisfy the protection ranges and tabular constraints (additivity) while
minimizing data loss as measured by one of several linear measures of overall
data distortion, such as the sum of the absolute values of the individual cell value
adjustments. CTA replaces each sensitive cell by either of the two endpoints of
its protection range. These values are sometimes referred to as the minimally safe
values. Selected nonsensitive cell values are then adjusted from their true values
by small amounts to restore additivity. Additionally, nonsensitive cell
perturbations are constrained to be small or insignificant, such as limiting them to
be within sampling variability, and cell values for which adjustment is deemed
undesirable can be held fixed. Cox (2000) provides a mixed integer programming
formulation for CTA. Danderkar and Cox (2002) provide heuristics for solving
the integer variables to be examined here.

The end result of CTA is a tabular system without suppressions meeting
the disclosure rule, which is optimally close to the original system with respect to
distortion measure. Thus, if the model can be solved effectively, CTA provides a
safe, completely populated and fully analyzable tabular system. An additional
potential advantage of the model is that the intruder is stymied by the fact that
sensitive cells are not highlighted as they may appear to be under cell suppression.
From the modeling standpoint, CTA is scaleable to large, multi-dimensional and
complex tabular systems and provides confidentiality protection in such a way
that the outside observer has no information on how the data were modified, thus
reducing risk of disclosure and controlling information loss. CTA therefore offers
the promise of enhancing data access while protecting confidentiality, motivating
the development of an algorithmic design capable of unlocking its computational
complexity.

The empirical evaluations of methods for CTA conducted in this paper
begin by comparing heuristic procedures proposed by Danderkar and Cox (2002)
to the commercial CPLEX solver. These analyses disclose both useful features
and significant limitations of these approaches (including severe limitations to

5

CPLEX as problem size increases to dimensions often encountered in practice).
This leads to our development and analysis of two new alternative methods
embodying strategies of grouping and evolutionary scatter search, which prove
more powerful than the previous heuristic approaches. Scatter search offers
particular advantages by running far more efficiently than CPLEX, and
significantly extending the size of problems that can be addressed, yet still
encounters limitations shared with its predecessors in generating solutions of high
quality. Finally, we develop a new metaheuristic learning method that performs
far more effectively than all of the other methods and provides a reliable and
efficient approach for producing high-quality solutions for problems of practical
size.

Our development is organized as follows. Section 2 presents the mixed
integer/continuous optimization model for CTA. Section 3 describes numerical
tests using the heuristic approaches suggested by Danderkar and Cox (2002),
including an examination of multiple objective functions and an evaluation of
their impact on the CTA process. Section 4 describes a new hybrid heuristic,
based on reducing the number of binary variables through grouping and
combining the exact CPLEX solution approach with principles embodied in the
heuristics. Section 5 introduces an evolutionary scatter search approach that
replaces CPLEX and extends the method to large problems with over 9000
entries. Section 6 introduces the metaheuristic learning algorithm that produces
additional improvement by dramatically enhancing the quality of solutions
obtained. Finally, Section 7 summarizes our findings.

2 Mathematical Formulation for Optimal Controlled
Tabular Adjustment
The objective of synthetic tabular data is to closely mimic the original data,
subject to obscuring sensitive cell values to a sufficient extent. By setting
sensitive values to minimally safe values and constraining adjustments both
locally (individual cells) and globally (overall measure of distortion), controlled
tabular adjustment (CTA) is aimed at replacing original data by data that are
comparable from a data analysis perspective. Cox and Danderkar (2004) provide
additional approaches to preserving data accuracy and ease of use. Extensions
that address statistical data analytic issues directly are presented in Cox and Kelly
(2004) and Cox et al. (2004).

The underlying concept of CTA is simple: The value of each sensitive cell
is replaced by an adjusted value selected to be at a safe distance from the original
value. Danderkar and Cox (2002) suggest minimal adjustment, viz., to either the
sensitive cell’s lower or upper protection limit. Some or all nonsensitive cell
values are then adjusted from their true values by small amounts to restore
additivity to totals within the tabular system.

Within this framework, adjustments to nonsensitive cell values can be
controlled in various ways. Selected nonsensitive cells, e.g., certain zero cells or
totals, can be exempt from change through imposition of capacity constraints.
Capacities are also used to confine nonsensitive adjustments to within meaningful
limits such as sampling variability or total measurement error. One of several
linear objective functions can be used to measure and assure minimum deviation.
Some approaches, not discussed here, do not strictly adhere to the use of
minimally safe values, replacing sensitive values by “safer” values (Cox and

6

Kelly 2004) or by “less safe” values based on enhanced protective capabilities of
CTA (Cox and Danderkar 2004).

Tabular data systems with marginal entries can be represented by their
system of linear equations in matrix form: Ax = 0. Column vector x represents
the tabulation cells of the system; ∗x represents the original data. Matrix A is the
aggregation matrix representing the tabular structure among the cells. The entries
of A are –1, 0 or +1; each row of A corresponds to one aggregation (tabular
equation) in which “+1” denotes a contributing internal cell and “–1” a total
(marginal) cell. The mathematical structure of optimal synthetic tabular data is
specified below by a mixed integer linear programming (MILP) formulation,
containing binary and continuous variables, analogous to that introduced in Cox
(2000).

Notation: i = 1,…, p: denotes the p sensitive cells; i = p+1,…, n: denotes
the n-p nonsensitive cells; bi = a binary (zero/one) variable denoting selection of
the lower/upper limit for sensitive cell 1,..., ;i p= il = lower deviation required to
protect sensitive cell i = 1,…,p; iu = upper deviation required to protect sensitive
cell i = 1,…,p; iy+ = a nonnegative continuous variable identifying a “positive
adjustment” for the gap to cell value ;i iy− = a nonnegative continuous variable
identifying a “negative adjustment” for the gap to cell value ;i UBi, LBi =
upper/lower cell bounds on change to cell ;i ic = cost per unit change in cell .i

MILP for Optimal Controlled Tabular Adjustment

1
()

n

i i i
i

Min c y y+ −

=

+∑ (1)

Subject to:

()+ −− = 0A y y (2)

For 1,..., :i n=

0 i iy UB+≤ ≤ (3)

0 i iy LB−≤ ≤ (4)

For 1,..., :i p=

i i iy u b+ = (bi binary) (5)

(1)i i iy l b− = − (6)

After solving the MILP, the synthetic tabular data ()it=t is: i i i it x y y∗ + −= + − .
Equation (1) is the objective function, which minimizes the cost due to cell
deviations. Two linear cost functions are commonly used, usually defined over
deviation variables i iy y+ −+ . The first involves coefficients 1,ic = corresponding
to minimizing the distortion measure “total absolute adjustment,” and the other

1/ ,i ic x∗= corresponding to minimizing total percent absolute adjustment. CTA
perturbs the sensitive cells until they are safe, i.e., until sensitive cell values are
sufficiently far from their original values. Unless changes are carefully

