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Abstract This paper describes a Diversification-Driven Tabu Search (D>TS)
algorithm for solving unconstrained binary quadratic problems. D*>TS is distinguished
by the introduction of a perturbation-based diversification strategy guided by long-
term memory. The performance of the proposed algorithm is assessed on the largest
instances from the ORLIB library (up to 2500 variables) as well as still larger instances
from the literature (up to 7000 variables). The computational results show that D>TS
is highly competitive in terms of both solution quality and computational efficiency
relative to some of the best performing heuristics in the literature.
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1 Introduction

The unconstrained binary quadratic programming problem may be written

UBQP : Maximize x, = xQx

x binary

where Q is an n by n matrix of constants and x is an n-vector of binary (zero-one)
variables.

The formulation UBQP is notable for its ability to represent a wide range of impor-
tant problems, including those from social psychology (Harary 1953), financial analy-
sis (Laughunn 1970; McBride and Yormark 1980), computer aided design (Krarup and
Pruzan 1978), traffic management (Gallo et al. 1980; Witsgall 1975), machine sched-
uling (Alidaee et al. 1994), cellular radio channel allocation (Chardaire and Sutter
1994) and molecular conformation (Phillips and Rosen 1994). Moreover, many com-
binatorial optimization problems pertaining to graphs such as determining maximum
cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum
independent sets, maximum independent weighted sets are known to be capable of
being formulated by the UBQP problem as documented in papers of Pardalos and
Rodgers (1990), Pardalos and Xue (1994). A review of additional applications and
formulations can be found in Kochenberger et al. (2004, 2005), Alidaee et al. (2008),
Lewis et al. (2008).

Given the interest of the UBQP, a large number of solution procedures have been
reported in the literature. Some representative examples include local search based
approaches such as those of Boros et al. (2007), Simulated Annealing (Alkhamis et
al. 1998; Beasley 1998; Katayama and Narihisa 2001) and Tabu Search (Glover et al.
1998; Beasley 1998; Palubeckis 2004, 2006), population-based approaches such as
Evolutionary Algorithms (Lodi et al. 1999; Merz and Freisleben 1999; Katayama et al.
2000; Borgulya 2005), Scatter Search (Amini et al. 1999) and Memetic Algorithms
(Merz and Katayama 2004).

Among these procedures, TS represents one of the most popular and successful
approaches. One of the first adaptive memory TS algorithms for the UBQP (Glover
et al. 1998), for instance, has since been used to solve applications arising in a wide
variety of settings, as a demonstration of the value of the UBQP model and the ability
to solve such applications successfully. More recently, (Palubeckis 2004) has explored
several multistart TS strategies and has achieved very good results on large problem
instances. A sequel further improves these results by an Iterated Tabu Search algorithm
(Palubeckis 2006).

In the current paper, we introduce a new TS algorithm which employs a guided
diversification strategy utilizing an information-based perturbation operator. We show
that this Diversification-Driven Tabu Search (D?TS) algorithm is highly effective in
solving a large range of benchmark instances from the literature. For example, for the
well-known UBQP instances containing up to 2500 variables (Beasley 1998) that has
been used in many published papers, DTS attains the best known objective values in
less than one minute. Moreover, for the set of 21 large instances containing 3000 to
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7000 variables introduced in Palubeckis (2004, 2006), our algorithm is able to match
or even improve the best previous results.

2 Diversification-driven TS (D?TS) for UBQP
2.1 Main idea of DTS

DTS repeatedly alternates between a simple version of Tabu Search that we denote
by TS and a diversification phase founded on memory-based perturbation operator.
Starting from an initial random solution, D>TS uses the TS? procedure to reach a local
optimum. Then, the perturbation operator is applied to displace the solution to a new
region, whereupon a new round of TS? is launched. To achieve a more effective diver-
sification, the perturbation operator is guided by information from a special memory
structure for obtaining improved results in this context. The next two sub-sections give
a detailed explanation of the neighborhood and the tabu list management of the TS
procedure, as well as the memory-based perturbation operator.

