
Chapter 4

Neighborhood Combination for Unconstrained
Binary Quadratic Problems

Zhipeng Lü, Fred Glover, and Jin-Kao Hao

Abstract We present an experimental analysis of neighborhood combinations for
local search based metaheuristics, using the Unconstrained Binary Quadratic Pro-
gramming (UBQP) problem as a case study. The goal of the analysis is to help
understand why, when, and how some neighborhoods can be favorably combined to
increase their search power. Our study investigates combined neighborhoods with
two types of moves for the UBQP problem within a tabu search algorithm to deter-
mine which strategies for combining neighborhoods prove most valuable.

4.1 Introduction

Neighborhood search or local search is known to be a highly effective metaheuristic
framework for solving a large number of constraint satisfaction and optimization
problems. By defining a neighborhood and starting from an initial solution, local
search progressively explores the neighborhood of the present solution for improve-
ment. In this way, the current solution is iteratively replaced by one of its neighbors
(often improving) until a specific stopping criterion is satisfied.

One of the most important features of local search is the definition of its neigh-
borhood. In general, good neighborhoods offer a high search capability and con-
sequently lead to good results largely independent of the initial solution while the
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search performance induced by weak neighborhoods is often highly correlated to
the initial solution [37]. Generally, a local optimum for one neighborhood is not
necessarily a local optimum for another. Therefore, it is possible and interesting to
create more powerful combined neighborhoods.

Using the Unconstrained Binary Quadratic Programming (UBQP) problem as a
case study, we present in this work several combinations of neighborhoods, using
one-flip and two-flip moves. The two-flip move proposed in this paper is new for
the UBQP problem. To evaluate their performance, we carried out extensive ex-
periments with a tabu search algorithm run on a large set of benchmark instances.
Computational results show that certain combinations are superior to others.

The remaining part of this paper is organized as follows. Section 4.2 gives the de-
scription of the UBQP problem together with its recent advances. In Section 4.3, the
one-flip and two-flip moves and their fast evaluation techniques are fully described.
Sections 4.4 is dedicated to several neighborhood combinations and our tabu search
algorithm. In Section 4.5, we present our computational comparison on these neigh-
borhoods and their combinations, and draw inferences from these findings about the
factors that cause certain neighborhood combinations to be effective or ineffective.
Finally in Section 4.6, we provide some conclusions and discuss some important
issues related to this work.

4.2 Unconstrained Binary Quadratic Programming

The unconstrained binary quadratic programming problem may be written as:
UBQP: Maximize xo = xQx�

x binary
where Q is an n× n matrix of constants and x is an n-vector of binary (zero-one)
variables.

In recent decades, the UBQP formulation has attracted wide attention for its abil-
ity to represent a wide range of important problems, including those from social psy-
chology [20], financial analysis [27, 31], computer aided design [26], traffic man-
agement [11, 41], machine scheduling [1], cellular radio channel allocation [9], and
molecular conformation [40]. Moreover, the potential application of UBQP is much
greater than might be imagined, due to the possibilities of imposing quadratic infea-
sibility constraints into the objective function in an explicit manner. For instance,
many combinatorial optimization problems pertaining to graphs such as determin-
ing maximum cliques, maximum cuts, maximum vertex packing, minimum cover-
ings, maximum independent sets, maximum independent weighted sets are known
to be capable of being formulated by the UBQP problem as documented in [38, 39].
A review of additional applications and formulations can be found in [2, 24, 25, 28].

For the UBQP problem, many exact algorithms have been proposed. The most
successful approaches include those of [5, 21, 38]. However, due to its computa-
tional complexity, exact algorithms can only solve instances of small size (with 100
variables). Therefore, a large number of heuristic and metaheuristic solution proce-
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dures have been reported in the literature to handle large instances. Some represen-
tative examples include local search based approaches such as simulated annealing
[3, 7, 22] and tabu search [7, 17, 18, 35, 36], population-based approaches such as
evolutionary algorithms [8, 23, 29, 32], scatter search [4] and memetic algorithms
[33].