7

coordinated, this can create inconsistency in the tabular system, by causing the
sums to no longer balance. Equation (2) maintains tabular consistency. Equations
(3) and (4) are used to constrain the non-sensitive cell deviations. Usually, the
upper bounds are computed using the estimated measurement errors for non-
sensitive cells. Equations (5) and (6) ensure that the sensitive cells are set at their
safe values. This is achieved by setting these cells at either their lower or upper
protection limits. The protection limits for the cell include the minimum amount
that must be added or subtracted from the true value to make the sensitive cells
“safe”. It can be noted that CTA offers increased immunity to disclosure attack
because in CTA the sensitive cells are not highlighted and are replaced with a
value. More importantly, sensitive cells are set at either their lower or upper
limits. The intruder has no idea about the direction of perturbation. (Cox 1980;
2001)

It is possible that the CTA model gives rise to an infeasible problem if the
number of sensitive cells in a particular row or column is large. The sensitive cell
constraints in the model can be relaxed in the following manner to virtually
eliminate these types of problems. Such a solution is acceptable since the
constraints do not violate the important confidentiality protection condition.

i i iy u b+ ≥ (7)
_ (1)i i iy l b≥ − (8)

Consider the following example, which illustrates how the mathematical
programming formulation can be used to protect the sensitive cells in a 2-
dimensional table as shown in Table 1. Cells (3, 1), (1, 2), and (3, 2) shown in
bold have been identified as sensitive cells and the associated protection limits are
shown in brackets. The upper and lower bounds for the non-sensitive cells are set
at 20% of the original cell value. Table 2 shows the tabular data after solving the
mathematical program. Cells with * indicate that they have been adjusted.

Table 1 Tabular Data before CTA
74 17[0,37] 85 176
71 51 30 152
1[0,21] 9[0,29] 36 46
146 77 151 374

Table 2 Tabular Data after CTA
75* 0* 85 160*
71 51 30 152
0* 29* 36 65*
146 80* 151 377*

The corresponding mathematical programming formulation is:

8

4 4

1 1

3

4 4
1

3

4 4
1

: ()

:

() 0 1,..., 4

() 0 1,..., 4

ij ij
i j

ij ij i i
j

ij ij j j
i

Minimize y y

subject to

y y y y for each row i

y y y y for each column j

+ −

= =

+ − + −

=

+ − + −

=

+

− − + = =

− − + = =

∑∑

∑

∑

31 31 31 31

12 12 12 12

32 32 32 32

20 1 (1);

20 17 (1)

20 9 (1)

y b y b

y b y b

y b y b

+ −

+ −

+ −

= = −

= = −

= = −

11 11 21 21

41 41 22 22

42 42 13 13

0 , 15 0 , 14

0 , 29 0 , 10

0 , 15 0 , 17

y y y y

y y y y

y y y y

+ − + −

+ − + −

+ − + −

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

23 23 33 33

43 43 14 14

0 , 6 0 , 7

0 , 30 0 , 35

y y y y

y y y y

+ − + −

+ − + −

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

24 24 34 34

44 44

0 , 30 0 , 25

0 , 75 [0,1]ij

y y y y

y y b

+ − + −

+ −

≤ ≤ ≤ ≤

≤ ≤ ∈

The foregoing MILP formulation unfortunately can not be solved to optimality
except for very small problems. As we show, the CPLEX solver for MILP
problems requires an excessive amount of time to solve a problem of size no
larger than 10x10x20.

3 Earlier Proposed Heuristics and Preliminary
Numerical Testing
We first examine the simple heuristic methods proposed in the literature for the
CTA problem and evaluate their effectiveness relative to a set of 2- and 3-
dimensional test tables. The test problems include tables with varying attributes.
To carry out the evaluation, forty-four 2-dimensional and six 3-dimensional tables
are randomly generated using the following specifications:
• 2-dimensional tables range in size from 4x4 to 25x25. 3-dimensional tables

have sizes: 5x5x2, 5x5x3, 5x5x4, 5x5x5, 5x5x6, and 5x5x7. The dimensions
include only internal entries (not sums).

• Data values for internal tabular entries range from 0 to 1000 and are selected
from a uniform distribution.

• 10% of the internal entries are selected randomly (uniformly distributed) and
are assigned a value of 0. This is done to generate tables that closely resemble
the real-life economic and social tabular data.

• For the 2-dimensional tables, two sets of tables are generated. The first set has
10% of the internal entries defined as sensitive. The second set has 30% of
the internal entries defined as sensitive. The sensitive cells are distributed
randomly (uniform) throughout the table. Marginal or sum cells are not
defined as sensitive.

9

• For the 3-dimensional tables, 30% of the internal entries are defined as
sensitive. The sensitive cells are distributed randomly (uniform) throughout
the table. Marginal cells are not defined as sensitive.

• Sensitive entries must be assigned a value 20% greater than the original value
or 20% smaller than the original value. All nonsensitive cells can be modified
to values within 20% of their original values.

For 2-dimensional tables, the coefficient matrix is unimodular when the sensitive
entries are integer, and consequently nonsensitive entries are automatically
assigned to integer values. Solutions for 3-dimensional and other tables can
produce fractional entries in nonsensitive cells. Integer values are often preferred
for cosmetic purposes, and a typical and simple way to deal with this is to round
fractional internal entries to their nearest integers and recompute totals.

For each method tested, two objective functions are evaluated. The first
measure (Unweighted) minimizes the sum of the absolute changes. The second
measure (Weighted) minimizes a relative measure that weights the absolute
changes by the factor 1/ ix∗ . The methods are summarized below:
• The ILOG-CPLEX 8.1 Optimizing (Exact) Solver
• Random Heuristic: Sensitive entries are set to either their low value or high

value with 0.5 probability. The nonsensitive entries are computed using a
linear programming formulation. The simulation is run 100 times and the
results are analyzed for worst, mean (average), and best case performance. In
practice, the Best Random case is selected.

• Ordered Heuristic: Sensitive entries are ordered from smallest to largest
value. Adjusted sensitive data values are assigned by alternating between the
low value and the high value of the sensitive cell while moving through the
ordered list. The one exception is when a cell value equals one or more of its
corresponding totals, in which case both are assigned the same direction. The
nonsensitive entries are computed using a linear programming formulation to
evaluate the nonsensitive cells.

To evaluate the performance of the random and ordered heuristics, the results are
compared to the optimal solutions found using the branch and bound procedure of
CPLEX. For unweighted cases, the objective function is computed as the sum of
the absolute perturbations, whereas weighted results are based on an objective
function that normalizes the summands by (1/ ix∗). Percent error equals: 100%
(heuristic objective – optimal objective)/optimal objective.

Figure 1 displays the results obtained for the unweighted case with 2-
dimensional tables that contain 10% sensitive entries. The figure shows results
for tables ranging in size from 4x4 to 25x25. There is a single curve for the
ordered heuristic and three curves for the random heuristic. The curves for the
random heuristic provide mean, worst, and best solutions found during the 100
simulations.

