
Ann Oper Res
DOI 10.1007/s10479-009-0656-7

Ejection chain and filter-and-fan methods
in combinatorial optimization

César Rego · Fred Glover

© Springer Science+Business Media, LLC 2009

Abstract The design of effective neighborhood structures is fundamentally important for
creating better local search and metaheuristic algorithms for combinatorial optimization.
Significant efforts have been made to develop larger and more powerful neighborhoods that
are able to explore the solution space more effectively while keeping computation com-
plexity within acceptable levels. The most important advances in this domain derive from
dynamic and adaptive neighborhood constructions originating in ejection chain methods
and a special form of a candidate list design that constitutes the core of the filter-and-fan
method. The objective of this paper is to lay out the general framework of the ejection chain
and filter-and-fan methods and present applications to a number of important combinator-
ial optimization problems. The features of the methods that make them effective in these
applications are highlighted to provide insights into solving challenging problems in other
settings.

Keywords Combinatorial optimization · Metaheuristics · Tabu search · Local search ·
Neighborhood structures · Ejection chains · Filter-and-fan

1 Introduction

The metaheuristic area has been the focus of extensive research in the last several years, re-
sulting in methods for solving optimization problems that have had a wide range of success-
ful applications in business, engineering and science. Some of the most significant advances

This is an updated version of the paper that appeared in 4OR, 4(4), 263–296 (2006).

C. Rego (�)
School of Business Administration, University of Mississippi, University, MS 38677, USA
e-mail: crego@bus.olemiss.edu

F. Glover
University of Colorado, Boulder, CO 80309-0419, USA
e-mail: fred.glover@colorado.edu

mailto:crego@bus.olemiss.edu
mailto:fred.glover@colorado.edu

Ann Oper Res

have occurred in the design of sophisticated compound neighborhoods coupled with candi-
date list strategies. The goal of these approaches is to explore the solution space effectively
with a modest investment of computational effort.

The definition of an efficient neighborhood structure is important for the performance of
any algorithm that iteratively explores the solution space of complex problems that typically
arise in practice. Recent studies have shown that compound neighborhood structures, based
on mechanisms for combining moves, have advantages over simple neighborhoods where a
single move is used for the transition from one solution to another.

Important advances have been provided by ejection chain methods (Glover 1991, 1992)
and a general class of multi-stream neighborhood search constructions, notably represented
by the filter-and-fan method (Glover 1998; Rego and Glover 2002). An integral part of
exploiting such methods stems from joining them with candidate list strategies to isolate
restricted yet effective subsets of moves for consideration at each iteration. Designed prop-
erly, such strategies reinforce the intensification and diversification themes of tabu search,
and provide fertile ground for the application of learning procedures.

In contrast with other more traditional types of neighborhood constructions, ejection
chains and filter-and-fan methods are prototypical examples of dynamic and adaptive search
approaches. Characteristically, these methods generate compound neighborhood structures,
which encompass successions of interdependent (component) moves, rather than simple
moves or sequences of independent moves. These methods are dynamic because the num-
ber of component moves used to compose a compound move is not determined in advance,
but rather depends on the depth (or level) of the neighborhood where the best trial solution
is found, which usually varies from one iteration to another. They are adaptive because the
type of the neighborhood and the move itself are chosen according to the current state of the
search.

This paper is an updated version of work presented in Glover and Rego (2006). We begin
by presenting in Sects. 2 and 3 the fundamental principles underlying filter-and-fan and
ejection chains methods, respectively. In Sects. 4 and 5, we review a number of prominent
filter-and-fan and ejection chain algorithms to illustrate the application of these methods to
different classes of problems and to identify the features responsible for their performance.
Practical aspects of these methods are highlighted by examining the applications shown in
Table 1.

These applications were selected to embrace a representative variety of models for each
method and to illustrate how these methods apply to problems of different natures and com-
plexities. Our examination constitutes a focused survey of models and applications we have
encountered through direct experience, though we undertake to point out related work that
provides important contributions to the areas examined.

Overall, the filter and fan methods have been notable for providing robust methods that
produce solutions that match or come very close to matching those produced by the best
available methods for the problem classes to which they have been applied, while requiring
solution times that are significantly—in some cases dramatically—reduced by comparison

Table 1 Featured applications of
filter-and-fan and ejection chain
and methods

Filter and fan Ejection chains

Facility location Traveling salesman

Protein folding Vehicle routing

Job shop scheduling Crew scheduling

Capacitated minimum spanning tree Quadratic assignment

Ann Oper Res

to competing methods. (An exception occurs in the case of the job shop scheduling problem,
where two tabu search implementations are more effective than all other procedures, one of
them remarkably so, but the F&F method proves superior to all methods except these.) The
ejection chain methods stand out in their respective applications even more prominently,
often performing appreciably better than the leading challengers.

Readers who are primarily interested in outcomes can proceed immediately to Sect. 4
and (especially) Sect. 5, where applications and test results for the methods are described.
Sections 2 and 3, immediately following, undertake to give a compressed description of
the underlying solution methodologies, and to provide references to sources where more
complete descriptions can be found.

2 Filter and fan

The filter-and-fan (F&F) method was initially proposed in Glover (1998) as a method for
refining solutions obtained by scatter search, and was further extended in Rego and Glover
(2002). In the latter, the method is proposed as a means for creating combined neighborhood
search strategies that are particularly efficient and robust, and that can be used as comple-
ments to ejection chain approaches (whose designs are often more subtle and elaborate).
Conceptually, the F&F method integrates the filtration and the sequential fan candidate list
strategies used in tabu search (Glover and Laguna 1997), and can be viewed as a restricted
form of tabu search that generates multiple paths in a controlled variation of a breadth-first
search strategy. From a neighborhood search perspective, the method generates compound
moves as a sequence of more elementary component moves (or submoves).

Graphically, the F&F model can be illustrated by means of a neighborhood tree where
branches represent submoves and nodes identify solutions produced by these moves. An ex-
ception is made for the root node, which represents the starting solution to which compound
moves are to be applied. The maximum number of levels L permitted in a single sequence
of moves defines the depth of the tree. The neighborhood tree is explored breadth first, level
by level. Each level is governed by the filter candidate list strategy that selects a subset of
moves induced by the fan candidate list strategy. The process of selecting moves has to obey
a set a legitimacy conditions defining associated legitimacy restrictions specific to the type
of move utilized. The method incorporates two fundamental components: a local search to
identify a local optimum and a filter and fan search to explore larger neighborhoods in order
to overcome local optimality. Any time a new local optimum is found in one search strategy
the method switches to the other strategy and keeps alternating this way until the filter and
fan search fails to improve the current best solution.

2.1 The filter and fan search

The general F&F search procedure can be sketched as follows. Once a locally optimal so-
lution Xo is found (in the local search phase) the best η1 currently available moves (among
the moves evaluated to establish local optimality) are used to create the level 1 of the F&F
neighborhood tree. As a basis for creating the next levels, for a given level indexed by k, η1

denotes the number of solutions that are chosen from all solutions available at level k, as a
foundation for generating solutions at level k+1. (For k = 1, there are just η1 solutions avail-
able, so all are chosen.) For each of these η1 solutions, denoted Xi(k) (i = 1, . . . , η1), apply
η2 moves to generate η2 descendant solutions, thereby generating a total of η = η1.η2 trial
solutions for level k + 1. At this stage, η1 of the resulting η solutions are chosen to launch

Ann Oper Res

Fig. 1 The general filter-and-fan procedure

the process for the next level. The values η1 and η2 are input parameters, e.g. η1 = 2η2. If
an improved solution (better than the local optimum Xo) is found among the trial solutions,
then the method stops branching and switches back to the local search phase, taking this
newly improved solution as a starting point. Otherwise, another selection takes place over
the set of moves available.

The process of selecting η2 moves has to obey a set of legitimacy restrictions that as-
sure compatibility of the component moves used for the construction of a valid compound
move. The fan candidate list strategy is embedded in the generation of the η trial solutions,
whereas the selection of the η1 solutions from this collection constitutes the filter candidate
list strategy.

The basic skeleton of a general F&F procedure is as in Fig. 1. X∗ denotes the best solu-
tion found so far. Let M(k) be the candidate list of moves identified at level k of the F&F
tree. F&F input parameters are denoted by η0, η1, η2 and L represents an upper limit for
the maximum number of levels of the F&F tree. The method begins by building an initial
solution X.

In more general versions of the approach, tree width and branch width can vary adap-
tively throughout the search while the values for η1 and η2 are changed from level to level.
In additional variants of the procedure, as when making use of constructive or destructive
neighborhoods, a solution can refer to a partial solution, having some components undeter-
mined. Local optimality is then defined relative to the determined components, or by em-
ploying a default trial completion that fills in the values of the undetermined components.

More advanced versions allow for the combination of different types of neighborhood
structures and the use of adaptive memory programming as introduced in tabu search.

2.2 Refinements for higher levels of adaptive memory constructions

The F&F method can be interpreted as performing multiple threads of tabu searches from
the root node of the F&F tree using a limited short-term memory component derived from
the legitimacy restrictions. From this perspective a straightforward enhancement results by

Ann Oper Res

creating a more general algorithm managed by two basic types of short-term memory com-
ponents: e.g. a branch-memory that is local to each branch of the F&F tree and a tree-memory
that is global to the F&F tree. A limited form of branch-memory is implicitly defined in the
legitimacy restrictions of the tree search process. However, the inclusion of more explicit
forms of memory allows different levels of flexibility by using either one of the two indi-
cated types of memory or both memories combined. In that sense a branch-memory serves
to forbid move reversals while tree-memory produces greater diversification of the search
among the different branches of the tree.

