
A Study of Memetic Search with Multi-Parent
Crossover for UBQP

Zhipeng Lü1, Jin-Kao Hao1, and Fred Glover2

1 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
2 OptTek Systems, Inc., 2241 17th Street Boulder, CO 80302, USA

lu@info.univ-angers.fr, hao@info.univ-angers.fr, glover@opttek.com

Abstract. We present a multi-parent hybrid genetic–tabu algorithm
(denoted by GTA) for the Unconstrained Binary Quadratic Program-
ming (UBQP) problem, by incorporating tabu search into the frame-
work of genetic algorithm. In this paper, we propose a new multi-parent
combination operator for generating offspring solutions. A pool updat-
ing strategy based on a quality-and-distance criterion is used to manage
the population. Experimental comparisons with leading methods for the
UBQP problem on 25 large public instances demonstrate the efficacy of
our proposed algorithm in terms of both solution quality and computa-
tional efficiency.

Keywords: UBQP, Memetic Algorithm, Tabu Search, Genetic Algorithm,
multi-parent crossover.

1 Introduction

The unconstrained binary quadratic programming problem may be written

UBQP: Maximize f(x) = x′Qx
x binary

where Q is an n by n matrix of constants and x is an n-vector of binary (zero-one)
variables.

The formulation of UBQP is notable for its ability to represent a wide range of
important problems, including those from financial analysis [1], computer aided
design [2], traffic management [3], machine scheduling [4]), cellular radio channel
allocation [5] and molecular conformation [6]. Moreover, many combinatorial op-
timization problems pertaining to graphs such as determining maximum cliques,
maximum cuts, maximum vertex packing, minimum coverings, maximum inde-
pendent sets, maximum independent weighted sets are known to be capable
of being formulated by the UBQP problem as documented in [7]. A review of
additional applications and formulations can be found in [8].

Given the interest in the UBQP and its NP-hard nature [9], a large number
of solution procedures have been reported in the literature. Some representative
examples include exact algorithms (such as [7, 10, 11]), local search based ap-
proaches (such as Simulated Annealing [12–14] and Tabu Search [13, 15–18]) and

population-based approaches (such as Evolutionary Algorithms [19–22], Scatter
Search [23] and Memetic Algorithms [24]).

In the current paper, we study a memetic algorithm for the UBQP, which
integrates a tabu search procedure with a genetic search approach. The proposed
algorithm is characterized by several original features. First, we introduce a
“logic” combination operator using multiple parents called MSX to produce
a combination scheme that more fully exploits the problem structure within
the present context. Second, the proposed MSX crossover is jointly employed
with the conventional uniform crossover to generate diversified new solutions.
Finally, our algorithm relies on a quality-and-distance replacement strategy for
population updates to maintain the population diversity.

To assess the performance and the competitiveness of our memetic algorithm
in terms of both solution quality and efficiency, we provide computational results
on the 10 largest benchmark instances with 2 500 variables from ORLIB as well
as 15 larger instances with up to 5 000 variables, comparing our outcomes with
the best results of the literature.

The remaining part of the paper is organized as follows. In Section 2, our
memetic algorithm is described, including the tabu search procedure, the multi-
parent combination operator and the pool updating rule. Sections 3 is dedicated
to the computational results and concluding remarks are given in Section 4.

2 Hybrid Genetic–Tabu Algorithm

2.1 Main Scheme and Initial Population

Memetic algorithms such as hybrid evolutionary algorithms are known to be
highly effective for solving a large number of constraint satisfaction and opti-
mization problems [25]. By combining the more global recombinant search and
the more intensive local search, the memetic framework is expected to offer a
better balance between the exploration and exploitation of the search space.

In principle, our genetic-tabu algorithm (GTA) repeatedly alternates between
a combination operator that is used to generate new offspring solutions and a
tabu search procedure that optimizes the newly generated offspring solutions.
As soon as an offspring solution is improved by tabu search, the population is
accordingly updated based on two criteria: the solution quality and the diversity
of the population.