4.3 Neighborhood Moves and Fast Evaluation

In a local search procedure, applying a move mv to a candidate solution x leads
to a new solution denoted by x

�
mv. Let M(x) be the set of all possible moves

which can be applied to x, then the neighborhood NB of x is defined by: NB(x) =
{x

�
mv|mv ∈ M(x)}. For the UBQP problem, we use two distinct moves denoted

by one-flip and two-flip moves. In the following, we denote the neighborhoods with
one-flip and two-flip moves N1 and N2, respectively.

4.3.1 One-flip Move

The one-flip move defining neighborhood N1 complements (flips) a chosen binary
variable xi by subtracting its current value from 1, i.e., the value of variable xi be-
comes 1−xi after a one-flip move. One-flip is widely used in local search algorithms
for binary problems such as UBQP, multi-dimensional knapsack and satisfiability
problems.

Let N = {1, . . . ,n} denote the index set for components of the x vector. We pre-
process the matrix Q to put it in lower triangular form by redefining (if necessary)
qi j = qi j +q ji for i > j, which is implicitly accompanied by setting q ji = 0 (though
these 0 entries above the main diagonal are not stored or accessed). Let Δi be the
move value of flipping the variable xi, and let q(i, j) be a shorthand for denoting qi j

if i > j and q ji if j > i. Then each move value can be calculated in linear time using
the formula:

Δi = (1−2xi)(qii +
�

j∈N, j �=i,x j=1

q(i, j)) (4.1)

For large problem instances, it is imperative to be able to rapidly determine the
effect of a move on the objective function xo. For this purpose, we employ a fast
incremental evaluation technique first introduced by [17] and enhanced by [13] to
exploit an improved representation and to take advantage of sparse data - a char-
acteristic of many real world problems. The procedure maintains a data structure
that stores the move value (change in xo) for each possible move, and employs a
streamlined calculation for updating this data structure after each iteration.

Moreover, it is not necessary to recalculate all the move values after a move.
Instead, one just needs to update a subset of move values affected by the move.
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More precisely, it is possible to update the move values upon flipping a variable xi

by performing the following abbreviated calculation:

1. Δi =−Δi

2. For each j ∈ N−{i}, Δ j = Δ j +σi j q(i, j)

where σi j = 1 if x j = xi, σi j =−1 otherwise.

We employ the convention that xi represents xi’s value before being flipped.

4.3.2 Two-flip Move

In the case of a two-flip neighborhood N2, we are interested in the change in xo that
results by flipping two variables, xi and x j, and will refer to this change by δi j. It is
convenient to think of the two-flip process as a combination of two single one-flip
moves, and we can derive δi j using the one-flip move values Δi and Δ j as follows
(supposing i > j):

δi j = Δi +Δ j +λi j q(i, j) (4.2)

where λi j = 1 if xi = x j and λi j =−1 otherwise.
It is easy to observe that the size of neighborhood N2 is bounded by O(n2). After

a two-flip move is performed (suppose variables xi and x j are flipped), we need
only update the one-flip delta array Δ that is affected by this move. Specifically, the
following abbreviated calculation can be performed:

1. Δi =−(Δi +σi j q(i, j))
2. Δ j =−(Δ j +σi j q(i, j))
3. For each k ∈ N−{i, j}, Δk = Δk +σik q(i,k) +σ jk q( j,k)

where σuv = 1 if xu = xv (u,v = {i, j,k}), σuv =−1 otherwise.

Here xi and x j represent xi and x j’s values before being flipped.
One finds that the complexity of this updating rule is O(n), i.e., at most n Δ

values are recalculated each time. Accompanying this updating rule, it is possible to
introduce additional data structures to speed up the process of identifying the best
two-flip move for the next iteration. Interested readers are referred to [14] for more
details.

In spite of the linear time complexity of the updating rule after a move is per-
formed, it is still too time-consuming to examine all the two-flip moves using for-
mula (4.2) since the two-flip neighborhood N2 has n(n− 1)/2 neighbors at each
iteration. To overcome this obstacle, we employ a candidate list strategy to reduce
the number of candidates in the neighborhood by examining only a small subset of
all the possible two-flip moves. Specifically, at each iteration, we sort all the one-flip
Δ values in a decreasing order. Then, the two-flip move that flips xi and x j will be
considered only if the values of both Δi and Δ j ranks the first β best. In this paper,
we empirically set β = 3

√
n which gives satisfying results without sacrificing solu-

tion quality. The greater the value of β , the greater will be the number of two-flip
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neighborhood moves examined and the amount of CPU time required. Notice that
if this candidate list strategy is disabled in N2, the computation will be greater than
that required by the one-flip neighborhood N1.