Higher levels of intensification and diversification can be achieved by incorporating more
advanced memory structures as prescribed in tabu search. Effective integration of memories
organized at different layers provides a useful means for creating the M(k) candidate lists. It
also provides a vehicle for an iterative application of the F&F procedure which is executed
until a given stopping criterion is met, as in general tabu search implementations. The un-
derlying look-ahead process may also be augmented by the use of ejection chain processes
(performed from nodes at the current level) as a means to determine promising compo-
nent moves and dynamically update the candidate list. As in scatter search approaches, high
evaluation trial solutions found throughout the ejection chain can be re-corded for further
consideration. All these modifications make recourse to associated elements of tabu search
and can directly turn a F&F approach into a higher level tabu search procedure.

3 Ejection chains

Ejection Chains are variable depth methods that generate a sequence of interrelated simple
(component) moves to create a more complex compound move. There are several types of
ejection chains, some structured to induce successive changes in problem variables and oth-
ers structured to induce changes in particular types of model components (such as nodes and
edges of a graph). For the original proposals of the ejection chain framework and founda-
tions we refer the reader to Glover (1991, 1992).

Generally speaking, an ejection chain of L levels consists of a succession of operations
performed on a given set of elements, where the kth operation changes the state of one or
more elements which are said to be ejected in the (k + 1)th operation. This ejection changes
the state of other elements, leading in turn to further ejections, until no more operations
can be made (according to pre-defined conditions). State-change steps and ejection steps
typically alternate, and the options for each depend on the cumulative effect of previous
steps (usually, but not necessarily, being influenced by the step immediately preceding). The
conditions coordinating the ejection chain process are called legitimacy conditions, which
are guaranteed by associated legitimacy restrictions. The connection between these elements
will be clarified subsequently.

In the ejection chain terminology, the order in which an element appears in the chain
determines its level. The total number of levels L is the depth of the ejection chain. The
particular level chosen for executing a move by a local search method usually varies from
one iteration to the next. The total number of levels L can likewise vary, and hence ejection
chains fall within the class of variable depth methods. In an ejection chain framework, the
solution obtained at each level k of the chain may not represent a feasible solution but may
be transformed into a feasible solution by using a complementary operation called a trial
move. The objective is to create mechanisms, namely neighborhood structures, allowing
one solution to be successfully transformed into another.

More formally, let Si be the current solution at iteration i of the local search method,
and let ek , tk be the ejection move and the trial move, respectively, at a level k of the chain.

Ann Oper Res

A neighborhood search ejection chain process consists of generating a sequence of moves
e1, t1, . . . , ek, tk, . . . , eL, tL on Si such that the transition from solution Si to Si+1 is given by
performing a compound move e1, e2, . . . , ek∗ , tk∗ , where k∗ represents the level associated
with the highest quality trial solution visited during the ejection chain construction. (There
is no need to save trial solutions at other levels.) In the ejection chain context we use the
terms compound move and transition move interchangeably, to specify the move leading
from one solution to another in an iteration of the local search procedure.

The effectiveness of such a procedure depends on the criterion for selecting component
moves. More specifically, neighboring solutions obtained by an ejection chain process are
created by a succession of embedded neighborhoods that lead to intermediate trial solutions
at each level of the chain. However, the evaluation of ejection moves can be made indepen-
dently from the evaluation of the trial moves, in which case possible trial moves are only
evaluated after performing the ejection move at the same level of the chain. In this variant of
the approach, the evaluation of an ejection move ek only depends on the cumulative effect of
the previous ejection moves, e1, . . . , ek−1, and is kept separate from the evaluations of trial
solutions encountered along the way. The trial moves are therefore restricted to the function
of finding the best trial solution that can be obtained after performing the associated ejection
move.

In general, an ejection chain of L levels can be recursively evaluated by computing the
ejection values for these levels and summing them to give the trial value for each level. Let
N = {1, . . . , n} represent the set of problem elements and denote a legitimate neighborhood
for an element p ∈ N by LN(p), thereby identifying a subset of elements of N that do
not violate the legitimacy restrictions. Also, let ϕ(pk,p) and δ(pk, q) be respectively the
values of an ejection move and trial move at a level k of the ejection chain. For the sake
of simplification, we assume that the min function over each of the ejection and trial move
evaluation functions identifies the elements p∗ and q∗ associated with the best ejection and
best trial values found, respectively. A general ejection chain procedure for a minimization
objective can be sketched as in Fig. 2.

Our preceding description of ejection chain processes simply constitutes a taxonomic
device for grouping methods that share certain useful features. The value of the taxonomy,
however, is evidenced by the role it has played in methods for discrete optimization prob-
lems that have proven effective across a broad range of applications. As will be seen in
the applications subsequently discussed, the foregoing ejection chain framework embraces
methods exhibiting a variety of compound neighborhood structures and offering advanta-
geous properties for combining moves.

4 Filter-and-fan applications

A filter and fan algorithm requires the definition of component moves used to generate trial
solutions throughout the search process. Component moves are characteristically simple
moves serving as building blocks for the construction of an extended filter and fan neigh-
borhood. As in customary local search methods, different applications require appropriate
neighborhood structures to explore the solution space. The following sections illustrate how
filter-and-fan has been successfully used to create effective neighborhoods for a number of
applications.

4.1 Facility location

The uncapacitated facility location problem arises in bank account location planning, loca-
tion of collection centers or lock-boxes, clustering analysis, location of off-shore drilling

Ann Oper Res

Fig. 2 An iteration of a general ejection chain procedure

platforms, machine scheduling and information retrieval, portfolio management, and design
of communication networks. For a survey see Cornuéjols et al. (1990) and Gao and Robinson
(1994). The basic form of the problem can be defined as follows. Given a set S = {1, . . . , s}
of warehouses or facility locations and a set D = {1, . . . , d} of customers to be served. With
each customer j ∈ D is associated a demand bj and cij is the transportation cost of com-
pletely serving a customer j by facility i ∈ S. Also, there is a fixed cost Fi if facility i is
built (or opened). The objective is to find a set W ∗ ⊆ S of opened facilities that minimizes
the total cost. Due to the absent of capacity constraints on the facilities, customer demands
may be normalized to bj = 1 and for any set W ⊆ S of facilities there is at least one opti-
mal assignment where all customers are served by the nearest open facility. Consequently,
a UFLP solution can be fully defined by the set of open facilities. Therefore, especially in
local search, it is natural to use a vector representation Y = (y1, . . . , ys) where yi = 1 if the
facility i is open and 0 otherwise.

Local search algorithms for the facility location problem typically use flip-based neigh-
borhoods, namely, the switch-neighborhood that switches the status of one facility from open
to closed or vice versa by flipping a single variable at a time and the swap-neighborhood that
simultaneously closes one facility and opens another.

Greistorfer and Rego (2006) have successfully enhanced the performance of these neigh-
borhoods by generating sequences of flip moves within a filter-and-fan approach. Compu-
tational tests, whose outcomes are described below, disclose that this method provides a
significant advance for solving facility location problems effectively. The method proceeds

Ann Oper Res

by performing moves that flip the value of one variable at each node of the F&F tree. A swap
move implicitly results whenever in two successive nodes of a given branch of the tree, one
variable flips from 0 to 1 and another variable flips from 1 to 0. The legitimacy conditions on
the selection of η2 moves are defined by tabu restrictions preventing reverse flips (that would
lead to duplicated solutions) and a feasibility condition that keeps the method from closing
the only open facility in the current solution. Two variants of the algorithm are developed to
achieve different levels of sophistication.

The general F&F algorithm undertakes two fundamental steps. The first step is a classical
local search procedure that starts with all facilities open, then improves that solution by
closing the facility that locally minimizes the objective function value and the process is
repeated until no improvement is possible by closing a new facility. Let M be the set of all
moves evaluated in the last iteration of this descent process, then the method keeps the η0

best moves of M to create the initial candidate list M(0) for the F&F tree used in the next
step.

Two variants of the algorithm are implemented to achieve different levels of sophistica-
tion and performance. In a more rudimentary design, memory structures are limited to the
tabu restrictions implicitly defined in the legitimacy conditions specified above. In a more
advanced design, the method is enhanced by exploring multilevel candidate lists, which ex-
tends the legitimacy conditions with a validity check, with respect to the current depth of
the search, that has its counterpart in the notion of admissibility in tabu search memories.
Accordingly, the evaluation of a move may not exclusively rely on the net change in the
objective function value created by the move but may include a bias factor introduced by
memory considerations used to guide the search at different layers. In the present algorithm,
layers are associated with two consecutive levels of the F&F tree that are subsequently and
alternatively checked with respect to the solution cost changes yielded by the corresponding
moves. As a result of these effects, improving moves are always kept in the tree; however if
in the previous level a non-improving move was performed and if none of the moves avail-
able improve the solution at the current level, a reverse flip move that transforms the current
solution back to the one in the previous level is allowed, denoting a relaxation by cost of one
of the legitimacy constraints.

It is shown that the simple version is competitive with state-of-the-art algorithms, but fails
to find 2 optimal solutions out of 45 classical benchmark problems. Overall this algorithm
produces solutions that are on average exceedingly close to optimal, while consuming a very
small amount of computation time—yielding solutions that are on average 0.04% above
optimality in an average computation time of 2.78 seconds.

The more advanced version of the method was implemented with the goal of producing
still better outcomes and specifically of tackling the new 60 instances currently known as
the hardest UFLP data sets in literature. This version succeeded in finding all best know
solutions for the previous 45 instances and achieved an average deviation of only 0.03%
above the optimal solutions for the hardest 60 instances. The total time required to solve
these hard problems averaged less than 3.5 seconds (on a Pentium IV, 1.7 GHz CPU desktop
computer).

The exceedingly high quality of these results discloses that the filter-and-fan approach
provides a very effective framework to explore the solution space in facility location prob-
lems and suggests its use in other more complex variants of these problems.