10

Heuristic Error - Unweighted (10% Sensitive)

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20 25 30
Table Size (nxn)

Pe
rc

en
t E

rr
or

Mean Error %
Ordered Error %
Best Random %
Worst Random %

Fig. 1 Comparison of heuristics on 2-dimensional tables based on percent error

Figure 1 shows that best random performed best among the heuristics, but
produces solutions that are far from optimal. It is interesting to note that the
ordered heuristic method produces solutions of similar quality to the mean
random result. Finally, it appears that error increases slightly with table size.

Figure 2 compares the approaches using the average relative change equal
to the average of the absolute values obtained from (original value – new
value)/original value.

Relative Change per Entry - Unweighted (10% Sensitive)

10

11

12

13

14

15

16

17

0 5 10 15 20 25 30Table Size (nxn)

 %
 C

ha
ng

e

Best Random
Worst Random
Ordered
Optimal

Fig. 2 Comparison of heuristics on 2-dimensional tables based on average percent change

Figure 2 shows that when considering relative changes, the best algorithm using
an unweighted objective function is not clearly defined. Of course, a weighted
objective function may provide more definitive results.

Next, 2-dimensional tables with 30% sensitive entries were processed.
Except for the errors being larger, the results are analogous to those found for the
tables with 10% sensitive entries. The relative changes for the 30% sensitive cell
tables are also very similar to those found for the 10% sensitive cell tables, and
thus are not included.

Figure 3 shows results for 3-dimensional tables ranging in size from 5x5x2
to 5x5x7 and containing 30% sensitive entries. The results that are obtained using
an unweighted objective function are very similar to the results obtained for 2-
dimensional tables.

11

Heuristic Error - Unweighted (30% Sensitive)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8
Table Size (5x5xn)

Pe
rc

en
t E

rr
or

Mean Error %
Ordered Error %
Best Random %
Worst Random %

Fig. 3 Comparison of heuristics on 3-dimensional tables based on average percent error

The relative changes per entry for the 30% cases were found to be analogous to
the results obtained for the 2-dimensional tables.

As discussed earlier, the linear programming solution for 3- and higher
dimensional problems can produce solutions that contain fractional values. Figure
4 shows the percentage of tables for which the linear program produced computed
fractional solutions when executing the random heuristic (100 runs). Clearly, the
number of fractional values increases with table size. The random heuristic only
produced fractional values for approximately 10% of the solutions generated. The
best solution from 90% non-fractional solutions is reported. As mentioned earlier,
when integer values are preferred in order to create cosmetically appealing entries
for tables, then additional adjustment is appropriate, which fortunately has not
been found difficult to perform.

Fractional Solutions - Unweighted (30% Sensitive)

0
2
4
6
8

10
12
14

0 2 4 6 8

Table Size (5x5xn)

%
 F

ra
ct

io
na

l

Fig. 4 Fractional solutions obtained for 3-dimensional tables using Random heuristic

To assess the impact of the type of objective function used, the previous analyses
are also done using weighted objective functions. Figure 5 indicates that the best
random heuristic is superior to the ordered heuristic, but still produces significant
errors.

12

Heuristic Error - Weighted (10% Sensitive)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30
Table Size (nxn)

Pe
rc

en
t E

rr
or

Mean Error %
Ordered Error %
Best Random %
Worst Random %

Fig. 5 Comparison of heuristics based on percent error using a weighted objective function

Figure 6 indicates all solution techniques produce similar quality solutions as the
size of the table increases for tables with a larger percentage of sensitive cells
when relative change per entry is used for comparison. This implies that the
heuristics are a good option for such tables if the objective is to minimize the
relative change per entry.

Relative Change per Entry - Weighted (30% Sensitive)

10
11
12
13
14
15
16
17

0 5 10 15 20 25 30

Table Size (nxn)

%
 C

ha
ng

e

Best Random
Worst Random
Ordered
Optimal

Fig. 6 Comparison of heuristics based on percent change using a weighted objective function

Results for 3-dimensional tables using weighted objective functions are consistent
with the 2-dimensional results. In particular, weighted objective function causes
larger perturbations but reduces relative perturbations. The number of fractional
solutions is reduced when using the relative objective function. In fact, only the
largest table (5x5x7) exhibited a 9% fractional solution, whereas the smaller

13

tables did not produce any fractional solutions. It appears that the relative
objective has an advantage in this regard.

The results of evaluating previously proposed heuristics for controlled
tabular adjustment support the following observations:
• A weighted objective function that considers relative perturbation produces

solutions with small average relative perturbation, but can potentially produce
large absolute perturbations;

• The weighted objective function reduces the occurrence of fractional solutions
when applied to 3-dimensional tables;

• The best random solution obtained over 100 random executions was shown to
be superior to the best solution from the ordered heuristic in most cases;

• When objective function values were considered, the performance of all of the
heuristics was poor, having errors in excess of 50%;

• As would be expected, for these problems of significantly limited size, the
CPLEX solver produces the best solution regardless of the objective function
used.
These results confirm that the exact solution approach works better than the

heuristic approaches for small problems, but unfortunately CPLEX cannot be used
to solve large problems, due to consuming excessive amounts of computation
time. We hypothesize that the earlier heuristic methods evaluated here suffer
because finding a feasible set of binary variables may be very hard. In particular,
the heuristics may fail to generate a feasible solution for problems that have large
numbers of sensitive cells. To combat this situation, we propose a new heuristic
method that produces better results by combining the mathematical programming
approach with the principles embodied in the Danderkar and Cox (2002)
heuristics.

4 Stratified-Ordered Heuristic
The principle that underlies the two heuristics tested in the previous section is that
in a good solution to the CTA problem approximately half of the sensitive cells
will be set to their high values and the remainder will be set to their low values.
This tends to reduce distortions to nonsensitive cells as balanced upper and lower
adjustments to sensitive cells cancel adverse effects on the totals. Also, ordering
the sensitive cells and alternatively setting them to their minimally low or high
protection values tends to produce a solution whose grand total, and hence the
overall mean, remains nearly unchanged. In this section, we endeavor to embed
this ordering principle within the mathematical model previously described in
Section 2.

Because computational requirements for our MILP roughly double with
the addition of each binary variable, a sensible approach towards a
computationally efficient, near-optimal algorithm is to group the sensitive cells
and assign a unique binary variable to the entire group, with the result that all cells
in a group are adjusted in the same direction. We first tried random grouping,
which performed poorly. We then experimented with the idea of using a stratified
ordered heuristic (or s-ordered heuristic) which orders sensitive cells from largest
to smallest, and creates the groups by “skipping” through the ordering. This
ensures greater group-to-group homogeneity so that large cells are less likely to be
adjusted predominantly in the same direction. This produces an improvement in
the optimum value of the objective function. As before, the exception is when a

14

sensitive cell value equals one of its totals, in which case only a single cell is
assigned to the group.