2.2 Neighborhood and tabu list
2.2.1 Neighborhood using 1-Flip moves

Our TS procedure uses a neighborhood defined by the well-known 1-flip move, which
consists of changing (flipping) the value of a single variable x; to its complementary
value 1 — x;. It is clear that the size of this neighborhood is bounded by O (n), i.e., at
most n moves are required to go from any solution to any other solution.

For large problem instances, it is imperative to be able to rapidly determine the
effect of a move on the objective function x,. For this purpose, we employ a fast incre-
mental evaluation technique first introduced by Glover et al. (1998) and enhanced
by Glover and Hao (2009a) to exploit an improved representation and to take advan-
tage of sparse data—a characteristic of many real world problems. The procedure
maintains a data structure that stores the move value (change in x,,) for each possible
move, and employs a streamlined calculation for updating this data structure after each
iteration.

The key elements of this procedure may be summarized as follows. Let N =
{1, ..., n} denote the index set for components of the x vector. We preprocess the
matrix Q to put it in lower triangular form by redefining (if necessary) g;; = g;; + g;i
fori > j, which is implicitly accompanied by setting g;; = 0 (though these 0 entries
above the main diagonal are not stored or accessed). Let Ax; be the move value of
flipping the variable x;, and let g, ;) be a shorthand for denoting g;; if i > j and gj;
if j > i. Then each can be calculated in linear time using the formula:

Axi=0-2) g+ D, dip ey
JEN, j#ix;=1
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Significantly, it is possible to update the move values upon flipping a variable x;
by performing the following abbreviated calculation, using the convention that x;
represents x;’s value before being flipped.

1. Ax; = —Ax;
2. Foreach j e N —{i},
Axj = Axj +0ij 46,
where 0; ; = 1if x; = x; and 0; ; = —1 otherwise.

These updates can be implemented highly efficiently in the presence of sparse data
using the procedures in Glover and Hao (2009a).

2.2.2 Tabu list management

TS typically incorporates a tabu list as a “recency-based” memory structure to assure
that solutions visited within a certain span of iterations, called the tabu tenure, will not
be revisited (Glover and Laguna 1997). The approach is designed to introduce vigor
into the search by also forbidding moves leading to related solutions that share certain
attributes (values of variables) in common with the visited solutions. In our present
implementation we use a simple tabu list consisting of an n-vector TabuT enure(i),
i € N. When the variable x; is flipped, we have elected to set

TabuTenure(i) = ¢ + rand(10) 2)

where c is a constant and rand(10) denotes a randomly generated number from 1 to
10. The constant c is determined according to the size of the problem instance and is
experimentally fixed at n/100 in our implementation.

This tabu list assignment is used to prevent x; from being flipped until a
number of TabuTenure(i) iterations have elapsed. (To facilitate implementation,
TabuTenure(i) is customarily increased by the value of the current iteration at the
time when the assignment (1) is made, and this modified value is checked against sub-
sequent values of the iteration counter.) The TS algorithm then restricts consideration
to variables not forbidden by the tabu list, and selects a variable to flip that produces
the largest Ax; value (thus improving x, if this value is positive). Accompanying this
rule, a simple aspiration criterion is applied that permits a move to be selected in spite
of being tabu if it leads to a solution better than the current best solution.

This rudimentary TS process stops when the best solution cannot be improved
within a given number « of moves that we call the improvement cutoff.

2.3 Diversification phase

In order to enhance the diversification capability of the preceding TS algorithm,
we introduce a strategy which relies on a memory-based perturbation operator com-
posed of three parts: a flip frequency memory (Flip Freq), an elite solution memory
(EliteSol) and an elite value frequency memory (Elite Freq). These memory struc-
tures are used jointly by the perturbation operator (see Sect. 2.3.2).
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2.3.1 Memory management

Our tabu search procedure uses the vector FlipFreq(i),i € N to record the number
of times the variable x; has been flipped. This information is used to guide the design
of the scoring function of the perturbation operator (see Sect. 2.3.2).