4.2 Protein folding

A protein’s function is closely related to its 3D structure, and therefore to determine how a
protein functions one must know its 3D conformation. The Protein Folding Problem (PFP)

Ann Oper Res

is the problem of predicting the three-dimensional (3D) structure of a protein given only the
protein’s sequence of amino acids. This is a fundamental yet open problem in the fields of bi-
ological chemistry and protein science, and has recently attracted attention in bioinformatics
and computational biology. The PFP is central in a number of practical applications includ-
ing the designing of new proteins having desirable functions in pharmaceutical, food, and
agriculture industry (Lengauer 1993). Informative overviews of the PFP and its applications
can be found in Richards (1991) and Chan and Dill (1993).

The PFP is a notoriously difficult combinatorial problem due to the combinatorial ex-
plosion of valid conformations as the number of amino acids in the chain increases. Due
to the complex nature of the PFP, the so-called HP lattice model proposed by Dill (1985)
constitutes a well established simplification for algorithm assessment.

Rego et al. (2009a) consider the two-dimensional (2D) version of the HP lattice model
and propose a F&F algorithm for the solution of the associated PFP. A sequence of H and
P amino acids is configured as a path on a two-dimensional (2D) lattice to define a valid
conformation. The path designation implies that the conformation is both connected and
self-avoiding, i.e., no amino acids can collide in the same cell of the lattice. (In graph theory
terminology, such a path is called node simple.) The energy function is defined by the num-
ber of pairs of H nodes that are adjacent in the lattice and not consecutive in the chain. Each
of these pairs, generally called an H-H contact, decreases the energy value by one unit. The
objective is to find a conformation that minimizes the total energy of the given amino acid
sequence, which therefore corresponds to maximizing the number of H-H contacts.

In this application, the F&F approach is used to seek an effective guidance strategy within
a simpler neighborhood by extending the so-called pull-move neighborhood (Lesh et al.
2003). To elaborate the algorithm we first describe the associated component moves defined
by the pull-move neighborhood structure.

A pull-move is initiated by moving one node of the current conformation to one of its
empty diagonal adjacent positions in the square induced by the node and one of its adjacent
neighbors in the sequence. Depending on the structure of the conformation the displacement
of the initiating node may require other nodes to change their current positions in order to
preserve connectivity. Nodes displaced by a pull move are only allowed to occupy vacant
adjacent positions in the lattice. Consequently, the preservation of connectivity results in a
self-avoiding path. Rego et al. make use of only three types of pull-moves designated by
filling, single-pull and multiple-pull, according to the number of nodes that are pulled by
the first displaced node. The filling move is the simplest pull-move, displacing a single node
in the structure. A valid conformation is obtained by simply moving a node to its diagonal
adjacent position. A single-pull, on the other hand, requires another node to change position
after the initiating node takes a new position. The multiple-pull move extends the single-pull
move to achieve connectivity in more complex structures that become disconnected upon
performing the simpler move. Figure 3 shows an example of the filter and fan neighbor-
hood for a 2D HP model with 20 amino acids, where η1 = η2 = 2 and L = 3. The negative
numbers denote the energy value of the corresponding conformation.

A conformation of energy −6 (represented by the root node) denotes a local optimum
determined by the local search phase. The first level of the filter and fan neighborhood
is then generated by applying the η1 = 2 best moves to the root conformation. The next
level is created by applying the η2 = 2 best pull-moves to each of the conformations in
the current level, thus generating η1.η2 = 4 trial conformations from which a new set of
η1 = 2 best conformations is chosen to initiate the next level. If at one level more than η1

solutions exist with the same objective value preference is given to solutions that derive
from different parent conformations. In the figure, the η2 different conformations derived

Ann Oper Res

Fig. 3 Filter-and-fan neighborhood tree for the 2D HP model of the PFP

from the same parent conformation are contained within the rectangles delimited by solid
lines whereas the η1 best conformations selected at each level are contained within “interior
rectangles” delimited by dotted lines. The method continues expanding the neighborhood
until the improved conformation of energy −7 is found in level 3 of the filter and fan tree.
The compound move leading to the improved conformation is then identified by the path
indicated by the dark arrows. Note that to continue the tree search after obtaining the new
local optimum, the method will restrict attention to solutions in the left-hand side branches
as a basis for extending the tree.

Diversification strategies that utilize memory of elite solutions and their attributes (ei-
ther in direct or statistical form) to drive the search into new regions plays a critical role in
the leading metaheuristic algorithms for the PFP. Rego et al. (2009a) explore mechanisms
for achieving an intelligent form of diversification within a filter-and-fan approach mak-
ing use of a simple tabu search structure. The algorithm alternates between single-path and
multiple-path tabu searches using component moves provided by the pull-move neighbor-
hood, subject to short-term memory controls.

Computational results for a standard set of benchmark problems show that the F&F algo-
rithm performs more robustly and efficiently than the current leading algorithms, requiring
only a single solution trial to obtain best known solutions to 9 out of 11 problems. By
contrast, the best of the alternative methods require a hundred or more trials in the typical
case to obtain best solutions to these 9 problems. For one of the instances this algorithm
required hundreds of runs and 78 hours of wall clock time to find the best solution, while
the filter-and-fan algorithm finds this solution in approximately 12 seconds on an equivalent
computer. On the remaining 2 problems, a single trial of the F&F method obtains a solu-
tion one unit away from the best known solution, again yielding a performance that is not
matched by some of the best competitors that are allowed to run for a hundred or more trials.

The success of the algorithm in performing more efficiently and robustly than alternative
state-of-the-art algorithms owes to two fundamental components: (i) the dynamic and adap-
tive feature of the search method in exploiting the neighborhood structure employed; and
(ii) the interplay between the tabu search and the tree search phases, which creates a strate-
gic oscillation between intensification and diversification. Further improvements are antic-
ipated to result by incorporating longer-term tabu search memory components to achieve

Ann Oper Res

higher levels of intensification, and by means of vocabulary building strategies that incorpo-
rate ejection chain methods and path-relinking.

4.3 Job shop scheduling

The Job Shop Scheduling Problem (JSSP) is a notoriously difficult problem in combina-
torial optimization. The problem finds its application in manufacturing industries and has
a pivotal role in many supply chains that integrate production planning and scheduling. In
a supply chain environment, production planning and scheduling models are often incorpo-
rated into a unified framework, sharing information and interacting with one another in order
to optimize the production of different products over multiple facilities. The output of the
planning process serves as an input to the scheduling process, which is often analyzed as a
job shop scheduling problem. Planning and scheduling models may also interact with other
types of logistics models such as inventory models, facility location models and transporta-
tion models. For an extensive coverage of planning and scheduling models and applications
in various supply chains settings, see Pinedo (2006).

The JSSP can be defined by a set of machines specialized to perform ordered operations
unique for every job. No machine can perform more than one operation at a time, each
operation has fixed time duration, and preemption is not allowed. The goal is to minimize
the makespan, which is the duration of the longest job in the schedule.

Beam search is a classical tree search method typically used in the optimization of
complex scheduling systems, including the JSSP (Sabuncuoglu and Bayiz 1999). How-
ever more advanced forms of tree search neighborhood approaches have been recently
proposed that have proved more effective than beam search for solving scheduling prob-
lems.

In particular, Balas and Vazacopoulos (1998) consider a specialized neighborhood tree
for the JSSP that leads to one of the most effective algorithms for this problem. Making
use of this neighborhood, Rego and Duarte (2009) developed a filter-and-fan (F&F), which
can also be viewed as a natural generalization of beam search and which includes the B&V
neighborhood tree as a special case. The basic structure of the algorithm may be described
as follows.

The most rudimentary version of the classical shifting bottleneck procedure (SBP)
(Adams et al. 1988) is used as a constructive method to generate an initial feasible solu-
tion. At each step the machine with longest processing time (i.e. the bottleneck machine)
among the ones that have not been scheduled is selected for scheduling and the method
stops when all machines are scheduled. It is well-known that this procedure does not pro-
duce high quality solutions by itself, but provides a convenient means to rapidly generate
initial feasible solutions for more advanced algorithms.

The F&F algorithm starts from the solution generated by the SBP and iteratively im-
proves this solution by alternating between the local search and the tree search phases. The
method considers two types of neighborhoods N1 (Aarts et al. 1994) and N2 (Nowichi and
Smutnicki 1996) based on classical moves that swap two adjacent operations in the criti-
cal path (i.e. the longest path in the problem graph that represents the solution). Typically,
N1 swaps arcs that are internal to the blocks of operations in the same machine while N2

exploits interactions between adjacent blocks by swapping arcs linking operations in differ-
ent blocks. Depending on the search strategy both types of moves can be used for the local
search as well as to define elementary moves in the F&F tree.

The search starts with the N1 neighborhood. Any time a local optimum is found (in the
local search phase) the best M(0) moves (among the M moves evaluated to establish local

Ann Oper Res

optimality) are used to create the first level of the F&F neighborhood tree. The next levels
are created using η1 = 16 and η2 = 8. The method stops branching as soon as an improved
solution is found, the maximum number of levels L = 15 is reached, or if there is no more
legitimate candidate moves to evaluate.

In case a global improvement is found in the tree search the new best solution is made
the starting solution for another run of the local search procedure. However, if the solution
at the root node cannot be improved, the method switches back to the local search starting
with the best trial solution encountered in the tree search and using neighborhood N2. In
this case, the list M determined in the last run of the local search procedure, and so made
up of type N1 moves, is now extended with new candidates of type N2. The new list M(0)

is created using the best moves of each type in equal number. The objective is to allow the
algorithm to combine both types of neighborhoods throughout the F&F tree.

The performance of the algorithm was evaluated on a set of 43 benchmark problems
belonging to two classical sets known as LA and FT.