More precisely, let m ≥ 2 be the number of groups. We add the following
constraints to the original mathematical program.

For i=1 to m: bi = bi+m = bi+2m = … bi+km where (i+km) ≤ p

The addition of these constraints to the original mathematical model
reduces the number of binary variables to m. If m = p then the solution is optimal,
and if m < p then the solution may or may not be optimal. However, for m ≤ 20,
the mathematical program can be solved in a reasonable amount of computer
time. This set of constraints generated by s-ordered heuristic combines the power
of the mathematical program with logical principles embodied in the heuristics.

Furthermore, the mathematical program can be enhanced with additional
constraints (Cox and Kelly 2004; Cox et al. 2004) to improve the statistical
characteristics of the solution. We apply the s-ordered heuristic with this model.
In particular, we use groups of size, m, m-1, m-2, … to produce a range of results
from which to choose a superior solution. The s-ordered heuristic overcomes a
weakness of the ordered heuristic by not predefining the direction of change for
each group. Whereas the ordered heuristic only evaluates one possible set of
assignments, the s-ordered heuristic implicitly evaluates 2m possible assignments.
The assignment refers to the allocation of up and down directions to the sensitive
cells by fixing the binary variables.

To determine the effectiveness of the s-ordered heuristic, sets of 2- and 3-
dimensional test tables are randomly generated using the following specifications:
• 2-dimensional tables ranging in size from 4x4 to 25x25;
• 3-dimensional tables having sizes: nxnxn for n = 5,6,…,11,12…20;
• 3-dimensional tables having sizes: 10x10xn for n = 3,4,…,19,20;
• Data values for internal tabular entries range from 0 to 1000 and are selected

from a uniform distribution;
• 10% of the internal entries are selected randomly (uniformly distributed) and

are assigned a value of 0;
• For all tables, 30% of the internal entries are defined as sensitive. The

sensitive cells are distributed randomly (uniform) throughout the table.
Marginal cells are not defined as sensitive.

• Sensitive entries must be assigned a value 20% greater than the original value
or 20% smaller than the original value. All nonsensitive cells can be modified
to values within 20% of their original values.

• In all tables, an objective that minimizes the sum of absolute changes
(unweighted) is used.

 Figure 7 shows the performance of the heuristics compared to the optimal
solution for moderately sized 2-dimensional tables. The optimal solution curve is
not displayed because its information is embodied in the report of the percent
error of heuristic solutions with respect to optimal. The random-100 and random-
1000 results are obtained using one hundred random assignments and one
thousand random assignments, respectively. The s-ordered heuristic (16) results
are obtained using the s-ordered heuristic with m=16, which was chosen to
provide solutions in approximately the same time as required by random-1000.
The results indicate that the s-ordered heuristic is superior.

15

Heuristic Errors: 2-Dimensional (NxN) Tables - Unweighted (30% Sensitive)

0%

100%

200%

300%

400%

500%

600%

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table Size (NxN)

Pe
rc

en
t E

rr
or

S-Ordered (16)
Ordered
Random - 100
Random - 1000

Fig. 7 S-ordered heuristic performance on 2-dimensional tables based on percent error

Figure 8 shows results for 3-dimensional tables. In these cases, optimal solutions
could not be obtained for the larger tables. Thus, the results are compared to the
best heuristic solution, which, in almost every case, is achieved by the s-ordered
heuristic.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table Size (10x10xN)

%
 E

rr
or

 F
ro

m
 B

es
t

S-Ordered (16)
Ordered
Random - 100
Random - 1000

Hybrid Applied to 3-Dimensional (10x10xN) Tables - Unweighted (30% Sensitive)

Fig. 8 S-ordered heuristic performance on 3-dimensional tables based on percent error

These results indicate that creating groupings of sensitive cells can significantly
extend the applicability of the integer programming model. By using an ordering
defined by cell value, reasonable solutions are produced.

In a final experiment with the s-ordered heuristic, we explored an
advanced approach for building groups of cells. The principle here is to minimize
the number of potential conflicts within each group so that assignments do not
produce large perturbations to totals entries. First, the cells are grouped into m
groups using the previous approach. For each group, we calculate the number of
totals that are in common with each pair of cells. The number of internal totals
interactions within a group is the group score. We then swap cells between
groups to decrease the grand total of all group scores. Swaps are continued until

16

no further score reduction is possible. The resulting groups are then used to
populate the mixed integer program. This procedure is referred to as the s-ordered
heuristic-with-swaps. Figure 9 (at the end of Section 5) demonstrates that this
process improves the solutions approximately 10% on average.

5 Scatter Search for Enhancing the S-Ordered
Heuristic
Using the mixed integer programming based approach becomes impractical when
the number of tabular entries exceeds a thousand. For example, the 10x10x20
table reported in Fig 8 required 76 minutes of computational time on 2.8GHz,
Pentium 4, 512 MB machine to process. To overcome this limitation, we
implemented an evolutionary scatter search procedure to find solutions in
reasonable time (Laguna and Marti 2003). Scatter search is designed to operate
on a set of points, called reference points, which constitute good solutions
obtained from previous efforts. The basis for defining "good" includes special
criteria - typically related to diversity - that go beyond the objective function
value. New points are then systematically generated combinations of the
reference points. These combinations are generalized forms of linear
combinations, accompanied by processes to adaptively enforce constraint-
feasibility.

The set of points is considered diverse if its elements are "significantly"
different from one another. We use Euclidean distances to determine how "close"
a potential new point is from those in the reference set, in order to decide whether
the point is included or discarded. The number of new solutions created depends
on the quality of the solutions being combined. Specifically, when the best two
reference solutions are combined, we generate up to five new solutions from their
combinations, while when the worst two are combined we generate only one new
solution.

In the process of searching for a global optimum, the combination method
may not be able to generate solutions of sufficiently high quality to become
members of the reference set. If the reference set does not change and all the
combinations of solutions have been explored, a diversification step is triggered.
 This step consists of rebuilding the reference set to create a balance between
solution quality and diversity. To preserve quality, a small set of the best (elite)
solutions in the current reference set is used to seed the new reference set. Then,
the diversification method is used to repopulate the reference set with solutions
that are diverse with respect to the elite set. This reference set is used as the
starting point for a new round of combinations. This method guarantees that a
very good solution is found quickly.

We used the OptQuest solver to implement our scatter search method for
the CTA problem. OptQuest uses a mixture of techniques including scatter search
and advanced tabu search to find the right combination of decision variables to
achieve the best possible results. During the search process, it also uses adaptive
and neural network procedures to learn from past optimizations so that better
solutions are obtained in a lesser amount of time (Laguna and Marti 2003).