The general framework of our GTA algorithm is described in Algorithm 1.
GTA contains four main components: population initialization, a tabu search
procedure, a multi-parent crossover operator and population updating. Start-
ing from an initial random population, GTA uses the tabu search procedure to
optimize each individual to reach a local optimum (see Sect. 2.2, lines 4-6 in
Algorithm 1). Then, a crossover operator is employed to generate new offspring
solutions (see Sect. 2.3, line 10 in Algorithm 1), whereupon a new round of tabu
search is launched to improve the new solutions. Subsequently, the population
updating rule will decide whether an improved solution should be inserted into

the population and which existing individual should be replaced (line 15 in Al-
gorithm 1). Throughout the search process, x∗ records the best solution found
(lines 7, 12-14 in Algorithm 1).

The individuals of the initial population are generated randomly (i.e., each
variable xi of the n-vector x receives a value of 0 or 1 with equal probability). To
build a diversified initial population, a new individual is added to the population
only if it is not too close to any of the existing solutions of the population. The
distance threshold for executing this rule is discussed in Section 2.3.

2.2 Tabu Search Procedure

As demonstrated in [15] and more recently in [16–18], TS is one of the more
successful approaches for the UBQP. Our tabu search procedure uses a neigh-
borhood defined by the simple one-flip move, which is widely used in local search
algorithms for binary problems such as the UBQP problem and the satisfiability
problem [26]. The one-flip move consists of changing (flipping) the value of a
single variable xi to its complementary value 1−xi. The implementation of this
neighborhood uses a fast incremental evaluation technique [15, 27] to calculate
the cost (move value) of transitioning to each neighboring solution.

More formally, let N = {1, . . . , n} denote the index set for components of
the x vector. We preprocess the matrix Q to put it in lower triangular form by
redefining (if necessary) qij = qij +qji for i > j, which is implicitly accompanied
by setting qji = 0 (though these 0 entries above the main diagonal are not stored
or accessed). Let ∆i be the move value of flipping the variable xi, and let q(i,j)

be a shorthand for denoting qij if i > j and qji if j > i. Then each move value
can be calculated in linear time using the formula:

Algorithm 1 Pseudo-code of the GTA algorithm for the UBQP problem
1: Input: matrix Q
2: Output: the best solution x∗ found so far
3: P = {x1, . . . , xp} ← Population Initialization()
4: for i = {1, . . . , p} do
5: xi ← Tabu Search(xi)
6: end for
7: x∗ = arg max{f(xi)|i = 1, . . . , p}
8: repeat
9: randomly choose a subset of individuals E from P

10: x0 ← Crossover Operator(E)
11: x0 ← Tabu Search(x0)
12: if f(x0) > f(x∗) then
13: x∗ = x0

14: end if
15: {x1, . . . , xp} ← Pool Updating(x0, x1, . . . , xp)
16: until a stop criterion is met

∆i = (1 − 2xi)(qii +
∑

j∈N,j ̸=i,xj=1

q(i,j)) (1)

In addition, once a move is performed, one needs just to update a subset
of move values affected by the move. Specifically, it is possible to update the
move values upon flipping a variable xi by performing the following abbreviated
calculation:

1. ∆i = −∆i

2. For each j ∈ N − {i},
∆j = ∆j + σij q(i,j)

where σij = 1 if xj = xi, σij = −1 otherwise.