4.4 Neighborhood Combinations and Algorithm

4.4.1 Neighborhood Combinations

In order to increase the search capability of single neighborhoods, it has become a
popular practice to combine two or more different neighborhoods. The advantage
of such an approach was demonstrated using a tabu search strategic oscillation de-
sign in [16], and additional variants of strategic oscillation for transitioning among
alternative neighborhoods are discussed in [12]. More recently, the metaheuristic
approach called Variable Neighborhood Search in [34] has effectively used a tran-
sition scheme that always returns to the simplest neighborhood when improvement
occurs, while the transition scheme that cycles through higher levels before return-
ing to the simplest (also studied in [16]) was examined in [10] and elaborated more
fully in the metaheuristic context in [19].

Several ways for combining different neighborhoods arises. In this paper, we
focus on two of them: Neighborhood union and token-ring search [10, 30].

We define two forms of neighborhood union: Strong neighborhood union and
selective neighborhood union. For strong neighborhood union, denoted by N1�N2,
the algorithm picks each move (according to the algorithm’s selection criteria) from
all the N1 and N2 moves. For selective neighborhood union, denoted by N1∪N2, the
search algorithm selects one of the two neighborhoods to be used at each iteration,
choosing the neighborhood N1 with a predefined probability p and choosing N2 with
probability 1− p. An algorithm using only N1 or N2 is, of course, a special case of
an algorithm using N1∪N2 where p is set to be 1 and 0, respectively.

In token-ring search, the neighborhoods are alternated, applying the currently
selected neighborhood without interruption, starting from the local optimum of the
previous neighborhood, until no improvement is possible. More precisely, the search
procedure uses one neighborhood until a best local optimum is determined, subject
to time or iteration limits imposed on the search (for metaheuristic searches, this
may not be the first local optimum encountered). The best local optimum here de-
notes the best solution found so far by the current search. Then the method switches
to the other neighborhood, starting from this local optimum, and continues the
search in the same fashion. The search comes back to the first neighborhood at
the end of the second neighborhood exploration, repeating this process until no im-
provement is possible. The token-ring search of two neighborhoods can be denoted
as N1→N2 (starting from N1) or N2→N1 (starting from N2). More details are given
in [30].
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4.4.2 Tabu Search Algorithm

For the purpose of studying the different neighborhoods and their combinations,
we implement a simple Tabu Search (TS) algorithm [15]. TS typically incorporates
a tabu list as a “recency-based” memory structure to assure that solutions visited
within a certain span of iterations, called the tabu tenure, will not be revisited. The
approach is designed to introduce vigor into the search by also forbidding moves
leading to related solutions that share certain attributes (values of variables) in com-
mon with the visited solutions. In the present implementation, each time a variable
xi is flipped, this variable enters into the tabu list (an n-vector TabuTenure) and
cannot be flipped for the next TabuTenure(i) iterations (TabuTenure(i) is the “tabu
tenure”). For the current study, we elected to set

TabuTenure(i) = C + rand(10), (4.3)

where C is a given constant and rand(10) takes a random value between 1 and 10.
For the one-flip neighborhood, our TS algorithm then restricts consideration to

variables not forbidden by the tabu list, and selects a variable to flip that produces
the largest Δi value (thus improving xo if this value is positive). In the case that two
or more moves have the same best move value, a random best move is selected. For
the two-flip neighborhood, a move is declared tabu if and only if both two flipping
variables are in tabu status.

However, some of those neighborhood solutions forbidden by the tabu list might
be of excellent quality and might not have been visited. To mitigate this problem, a
simple aspiration criterion is applied that permits a move to be selected in spite of
being tabu if it leads to a solution better than the current best solution.

In the case that the TS procedure is applied to a token ring search (denoted
N1→N2 for our two neighborhoods case), we start the TS procedure with neighbor-
hood N1. Since we need to search the two neighborhoods alternately, the application
of TS to a single neighborhood stops when the best solution cannot be improved
within a given number θ of moves and we call this number the improvement cutoff
of TS, which we empirically set to be a relatively small value (50,000 for all the
tested instances).