The analysis of the computational results shows that the F&F algorithm produces so-
lutions that are on average at 0.28% above the optimum (or best known) solutions for the
LA testset and that are optimal for all FT instances. The algorithm is also very fast, finding
its best solutions in relatively short time (on a 1.7 GHz Pentium IV 256 MB): less than 6
seconds on average for the LA problems and no more than 21 seconds on average for the
FT class. Also, only 1 second of running time was enough for the algorithm to find optimal
solutions for 23 out of 29 instances that the method successfully solved to optimality.

The resulting F&F approach has also been compared to two leading methods that were
established to be the best among thirteen methods tested in a recent study by Gonçalves et
al. (2005): (1) a hybrid genetic algorithm/local search (GA/LS) method developed as part
of the study, and (2) a tabu search (TS) approach by Nowichi and Smutnicki (1996), which
emerged the clear winner of all methods examined. The performance of the present F&F
approach with regard to solution quality places it next after the TS approach, with an aver-
age relative deviation from the best known solutions of 0.27%, as compared to 0.05% for
the TS approach and 0.39% for the hybrid GA/LS approach. The F&F approach also falls
between these two methods in solution speed, running about one order of magnitude slower
than the TS approach, but about two orders of magnitude faster than the GA/LS approach
(after adjusting for differences in computers). However, the F&F procedure emerges as sig-
nificantly more robust than the other two methods in the time required to find best solutions.
F&F times range from 1 to 52 seconds with a standard deviation of 11.9, while the TS times
range from less than 1 second to 623 seconds with a standard deviation of 147.6, and the
GS/LS times range from 13 to 3745 seconds with a standard deviation of 1183.0. However,
it is to be noted that another TS algorithm for the JSSP has recently emerged that appears to
be substantially better yet in relation to both speed and robustness. The tabu search approach
due to Grabowski and Wodecki (2005), applied to the same testbed, yields solutions having
an average relative deviation of 0.04% from the best known solution, while consuming about
1.03 seconds (on a 333 MHz CPU), which would translate into an insignificant amount of
time if runs were performed on a faster computer like the ones used by the F&F and the
GA/LS algorithms.

4.4 Capacitated minimum spanning tree

The capacitated minimum spanning tree problem (CMST) has been addressed extensively
in the literature for its importance in modeling and practical applications in the design of
communication networks. It also emerges in applications in distribution, transportation and

Ann Oper Res

logistics (see Gavish 1982, 1991). From the modeling standpoint, the problem constitutes
a relaxation of the classical capacitated vehicle routing problem, which in turn is central
in many other more complex problems. Comprehensive reviews of methods and solution
approaches appear in Amberg et al. (1996) and in Mathew and Rego (2006).

The CMST problem can be stated as follows. Given a complete undirected graph G =
(V0,A), where V0 = {v0, v1, . . . , vn} is a vertex (node) set and A = {(vi, vj) | vi, vj ∈ V ; i �=
j ; j �= 0} is an arc set. Let v0 denote a special central node (root), and let V = V0\{v0} be a
set of terminal nodes requiring a specified demand di . C = (cij) is an n×nmatrix associated
with A, where cij is a non-negative weight (distance or cost) on arc (vi, vj) if there is an
arc between vi and vj . Otherwise cij is infinity. The CMST problem consists of finding a
minimum cost tree T spanning all nodes of G, so that the sum of the demands in each sub-
tree incident to the root node does not exceed a fixed arc capacity Q. When all the nodes
vi ∈ V have the same demand the problem is referred to as the homogeneous demand CMST
problem.

Successful approaches to the CMST problem involve high complexity multi-exchange
neighborhoods that take advantage of the basic tree-based and node-based neighborhoods
used in tabu search algorithms to address the problem. Node-based neighborhoods generate
moves that transfer a node from one sub-tree to another or exchange nodes between sub-
trees, while tree-based neighborhoods transfer sub-trees between different sub-trees.

The evaluation of node-based or tree-based neighborhoods in dense graphs requires
O(n2) effort, and the effort to evaluate a combination of L of these moves is O(nL), and
hence grows exponentially with L. A potentially best combination of L moves can be eval-
uated with significantly less effort if the combination is thought of as a compound move
consisting of individual moves evaluated progressively using the filter-and-fan strategy.

The effectiveness of the filter-and-fan method for implementing complex compound
moves that improve the local optima with only a modest increase in computational effort
is examined in Rego and Mathew (2009). This algorithm uses a design of the F&F approach
wherein the descent phase is replaced with a tabu search phase and the tree search is contin-
ued after a local optimum is found, allowing local optimally to be overcome in any level of
the tree except for leaf nodes. In addition the method employs a neighborhood structure that
brings about two types of strategic oscillation: (1) cycling between feasibility and infeasi-
bility and (2) cycling between node-based shift moves and tree-based shift moves. Strategic
oscillation is a specialized tabu search technique that operates by orienting the search with
respect to some boundary (or collection of boundaries). In a one-sided oscillation, which
is appropriate for the present setting, whenever such a boundary is reached the algorithm
changes direction according to a specified search mechanism. In this algorithm changing
direction involves switching to the alternate neighborhood structure. The memory structures
used include short term memory defined by the classical tabu restrictions and aspiration
criteria together with critical event memory to bring about strategic oscillation. A brief de-
scription of the algorithm follows.

A complete evaluation of both the node-based and tree-based neighborhood, starting
from the initial solution Xo, is performed by incorporating penalty costs for moves that
lead to infeasible solutions. The method selects a set of η0 best moves that lead to solutions
with the lowest objective function values. From among these moves a subset of the η1 best
moves (which can be either node-based or tree-based) are executed to form η1 different so-
lutions. For each of these solutions, η2 highest evaluating moves from the original η0 are
selected. From the union of the η2 moves for all η1 solutions, the best η1 moves are executed
to produce η1 new solutions. This process extends for L levels of the F&F tree (in a diver-
sification phase) or until the best solution is improved upon (in an intensification phase), in

Ann Oper Res

which case the process is repeated from the beginning using the best solution encountered
throughout the tree to re-initiate the tabu search phase. In this manner the filter-and-fan ap-
proach executes simple tree-based and node-based shift moves that consist of at most L

moves. The compound move composed of these shift moves avoids the computational over-
head required for the complete neighborhood evaluation necessary to determine the exact
best L-compound move. Additionally, to prevent cycling in the solution space, the most
recent moves executed are maintained as tabu active for a stipulated number of iterations.

Computational tests performed using standard benchmark problems revealed that this
algorithm produced results that compare favorably to a number of prior metaheuristic algo-
rithms and rivals the best. Tests carried on a total of 125 instances comprising 45 hetero-
geneous demand problems and 80 homogeneous demand problems demonstrated that the
algorithm found the best known solutions in 70 of these 125 instances with an overall de-
viation of 0.65% on average. In addition, the average execution time for the F&F approach
proved to be significantly smaller than that of the state-of-the art competitors on comparable
platforms.

For an appropriate comparative analysis, runs were performed in a similar manner and on
the same groups of instances used to test the alternative algorithms. To do this, recourse was
made to the study of Amberg et al. (1996), which tested a simulated annealing algorithm and
six variants of a tabu search algorithm on 70 homogeneous-demand instances. The various
algorithms differ by the type of neighborhood and the method used to manage the tabu
restrictions in the tabu search algorithms.

Results obtained for 12 independent runs of each algorithm disclosed that a run of the
F&F algorithm is better than any of the runs of these algorithms. In particular, it is shown
that even if all seven variants of these algorithms are taken together and the best overall
run for each individual problem is chosen, the average quality of the solutions produced by
the F&F algorithm across all problems exceeds the quality of such best solutions by 0.43%,
indicating a clear dominance of the F&F algorithm over these alternative strategies for the
CMST. Similar analysis reveals a significant advantage of the F&F algorithm over the tabu
search implementation of Sharaiha et al. (1997) and the adaptive reasoning technique (ART)
of Patterson et al. (1999) across all problem categories. More competitive approaches are
due to Ahuja et al. (2001) who propose two very large-scale neighborhood search (VLSN)
approaches based on multi-exchanges of node-based and tree-based neighborhoods, respec-
tively. These neighborhoods are used to create two different variants of a tabu search and
a GRASP algorithm. Tests on 2 groups of problems of different sizes and characteristics
indicate that the F&F algorithm performs better than one of the GRASP variants for the
first group and better than the other GRASP variant for the other group. Similarly, the F&F
algorithm performs better than one of the TS variants for a group of problems and is very
competitive with the other variant for the other group. As an overall assessment, the F&F
approach outperforms a GRASP and a TS variant. A considerable advantage of the F&F
algorithm concerns the significantly reduced amount of solution time it requires relative to
the solution times required by each of the 4 variants of the competing algorithms.

These results clearly indicate the impact of the neighborhood structure in the perfor-
mance of metaheuristic strategies, disclosing that node-based neighborhoods prove more ef-
fective for solving homogeneous-demand problems while tree-based neighborhoods prove
more effective for solving heterogeneous-demand problems. To take advantage of the com-
plementary features of the two types of neighborhoods, a strategy that unifies node-based
and tree-based into a composite multi-exchange neighborhood has been proposed in Ahuja
et al. (2003). Their neighborhood search is powered by an exact dynamic programming so-
lution method aimed at finding the best move in the composite neighborhood. This enhanced

Ann Oper Res

approach finds all best known solutions for the 75 problems tested (out of the 125 consid-
ered by the F&F algorithm), and so proves relatively more effective, although to achieve
this result the method requires more than four times as much effort as the F&F method (on
a similar computer) to find solutions of the same or exceedingly similar quality.