We employ the convention that xi represents xi’s value before being flipped.
TS typically incorporates a tabu list as a “recency-based” memory structure

to assure that solutions visited within a certain span of iterations, called the tabu
tenure, will not be revisited [28]. In our implementation, each time a variable xi is
flipped, a value is assigned to an associated record TabuTenure(i) (identifying
the “tabu tenure” of xi) to prevent xi from being flipped again for the next
TabuTenure(i) iterations. For the current study, we elected to set

TabuTenure(i) = tt + rand(10) (2)

where tt is a given constant and rand(10) takes a random value from 1 to 10.
Our TS algorithm then restricts consideration to variables not currently tabu

(by the criterion established by (2)), and selects a variable to flip that produces
the best (largest) ∆i value. In the case that two or more moves have the same
best move value, a random best move is selected. Meanwhile, a simple aspiration
criterion is applied that permits a move to be selected in spite of being tabu if
it leads to a solution better than the current best solution.

Our TS method stops when the best solution cannot be improved within a
given number α of moves and we call this number the improvement cutoff.

2.3 Combination Operator

In our GTA algorithm, we jointly use two kinds of crossover (or combination)
operators to generate suitable offspring: one is the uniform crossover widely
used in the literature; the other is a “logic” multi-parent combination operator
proposed in this paper. At each iteration, we randomly choose one of these two
operators with equal probability to generate new offspring solutions.

The main idea of uniform crossover is to assign values to the variables of
offspring that represent assignments made in common by both parents, and to
randomly assign values to remaining variables of the offspring solution [29]. In
our case, the application of uniform crossover is controlled by the Hamming
distance dij between two parent solutions xi and xj (i.e., dij equals the number
of variables that receive different values in the parents. We require that two

solutions chosen as parents must satisfy dij > d, where d denotes the average
distance between pairs of solutions in the population. Therefore, we have d =

2
p(p−1)

∑p
i=1

∑p
j=i+1 dij , where p denotes the population size.

The second crossover operator, called MSX, uses multiple parent combination
which relies on information extracted from diversified and elite solutions. Let
E = {x(1), . . . , x(s)}, where x(i) = (x(i)

1 , . . . , x
(i)
n) and the solutions in E are

ordered in terms of their quality, i.e., x(1) is the best solution in E and x(s) is
the worst. The value s giving the number of solutions in E is allowed to vary
randomly between 4 and 8. E itself is generated by randomly selecting elements
from the pool one at a time, subject to the restriction that each new element
added to E must be separated by a distance of at least d from all elements of E
previously added, as a basis for assuring the diversity of E. (In some cases, this
requirement may compel E to have fewer than s elements.)

Associated with each x(i) in E, we identify the value

sum(i) =
n∑

j=1

x
(i)
j (3)

and define a weight w(i) for the solution x(i) as the inverse of sum(i):

w(i) = 1/sum(i) (4)

The weighted quantity w(i)x(i)
j , which equals w(i) if x

(i)
j = 1 and equals 0

otherwise, may be interpreted as the “relative contribution” of setting xj = 1 in
the solution x(i). In other words, if x

(i)
j = 1 for all j ∈ N then each assignment

xj = 1 contributes only 1/n to the weighted quantity, whereas if x
(i)
j = 1 for

only two j ∈ N then each xj = 1 assignment contributes 1/2, disclosing that
the relative contribution of any given assignment xj = 1 in the latter solution is
significantly greater than in the former.

For the elite set E (|E| = s), define the value Strength(j) to be the weighted
sum of the values x

(i)
j (hence of the values x

(i)
j = 1) over the solutions x(i) in E:

Strength(j) =
s∑

i=1

w(i)x(i)
j (5)

The value Strength(j) gives a relative indication of the tendency of the
solutions in E to favor xj = 1 or xj = 0. That is, we may say that the larger the
value of Strength(j), the greater is the degree that “E favors xj = 1”. We allow
the use of different weights for different solutions to reflect the fact that some
solutions may deserve greater influence in determining the strength assigned a
given variable than other solutions. The use of different weights also permits
the use of strategies that amend the emphasis placed on various solutions as
a function of search history, though we have not exploited this feature in the
present study.