EliteSol stores a set of elite locally optimal solutions found by TS? using a design
commonly employed to construct reference sets in scatter search methods. We repre-
sent this memory as a list EliteSol = [S1, ..., Sr], where R is a maximum allowed
dimension of EliteSol and S; represents the ith local optimum recorded in this mem-
ory. In our implementation, R was set to be 8 for all the problems we have tested in this
paper. The first solution inserted on EliteSol is the best solution obtained by the first
phase of the TS? procedure. After that, new local optima obtained by successive runs of
the TS procedure are added to the list provided they do not already exist in the memory,
continuing until R different solutions are stored. From this point on, each time a new
local optimum is found that has an x,, value superior to that of the worst local optimum
on EliteSol, the new solution replaces this worst element. The resulting pool of high
quality solutions provides a source of candidates for applying the perturbation operator.

Finally, the vector Elite Freq(i),i € N records the total number of times variable
x; is assigned value 1 in the elite solutions currently stored in EliteSol. This memory
is used to penalize the use of flips during the perturbation phase for variables that have
more consistently received the same value in the elite solutions, thus constituting a
form of intensification process that favors retaining the value assignments that occur
more often in the best solutions found to date. See Sect. 2.3.2 for more details.

2.3.2 Memory-based perturbation operator

From a general perspective, the perturbation component of the diversification phase
has two aims: to jump out of local optima and to lead the search procedure to a new
promising region. In our case, the perturbation step first randomly selects an elite
solution from the list EliteSol and then applies a perturbation operator to the selected
solution. Contrary to a conventional random perturbation strategy, our perturbation
operator uses the so-called critical element-guided perturbation strategy (Lii and Hao
2009), which is composed of three steps: (1) Scoring: assign a score to each variable;
(2) Selection: choose a certain number of highly-scored variables (critical elements);
(3) Perturbing: perturb the solution using the chosen critical elements.

The scoring function ranks each variable by taking into account its flip frequency
(FlipFreq (i) and its elite value frequency (EliteFreq(i)). Letr (0 <r < R) be
the current number of solutions recorded in EliteSol, our scoring function takes the
following form:

Score(ry) = Ltelrea 2 Elitelrea®) g (1 - —Fﬁpmqm) 3)

r2 max_Freq
where S is a constant and max_Freq is the largest of the Flip Freq (i) values, i.e.,

max_Freq = max;—,. n{FlipFreq(i)}. In this paper, we set 8 = 0.3 for all our
experiments.
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The first part of the score function is based on the supposition that a variable x;
whose Elite Freq (i) value equals an extreme value O or r should be given little oppor-
tunity to be flipped since it always receives the same value in the elite solutions in
the memory. On the other hand, a variable x; whose Elite Freq(i) value equals r/2
should have complete freedom to change its value. The basic idea behind the second
part of the score function (3) is to give a high flip probability to a variable that is
seldom flipped. Our supposition is that changing the value of such a variable can help
the search to jump out of local optima.

For the selection step, we first sort all the variables in non-increasing order accord-
ing to their scores and then probabilistically select y different variables to be randomly
assigned a value O or 1 (y is called the perturbation strength). This selection proce-
dure is implemented in an adaptive way, i.e., the higher the score a variable has, the
greater the probability it will be chosen. The jth highly-scored variable is selected to
be flipped according to the probability:

j—)L

Do

P = 4)

where A is a positive number. Note that this selection procedure is problem indepen-
dent.

Finally for the perturbation step, we just flip the values of the selected critical
variables. This perturbed solution is then used to initiate a new round of our tabu
search procedure by once again launching TS?. Computational experiments presented
in Sect.3 confirm the value of this special form of perturbation as a diversification
strategy for solving large scale UBQP instances.

2.4 DTS algorithm description

Our D?TS algorithm is summarized in Algorithm 1.

Some brief comments are appropriate. At the beginning of the search, the EliteSol
list is empty with r = 0. The first loop from lines 5 to 14 fills the list one element
at a time until the number of elements in ElitreSol reaches its given limit R. The
EliteFreq vector is also updated at each iteration. The loop in lines 15-24 repeatedly
updates EliteSol and the Elite Freq vector until a specified stop condition is met. In
this loop, if a new locally optimal solution S* is better than the worst solution S,, in
EliteSol and if S* does not exist in EliteSol, then S* replaces Sy, on this list.