4.5 Experimental Results

In this section, we show computational results for our simple TS algorithm us-
ing the following neighborhoods and neighborhood combinations: N1 (one-flip), N2

(two-flip), N1∪N2 (selective union) with p = 0.5, N1�N2 (strong union) and N1→N2

(token-ring).
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4.5.1 Test Instances and Experimental Protocol

Two sets of test problems are considered in our experiments. The first set of bench-
marks is composed of the ten largest instances of size n = 2500 introduced in
[7] and available in the ORLIB [6]. These instances are used in the literature by
many authors (e.g., [7, 22, 33, 35, 36]). The second set of benchmarks consists of
a set of 15 randomly generated large problem instances named p3000.1,. . .,p5000.5
with sizes ranging from n=3000 to 5000 [35, 36]. These instances are available at:
http://www.soften.ktu.lt/˜gintaras/ubqop\_its.html.

Our algorithm is programmed in C and compiled using GNU GCC on a PC
running Windows XP with Pentium 2.66GHz CPU and 512M RAM. For each run
of the TS algorithm, the initial solution is generated randomly, i.e., each variable xi

receives a random value of 0 or 1 with equal chance. Given this stochastic nature
of our TS procedure, each problem instance is independently solved 20 times. To
make the comparison as fair as possible, all the experiments use the same CPU time
limits: For the ten Beasley instances with 2500 variables, the CPU time limit is set
to 1000 seconds while it is set to 2000 seconds for the other 15 larger instances.

4.5.2 Computational Comparison

4.5.2.1 Average Results Comparison

Table 4.1 shows the computational statistics of the TS algorithm on the ten Beasley
instances with 2500 variables. Columns 2 and 3 give the density (dens) and the best
known objective values ( fprev) obtained from the literature, respectively. Columns 4
to 8 give the solution gap to the best solutions for each neighborhood and neighbor-
hood combination. For each instance, the solution gap in Table 4.1 is represented as
fprev − f , where f is the average objective value obtained by 20 independent runs
and fprev represents the previous best known objective value. The overall results,
averaged over ten instances, are presented in the last row.

From Table 4.1, we observe that neighborhood N1 reaches the previous best
known results very stably for eight of the ten instances while it performs quite poorly
on the other two cases. On the other hand, neighborhood N2 can obtain the previ-
ous best known results each time only for two instances, but obtains optimal or
near-optimal solutions with quite small variance for the other cases. In terms of the
average gaps to the previous best solutions, neighborhood N2 slightly outperforms
N1 for these ten test problems.

When comparing the three neighborhood combinations N1∪N2 (with p = 0.5),
N1�N2 and N1→N2 with each other, one finds that the selective union N1∪N2 and
the token-ring search N1→N2 are superior to the strong union N1�N2, as well as the
single neighborhoods N1 and N2. One also observes that the strong union N1�N2 per-
forms much worse than the single neighborhood N1, implying that the strong union
is not an appropriate way of combination for these two neighborhoods. For each



54 Zhipeng Lü, Fred Glover, and Jin-Kao Hao

Table 4.1: Results of the TS algorithm on the ten Beasley instances with size n=2500
within 1000 seconds

instance dens fprev solution gaps to fprev ( fprev− f )
N1 N2 N1∪N2 N1�N2 N1→N2

b2500.1 0.1 1515944 0 4.2 0 94.0 0
b2500.2 0.1 1471392 0 12.1 0 65.1 0
b2500.3 0.1 1414192 94.1 1.4 0 301.2 0
b2500.4 0.1 1507701 0 0 0 0 0
b2500.5 0.1 1491816 0 0 0 0 0
b2500.6 0.1 1469162 0 1.3 0 82.1 0
b2500.7 0.1 1479040 35.7 1.3 0 122.5 0
b2500.8 0.1 1484199 0 8.2 0 10.2 3.5
b2500.9 0.1 1482413 0 10.9 0 1.9 0
b2500.10 0.1 1483355 0 4.0 0 0 0
average 12.98 4.34 0 67.7 0.35

pairwise comparison of these neighborhoods, we performed a 95% confidence t-test
to compare their solution quality, leading to the following ranking of the neighbor-
hoods: For single neighborhoods N2>N1 while N1∪N2>N1→N2>N1�N2 for neigh-
borhood combinations.