For the goal of generating a solution x from the set of solutions E, the
value Strength(j) by itself is not enough to determine that xj should be 1

or 0. To make this determination, we need to order the vector Strength (=
(Strength(1), . . . , Strength(n))) from its largest to smallest component:

Strength(j1) ≥ Strength(j2) ≥ . . . ≥ Strength(jn) (6)

To complete the determination of a suitable vector x to be derived from the
set E, we select for the number of components xj of x that should receive a value
xj = 1. We take an average of the sum(i) values over E to get a value for the
number of xj components that should be 1 in an “average” solution. Specifically,
let

Avg =
s∑

i=1

sum(i)/s (7)

Making use of these elements, we can now compute the vector x created from
combining the solutions of E as follows:

1. For each j = jk, k ≤ Avg − r1, set xj = 1;
2. For each j = jk, k ≥ Avg + r2, set xj = 0;
3. For each j = jk, Avg − r1 < k < Avg + r2, randomly set xj = 1 or xj = 0.

where r1 or r2 denotes a randomly generated number from 3 to 10.
This idea is inspired from the intuition that it is preferable to shift Avg

slightly in one direction or another to make the generation of offspring solutions
more varied. In such a way, an offspring solution x is generated based on the elite
set E, to which the tabu search procedure can be applied to further optimize
the solution.

2.4 Pool Updating

In our algorithm, when an offspring x0 is obtained by the crossover operator, we
improve x0 by the tabu search algorithm and then decide whether the offspring
should be inserted into the population, replacing the worst solution in the pop-
ulation. For this purpose, we define a quality-and-distance goodness score of the
offspring x0 with respect to the population.

The main idea is to favor the inclusion of x0 in the population if x0 is “good
enough” (in terms of its objective function evaluation) and is not too similar
to any solution currently in the population. In order to make things clearer, we
make use of the following definitions:

Definition 1. Distance Between a solution and a Population: Given
a population P = {x1, . . . , xp} and the distance dij between any two solutions
xi and xj (i, j = 1, . . . , p, i ̸= j), the distance between a solution xi (i = 1, . . . , p)
and the population P is defined as the minimum distance between xi and any
other solution in P , denoted by Di,P :

Di,P = min{dij |xj ∈ P, j ̸= i} (8)

Definition 2. Goodness Score of a solution for a Population: Given
a population P = {x1, . . . , xp} and the distance Di,P for any solution xi (i =
1, . . . , p), the goodness score of solution xi for population P is defined as:

g(i, P) = βÃ(f(xi)) + (1 − β)Ã(Di,P) (9)

where f(xi) is the objective function value of solution xi and Ã(·) represents the
normalized function:

Ã(y) =
y − ymin

ymax − ymin + 1
(10)

where ymax and ymin are respectively the maximum and minimum values of y
in the population P . The number “1” is used to avoid the possibility of a 0
denominator. β is a constant parameter and we empirically set β = 0.6 in this
paper.

It is reasonable that the greater the goodness score g(i, P), the better solution
xi, since we should not only maintain a pool of good quality solutions but also
emphasize the importance of the diversity of the solutions to avoid a premature
convergence of the population. Therefore, if the goodness score of the offspring
solution is good enough, it will have high probability to replace the worst solution
in the population. Interested readers are referred to [30] for more details about
this quality-and-distance based pool updating strategy.

3 Experimental Results

3.1 Instances and Experimental protocol

To assess the efficiency of our proposed GTA algorithm, we carry out exper-
iments on two sets of benchmarks. The first set of benchmarks is composed
of the 10 largest instances of size n = 2 500 introduced in [13] and avail-
able in the ORLIB [31]. These instances are used in the literature by many
authors (e.g., [13, 14, 16–18, 24]). Note that the small test instances from the
ORLIB whose sizes range from n=50 to 1 000 present no challenge for our
GTA algorithm, since all their best known results can be obtained within 2
seconds by our algorithm. The second set of benchmarks consists of a set of
15 randomly generated large problem instances named p3000.1,. . .,p5000.5 with
sizes ranging from n=3 000 to 5 000 [16, 17]. These instances are available at:
http://www.soften.ktu.lt/∼gintaras/ubqop its.html.