3 Computational results

To assess the efficiency of our proposed D>TS algorithm, we carry out experiments
on 31 medium and large instances in the literature and compare D*>TS with five best
performing algorithms. At the end of this section, we provide an experimental analysis
demonstrating the importance of the memory-based perturbation operator described
in Sect. 2.3.2.
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Algorithm 1 Diversification-Driven Tabu Search (D?TS) for UBQP

1: Input: Q matrix

2: Output: S*: the best solution found so far

3: Set EliteSol = {},r =0, EliteFreq(i) =0,i =1,...,n
4: Randomly generate an initial solution Sy

5: while r < R do

6: S* = Tabu_Search(Sp)

7: if $* isnotin ElireSol then

8 Insert S* into EliteSol: EliteSol = EliteSol + {S*}

9: r=r+1
10: EliteFreq = EliteFreq + S*
11:  endif

12:  Randomly select a solution S’ from EliteSol

13: Sy = Perturbation_Operator(S”)

14: end while

15: while Stop condition is not met do

16:  Randomly select a solution S’ from EliteSol

17: 8o = Perturbation_Operator(S’)

18:  §* = Tabu_Search(Sy)

19: Sy = The worst solution in EliteSol in terms of solution quality
20: if S*isnotin EliteSol and f(S*) > f(Sy) then
21: EliteSol = EliteSol 4+ {S*} — {Sw}

22: EliteFreq = EliteFreq + S* — Sy

23:  endif

24: end while

Table 1 Settings of important parameters

Parameters Section Description Values
c 221 Tabu tenure constant n/100
o 222 Improvement cutoff of TS 20n

R 2.3.1 Maximum size of the memory EliteSol 8

B 232 Frequency-related weight in perturbation scoring 0.3

A 232 Perturbation selection importance factor 1.2

y 232 Perturbation strength n/4

3.1 Experimental protocol

Our algorithm is programmed in C and compiled using GNU GCC on a PC running
Windows XP with Pentium 2.66 GHz CPU and 512M RAM. All computational results
were obtained without special tuning of the parameters, i.e., all the parameters used
in our algorithm are fixed (constant) or dynamically and automatically tuned during
the problem solving for all instances considered. It is possible that better solutions
would be found by using a set of instance-dependent parameters. However, our aim
is to design a robust solver that is able to solve a large panel of instances efficiently.
Table 1 gives the descriptions and settings of the parameters used in our D>TS algo-
rithm. These parameters are tuned in two steps. We calibrate first the two parameters
of TS (tabu tenure constant and improvement cutoff), followed by fixing the perturba-
tion operator. Based on preliminary testing, we observed that the following parameter
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settings give satisfying results: ¢ € [n/200, n/80], « € [10n, 50n], R € [6, 15], B €
[0.2,0.5], 2 € [1.1, 1.4]and y € [n/5, n/3]. The calibrated parameter values are kept
constant for all the experiments. It is possible that better solutions would be found by
using a set of instance-dependent parameters.

3.2 Test instances

Two sets of test problems are considered in the experiments, in total constituting 31
instances. The first set of benchmarks is composed of 10 largest instances of size
n = 2500 introduced in Beasley (1998) and available in the ORLIB (Beasley 1996).
They all have a density of 0.1 and are named by b2500.1,. . .,b2500.10. These instances
are used in the literature by many authors, see for instance (Beasley 1998; Katayama
and Narihisa 2001; Merz and Freisleben 2002; Merz and Katayama 2004; Palubeckis
2004, 2006). The second set of benchmarks consists of a set of 21 randomly generated
large problem instances named p3000.1,. . .,p7000.3 with sizes ranging from n = 3000
to 7000 and with densities from 0.5 to 1.0 (Palubeckis 2004, 2006). Nonzero entries of
Q are drawn uniformly from the interval [—100, 100]. The sources of the generator and
input files to replicate these problem instances can be found at: http://www.soften.ktu.
1t/~gintaras/ubqop_its.html. Experiments reported in Palubeckis (2004, 2006) showed
that these large instances are particularly challenging for UBQP algorithms.