Figure 9 shows the results of the scatter search method used in
combination with the s-ordered heuristic-with-swaps. The proposed heuristic
performed very well on all instances compared to the ordered and random
heuristics. Figure 9 also provides results from taking the best solution obtained

17

from OptQuest-2000 using 9,10,...,16m = (which encompasses the cases
1,...,8).m = Hence, it is also referred to as OptQuest-2000-swap9-16. This

experiment provided the best solutions in all cases, except that it doubled the
computation time required to run the problem for m=16. It should be noted that
for all tables for N≤ 10 the scatter search heuristic solutions were shown to be
optimal. In the case of tables for larger N, CPLEX could not be used to determine
the possible optimality of the scatter search solutions due to its inordinate solution
time requirements. So, the results are compared to the best heuristic solution,
which, in almost every case, is achieved by the s-ordered heuristic.

Cubes (NxNxN)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

%
 E

rr
or

 F
ro

m
 B

es
t

Ordered
Random - 100
Random - 1000
OptQuest - 2000 - Swap 9-16

Fig. 9 Performance of scatter search combined with the s-ordered heuristic-with-swaps on cubic
3-dimensional tables

6 Meta-heuristic Learning Algorithm for Forecasting
Directions for Binary Variables

6.1 Learning Algorithm

The grouping heuristics proposed in the previous section significantly reduced the
problem size and thereby quickly solved the resulting integer program. However,
these methods nevertheless failed to produce satisfactory solutions for problems
beyond a relatively limited size. The best heuristic solution was at least 50%
inferior to the optimal solution for all moderately large 2-dimensional problems.
Moreover, the heuristics exhibited considerable variation in the solution quality
produced (see Figure 10). These experiments demonstrate the importance of
reducing the size of the integer programs for gaining computational efficiency.
We attribute the inferior performance of these methods on larger problems to their
inability to predict and set appropriate values for a subset of variables. In this
section, we show that a metaheuristic learning strategy for fixing a subset of
variables to appropriate values offers an opportunity to generate high-quality

18

solutions without confronting the typical drawback of consuming vast amounts of
computer time to discover such solutions.

6.2 Parametric Image Learning Metaheuristic

Our learning procedure is an adaptive memory learning metaheuristic that creates
a strategic image of part of the problem to generate information about problem
characteristics. Such processes have been used successfully in the fixed charge
context (Glover et al. 2004), and are the basis for a class of adaptive memory
metaheuristic procedures for mixed integer programming proposed in Glover
(2006). Adapted to the present setting, the basic idea is to introduce parameters
that penalize a variable’s violation of integer feasibility, and to drive selected
subsets of variables in preferred directions, e.g., toward 0 or 1, under
metaheuristic guidance.

In the CTA problem, we are interested in identifying appropriate directions
for selected subsets of binary variables, which are then tentatively fixed at their
preferred values. The resulting reduced problem is then solved much more readily
than the original problem, providing an iterative process that results in high-
quality (optimal or near optimal) solutions while expending only a small fraction
of the computational effort required by a more traditional integer programming
solution approach. We utilize this strategy to develop a parametric objective
function approach to generate information about behavior of binary variables in
the following manner.

We represent the objective function in the compact form: Minimize
0x cx= , where x is a set of binary variables used to protect sensitive cells. We

refer to the “1” direction as UP and the “0” direction as DN in our framework.
These are called goal conditions (denoted as '

jx) because we do not seek to
enforce UP and DN directions by imposing them as constraints in the manner of
customary branch and bound method, but rather indirectly by incorporating them
into the objective function of the linear programming relaxation. Let +N and −N
denote selected subsets of N whose union is denoted by 'N and whose elements
contain UP and DN goal conditions, respectively. Let 'x denote the associated
goal imposed solution vector and let M denote a very large positive number used
to impose the goal conditions.

)('LP Minimize () ()
)

0
'

(

j j j j j j
Nj N j N j

N N

x c M x c M x c x
− +

+ −∈ ∈ ∈
+

= + + − +∑ ∑ ∑ (9)

Problem)('LP targets imposed down and up goal conditions by using incentive
mechanism driven by the penalty M. Binary variables included in subset −N are
induced to go in the DN direction and binary variable in subset +N are induced to
go in UP direction. Remaining variables are free to select their own favorable
directions or to receive values between 0 and 1. Thus, in short, we are solving a
continuous linear programming problem with penalty coefficients in the objective
as a way to gain insight about good values to assign to the binary variables.

19

6.3 Goal Infeasibility and Resistance

If a variable indeed favors a particular direction, then it will achieve its targeted
goal. Otherwise, we say that it demonstrates resistance to its imposed goal. We
say that an optimal LP solution x = "x is goal infeasible if one of the following
two “violations” occurs:

For some '", jj xxNj <∈ + (V-UP)

For some '", jj xxNj >∈ − (V-DN)

We call a variable jx associated with violation (V-UP) or (V-DN) a goal
infeasible variable, and we create a measure called an overt resistance
(β UP, β DN), based on goal conditions, to learn about variable predilection for a
particular direction as follows.

For (V-UP), "'

jjj xxUP −=β (10)

For (V-DN) '"

jjj xxDN −=β (11)

An absence of a goal violation means that zero overt resistance occurs. Sometimes
it is possible that a variable may resist its goal condition even though it does not
violate its goal condition. We can compute this effect by making use of reduced
costs in the following manner. We call this resistance a potential resistance
(DNUP δδ ,).

jjj RCcMUP ++=δ (12)
)(jjj RCcMDN ++−−=δ (13)

where jRC is the reduced cost for variable jx .

The trial solution vector may also contain variables that have not yet been
assigned penalties, or that have had previously assigned penalties removed. We
use their solution values in the problem (LP) to create free resistances
(DNUP αα ,) in the following manner.

jj xUP −=1α (14)

jj xDN =α (15)

6.4 Experimental Design to Exploit the Parametric Image

We incorporate experimental design in our approach as a foundation for its
learning component. First, the parametric image of objective function is generated
using a goal vector. A diversified sample of goal vectors is generated and
resistance measures are recorded to estimate directional effects. We do not
employ random sampling, as used in network design problems (Karger 1999),
because it is not efficient in terms of the number of tests required to estimate a
preferred value for each variable.

20

Experimental design methods are often used to identify significant factors
controlling a performance measure (for example, to determine machine speed and
pressure levels that will produce a product of desired quality) (Montgomery
1984). These methods can also be used to estimate main effects and interaction
effects of binary variables using a smaller number of unbiased samples than
random sampling (Lewis 2004).

The main effect of a binary variable can be defined as the mean value that
the variable achieves on a performance measure. We incorporate the three types
of resistance measures previously indicated in conjunction with the objective
function value to provide measures for identifying preferred directions for the
problem variables. A test run in our experimental design process is composed of
creating and solving a continuous LP problem that takes (9) as its objective. These
test runs are inexpensive in the sense that they can be implemented using efficient
linear programming post optimizations rather than by restarting the LP solution
from scratch.

Despite the computational efficiency of individual runs, the number of test
runs grows exponentially with the number of variables used for a full factorial
design, and we seek a better alternative. The basic purpose of full factorial design
is to estimate interaction effects as well as main effects. However, we hypothesize
that interaction effects have a negligible influence compared to main effects, due
to the sparsity of the variable effects in the integer programming context. Thus,
we focus on estimating main effects without concern for interaction effects in the
present setting.