Our algorithm is programmed in C and compiled using GNU GCC on a PC
running Windows XP with Pentium 2.66GHz CPU and 512M RAM. Given the
stochastic nature of our GTA procedure, each problem instance is independently
solved 20 times. For the instances with 2 500, 3 000, 4 000 and 5 000 variables,
the CPU time limit is set to be 40, 500, 800 and 1 500 seconds, respectively.

3.2 Computational Results and Comparisons

Based on preliminary testing, we observed that the following parameter settings
give satisfying results: population size p = 20, tabu tenure constant tt = n/150,
tabu search improvement cutoff α = 2n and goodness score constant parameter
β = 0.6. The calibrated parameter values are kept constant for all the exper-
iments. It is possible that better solutions would be found by using a set of
instance-dependent parameters.

Our first experiment aims to evaluate the overall performance of our GTA
algorithm on the tested instances. The results of this experiment are summarized
in Table 1, showing the computational statistics of our GTA algorithm. Columns
2 and 3 respectively give the density (dens) of the Q matrix and the previous
best known objective values (fprev). Columns 4 to 10 give our results: the best
objective value (fbest), the best solution gap to the previous best known values
gbest (= fbest−fprev), the average solution gap to the previous best known value
gavr (= favr − fprev) (where favr represents the average objective value over 20
runs), the standard deviations of the solution gaps over 20 runs (σ), the number
of success runs (suc) for reaching the best known results fprev, the best and the
average CPU time (seconds) for reaching the best results fbest (tbest and tavr)
over 20 independent runs. Furthermore, for each set of benchmarks, the summary
of our algorithm’s average performance is indicated in the row “Average”. Note
that the previous best known objective values fprev are extracted from [17] and
[18], which are obtained by allowing a time limit of up to several hours. These
reference algorithms are among the best performing algorithms for the tested
instances.

The results shown in Table 1 disclose that our GTA algorithm can stably
reach the previous best known results within a very short CPU time, demon-
strating the high efficiency of our method. For the 10 medium size ORLIB in-
stances with 2 500 variables, our algorithm can easily reach all the previous best
known objective values within 4 seconds on our computer. For the 15 remaining
large and difficult instances, our algorithm can also easily reach the previous
best known objective values within the given time limit. The average CPU time
to obtain the best known objective values is only 352 seconds and the average
number of success runs is about 15 out of 20 runs for this set of benchmarks.

As indicated in Section 2, one of the original features of our approach is the
multi-parent “logic” combination crossover and its joint use with the uniform
crossover. In order to check the effect of this strategy, we conducted our second
experiment to compare GTA with a variant of GTA, where the multi-parent
crossover is disabled and the remaining components are kept unchanged. We
denote this algorithm by GTAa, where we disable our multi-parent combination
MSX operator and keep only the uniform crossover.

We run this second experiment using GTAa under exactly the same condi-
tions as before and the results are reported in Table 2 together with those of
GTA extracted from Table 1. Once again, the following information is provided
for each instance: the best solution gap to the previous best known objective
values gbest, the average solution gap to the previous best known objective val-

ues gavr, the standard deviations of the solution gaps over 20 runs (σ), and the
number of success runs (suc) for reaching the best known objective values fprev

over 20 runs.
One observes that GTA performs better than GTAa in terms of all the per-

formance criteria. In particular, for the large instance p5000.4, GTAa failed to
reach the best known objective value fprev = 12252318 within the given time
limit, while GTA reaches this best solution 3 times out of 20 runs. The average
gap to the previous best known objective value is 214.3 for GTA against 301.1 for
GTAa. Moreover, GTA obtains the previous best known objective values more
often than GTAa does (15.3 versus 13.7 over 20 independent runs). For the best
objective values obtained over 20 runs, we performed a 95% confidence t-test
to assess the difference between these two algorithms and found that GTA is
statistically superior to GTAa in 6 instances while it is inferior to GTAa only in
1 instance. For all the 18 remaining cases, there is no clear difference between
these two algorithms.