The small test instances from the ORLIB whose sizes range from n = 500 to 1000
and the similarly small instances from Glover et al. (1998) are not considered here,
since they are solved very easily within 30s by our algorithm and are also solved
relatively easily by most recent heuristics.

3.3 Computational results on ORLIB instances

Our first experiment aims to evaluate the D’ TS algorithm on the 10 ORLIB instances
with 2500 variables. The results of this experiment are summarized in Tables 2 to 4.

Table 2 shows the computational statistics of our DTS algorithm. Columns 2 and 3
respectively give the density (dens) and the previous best known results ( f}¢y). Col-
umns 4 to 8 give our results: the best objective value ( fpes:), the difference between
our best values with the previous best known values ( fpesr — fprev), the average objec-
tive value (fyver), the success rate (success) and the average CPU time (seconds) for
reaching the best result ( fps;). Table 2 discloses that our D2TS algorithm can stably
reach all the previous best known results within 40s on our computer, demonstrating
the high efficiency of our method.

Table 3 shows the average results of our D*TS algorithm compared with the five
leading algorithms in the literature, respectively named ITS (Palubeckis 2006), MST1
(Palubeckis 2004), MST2 (Palubeckis 2004), SA (Katayama and Narihisa 2001) and
MA (Merz and Katayama 2004). The results of these five algorithms are extracted
from (Palubeckis 2006) and have been obtained by Palubeckis by applying each under
the same experimental conditions, which we likewise employ for evaluating our algo-
rithm. These five algorithms were run 25 times for each problem instance with a time
limit of 600 s on a Pentium III 800 PC. Since our computer is about 3 times faster than
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Table 2 Results of D2TS algorithm on the Beasley instances from ORLIB

Instance Dens Sprev D2TS Algorithm
Sbest Svest — fprev  faver Success  Seconds

b2500.1 0.1 1515944 1515944 0 1515944 25/25 6
b2500.2 0.1 1471392 1471392 0 1471392 25/25 38
b2500.3 0.1 1414192 1414192 0 1414192 25/25 35
b2500.4 0.1 1507701 1507701 0 1507701 25/25 4
b2500.5 0.1 1491816 1491816 0 1491816 25/25

b2500.6 0.1 1469162 1469162 0 1469162 25/25 10
b2500.7 0.1 1479040 1479040 0 1479040 25/25 20
b2500.8 0.1 1484199 1484199 0 1484199 25/25 12
b2500.9 0.1 1482413 1482413 0 1482413 25/25 6
b2500.10 0.1 1483355 1483355 0 1483355 25/25 7

Table 3 Average performance of D2TS and other algorithms on the Beasley problems

Instance Sfprev Solution difference (i.e., average heuristic value - fprev)
D?TS ITS MSTI1 MST2 SA MA

b2500.1 1515944 0 0 0 0 —4 —13
b2500.2 1471392 0 -9 —133 0 —433 —645
b2500.3 1414192 0 —11 0 —11 —-117 —173
b2500.4 1507701 0 0 0 0 0 0
b2500.5 1491816 0 0 0 0 —6 —55
b2500.6 1469162 0 0 —1 0 —58 —190
b2500.7 1479040 0 0 —4 0 —208 —416
b2500.8 1484199 0 0 0 0 -35 -3
b2500.9 1482413 0 0 0 0 -33 —321
b2500.10 1483355 0 0 -8 0 —493 —446
Average 0 -2 —15 —1 —139 —226

that used by Palubeckis (2006), we limit the running CPU time of D2TS to 2005s.! The
overall results, averaged over 10 instances, are presented in the last row. From Table 3,
one observes that our DTS algorithm obtains the previous best known results more
stably than these alternative heuristics that are reported to be the most effective in the
literature.