Fractional factorial design can be used to target desired variable effects
using confounding techniques. This design has an ability to reduce the number of
trial vectors considerably. For example, a problem with 10 binary variables will
need 1024 test runs with full factorial design, but will need only 16 test runs to
estimate main effects with fractional factorial design. If necessary, we can also
add more runs to a fractional factorial design to improve the accuracy of the
method, employing the strategy known as sequential experimentation.

One possible method to implement a fractional factorial design is to
generate a set of goal vectors over a complete set of binary variables. This method
has the disadvantage that it would eliminate the use of free resistances as defined
by (14) and (15). Instead, we prefer to partition binary variables into groups and
run different experimental design runs over these subsets while keeping variables
in other subsets free, thereby generating information on free resistances. This also
makes it possible to analyze the problem from different angles by conducting
different experimental design runs. Test runs provide information on goal
resistances and objective values. Experimental design then identifies the main
effect of each variable for each performance measure.

Recently, Lewis (2004) has used experimental design techniques in integer
programming, making use of elastic constraints to avoid problem infeasibility.
However, our method differs from this approach at a fundamental level. Instead of
resorting to elastic constraints, our parametric image approach avoids infeasibility
in a way that allows us to focus on studying the behavior of variables in different
circumstances to learn about their optimal directions. Second, in contrast to Lewis
(2004), who used the objective function as the sole performance measure, we
make use of measures based on different goal resistances in addition to the
objective function.

Our approach of selecting different performance measures for finding true
main effects is motivated by the fact that information about the desirability of

21

different choices is captured in different forms by different rules. This
information can be used more effectively by means of a strategy that combines the
rules in aggregation rather than by using a strategy of selecting different rules at
different times (Glover and Laguna 1997). The learning algorithm used to fix
directions for a specified subset of variables can be summarized as below. The
details for carrying out these steps are elaborated subsequently.

6.5 Parametric Image Learning Algorithm

1. Group p binary variables into lastK subsets of size n such that
 lastK= |_p / n_|
2. Construct goal vectors for parametric image process using fractional

factorial design. (Refer to Appendix for further details.)
3. Set an upper bound on the objective function to induce trial solutions to

come from better regions.
4. Run fractional factorial experimental design as:

For subsets K = 1… lastK
For test runs T = 1…lastT

Construct the parametric image of the objective function
using a partial goal vector.
Solve the resulting linear programming relaxation.
Compute overt, potential, free resistances and objective
function value.
Record these performance measures into pertinent
performance recording vectors [PV].

 End T
 End K

5. Relative to each variable, compute the main effect of measures except
free resistance measures as:
For performance attribute A = 1…lastA (except free resistance)

For variables P=1…lastP
Compute main effect ME [A][P] of variable ‘p’ in attribute
‘a’ as :
 {

 For Experiment K = 1… lastK
For test runs T = 1…lastT
 If (/

px = DN) then
 ME[A][P] = ME[A][P] -

PV[A[K][T]
 If (/

px = UP) then
 ME[A][P] = ME[A][P] +

PV[A][K][T]
End T

 End K
 }
 End P
 End A

6. Relative to each variable, compute main effect of the free resistance
measures as:

For variables P=1…lastP

22

Compute main effect ME[A][P] as
 {

For experiment K = 1…lastK
For test runs T= 1…lastT
 If (px < 0.5) then
 ME[A][P] = ME[A][P] + 1
 If (px > 0.5) then

 ME[A][P] = ME[A][P] - 1

End T
 End K
 }
 End P

7. Compute final score for each variable using persistent voting principle as:
For variables P=1…lastP

Final Score [P] = 0
For A = 1…lastA (includes free resistance measure)

If (ME [A][P] > 0) then
 Final Score [P] = Final Score [P] + 1

If (ME [a][p] < 0) then
 Final Score [P] = Final Score [P] – 1

 End A
 End P

8. Rank variables P = 1…lastP in descending order of the absolute values of
final scores.

9. Set cutoff ‘c’ to fix direction for the variables.
10. Fix directions for binary variables as:

For variables P=1…c
 If (Final Score [P] > 0) then
 px = 0
 If (Final Score [P] < 0) then
 px = 1
End P

11. Solve the resulting mixed integer programming problem.

6.6 Discussions and Elaboration of the Method

Variables are grouped into K subsets in step 1 in a random manner. The rationale
for using a random assignment is to avoid generating an interaction effect. By
contrast, a process of grouping variables from a particular row or column together
can produce significant interaction effects because of tabular additivity. The
fractional factorial design we employ confounds interaction effects with the aim
of reducing the number of test runs. Selecting sensitive cells in a random fashion
encourages them to exhibit minor interaction effects because of weak tabular
connectivity.

The logic of our earlier ordered heuristic, which assigns up and down
directions for ordered cells in an alternating fashion, is consistent with this
finding. Thus, the ordered heuristic tries to capitalize on a positive two-factor
interaction effect. The heuristic embodies a subtle limitation, however, which
serves to undermine its efficacy. Sometimes, the heuristic may assign either plus

23

or minus directions to all cells in a row or a column, thereby increasing the
absolute adjustment. For example, consider a 4x4 table in which cells (1,1), (2,4),
(3,1), and (4,4) are sensitive with protection limits of 40,35,30,25 respectively.
The ordered heuristic would cause very large adjustments to nonsensitive cells in
this case. This might be a primary reason why the ordered heuristic did not
perform well in our experiments. We overcome this deficiency in our present
approach by exploiting the following design.

A parametric image of the objective function is generated as follows. A
typical test run contains target directions for a subset of variables and free
directions for remaining variables. We can use these targeted directions to
generate a parametric image of the objective function as:

() () j

NN
Nj

jj
Nj

jj
Nj

jo xcxMcxMcx ∑∑∑
−+

+−

+
∈∈∈

+−++=
)(

' (16)

The new model has the effect of inducing variables with a DN goal condition to
receive a value of 0 and variables with an UP goal condition to receive a value of
1, while allowing remaining variables to take arbitrary values (without being
induced to move in a particular direction).

Steps 5 and 6 compute the average effect of a variable for a given measure.
This basically computes the average change in the performance measure when a
binary variable is changed from 0 to 1. This method is widely used in
experimental design to compute average effects (Montgomery 1984) because it
groups observations into two sets and then checks on average whether there is any
difference in performance between the two sets. For example, if the DN direction
sum is higher than the UP direction sum, this signals a negative effect, implying
that a performance measure would decrease if a binary variable were set to 1
instead of 0.

We record performance measures in 3-dimensional vectors for each
variable, where row dimension refers to the performance measure, column
dimension refers to the experiment and page dimension refers to the test run from
the experiment. As shown in steps 5 and 6, to calculate the main effect for a
measure, we sum over performance values computed with respect to all test runs
from all experiments for that measure. We subsequently record the main effects of
variables in a 2-dimensional vector in which row dimension refers to the
performance measure and column dimension refers to a binary variable.