Table 4.2: Results of the TS algorithm on the 15 large random instances with vari-
ables ranging from 3000 to 5000 within 2000 seconds

instance dens fprev solution gaps to fprev ( fprev− f )
N1 N2 N1∪N2 N1�N2 N1→N2

p3000.1 0.5 3931583 319.8 8.8 103.4 1866.7 435.0
p3000.2 0.8 5193073 418.6 103.5 193.2 214.7 120.7
p3000.3 0.8 5111533 482.7 637.6 488.7 508.9 607.2
p3000.4 1.0 5761822 77.0 38.6 0 630.1 57.7
p3000.5 1.0 5675625 460.4 385.3 223.8 738.0 655.0
p4000.1 0.5 6181830 0 15.2 0 1249.3 0
p4000.2 0.8 7801355 1732.1 1364.5 402.2 2683.4 1622.7
p4000.3 0.8 7741685 1427.9 474.1 445.1 1742.0 936.1
p4000.4 1.0 8711822 1516.3 276.8 438.1 1954.1 1359.4
p4000.5 1.0 8908979 2979.9 372.5 397.4 3053.2 2723.7
p5000.1 0.5 8559355 2957.9 1287.3 1153.6 4118.4 2365.4
p5000.2 0.8 10836019 3561.5 2232.6 2716.5 3839.8 3263.0
p5000.3 0.8 10489137 8451.0 4156.4 3054.0 9634.5 3124.5
p5000.4 1.0 12252318 4760.2 3261.0 2215.4 9276.1 3416.3
p5000.5 1.0 12731803 6327.0 1369.3 1472.8 4863.2 6093.6
average 2364.82 1065.57 886.95 3091.49 1785.35

Similarly, the computational results of the TS algorithm on the fifteen larger and
denser random instances are shown in Table 4.2. The symbols are the same as those
in Table 4.1. Once again, we observe that neighborhood N2 outperforms N1 except
for two instances (p3000.4 and p4000.1) in terms of the average gaps to the previous
best known objective values. In addition, the selective union N1∪N2 is superior to
other two neighborhood combinations. We also performed a 95% confidence t-test
to compare different neighborhoods and observed that N2>N1 for single neighbor-
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hoods while N1∪N2>N1→N2>N1�N2 for neighborhood combinations. These re-
sults coincide well with the results observed on the ten Beasley instances with 2500
variables.

4.5.2.2 Best Results Comparison

We now turn our attention to the best results that the TS algorithm obtains in the
preceding experiments. Note that there is no difficulty to obtain the previous best
known results for each neighborhood or neighborhood combination for all the ten
instances with 2500 variables. Thus, we only list in Table 4.3 the best results of
the TS algorithm on the fifteen larger instances. Columns 2 and 3 recall the den-
sity (dens) and the best known objective values ( fprev) obtained from the literature.
Columns 4 to 8 give the solution gap to the best solutions for each neighborhood and
neighborhood combination, where fbest represents the best objective value obtained
over 20 independent runs. Once again, the overall results averaged over fifteen in-
stances are presented in the last row.

Table 4.3: Best results of the TS algorithm over 20 independent runs

instance dens fprev solution gaps to fprev ( fprev− fbest )
N1 N2 N1∪N2 N1�N2 N1→N2

p3000.1 0.5 3931583 0 0 0 0 0
p3000.2 0.8 5193073 0 0 0 0 0
p3000.3 0.8 5111533 0 0 0 0 0
p3000.4 1.0 5761822 0 0 0 0 0
p3000.5 1.0 5675625 0 0 0 0 0
p4000.1 0.5 6181830 0 0 0 0 0
p4000.2 0.8 7801355 0 0 0 1686 0
p4000.3 0.8 7741685 0 0 0 0 0
p4000.4 1.0 8711822 0 0 0 0 0
p4000.5 1.0 8908979 0 0 0 0 0
p5000.1 0.5 8559355 0 -325 -325 0 0
p5000.2 0.8 10836019 582 65 0 582 0
p5000.3 0.8 10489137 354 148 148 683 663
p5000.4 1.0 12252318 608 0 0 2400 0
p5000.5 1.0 12731803 1025 0 0 0 0
average 256.9 -11.2 -17.7 366.5 66.3