Table 1. Overall performance of our GTA algorithm over 20 runs

GTA
instance dens fprev fbest gbest gavr σ suc tbest tavr

b2500.1 0.1 1515944 1515944 0 0.0 0.0 20 0.45 2.52
b2500.2 0.1 1471392 1471392 0 9.9 43.2 19 3.87 26.7
b2500.3 0.1 1414192 1414192 0 0.0 0.0 20 0.60 6.70
b2500.4 0.1 1507701 1507701 0 0.0 0.0 20 0.33 1.32
b2500.5 0.1 1491816 1491816 0 0.0 0.0 20 0.41 3.50
b2500.6 0.1 1469162 1469162 0 0.0 0.0 20 0.71 4.14
b2500.7 0.1 1479040 1479040 0 0.0 0.0 20 1.06 12.3
b2500.8 0.1 1484199 1484199 0 0.0 0.0 20 0.55 5.83
b2500.9 0.1 1482413 1482413 0 0.0 0.0 20 0.57 11.0
b2500.10 0.1 1483355 1483355 0 0.0 0.0 20 1.44 13.2

Average 0 0.99 4.32 19.9 0.999 8.72

p3000.1 0.5 3931583 3931583 0 0.0 0.0 20 8.83 42.8
p3000.2 0.8 5193073 5193073 0 0.0 0.0 20 5.39 38.6
p3000.3 0.8 5111533 5111533 0 7.7 33.6 19 13.0 82.2
p3000.4 1.0 5761822 5761822 0 0.0 0.0 20 36.1 79.8
p3000.5 1.0 5675625 5675625 0 298.2 373.9 14 16.3 85.6
p4000.1 0.5 6181830 6181830 0 0.0 0.0 20 4.92 52.0
p4000.2 0.8 7801355 7801355 0 194.1 471.5 17 186.3 276.7
p4000.3 0.8 7741685 7741685 0 0.0 0.0 20 42.9 208.4
p4000.4 1.0 8711822 8711822 0 3.0 13.1 19 43.7 168.5
p4000.5 1.0 8908979 8908979 0 260.2 455.1 15 171.3 420.6
p5000.1 0.5 8559680 8559680 0 507.4 313.4 4 137.7 636.3
p5000.2 0.8 10836019 10836019 0 425.6 250.1 11 81.6 562.8
p5000.3 0.8 10489137 10489137 0 356.4 164.3 9 264.7 726.0
p5000.4 1.0 12252318 12252318 0 1035.6 456.6 3 826.7 1326.1
p5000.5 1.0 12731803 12731803 0 126.3 401.6 18 423.9 568.3

Average 0 214.3 195.5 15.4 150.9 351.6

Let us finally comment that we also carried out a similar experiment on an-
other important feature of our GTA algorithm — the quality-and-distance based
pool updating strategy. We compare GTA with another variant of GTA, where
the pool updating strategy is disabled and is replaced by one that randomly
takes the place of one of the parent individuals in the population. The remain-
ing components are kept unchanged. Once again we observe that GTA performs
better than this variant of GTA relative to all the four criteria shown in Table
2, implying the importance of our population updating strategy.

These results provide evidence of the benefit of our multi-parent combination
operator and quality-and-distance based pool updating strategy.