5 Ejection chain applications

5.1 Traveling salesman

The Traveling Salesman Problem (TSP) consists in finding a minimum distance tour of n

cities, starting and ending at the same city and visiting each other city exactly once. In spite
of the simplicity of its problem statement, the TSP is remarkably challenging and is the
most studied problem in combinatorial optimization, having inspired well over a thousand
publications.

In graph theory, the problem can be defined on a graph G = (V ,A), where V =
{v1, . . . , vn} is a set of n vertices (nodes) and A = {(vi, vj) | vi, vj ∈ V, i �= j} is a set of
arcs, together with a non-negative cost (or distance) matrix C = (cij) associated with A.
The problem is considered to be symmetric (STSP) if cij = cji for all (vi, vj) ∈ A, and
asymmetric (ATSP) otherwise. Elements of A are often called edges (rather than arcs) in
the symmetric case. The version of STSP in which distances satisfy the triangle inequality
(cij + cjk ≥ cik) is the most studied special case of the problem. The STSP (ATSP) consists
in determining the Hamiltonian cycle (circuit), often simply called a tour, of minimum cost.

The importance of identifying effective heuristics to solve large-scale TSP problems
prompted the “8th DIMACS Implementation Challenge”, organized by Johnson et al. (2000)
and solely dedicated to TSP algorithms.

Ejection chain methods lead the state-of-the-art in local search heuristics for the travel-
ing salesman problem (TSP) and likewise have successfully been applied to a cardinality-
constrained variant of the problem (Cao and Glover 1997). The most effective local search
approaches for the classical TSP primarily originate from the Stem-and-Cycle (S&C) ejec-
tion chain method (Glover 1992) and the widely acclaimed Lin-Kernighan (LK) procedure
(Lin and Kernighan 1973), which can be viewed as an instance of an ejection chain method.
These two types of TSP ejection chain approaches typically proceed by disconnecting a
subpath and reconnecting it with different components at each level of the chain, and as a
consequence are generally called subpath ejection chain methods.

5.1.1 Subpath ejection chains for the TSP

Subpath ejection chain methods for the TSP start from an initial tour and iteratively attempt
to improve the current solution, generating moves coordinated by a reference structure. The
LK approach uses a Hamiltonian path as the reference structure to generate moves through-
out the neighborhood construction. By contrast, the S&C ejection chain method is based on
the stem-and-cycle reference structure, which is a spanning subgraph of G consisting of a
path called a stem connected to a cycle by a single node called the root node. The two nodes
adjacent to the root in the cycle are called subroots and the node on the end of the stem
opposite the root is called the tip of the stem. In a subpath ejection chain, once a reference
structure is created from the initial TSP tour, ejection moves consist of transforming the ref-
erence structure into another of the same type and suitably structured trial moves are used
to generate feasible tours at each level of the chain.

Ann Oper Res

Fig. 4 The S&C reference
structure and associated ejection
moves

The LK method starts by generating a low order k-opt move (with k ≤ 4) and then creates
a Hamiltonian path by deleting an edge adjacent to the last edge added. This completes the
first level of the LK process. In succeeding levels each ejection move consists of linking a
new edge to the unique degree 1 node that was adjacent to the last edge added, followed
by deleting the sole edge whose removal will generate another Hamiltonian path. A trial
move consists of linking the two endpoints of the current Hamiltonian path, thus creating a
feasible tour.

By contrast, the S&C method creates the initial S&C reference structure from a TSP tour
by adding an edge to link two nodes of the tour and removing one of the edges adjacent
to one of those nodes. Each ejection move then adds an edge that links the tip node to
any other node on the graph, except for the one adjacent to the tip, and removes one of
the edges adjacent to that node. Two different ejection moves are possible depending on
whether the node to be linked to the tip lies in the stem or in the cycle. If such node lies in
the stem there is only one possibility to eject a subpath, which results from deleting the only
possible adjacent edge that creates a feasible structure; otherwise two possible subpaths may
be ejected by deleting either adjacent edge.

The S&C structure and the nature of its ejection moves are illustrated in Fig. 4. In the
figure, the S&C structure is represented by dark edges with nodes t , r , s1 and s2 denoting
the tip, root and the two subroots of the structure, respectively. Dotted lines denote edges to
be added by each type of ejection move and the associated possible edges to be deleted by
the move are market by the small parallel lines crossing them.

Trial solutions are obtained by adding an edge from the tip to one of the subroots and
deleting the edge between this subroot and the root.

Both theoretical and experimental studies have demonstrated that the S&C ejection chain
method is more general and powerful than the LK approach. Notably, the reference struc-
ture in the LK approach is very close to being a valid TSP solution (it only requires adding
a single edge to close the gap between the two nodes of degree 1 and thus obtain a tour).
As a result, the structure implicitly limits the different types of moves it can generate and
consequently makes only one trial solution available from a given Hamiltonian path. The
S&C reference structure, on the other hand, yields two trial solutions (except in the case
of a degenerate structure when the tip and root nodes coincide, in which case the structure
corresponds to a tour). Another fundamental difference is that the S&C procedure gener-
ates dynamic alternating paths while the classical LK approach generates static alternating
paths. A theoretical analysis of the differences between the types of paths generated by S&C
and LK procedures is provided in Funke et al. (2005), which includes a demonstration that
the LK neighborhood is strictly contained in the S&C neighborhood. The authors also show
that even a generalization of the LK approach that incorporates generalized alternating paths
cannot reach solutions accessible to the S&C neighborhood.

Ann Oper Res

5.1.2 The symmetric TSP

An effective algorithm design and implementation of the S&C ejection chain method was
first proposed by Rego (1998a) for the STSP and subsequently enhanced in Gamboa et
al. (2005, 2006a). In the latter, the authors have adopted the two-level tree data structure
described in Fredman et al. (1995) that is used to support the most efficient LK implemen-
tations reported in the DIMACS Challenge (e.g. those of Johnson and McGeoch 1997; and
Helsgaun 2000; Applegate et al. 2003). The upgraded S&C algorithm also incorporates a
variety of neighbor lists, thus providing the algorithm with additional options not available
in the previous version.

The generation of moves throughout the ejection chain process is based on the definition
of a set of rules and legitimacy restrictions on the set of edges that are allowed to be used in
subsequent steps of an ejection chain. The algorithm is implemented as a local search im-
provement method in the sense that no meta-strategy is used to guide the search beyond local
optimality. Also, the method always stops after n iterations of the re-routing strategy fail to
improve the best solution found so far. (Re-routing consists of starting an S&C ejection
chain from a different route node.) This makes the implementation of the S&C algorithm
simpler than LK implementations that make use of additional supplementary techniques
such as caching distances, and other implementation tricks.

Maintaining the fundamental rules of the original algorithm (described in Rego 1998a)
unchanged, improvements on the data structures and the use of appropriate candidate list
strategies made the modified version of the S&C algorithm more efficient and effective for
solving very large-scale problems.

In Gamboa et al. (2006a, 2006b) the authors report the outcomes of an extensive series
of tests on problems ranging from 1000 to 3,000,000 nodes, showing that by using data
structures and candidate lists routinely included in state-of-the-art TSP solution software, the
S&C algorithm clearly outperforms all implementations of the LK procedure. Specifically,
it is shown that S&C approach finds better solutions than all of the leading LK variants for
about 70% of the problems tested. Conspicuously, the 70% advantage of the S&C approach
refers to a comparison with the most effective variant of the LK procedure. The second best
variant of the LK approach is dominated by the S&C approach in approximately 97% of the
problems. Some LK variants included in the DIMACS challenge failed to find even a single
solution better than the S&C approach over all 59 problems tested.

5.1.3 The asymmetric TSP

The S&C is a fundamental component of several other reference structures used in the cre-
ation of ejection chain methods. A direct generalization of the S&C reference that has spe-
cial advantages for the ATSP is called the Doubly-Rooted (DR) S&C (Glover 1996), which
considers two root nodes instead of one. The doubly rooted structure has two forms: a bicy-
cle in which the roots are connected by a single path, joining two cycles, and a tricycle in
which the two roots are connected by three paths, thereby generating three cycles. In the DR
structure the definition of subroot is extended to include any node adjacent to a root node,
regardless of whether it is in the cycle or in the stem.

Ejection moves consist of adding a new edge linking one of the subroots to an arbitrary
node on the graph and deleting the edge between this subroot and the associated root, caus-
ing the selected arbitrary node to become the new root.

The trial solutions available to the doubly-rooted structure are those generated by the
union of the trial solutions available to the single-rooted S&C structure obtained by deleting

Ann Oper Res

any edge linking a root node to a cycle subroot. Such a subroot becomes the tip of the S&C,
while the (root) node that remains with three incident edges becomes the S&C root.

Rego et al. (2006) provide a comparative study of the DR neighborhood structure and
the generalized LK neighborhood for the ATSP proposed in Kanellakis and Papadimitriou
(1980) and recently used in the current state-of-the-art local search algorithm for the ATSP
by Cirasella et al. (2001). Computational experiments on a standard testbed exhibits supe-
rior performance for the DR neighborhood over its LK counterpart, revealing that a straight-
forward implementation of a DR ejection chain algorithm outperforms the best local search
algorithms and obtains solutions comparable to those obtained by the current most advanced
iterative local search algorithms specially designed for the ATSP, while requiring dramati-
cally smaller computation time.

Out of 28 instances for which results are available for KP, in only 4 instances did the KP
algorithm manage to find tours that are slightly better than those found by the DR algorithm.
For the remaining 24 instances, the DR algorithm found 3 tours of similar quality and 21
of superior quality compared to those produced by the KP algorithm. In some cases the
quality of solutions found by the DR algorithm exceeded that of the KP algorithm by as
much as 5.5%. Even more impressive is the performance of the DR algorithm compared to
the sophisticated iterative local search variant (iKP) of the basic KP algorithm (Cirasella et
al. 2001). Considering the whole set of 47 benchmark instances both iKP and DR algorithms
find an equal number of best solutions (28). Among these, a 0.00% gap from optimality is
achieved on 9 instances by the iKP algorithm and on 17 instances by the DR algorithm.
Also, the iKP algorithm requires significantly more computational time on average than the
DR algorithm. In some cases the iKP algorithm requires 2 hours compared to less than 50
seconds for the DR algorithm (which finds tours of better quality).