Table 4.3 shows that the selective union N1∪N2 performs much better than the
strong union N1�N2, the token-ring search N1→N2 and the single neighborhoods
N1, and even slightly better than N2. One also observes that for the fifteen larger in-
stances, the TS algorithm with N1∪N2 matches the previous best results for thirteen
of them, while getting a worse result only for one instance and a better result for the
remaining one. It should be noticed that the selective union N1∪N2 and the single
neighborhood N2 both improve the best result obtained by [36] for instance p5000.1,
showing the advantage of the newly introduced neighborhood N2 over N1 and the
combination mechanism of selective union. According to these results, we have the



56 Zhipeng Lü, Fred Glover, and Jin-Kao Hao

following ranking of the neighborhoods: N1∪N2>N2>N1→N2>N1>N1�N2. The
trends of the best costs perfectly match those of the average costs mentioned above
for the considered instances.

4.5.2.3 Results Analysis

The preceding computational results show that for the three neighborhood combi-
nations of N1 and N2, the selective union N1∪N2 produces much better results than
other combinations. These results prompt us to focus on investigating the best and
worst neighborhood combinations: N1∪N2 and N1�N2. In this section, we attempt
to explain what causes the effectiveness and weakness of these two neighborhood
unions and show evidence for this phenomenon in terms of three evaluation criteria.
For this purpose, we employ a steepest descent (SD) algorithm for this experiment,
where we disable the tabu list of our TS algorithm and the current solution is repeat-
edly replaced by a best improving solution in its neighborhood until no improving
neighbor exists. The experiment is carried out on the large instance p5000.3 (very
similar results are observed for other instances).

In [30], three evaluation criteria were employed to characterize the search capac-
ity of a neighborhood: Percentage of improving neighbors, improvement strength
and search steps. The authors argue that good neighborhoods should have one or
more of these features: High percentage of improving neighbors (for more improve-
ment possibilities), strong improvement strength (for important improvements) and
long search steps (for long term improvements).

For a candidate solution x, a given neighborhood function NB : X →2X and a
neighborhood solution x� ∈NB(x), define Δ f = f (x�)− f (x). These criteria are then
defined as follows.

• Improving neighbors I(x): The set of the improving neighbors in the neighbor-
hood NB(x) given by I(x) = {x� ∈ NB(x)|Δ f > 0}. Therefore, the percentage of
improving neighbors is defined as |I(x)|/|NB(x)|×100%.

• Improvement strength Δ f ∗: The cost variation between the current solution x and
a best improving neighbor given by Δ f ∗ = max{|Δ f | : Δ f ∈ I(x)}.

• Search steps: The term search steps is defined as the number of iterations that the
SD algorithm can run to reach a local optimum.

To calculate the values of each criterion, we run the SD algorithm for fifty inde-
pendent runs with N1∪N2 and N1�N2, respectively. For each run, data corresponding
to the above three evaluation criteria are calculated; percentage of improving neigh-
bors and improvement strength values are collected at each iteration while search
steps is simply the iteration number when SD stops. All the reported results corre-
spond to the averages obtained for these fifty independent runs.

Figure 4.1 presents the percentage of improving neighbors for N1∪N2 and
N1�N2, evolving with the local search iterations. It shows that at the beginning of
the local search, the percentage of improving neighbors for the strong union N1�N2

is greater than that of the selective union N1∪N2. However, this trend only lasts for
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the first 1000 local search iterations and then the percentage of improving neighbors
for N1�N2 decreases dramatically during the following 300 iterations. On the other
hand, the percentage of improving neighbors for N1∪N2 decreases quite slowly dur-
ing the first 1500 iterations. In other words, N1∪N2 offers more opportunities to find
improving neighbors, especially after the first iterations of the search (first 1000 it-
erations for this particular instance). When starting from a random initial solution
even poor neighborhoods can have a certain number of improving neighbors at the
first iterations while only good neighborhoods offer improving neighbors when the
search progresses.