Table 2. Performance comparison of GTA algorithm with GTAa

GTA GTAa
instance fprev gbest gavr σ suc gbest gavr σ suc

b2500.1 1515944 0 0.0 0.0 20 0 0.0 0.0 20
b2500.2 1471392 0 9.9 43.2 19 0 35.7 87.0 17
b2500.3 1414192 0 0.0 0.0 20 0 0.0 0.0 20
b2500.4 1507701 0 0.0 0.0 20 0 0.0 0.0 20
b2500.5 1491816 0 0.0 0.0 20 0 0.0 0.0 20
b2500.6 1469162 0 0.0 0.0 20 0 0.0 0.0 20
b2500.7 1479040 0 0.0 0.0 20 0 0.0 0.0 20
b2500.8 1484199 0 0.0 0.0 20 0 0.0 0.0 20
b2500.9 1482413 0 0.0 0.0 20 0 0.0 0.0 20
b2500.10 1483355 0 0.0 0.0 20 0 0.0 0.0 20

Average 0 0.99 4.32 19.9 0 3.57 8.70 19.7

p3000.1 3931583 0 0.0 0.0 20 0 0.0 0.0 20
p3000.2 5193073 0 0.0 0.0 20 0 0.0 0.0 20
p3000.3 5111533 0 7.7 33.6 19 0 0.0 0.0 20
p3000.4 5761822 0 0.0 0.0 20 0 0.0 0.0 20
p3000.5 5675625 0 298.2 373.9 14 0 387.3 311.3 6
p4000.1 6181830 0 0.0 0.0 20 0 0.0 0.0 20
p4000.2 7801355 0 194.1 471.5 17 0 286.5 649.9 14
p4000.3 7741685 0 0.0 0.0 20 0 0.0 0.0 20
p4000.4 8711822 0 3.0 13.1 19 0 6.0 26.2 19
p4000.5 8908979 0 260.2 455.1 15 0 865.2 1174.9 12
p5000.1 8559680 0 507.4 313.4 4 0 415.8 132.1 3
p5000.2 10836019 0 425.6 250.1 11 0 673.8 313.8 8
p5000.3 10489137 0 356.4 164.3 9 0 552.1 872.1 6
p5000.4 12252318 0 1035.6 456.6 3 608 1205.3 280.6 0
p5000.5 12731803 0 126.3 401.6 18 0 124.5 652.7 18

Average 0 214.3 195.5 15.4 40.5 301.1 294.2 13.7

4 Conclusions and Discussion

In this paper, we have presented the GTA algorithm, a hybrid genetic–tabu
algorithm for solving the UBQP problem. The proposed algorithm integrates
a “logic” multi-parent combination operator for generating offspring solutions
and an effective Tabu Search procedure. GTA uses also a pool updating strategy
considering both solution quality and diversity. Tested on two sets of 25 well-
known benchmark instances with 2 500 to 5 000 variables, we have shown that
this hybrid algorithm obtains highly competitive outcomes in comparison with
the previous best known results from the literature.

There are several directions to extend this work. One immediate possibil-
ity is to examine other dedicated combination operators by considering more
detailed semantic information of the UBQP problem. Furthermore, more ad-
vanced adaptive memory strategies from tabu search afford opportunities for
creating improvements of the local search part. Finally, given that the multi-
parent crossover introduced in this paper is independent of the UBQP problem,
it is worthwhile to verify its effectiveness on other problems and to compare it
with other conventional recombinant operators.

Acknowledgement

We thank greatly the anonymous referees for their helpful comments. The work
is partially supported by a “Chaire d’excellence” from “Pays de la Loire” Region
(France) and regional MILES (2007-2009) and RaDaPop projects (2008-2011).

References

1. McBride RD, Yormark JS (1980) An implicit enumeration algorithm for quadratic
integer programming. Management Science 26:282–296

2. Krarup J, Pruzan A (1978) Computer aided layout design. Mathematical Program-
ming Study 9:75–94

3. Gallo G, Hammer P, Simeone B (1980) Quadratic knapsack problems. Mathematical
Programming 12:132–149

4. Alidaee B, Kochenberger GA, Ahmadian A (1994) 0-1 quadratic programming ap-
proach for the optimal solution of two scheduling problems. International Journal of
Systems Science 25:401–408