5.1.4 Advances on data structures for large STSPs

An effective data representation is crucial for the efficiency of search algorithms for the
TSP and particularly important for large STSP instances. The nature of these algorithms
necessitates the use of certain basic tour operations involving subpath reversal and traversal.
The computational effort that must be devoted to these operations becomes increasingly
pronounced with larger problem instances.

The 2-level tree (Chrobak et al. 1990) has for many years been considered the preeminent
choice for representing the tour, retaining that reputation until the recent emergence of the k-
level satellite tree proposed by Osterman and Rego (2003). The classical 2-level tree divides
the tour into approximately n1/2 segments each containing as many nodes as grouped under
a parent node, where a doubly linked list is used to connect both segments and client nodes
within the segments. A worst case cost of O(n1/2) for tour operations may be achieved with
the 2-level tree representation.

The theory behind the 2-level tree contributes much to the latest developments on TSP
data structures. Its effectiveness has been demonstrated by independent implementations
due to Fredman et al. (1995), Gamboa et al. (2005, 2006a) and numerous participants in the
DIMACS TSP Challenge (Johnson et al. 2000).

The k-level satellite tree expands upon the 2-level tree to allow the tree to be divided into
k levels instead of two. This is accomplished by partitioning the tour nodes into segments
containing roughly n1/k nodes each, and the resulting segments are grouped into parent
segments containing about n1/k segments each. A fundamental feature of this k-level satellite
tree is the satellite list structure, also proposed by Osterman and Rego (2003) as symmetric
counterpart of the classical doubly-linked list structure. The satellite list represents a tour

Ann Oper Res

without implying a fixed orientation, making it useful for representing symmetric paths or
cycles. It can operate in the same capacity as the doubly-linked list and is equally efficient in
terms of both memory and computation of previous and next queries. Because the satellite
list avoids a fixed orientation, the subpath reversal operation can be performed in constant
time, whereas for the linked list, every pointer associated with nodes in the reversed path
in the list must be changed to reflect the appropriate orientation. A satellite design for the
k-level tree is important, not only because of subpath reversal, but also because next and
previous queries do not need to access parent nodes. The resulting benefit is substantial,
considering the frequency of the need for these operations and the fact that the cost of
accessing a parent node varies with the problem size when the data structure is designed
optimally.

As shown in Osterman and Rego (2003), when k is chosen optimally, a path between two
client nodes in the tree can be traversed with a complexity of O(logn) rather than O(n1/2).
This result indicates that an optimally designed k-level tree is the most efficient structure
proposed to date.

5.2 Vehicle routing

The Vehicle Routing Problem (VRP) is a generic name given to a class of problems in which
a set of routes for a fleet of vehicles, based on one or several depots, must be determined for
a number of geographically dispersed cities or customers, subject to side constraints. The
problem is central in the fields of transportation, distribution and logistics and provides a
general model for a wide range of practical applications.

Let G = (V ,A) be a graph where V = {v0, v1, . . . , vn} is a vertex (or node) set, and
A = {(vi, vj) | vi, vj ∈ V, i �= j} is an arc (or edge) set. Consider a depot to be located at
v0 and let V ′ = V \{v0} denote a set of n cities (or client locations). A non-negative cost or
distance matrix C = (cij) is associated with every arc of A. It is assumed that m identical
vehicles are used, each with capacity Q, and their number is a decision variable (or can be
fixed depending on the application). Vehicles make pickups or deliveries but not both. With
each vertex vi is associated a quantity qi (q0 = 0) of some goods to be delivered by a vehicle
and a service time δi (δ0 = 0) required by a vehicle to unload the quantity qi at vi . The VRP
consists of determining a set of m vehicle routes of minimal total cost, starting and ending
at a depot v0, such that every vertex vi ∈ V ′ is visited only once by precisely one vehicle,
where the total quantity assigned to each route does not exceed the capacity Q and the total
duration (travel plus service times) of any vehicle route does not surpass a given bound D.
Hence in this context the cost cij is taken to be the travel time between the two associated
cities.

Drawing on the fact that ejection chain methods have proved very efficient for solving
large scale traveling salesman problems, generalizations of some of these methods have been
developed to deal with multiple routes as required in general vehicle routing problems.

5.2.1 Node-based ejection chains for the VRP

Node-based ejection chain methods derive from extensions of customary single node inser-
tion and exchange neighborhoods that have been found useful in several classes of graph
problems including: machine scheduling, clustering, graph-coloring, vertex covering, max-
imum clique or independent problems, vehicle routing problems, generalized and quadratic
assignment problem, and the traveling salesman problem, just to cite a few.

Typical node insertion (or shift) neighborhoods involve removing a node from one route
and inserting it into another, while typical node exchange (or swap) neighborhoods involve

Ann Oper Res

interchanging nodes between routes. In neighborhood search, these insertion and swapping
operations are also performed within a given route (instead of across routes) as a way to
re-optimize the associated TSP defined over the nodes of this route. Since the worst case
complexity of evaluating a single node insertion and node exchange neighborhood is O(n2),
creating compound neighborhoods by combinations of these moves requires an effort that
grows exponentially with the number of moves considered in combination. More precisely,
the best compound neighborhood of k moves can be generated and evaluated with O(nk)

effort. Embedding these simple neighborhoods in an ejection chain framework can notably
reduce this effort (Glover 1991).

Rego (2001) develops an ejection chain neighborhood for the VRP that implements a
multi-node insertion move and a multi-node exchange move to yield an important form of
combinatorial leverage. Specifically, the number of moves represented by a level k neigh-
borhood is multiplicatively greater than the number of moves in a level k − 1 neighborhood,
but the best move from the neighborhoods at each successive level can be determined by
repeating only the effort required to determine a best first level move.

The ejection chain starts by identifying a node pair vi , vj that yields the best (highest
evaluation) ejection move that disconnects node vi from its current position and inserts
it into the position currently occupied by node vj . For subsequent levels, ejection moves
consist of selecting a new candidate node to be ejected by the previously ejected node, and
then repeating until no other legitimate node exists for ejection. Such an ejection process
creates an intermediate structure at each level of the chain where the associated ejected
node, say vk (k = j for the first level), is temporarily disconnected from the tour. However
a trial solution can be obtained by: (1) inserting node vk between two nodes vp and vq and
adding an arc linking the original predecessor and successor of vi to close the route—a
multi-node insertion move; or (2) simply by relocating the last ejected node vk to occupy the
vacant position left by the node vi that initiates the chain—a multi-node exchange move.

This composite ejection chain neighborhood has been embedded in a tabu search algo-
rithm, named TabuChain, which is designed to use frequency-based adaptive memory and
strategic oscillation to allow for temporary violation of the capacity or maximal route du-
ration constraints. Both sequential and parallel versions of the algorithm have been imple-
mented. The parallel version is based on a synchronous model of parallel searches that al-
lows for a more extensive exploration of the solution space than the basic sequential version.
Also, different levels of parallelization are used in order to accelerate the search process.
One takes advantage of an ejection chain property that permits ejection and trial moves to
be evaluated separately by different processors, potentially reducing the time per iteration by
half. Another level of parallelization consists of launching separate processes to re-optimize
each individual route. The sequential and parallel methods, each in its own category, remain
among the most effective algorithms available for the VRP, producing solutions that are on
average 0.77% and 0.55% above the best known solutions for the classical fourteen-instance
testbed of Christofides et al. (1979).

Node-based ejection chain approaches have also been successfully applied to clustering
problems by Dorndorf and Pesch (1994). Principles similar to those underlying the node-
based ejection chain method discussed for the VRP are developed and explored in Yagiura
et al. (2004) to provide an effective algorithm for the generalized assignment problem.

5.2.2 Subpath ejection chains for the VRP

Another type of ejection chain approach for the VRP concerns a subpath ejection chain
method proposed in Rego (1998b). A fundamental feature of this method is the flower refer-
ence structure that generalizes the stem-and-cycle (S&C) reference structure (discussed in

Ann Oper Res

Sect. 5.1) to a multiple routing context. The flower structure is defined as a spanning sub-
graph of G, which consists of a path called stem attached to multiple cycles representing
routes. In the original paper several components of the flower structure are termed differ-
ently than their equivalents in the S&C structure; however to facilitate the discussion in this
paper we stick with the terms already introduced for the S&C. Therefore, the node that lies
on the intersection of a stem and a cycle is called a root and the nodes adjacent to a root are
called subroots. Likewise, the node at the opposite end of the stem from the root is referred
to as the tip of the stem. In the flower structure the root node always identifies the depot and
hence these two terms may be used interchangeably.

The consideration of multiple cycles in the flower reference structure extends the ejection
and trial moves of the stem-and-cycle to encompass a number of other possibilities. Starting
from a given VRP solution, the ejection move to create a flower structure may simply delete
one of the edges incident to the root (depot), thus transforming a cycle into a stem, which is
also a basic move to deal with routes containing a single city. Such a move that only deletes
one edge without adding another may be referred here to as a drop move to differentiate it
from the moves that replace one edge with a new one and so may be called add-drop moves.
Similarly, a trial move that transforms a flower structure into a VRP solution may simply
link the tip directly to the depot to close the route. Such a trial move may be called a route-
creation move. By contrast, the type of S&C trial move that links the tip node to one of the
subroots and deletes the associated edge incident to the root may be called route-extension
move, since it extends a route to include the clients currently in the stem that is made to
join that route. Depending on the type of ejection and trial moves considered for an ejection
chain, the number of vehicle routes can vary: the number decreases if the chain starts with
an ejection move that deletes an edge incident to the root and then applies a route-extension
trial move, whereas the number increases if the chain starts by applying an add-drop move
to one of the routes and a route-creation move is used to obtain a new trial solution.