We rank binary variables in descending order according to the absolute
values of their final scores and select a subset of these variables to receive fixed
directions. The cutoff level was decided using experimental evaluation. We found
45% and 70% as cutoff levels for “small” and “big” tables respectively, in the
sense that these levels generated high-quality solutions in a reasonable amount of
time. If the size of the table is below (above) 15x15, then it is referred to as a
small (large) table, respectively. The results section shows in detail how the
percentage of fixed variables affected solution quality and time. Use of 0 as
threshold in the final step is mainly conceptual in nature, as it means that variables
with positive final scores prefer the DN direction and those with negative final
scores prefer the UP direction. The chosen cutoff level ensures that variables
chosen to be fixed will be those that have sufficiently high absolute final scores,
thereby offering adequate support for the chosen directions.

24

6.7 Performance of the Learning Algorithm for 2-Dimensional Tables

We implemented the learning algorithm using C++, ILOG-Concert Technology
1.2, and ILOG-CPLEX 8.1. Figure 10 shows the performance of our proposed
method compared to other variable fixing heuristics. It was extremely time-
consuming to run larger problem instances to optimality using the version of
default CPLEX. For example, we ran the 25x25 problem using the default CPLEX
method on a 2GB RAM and 3.2GHz workstation for 24 hours. Unfortunately, the
best solution found by CPLEX (after 19 hours and 35 minutes) still exhibited an
optimality gap of 9.6%.

Consequently, we needed a computationally efficient alternative to
compute a better lower bound, which is essential for measuring the optimality
gap. Cox et al. (2005) proposed a set partitioning relaxation for generating a
tighter lower bound on the objective in the CTA context. We used the lower
bound as a proxy for an optimum value for computing the optimality gap for
larger instances. Lower bounds were reliable in the sense that they were
consistently very close to the optimal values for those problems where an optimal
solution could be verified (by running CPLEX for a period of time that does not
exceed practical feasibility). In particular, for these problems involving 2-
dimensional tables, restricted in size to no more than 18 rows and columns to
permit them to be solved by CPLEX, the optimality gap was verified to be
approximately 1%. For example, for the 18x18 problem, the computed lower
bound was 9736 compared to the optimum value of 9850, representing a gap of
1.15%. In Figure 10, the “Learning Method (optimal)” curve identifies the
optimality gap with respect to the known optimal value, and the “Learning
Method (lower bound)” curve identifies the optimality gap with respect to the
lower bound.

We found our learning method to yield significant improvements in
reducing the optimality gap across the entire 2-dimensional test set, as
demonstrated by Figure 10. Optimality gap values obtained by the methods
described in preceding sections degraded considerably for the larger problem
instances. For example, using these earlier methods, the mean gap for the 25x25
table was 117.6% compared to the overall mean gap of 70% for smaller problems.
In either case, the results were disappointing. By contrast, the learning method
performed dramatically better, consistently generating high-quality solutions
irrespective of the problem size, giving an overall mean gap of 6% and a total gap
of 5.72% for the 25x25 problem.

We define prediction accuracy to be the percentage of variables that are
correctly assigned their optimal values, from a selected set of the “top” (highest
scoring) variables identified. The prediction accuracy of our method, for a 14x14
problem which contains 69 variables, was 85.5% for the top 10% of the problem
variables (6 correct decisions out of 7 fixed variables). In order to analyze the
tradeoff between solution quality and time, we fixed only the top 15% of the
variables for the 17x17 problem. We found a better solution (objective value =
9206) than our reported solution (objective value = 9460), although it was at the
expense of computational efficiency. For this particular experiment, the result of
fixing fewer variables caused the number of nodes processed to increase from
2400 to 72600 and the solution time to increase from 16.38 sec to 520 sec. We
believe this increase in the computation time does not warrant reducing the
number of fixed variables in order to achieve a modest gain in solution quality.

25

Squares (NxN)

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N

G
A

P

Group 16 Binaries
Group 16 - Min Common
Experiment
learning method(optimal)
learning method(lower bound)

Fig. 10 Performance of proposed learning method on optimality gaps

7 Conclusions and Remarks
This study has undertaken an extensive set of comparative computations tests and
analyses to evaluate the relative performance of alternative methods for the
controlled tabular adjustment (CTA) model. Our preliminary tests compared
previously proposed heuristics to the exact CPLEX method. The outcomes
showed that the exact procedure yields solutions superior to those of earlier
heuristic approaches, but is unable to solve problems of modest size within a
reasonable amount of time.

To overcome these limitations of previous approaches, we have introduced
a stratified (s-ordered) heuristic that combines the exact mathematical
programming approach with constructive heuristics suggested in Danderkar and
Cox (2002). Numeric simulations indicate that the s-ordered technique has the
ability to produce better solutions than the previous heuristics in reasonable time,
and has the added advantage of being able to find reasonable solutions to highly
constrained problems, but is limited to problems that remain of modest dimension.
We then showed that using an evolutionary scatter search approach in place of the
exact CPLEX solver yields improved results and makes it possible to handle
problems of much greater size, though the approach still is unable to overcome the
combinatorial complexity of these problems to achieve solutions that appear
attractive in relation to optimality bounds.

Finally, we demonstrate that a special metaheuristic learning method based
on parametric image processes leads to significant additional improvements by
generating solutions of greatly improved quality. In particular, the learning
method succeeds in reducing the optimality gap for the problems tested from an
overall average of 70% to an average of 6%. The true distance from a theoretical
optimum is likely to be somewhat smaller still, since the gap is based on an
imprecise bound.

26

We anticipate that opportunities exist to improve our results further.
Interactions between binary variables are likely to be present, especially variables
corresponding to cells sharing the same tabular equation. Our approach does not
explicitly incorporate interactions into the factorial design portion of the learning
procedure, because to do this would drastically multiply the number of trial
solutions to be compared and tested. Instead, we address such interactions at
another level through the solution of the partial integer program. Evidence of the
ability to accommodate such interactions is provided by the significant
improvements produced by our method compared to the heuristic and exact
methods, including the extended variants in which these methods incorporate
aggregated variables designed to capture interaction effects.

Nevertheless, it seems likely that there may be benefits in examining
interactions from additional perspectives in future research, by undertaking to
account for dependencies in advance of solving the parametric LP problems. An
appealing strategy comes from Cox et al. (2005), involving the solution of set
partitioning sub-problems as a foundation for creating special types of aggregated
variables. Extensions of the learning approach that rely more fully on ideas of
parametric tabu search are also relevant to explore.