5. Chardaire P, Sutter A (1994) A decomposition method for quadratic zero-one pro-
gramming. Management Science 41(4):704–712

6. Phillips AT, Rosen JB (1994) A quadratic assignment formulation of the molecular
conformation problem. Journal of Global Optimization 4:229-241

7. Pardalos P, Rodgers GP (1990) Computational aspects of a branch and bound
algorithm for quadratic zero-one programming. Computing 45:131–144

8. Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling and
solution framework for combinatorial optimization problems. OR Spectrum 26:237–
250

9. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York

10. Barahona F, Jünger M, Reinelt G (1989) Experiments in quadratic 01 program-
ming. Math Program 44:127137

11. Helmberg C, Rendl F (1998) Solving quadratic (0,1)-problem by semidefinite pro-
grams and cutting planes. Math Program 82:291–315

12. Alkhamis TM, Hasan M, Ahmed MA (1998) Simulated annealing for the uncon-
strained binary quadratic pseudo-boolean function. European Journal of Operational
Research 108:641–652

13. Beasley JE (1998) Heuristic algorithms for the unconstrained binary quadratic
programming problem. Working Paper, The Management School, Imperial College,
London, England

14. Katayama K, Narihisa H (2001) Performance of simulated annealing-based heuris-
tic for the unconstrained binary quadratic programming problem. European Journal
of Operational Research 134:103–119

15. Glover F, Kochenberger GA, Alidaee B (1998) Adaptive memory tabu search for
binary quadratic programs. Management Science 44:336–345

16. Palubeckis G (2004) Multistart tabu search strategies for the unconstrained binary
quadratic optimization problem. Annals of Operations Research 131:259–282

17. Palubeckis G (2006) Iterated tabu search for the unconstrained binary quadratic
optimization problem. Informatica 17(2):279–296

18. Glover F, Lü Z, Hao JK (2010) Diversification-driven tabu search for unconstrained
binary quadratic problems. 4OR, doi: 10.1007/s10288-009-0115-y

19. Merz P, Freisleben B (1999) Genetic algorithms for binary quadratic program-
ming. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), Morgan Kaufmann, pp 417–424

20. Lodi A, Allemand K, Liebling TM (1999) An evolutionary heuristic for quadratic
0-1 programming. European Journal of Operational Research 119(3):662–670

21. Katayama K, Tani M, Narihisa H (2000) Solving large binary quadratic program-
ming problems by an effective genetic local search algorithm. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’00), Morgan Kauf-
mann, pp 643–650

22. Borgulya I (2005) An evolutionary algorithm for the binary quadratic problems.
Advances in Soft Computing 2:3–16

23. Amini M, Alidaee B, Kochenberger GA (1999) A scatter search approach to un-
constrained quadratic binary programs, McGraw-Hill, New York, NY, pp 317–330.
New Methods in Optimization

24. Merz P, Katayama K (2004) Memetic algorithms for the unconstrained binary
quadratic programming problem. BioSystems 78:99–118

25. Moscato P (1999) Memetic algorithms: a short introduction. in: New Ideas in
Optimization, Mcgraw-Hill Ltd., Maidenhead, UK. 219–234

26. Hoos H, Stützle T (2004) Stochastic Local Search Foundations and Applications.
Morgan Kaufmann / Elsevier

27. Glover F, Hao JK (2009) Efficient evaluations for solving large 0-1 unconstrained
quadratic optimization problems. To appear in International Journal of Metaheuris-
tics 1(1)

28. Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Boston
29. Syswerda G (1989) Uniform crossover in genetic algorithms. Proceedings of the

3rd International Conference on Genetic Algorithms, pp. 2-9.
30. Lü Z, Hao JK (2010) A memetic algorithm for graph coloring. European Journal

of Operational Research, 203(1):241-250
31. Beasley JE (1996) Obtaining test problems via internet. Journal of Global Opti-

mization 8:429–433