An important feature of the algorithm concerns the choice of the chain starting rules.
Since it is possible to create a flower structure from a given VRP solution by deleting one
edge without adding another, such a step always results in a cost reduction in relation to the
current solution. Moreover, as the longest edges are usually selected to be deleted, this leads
to the outcome that the proper add-drop S&C move will rarely be chosen to start the chain.
To avoid this situation, the algorithm considers a penalty factor to provide a more appropriate
evaluation of the two types of ejection moves. Experimental tests carried out on problems
with different characteristics disclosed that randomly varying this penalty within specific
intervals (of real values) was highly advantageous. Different tradeoffs can be obtained in
evaluating the two types of moves that initiate an ejection chain depending on three ranges
of values as follows. For negative values the drop move is highly penalized, hence an add-
drop initiating move is performed. If these values are positive and less than 1, initiating drop
moves are again penalized in relation to add-drop moves, but not so strongly. Finally, values
greater than 1 yield greater penalties for the add-drop initiating moves and hence favor drop
moves to be performed.

Although the Flower reference structure preserves the same properties as the S&C struc-
ture and so succeeds in generating dynamic alternating paths and cycles, the violation of
the alternating path construction that is caused by an ejection chain process in the VRP set-
ting is less restrictive than in the TSP setting. This increases the move options for the VRP,
yielding a heuristic advantage. In this setting, periodically limiting the moves to generate
an ordinary alternating path rather than a dynamic alternating path turned out to be useful
to avoid modifying adjacent edges at the same step of the algorithm. Nevertheless, such a
modification was not completely forbidden in order to allow the most promising changes to

Ann Oper Res

be carried out. In sum, on one hand it is sometimes desirable not to simultaneously modify
two adjacent edges as a means of inducing some degree of diversification; on the other hand
it can also sometimes be desirable to allow such a modification to provide some intensifica-
tion of the search and possibly reach deeper local optima where new best solutions may be
found.

The implementation of this subpath ejection chain method relies on a tabu search guid-
ance to prevent the method from generating flower structures already considered at previous
levels of the chain. Guidance by tabu search is also used to govern the creation of alternating
paths within the context of the legitimacy conditions used in the algorithm, which as in the
case of the TSP problem assure that a given solution can be transformed into any other.

To gauge its performance, the Flower algorithm was tested on an extended set of 30 prob-
lems from the literature, which include the classical fourteen-instance set of Christofides et
al. (1979), three real-world problems taken from Fisher (1994) and twelve instances con-
sidered in Taillard (1993) and Rochat and Taillard (1995). The original goal in creating
the Flower algorithm was to produce high-quality solutions rapidly rather than striving to
find (new) best solutions, and hence no recourse was made to sophisticated forms of TS
guidance—in contrast to TabuChain (previously described) and a number of other algo-
rithms in the literature. Comparisons with algorithms sharing a similar goal of rapid conver-
gence reveal that the Flower algorithm is clearly superior to all of them, producing better
solutions and also requiring less running time. When compared with other classes of algo-
rithms that make advanced use of metaheuristic guidance, the Flower algorithm compares
quite favorably to these as well, especially when good solutions must be found quickly. In
particular, the algorithm is very fast in finding solutions that are within the range of 1% of
the best known solution.

5.3 Crew scheduling

The general crew scheduling problem (CSP) can be formulated as seeking the minimum
number of crews necessary to cover a set of trips with duties that have to satisfy a number
of regulations and operational constraints.

Cavique et al. (1999) address a CSP arising in train transportation and develop a sub-
graph ejection chain method embedded in a tabu search algorithm for the solution of the
problem. The algorithm relies on the definition of a number of terms generally used in crew
scheduling, which can be introduced in the context of the problem at hand.

The set of trips to be performed by each train defines a timetable. A trip is a one way
movement of a train between two terminal points, the smallest period (or elementary crew
activity) into which the timetable can be divided. A trip has five attributes: train number,
starting place and time, finishing place and time. A block is a set of all trips produced by the
same train, and the set of consecutive trips in a block, covered by the same crew, is called
a piece of work (or piece). A block partition is a set of non-overlapping pieces of work that
exactly covers a block. In this application, a complete duty may be formed by one or two
pieces or work, a meal break, the report and clear time and a possible reserve period. The
set of contractual and operational constraints include specific relief points, bounds on the
durations of pieces of work, report and clear times, duty duration, and possible intervals for
meal breaks. A duty that satisfies all problem constraints is called a feasible duty and a set
of feasible duties covering all trips makes up a feasible schedule. The objective of the CSP
is to find a feasible schedule with a minimum number of crews (duties) needed to operate
the train line.

The subgraph ejection chain method and associated tabu search procedure for this prob-
lem may be described as follows. In contrast with the node based and subpath ejection

Ann Oper Res

chain methods, the present method considers a subgraph as the elementary component to
be ejected at each level of the ejection chain process. The method explores a specialized
block partition technique that underlies the formulation of the maximum cardinality match-
ing problem (MCMP) of a non-bipartite graph G = (P,D). The method is divided into
three fundamental procedures: block partition, graph generation, and duty achievement. In
the first step, the block partition procedure divides the blocks into k feasible pieces of work,
creating the node set P = (p1, . . . , pk). In the second step, the matching graph G is built by
linking pairs of pieces for all possible duties, creating the edge set D = {(pi,pj) | pi,pj ∈
P }. Finally, in the third step, a MCMP algorithm is applied to find a maximal matching
of pieces to create a schedule. In the solution of the MCMP, the matched nodes represent
duties with two pieces and the free (or unmatched) nodes are duties with only one piece of
work. Under this model the CSP reduces to the problem of finding the block partition that
produces a schedule with a minimum number of duties over all possible partitions.

The enormous number of alternatives to partition the set of blocks for a given timetable
entails a very large and complex solution space for which effective search algorithms must
be designed. The algorithm considers a tabu search approach based on an embedded neigh-
borhood structure that gives rise to a subgraph ejection chain method defined as follows.
A neighborhood structure N is decomposed in two substructures N1 and N2, which sepa-
rates the neighborhood space into two subsets. N1 is an intermediate structure responsible
for generating a set of new pieces of work that will replace pieces of the current graph
Gi = (Pi,Di) transforming it into another graph Gi+1 = (Pi+1,Di+1). N2 is a structure
defining the set of edges in Gi+1 associated with feasible duties. The complete neighborhood
structure N is be defined by any possible sequence of moves e1, t1, . . . , ek, tk . . . , eL, tL such
that ek ∈ N1 and tk ∈ N2, representing an ejection chain of L levels. Accordingly, the transi-
tion from a solution (schedule) Si to a solution Si+1 can be obtained by a sequence of moves
e1, e2 . . . , ek∗ , tk∗ with ek∗ and tk∗ denoting the ejection move and trial move, respectively, at
level k∗ where the best trial solution was found.

In the algorithm, ejection moves are defined by three types of elementary operations (1)
shift operation, which shifts the extreme of a piece to the right or to the left, transferring
one or more trips between adjacent pieces, (2) cut operation, which splits one piece into two
pieces, and (3) merge operation, which combines two pieces into a single piece. Each of
these operations that modify the configuration of certain nodes require deleting (or ejecting)
a subgraph involving the modified nodes and certain edges adjacent to them, which thereby
entails the creation of another subgraph associated with the new configuration of the nodes
that have been modified by the ejection move. Under this conception, an ejection move at
level k deletes (ejects) a subgraph Gk−

i of Gk
i (G

1
i = Gi) and adds another subgraph Gk+

i to
the current graph transforming Gk

i into Gk+1
i = Gk

i \Gk−
i ∪ Gk+

i . The associated trial move
for the current level may be given by solving the MCMP on graph Gk+1

i , thus yielding a new
feasible schedule. Due to the inherent time complexity of determining an exact solution for
the MCMP at each level of the chain, the algorithm considers a trial function that implicitly
reflects the potential quality of the trial solution that could be reached. Once the chain ends,
the explicit evaluation of N2 is carried out by solving the MCMP on the graph Gi+1 = Gk∗

i ,
where k∗ represents the level of the chain where the best value of the trial function was
found.

A set of six real time tables involving over 700 trips and up to 26 trains (number of
blocks) is used in order to test the performance of the algorithm. The quality of the solutions
is evaluated on the basis of three correlated performance measures: the percent improve-
ments to the number of duties obtained by alternative schedulers, the matching ratio (i.e.
percentage of duties with two pieces of work), and the average number of driving hours per

Ann Oper Res

duty. The results disclose that the ejection chain algorithm performs extremely well across
the three evaluation criteria. The algorithm finds better schedules than previous methods for
all problems tested, reducing the number of duties, improving the distribution of the crew’s
workload and finding higher matching ratios.

5.4 Quadratic assignment

The quadratic assignment problem (QAP) is a classical combinatorial optimization prob-
lem that has garnered much attention due to both its large number of applications and its
solution complexity. Originally used to model a location problem in the 1950’s, the QAP
is computationally very difficult to solve which makes it an ideal candidate for testing new
algorithmic approaches. While facility location problems remain the most popular applica-
tion area for the quadratic assignment problem, many other applications for this problem
exist including scheduling problems, statistical data analysis, information retrieval, as well
as problems in transportation. The attractiveness of the QAP is also due to the fact that many
other combinatorial optimization problems can be formulated as a QAP, including: the trav-
eling salesman problem, the maximum clique problem and the graph partitioning problem.
(See Cela (1998) for a survey of both classical and practical applications.)