On the other hand, compared with N1�N2, there exist long tails for the percent-
age of improving neighbors for the selective union N1∪N2, meaning that it allows
the descent algorithm to run a larger number of iterations. This property is another
important indicator of good neighborhoods. We argue that, in applying different
neighborhoods, one that permits a descent method to continue for a greater number
of iterations, and to move a greater distance during these iterations, has a greater
potential to improve the solution quality in the long run.

We then evaluate the two neighborhood unions using the improvement strength
criterion. Figure 4.2 presents how the improvement strength of each neighborhood
evolves with the local search iterations. It shows that these two neighborhood unions
have quite similar evolving trends in terms of the average improvement strength.
Once again, one observes that at the beginning of the search, the improvement
strength of N1�N2 is greater than that of N1∪N2. However, it only lasts for a small

Fig. 4.1: The improving neighbors comparison between N1∪N2 and N1�N2
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number of iterations (the first 600 iteration in this particular case). This can be ex-
plained by the fact that N1�N2 simultaneously considers two neighborhoods N1 and
N2 while N1∪N2 only randomly chooses one neighborhood. Nevertheless, as the al-
gorithm progresses (after the first 600 iterations), the N1∪N2 neighborhood offers
much greater improvement strength than N1�N2. This phenomenon correlates well
with the trend of the percentage of improving neighbors.

Based on these observations, we formulate the following conclusions.

1. Neighborhood union N1∪N2 induces a higher percentage of improving neigh-
bors and greater improvement strength than N1�N2 after the first iterations of
the search. As a result, N1∪N2 offers more choices for the search algorithm to
improve the current solution at each iteration once the initial iterations are com-
pleted.

2. Neighborhood N1∪N2 offers improving neighbors for a larger number of itera-
tions than N1�N2. Consequently, local search can continue for a larger number
of iterations with N1∪N2.

3. Although neighborhood N1�N2 offers a higher percentage of improving neigh-
bors and greater improvement strength during the first iterations, its improve-
ments quickly disappear, limiting its search capability.

We also repeated this experiment with the TS algorithm described in Section
4.4.2 and reached similar conclusions.

Fig. 4.2: The improvement strength comparison between N1∪N2 and N1�N2
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4.6 Conclusions and Discussion

In this paper, we compare and analyze two basic neighborhoods (one-flip and two-
flip) and three neighborhood combinations (selective union, strong union and token-
ring search) for the UBQP problem. The computational results show that the best
outcomes are achieved with the selective union N1∪N2, followed by using the new
N2 neighborhood by itself.

We employ three evaluation criteria to explain why the selective union N1∪N2

performs much better than the strong union N1�N2, yielding an experimental analy-
sis that sheds light on the relative advantages and weaknesses of the neighborhoods
N1 and N2 and various possibilities for combining them. Our findings are anticipated
to have useful implications for combining neighborhoods in other applications, par-
ticularly when presented a choice between the use of selective unions and strong
unions.

Some important questions remain.

1. These results are based on random instances. It would be interesting to know
whether these results would be confirmed for problems that exhibit special struc-
tures of various types. To this end, a sequel to this study will carry out additional
experiments using more diverse instances transformed from other problems.

2. It would be useful to identify the conditions under which a particular neighbor-
hood or a neighborhood combination is preferable.

3. More importantly, it would be valuable to explore higher order neighborhood
moves (e.g., three-flip or even higher flip moves). As observed in [14], there
exits a natural way to extend the above mentioned fast two-flip move evaluation
techniques to these higher order moves.

4. It would be worthwhile to investigate other ways of combining the neighbor-
hoods, particularly with the inclusion of higher order flip moves. For example,
we may consider “conditional” combinations where moves from a lower order
neighborhood pass certain screening criteria as a foundation for becoming com-
ponents of moves in higher order neighborhoods.

We anticipate that answers to these issues will provide information that will be
valuable for the design of improved algorithms. Finally, given that the neighbor-
hood combination strategies and the neighborhood evaluation criteria discussed in
this paper are independent of the UBQP problem, they can be used to evaluate neigh-
borhood relations of other combinatorial optimization problems.
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