Appendix
Full factorial design is used to estimate main effects as well as interaction effects.
This design uses all possible combinations of the levels of factors to estimate
these effects. For a binary program, these test runs constitute all possible leaf
nodes of a binary tree. The tree traversal methods can be used to compute these
vectors. Another alternative is to use bit-wise operators to generate full factorial
design. The number of test runs in this design grows exponentially with the
binary variables. Fractional factorial design builds an experimental design on a
smaller full factorial design of the chosen subset of binary variables, thereby
requiring a smaller number of test runs. Our learning algorithm uses fractional
factorial design to generate goal vectors. The method can be described as follows.
See Montgomery (1984) for further details.

1. Compute the minimum number of variables (r) needed to generate a basic
design for the fractional factorial experiment (FFE) as 1|_log_| 2 += nr
2. Compute the minimum number of test runs (t) needed for conducting FFE as

rt 2= test runs
3. Compute the number of generators required to generate goals for remaining
variables as m = n-r
4. Generate a full factorial basic design for first r binary variables (1x … rx).
5. Use ‘m’ 2,3,…,h factorial interactions to compute values for remaining
variables as.
For M = r +1…LastM
 For T= 1…LastT

Code 0 as –1 and code 1 as 1 for binary variables values used in
interaction.
Compute the product of coded values of interacting variables for
test t

 If (product > 0) then
 x[m][t] = 1

27

 If (product < 0) then
 x[m][t] = 0
 End T
End M

The following example, which contains six binary variables, illustrates the
forgoing method.

1. Minimum number of binary variables needed for basic design: r = 2+ 1=3
2. Minimum number of test required: 823 ==t
3. Number of generators required: m = 6-3 =3
4. The resolution III design is feasible because 2 factor and 3 factor

interactions suffice to complete FFE.
5. A full factorial basic design for first r binary variables is

Table 3 Full factorial design for 3 binary variables

Test Run 1x 2x 3x
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

6. Construct the FFE table using 2-factor and 3-factor interactions. We
choose 1x 2x 3x , 1x 2x , and 1x 3x interaction effects to generate values for

4x , 5x , and 6x . For example, for test run 1 the value of 4x is 0 because
the value of coded product of 1x 2x 3x is 0. The complete FFE design is
shown in Table 4.

Table 4 Fractional Factorial design table for binary a program with 6 binary variables.

Test Run 1x 2x 3x 4x = 1x 2x 3x 5x = 1x 2x 6x = 1x 3x
1 0 0 0 0 1 1
2 1 0 0 1 0 0
3 0 1 0 1 0 1
4 1 1 0 0 1 0
5 0 0 1 1 1 0
6 1 0 1 0 0 1
7 0 1 1 0 0 0
8 1 1 1 1 1 1

References (Bibliography)
Cox, L.H. (1980). Suppression Methodology and Statistical Disclosure Control.

Journal of the American Statistical Association, 75, 377-385.

28

Cox, L.H. (1981). Linear Sensitivity Measures in Statistical Disclosure Control.
Journal of Statistical Planning and Inference, 5, 153-164.

Cox, L.H. (2000). Discussion (on Session 49: Statistical Disclosure Control for
Establishment Data). In ICES II: The Second International Conference on
Establishment Surveys-Survey methods for businesses, farms and institutions,
Invited Papers, Alexandria, VA: American Statistical Association, 904-907.

Cox, L.H. (2001). Chapter 8: Disclosure Risk for Tabular Economic Data. In
Doyle, P., Lane, J.I., Theeuwes, J.J.M. and Zayatz, L.V. (eds.),
Confidentiality, Disclosure and Data Access: Theory and practical
applications for statistical agencies, Amsterdam: North-Holland, 167-184.

Cox, L.H., and Danderkar, R.A. (2004). A Disclosure Limitation Method for
Tabular Data That Preserves Accuracy and Ease-of-Use. In proceedings of the
2002 FCSM Statistical Policy Conference, Washington, DC: Office of
Management and Budget, 15-30.

Cox, L.H., and Kelly, J. P. (2004). Balancing Data Quality and Confidentiality for
Tabular Data. Proceedings of the UNECE/EUROSTAT Work Session on
Statistical Data Confidentiality, Luxembourg, 7-9 April, 2003, Monographs of
Official Statistics, Luxembourg: Eurostat., 2004, 11-23.

Cox, L.H., Kelly, J.P., and Patil, R.J. (2004). Preserving Quality and
Confidentiality for Multivariate Tabular Data. Proceedings of Privacy in
Statistical Databases 2004 (PSD 2004), Barcelona, 9-11 June, 2004, Lecture
Notes in Computer Science, 3050, New York: Springer Verlag, 87-98.

Cox, L.H., Kelly, J.P., and Patil, R.J. (2005). Computational Aspects of
Controlled Tabular Adjustment: Algorithm and Analysis. The Next Wave in
Computer, Optimization and Decision Technologies (B. Golden, S. Raghavan
and E. Wasil, eds.), Boston: Kluwer, 45-59.

Danderkar, R.A., and Cox, L. H. (2002). Synthetic Tabular Data-An Alternative
to Complementary Cell Suppression. Manuscript.

Fischetti, M., and Salazar, J.J. (1999). Models and Algorithms for the 2-
Dimensional Cell Suppression Problem in Statistical Disclosure Control.
Mathematical Programming, 84, 283-312.

Fischetti, M., and Salazar, J.J. (2000). Solving the Cell Suppression Problem on
Tabular Data with Linear Constraints. Management Science, 47, 1008-1026.

Glover, F. (1977). Heuristics for Integer Programming Using Surrogate
Constraints. Decision Sciences, 8, 156-166.

Glover, F. (2006). Parametric Tabu Search Methods for Mixed Integer
Programming. Computers and Operations Research, 33(9), 2449-2494.

Glover, F. Amini, M., and Kochenberger, G. (2004). Parametric Ghost Image
Processes for Fixed-Charge Problems: A Study of Transportation Networks.
Journal of Heuristics, 11(4), 307-336.

Glover F., and Laguna M. (1997). Tabu Search. Kluwer Academic Publishers,
Boston.

Karger, D.R. (1999). Random Sampling in Cut, Flow, and Network Design
Problems. Mathematics of Operations Research, 24(2), 383-413.

Kelly, J., Golden, B., and Assad, A. (1992). Cell Suppression: Disclosure
Protection for Sensitive Tabular Data. Networks, 22, 397-417.

Laguna, M., and Marti, R. (2003). Scatter Search: Methodology and
Implementations in C, Kluwer Academic Publishers, Boston.

Lewis, M. W. (2004). Solving Fixed Charge Multi-Commodity Network Design
Problems using Guided Design Search. University of Mississippi, Hearin
Center Technical Report , HCES-01-04.

29

Montgomery, D.C. (1984). Design and Analysis of Experiments. John Wiley and
Sons, New York, NY.

Willenborg, L., and de Waal, T. D. (1996). Statistical Disclosure Control in
Practice. Lecture Notes in Statistics, 111, Springer, New York.

Willenborg, L., and de Waal, T. D. (2001). Elements of Statistical Disclosure
Control. Lecture Notes in Statistics, 155, Springer, New York.