Table 4 compares the average time (in seconds) needed by each of the compared
algorithms to hit the best objective value in the run. We have converted our CPU

! We tested a benchmark program on our computer and a Pentium III 800 PC with 512M memory and found
that the exact speed ratio of these two computers is 2.92. This benchmark program is used by the second
International Timetabling Competition and available at: http://www.cs.qub.ac.uk/itc2007/benchmarking/
benchmark_machine.zip.
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Table 4 Average time
performance of D2TS and other
algorithms on the Beasley

Instance D2TS ITS MST1 MST2 SA MA

problems: average time to b2500.1 18 18 14 13 225 461
the best solution in the run b2500.2 114 205 281 158 334 430
(in seconds) b2500.3 105 196 91 134 319 422
b2500.4 12 6 8 9 120 293
b2500.5 15 12 7 11 305 469
b2500.6 30 22 48 23 283 452
b2500.7 60 75 168 99 387 478
b2500.8 36 46 26 47 293 359
b2500.9 18 54 77 71 340 450
b2500.10 21 104 161 138 351 477
Average 42 74 88 70 296 429

time reported in Table 2 by multiplying it by 3 to compensate for the fact that our
computer is about 3 times faster. A corresponding conversion also applies to Tables 7
and 8. From Table 4, we observe that D>TS can easily obtain the previous best known
solutions within 120s (converted time). From Tables 2 to 4, we conclude that D?TS
is quite competitive compared with these reference algorithms in terms of both solu-
tion quality and computational efficiency. However, from the results presented above,
it is impossible to conclude that any given algorithm dominates the others since the
problem instances in this set are not sufficiently difficult to solve. More significant
differences are observed when larger and harder instances are used, as we show next.

3.4 Computational results on larger instances

In the second experiment we tested our D>TS algorithm on the second set of 21 ran-
domly generated instances.” These instances of larger size and higher density are more
difficult for the search algorithms. Tables 5 reports the computational results obtained
by DTS for solving these instances, following the same format as Table 2. The stop
condition is set to be the same as in Palubeckis (2006), i.e., the cutoff time for a run
is 15, 30, 60, 90 and 150 minutes on a Pentium III 800 PC for an instance with 3000,
4000, 5000, 6000 and 7000 variables, respectively. (The time limit on our computer is
set to be 1/3 of these values.) Column 5 shows that under this stop condition our DTS
algorithm matches the previous best known results for 18 instances and improves the
previous best known results for 3 instances, named p5000.4, p7000.1 and p7000.2.
In order to further compare our DTS algorithm with the best competing algorithms,
we again refer to the algorithms used in Table 3 (ITS, MST1, MST2, SA and MA). As
before, the results of the reference algorithms are directly extracted from (Palubeckis
2006). Table 6 displays the solution difference between the best solutions obtained by
these 6 algorithms with the best known results overall. The averaged results over the
21 instances are presented in the last row. From Table 6 it may be observed that our

2 Our best results are available at: http://www.info.univ-angers.fr/pub/hao/UBQP.html.
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Table 5 Results of our D2TS algorithm on 21 large random problem instances with size from n = 3000
to n = 7000

Instance  Dens  fprev D2TS Algorithm
Soest Soest = fprev  faver Success  Seconds

p3000.1 0.5 3931583 3931583 0 3931583 20/20 70
p3000.2 0.8 5193073 5193073 0 5193073 20/20 82
p3000.3 0.8 5111533 5111533 0 5111533 20/20 79
p3000.4 1.0 5761822 5761822 0 5761822 20/20 111
p3000.5 1.0 5675625 5675625 0 5675625 20/20 159
p4000.1 0.5 6181830 6181830 0 6181830 20/20 91
p4000.2 0.8 7801355 7801355 0 7801355 20/20 252
p4000.3 0.8 7741685 7741685 0 7741685 20/20 178
p4000.4 1.0 8711822 8711822 0 8711822 20/20 223
p4000.5 1.0 8908979 8908979 0 8908979 20/20 702
p5000.1 0.5 8559355 8559355 0 8559024 6/10 2855
p5000.2 0.8 10836019 10836019 0 10823486 8/10 1155
p5000.3 0.8 10489137 10489137 0 10476261 7/10 1326

p5000.4 1.0 12251874 12252318 444 12250356 4/10 838

p5000.5 1.0 12731803 12731803 0 12731564 9/10 623
p6000.1 0.5 11384976 11384976 0 11384976 10/10 509
p6000.2 0.8 14333855 14333855 0 1432569 5/10 1543
p6000.3 1.0 16132915 16132915 0 1613128 4/10 2088
p7000.1 0.5 14478336 14478676 340 1446538 4/10 1217
p7000.2 0.8 18248297 18249844 1547 18241236 7/10 849
p7000.3 1.0 20446407 20446407 0 2043856 3/10 3520

DTS algorithm outperforms these five reference algorithms in terms of the quality
of the best solution obtained. Notably, our DTS algorithm finds better solutions than
any of these five references algorithms for at least 4 instances (roughly 20% of the
problems) (Table 7).

In order to compare the time performance between different approaches, the average
CPU time to reach the given best solution is reported in Table 7. Similarly, the averaged
results over the 21 instances are presented in the last row. Our D>TS algorithm needs
14% to 27% more CPU time than three of the reference algorithms (ITS, MTS1 and
MTS2) to reach the results reported in Table 5. However, we also obtained solutions
to some of the problems more quickly than all of the other methods.

In Palubeckis (2006), the author identifies ITS as the top performing algorithm
among the considered algorithms and reports computational results on five instances
with 5000, 6000 and 7000 variables with longer runs of ITS. The time limit was then set
at 5, 8 and 10 hours, respectively. For these five instances, the ITS algorithm improved
its previous best results reported in Table 6, as shown in Table 8.

To check whether our D>TS algorithm is also able to improve its previous best
results by allowing greater computational time, we re-ran D> TS on these five instances

@ Springer



F. Glover et al.

Table 6 Best results comparison between D2TS and other state-of-the-art algorithms for larger problem
instances

Instance  Dens  fprev Solution difference (i.e., heuristic solution value - fprev)
D2TS ITS MSTI1 MST2 SA MA

p3000.1 0.5 3931583 0 0 0 0 0 —3950
p3000.2 0.8 5193073 0 0 0 0 0 —342
p3000.3 0.8 5111533 0 0 —357 0 0 0
p3000.4 1.0 5761822 0 0 0 0 0 —1097
p3000.5 1.0 5675625 0 0 —478 0 0 —478
p4000.1 0.5 6181830 0 0 0 0 0 —2390
p4000.2 0.8 7801355 0 0 —1686 0 —504 —6564
p4000.3 0.8 7741685 0 0 —54 0 0 —5760
p4000.4 1.0 8711822 0 0 0 0 0 —2359
p4000.5 1.0 8908979 0 0 0 0 0 —9028
p5000.1 0.5 8559355 0 —375 —2691 0 —1107 —4647
p5000.2 0.8 10836019 0 0 0 —582 —582 —7519
p5000.3 0.8 10489137 0 0 —3277 0 —354 —11552
p5000.4 1.0 12251874 444 —490 —3341 —1199 0 —15955
p5000.5 1.0 12731803 0 0 —5150 0 —1025 —6644
p6000.1 0.5 11384976 0 0 —3198 0 —430 —9046
p6000.2 0.8 14333855 0 —88 —10001 0 —675 —21732
p6000.3 1.0 16132915 0 —2729 —11658 0 0 —13400
p7000.1 0.5 14478336 340 0 —6778  —1267 —2239 —13365
p7000.2 0.8 18248297 1547 0 —7251 —679 —3901 —18898
p7000.3 1.0 20446407 0 0 —17652 0 —2264 —14684
Average 126 —175 —3503 —-177 —623 —8067

using the same timing conditions used by ITS. The new results appear in Table 8. DTS
likewise improves its results for two out of five instances, matching the results of ITS
for four instances and finding a better solution than ITS for the remaining instance
p5000.1 with an objective value 8559680, as indicated in bold in Table 8.

3.5 Influence of the adaptive memory mechanism

We turn our attention now to analyzing one of the most important components of
the proposed D?TS algorithm, the memory-based perturbation operator described in
Sect. 2.3.2. This strategy involves randomly and adaptively selecting and flipping a
given number of highly-scored variables. We believe that constraining the choices to
the critical variables is essential for our D>TS algorithm. In order to be sure this mech-
anism is meaningful, we carried out additional experiments to examine the influence
of the proposed memory-based perturbation operator (denoted by MBP).

For this purpose, we compare MBP with a pure random perturbation operator
(denoted by PRP) where the variables to be flipped are totally uniformly selected
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Table 7 Time comparison
between DTS and other
algorithms on larger problems:

Instance  D?TS  ITS MST1 MST2 SA MA

average time to the best solution p3000.1 209 228 396 106 251 726
in the run (in seconds) p3000.2 245 212 395 97 337 809
p3000.3 237 327 464 271 517 590
p3000.4 334 519 480 559 336 722
p3000.5 476 462 436 255 327 638
p4000.1 274 215 776 436 842 1515
p4000.2 756 1070 785 1082 1680 1063
p4000.3 534 730 1011 359 1094 1106
p4000.4 678 845 656 624 1002 1373

p4000.5 2106 797 862 700 1279 1287
p5000.1 3368 1520 2260 1621 1816 3000
p5000.2 3465 1264 1984 1946 2072 2562
p5000.3 3278 2015 1410 2365 2836 2925
p5000.4 2513 1787 2005 2805 3178 2075
p5000.5 1869 1652 1922 2156 3171 3095
p6000.1 1527 2935 2860 3112 1844 4009
p6000.2 4628 2517 3119 2661 3256 3688
p6000.3 5264 2871 3217 3655 4422 4364
p7000.1 4649 5313 4954 4348 5806 7942
p7000.2 2547 3039 4484 5165 5215 5525
p7000.3 8436 4339 2801 6342 6417 8197
Average 2257 1650 1775 1936 2271 2724

Table 8 Results of longer runs

of ITS and D2TS Instance D2TS Time(s) ITS Time(s)
p5000.1 8559680 4531 8559355 3457
p5000.4 12252318 1698 12252318 12605
p6000.3 16132915 3125 16132915 9830
p7000.1 14478676 6214 14478676 30198
p7000.2 18249948 8423 18249948 1877

without using any memory information. In order to observe the difference between
these two perturbation strategies, we disable the memory-based perturbation within
the DTS algorithm and replace it by the random one while keeping other compo-
nents unchanged. The algorithm stops after performing 100 perturbation operations.
All other parameters are set as described in Sect. 3.1. For the purpose of illustration,
we choose two large instances with 5000 variables (p5S000.1 and p5000.4 with density
equal to 0.5 and 1.0, respectively) as our test bed.

Figure 1 shows the running profiles of the two perturbation strategies. Each point
represents the best solution cost (averages over 10 independent runs) found at the
moment of each perturbation. It is easy to observe that on both instances the MBP
strategy obtains better results than the PRP strategy, especially when the perturbation
iterations become large. We found the same results to occur in other instances.
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Fig. 1 Comparison between the memory-based perturbation operator with the pure random perturbation
operator

4 Discussion and conclusion

Our Diversification-Driven Tabu Search (D>TS) algorithm for solving unconstrained
binary quadratic problems alternates between a rudimentary tabu search procedure
(TS?) and a memory-based perturbation strategy specially designed to achieve diver-
sification. In spite of being quite simple in comparison with most top performing
algorithms, D?TS proves to be highly effective in finding good solutions for two sets
of 31 benchmark instances of medium and large sizes, containing from 2500 to 7000
variables. Compared with the five state-of-the-art algorithms from the literature, DTS
is able to find all the previous best known solutions (which none of the previous meth-
ods succeeded in doing) and obtains a new best, previously unknown, solution for one
instance of 5000 variables.

There are several directions to extend this work. One immediate possibility is to
examine other neighborhoods. D>TS and most existing algorithms are based on the
simple 1-flip neighborhood. Richer neighborhoods using for instance the 2-flip move
as described in Glover and Hao (2009b) would be worth examining. Joining such
approaches with associated strategies to focus only on a selected subset of neighbors
would enhance their effectiveness, given the computational expense of examining all
neighbors at each iteration. Similarly, instead of using the objective function as the
unique evaluation measure, other evaluation functions using additional information
would likewise be worth exploring. Finally, more advanced adaptive memory strate-
gies from tabu search afford opportunities for creating further improvements.
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