In the context of facility location problems, the QAP can be stated as follows. Given a
set F = {f1, . . . , fn} of n facilities to be placed in exactly n locations represented by the set
L = {l1, . . . , ln} . Let A = (aik) be a matrix of distances between pairs of locations li , lk ∈ L,
and an associated matrix B = (bjl) of flows to be transmitted (or shipped) between pairs
of facilities fj , fl ∈ F . The objective is to find a minimum cost assignment of facilities to
locations considering both the flow of materials between facilities and the distance between
locations.

In mathematical terms, each assignment can be defined as a permutation p of the un-
derlying index set N = {1, . . . , n} . Hence, if facility j is assigned to location i and facility
l is assigned to location k, the cost of the flow between facilities j = p(i) and l = p(k)

is aikbp(i)p(k). The QAP is the problem to find a permutation vector p ∈ Pn that minimizes
the total assignment cost, where Pn is the set of all possible permutations of N . Such a
formulation can be generically described as

Minimize
p∈Pn

n∑

i=1

n∑

j=1

aij bp(i)p(j).

Heuristic approaches for the QAP abound in the literature wherein local search is commonly
used as a basic component to explore the solution space. Local search methods rely on the
exploration of a defined neighborhood. In the case of the QAP, this neighborhood is typically
a 2-exchange neighborhood that swaps the location of two facilities at each step of the local
search process. The exploration of larger neighborhoods where the simultaneous movement
of k nodes of the permutation can be examined is attractive though computationally very
demanding.

Ahuja et al. (2007) introduce a very large scale neighborhood search (VLSN) for the
QAP, which constitutes an important advance in the creation of more complex neighbor-
hoods for the problem. This algorithm iteratively examines all paths (or exchanges of nodes)
of increasing depth, where the maximum depth is a specified parameter. The VLSN algo-
rithm considers all moves (or a defined subset of moves) of a given depth before proceeding
to the next depth. Due to the computational complexity of the full path enumeration scheme
presented, a maximum path length of 4 was settled upon in their study.

Ann Oper Res

More recently, Rego et al. (2009b) developed a specialized ejection chain algorithm for
the QAP, drawing on a proposal sketched in Glover (1991), that affords additional advances.
The approach utilizes the ejection chain structure to build successively larger exchanges
based upon the elements chosen in the proceeding chain. In this manner, all possible chains
at each depth may not be considered for a given permutation. However, this process allows
the method to quickly probe larger neighborhoods, with no constraints on the depths exam-
ined, by constructing these chains of moves based upon previously promising structures.

The method may be described by analogy with the node-based ejection chain model
previously discussed for the VRP. In such a model facilities are associated with nodes in a
graph which are to be assigned to locations. In this context the method implements a type
of multi-node exchange move, which can be seen as a series of swap moves for the QAP.
The method begins by identifying the best local move for each facility j , which constitutes
removing j from its current location and relocating it in the position occupied by a facility
l, which is thereby ejected. (Alternatively, the method can start by looking at each l and
finding the best j to replace it.) The initialization process is completed by simply selecting
initial chains based on performing a series of best 2-exchange moves. Notably, such a move
corresponds to simultaneously determining the best initial node to be ejected and the best
node to occupy the location of the ejected node. The chain grows by selecting a new node
to be ejected by the previously ejected node. Under the natural and convenient restriction
that prevents an element from being moved twice, the chain can continue to grow until all n

nodes have been ejected.
By embedding this ejection chain method within a tabu search framework, strategic con-

trol over the formation of the chains can be exerted. However, the method is applied without
the benefit of advanced memory strategies, except of the simplest form, in the role of “book-
keeping” operations instead of in the role of performing advanced guidance. The objective
is to show that even this very basic and unenhanced approach is competitive with the best
strategies that instead rely extensively on metaheuristic guidance to achieve their results.

Results obtained on a standard set of 22 benchmark problems from the QAPLIB li-
brary demonstrate the capabilities of the raw ejection chain procedure and the average im-
provement obtained by exploring the larger neighborhoods by comparison to a traditional
2-exchange procedure and also by comparison to the leading large neighborhood approaches
from the literature. Tests over 10 runs for each procedure embedded in a very simple tabu
search show that the ejection chain neighborhood improved the average solution quality for
19 out of the 22 problems over its 2-exchange counterpart. Two multi-start tabu search vari-
ants are also presented, which essentially differ in the choice of the solution from which
the algorithm is restarted. These enhanced variants improve the simple tabu search vari-
ant in all but 2 problem instances each, thus demonstrating the power of embedding the
proposed ejection chain method within a more sophisticated local search or metaheuristic
approach.

Comparisons established with two variants of the VLSN that provide the best overall
solution quality of the large scale methods show that the all variants of the ejection chain
algorithms significantly outperform both of these VLSN approaches. Specifically, the av-
erage solution quality for VLSN approaches over the 10 runs is 2.7% and 3.3% across all
problems for each of the approaches, while the corresponding averages for the three ejection
chain methods are respectively 0.73%, 0.42%, and 0.33%. With respect to averages to indi-
vidual problems, the simple tabu search finds better solutions than both VLSN approaches
for 17 out of the 22 problems. Moreover, the best solutions obtained by the two multi-start
ejection chain approaches are better than the best solutions found by the VLSN approaches
in all cases.

Ann Oper Res

6 Conclusion

Important advances in local search have resulted from the development of larger neighbor-
hoods, organized in structurally exploitable ways that are capable of exploring the solution
space more extensively at each iteration. Such neighborhoods allow for a broader exam-
ination of the solution landscape and provide a greater potential to find regions of high
quality solutions. Advances in this domain have particularly arisen from compound neigh-
borhood structures, which combine simple moves to create more complex neighborhoods
that can be explored to variable depths. To take advantage of the potential to find better so-
lutions, however, careful attention must be given to managing the computational overhead
involved in generating and searching compound neighborhoods. Accordingly, a number of
studies have investigated strategies to combine neighborhoods efficiently, and thereby re-
duce the computational effort of generating solution trajectories that these neighborhoods
make available.

We focus on ejection chains and filter-and-fan methods, which have become the source
of significant advances in the construction of very large neighborhood structures. In addition
to presenting the general framework of these methods, we elucidate the key considerations
underlying their design and successful implementation. We further identify specific ejection
chain and filter-and-fan algorithms that have proved effective in the solution of problems
spanning the domains of facility location, routing and distribution, production scheduling,
network design, resource allocation, manpower planning, and computational biology. Our
purpose is to provide useful insights for developing improved algorithms in a variety of
additional settings.

Finally, we briefly comment on issues that are relevant for determining when a filter-and-
fan approach may be preferable to an ejection chain approach, and vice versa. Evidently, the
merit of applying one method or the other depends on the application, the complexity of the
problem and ultimately on the search strategy embodied in the adaptive memory process.
As a rule of thumb, in settings where simple neighborhoods have proved relatively effective
(at least for relatively small problem instances), methods that rely on these simple neigh-
borhoods can very likely be enhanced by a filter-and-fan approach for more challenging
applications. Conversely, in complex applications where classical neighborhoods are rather
limited in their ability to explore the solution space, particularly in the case of very large
problem instances, a method based on an ejection chain design is likely to prove of greater
value than one based on an F&F approach. While ejection chain approaches are character-
istically more powerful than filter-and-fan approaches, they are usually more difficult to im-
plement and less flexible for being modified to handle changed problem specifications. Since
advanced ejection chain methods typically involve relatively complex reference structures,
they are also usually more difficult to adapt to handle new requirements and constraints. In
those applications where requirements are likely to change over time, the question of the
preferred method to use thus depends on the tradeoff between the value of obtaining the best
possible solution and the value of being able to adapt the method to meet new conditions
with a modest outlay of effort.

References

Aarts, E. H. L., Van Laarhoven, P. J. M., Lenstra, J. K., & Ulder, N. L. J. (1994). A computational study of
local search algorithms for job shop scheduling. ORSA Journal on Computing, 6(2), 118–125.

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Man-
agement Science, 34(3), 391–401.

Ann Oper Res

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multi-exchange neighborhood search structures for the
capacitated minimum spanning tree problem. Mathematical Programming, 91, 71–97.

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2003). A composite very large-scale neighborhood structure for the
capacitated minimum spanning tree problem. Operations Research Letters, 31, 185–194.

Ahuja, R., Jha, K., Orlin, J., & Sharma, D. (2007). Very large-scale neighborhood search for the quadratic
assignment problem. INFORMS Journal on Computing, 19(4), 646–657.

Amberg, A., Domschke, W., & Voß, S. (1996). Capacitated minimum spanning trees: algorithms using intel-
ligent search. Combinatorial Optimization: Theory and Practice, 1, 9–39.

Applegate, D., Cook, W., & Rohe, A. (2003). Chained Lin-Kernighan for large traveling salesman problems.
INFORMS Journal on Computing, 15, 82–92.

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling.
Management Science, 44(2), 262–275.

Cao, B., & Glover, F. (1997). Tabu search and ejection chains: application to a node weighted version of the
cardinality-constrained TSP. Management Science, 43(7), 908–921.

Cavique, L., Rego, C., & Themido, I. (1999). Subgraph ejection chains and tabu search for the crew schedul-
ing problem. Journal of Operational Research Society, 50, 608–616.

Cela, E. (1998). The quadratic assignment problem: theory and algorithms. Boston: Kluwer Academic.
Chan, H. S., & Dill, K. A. (1993). The protein folding problem. Physics Today, 46(2), 24–32.
Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In A. Mingozzi, P. Toth, &

C. Sandi (Eds.), Combinatorial optimisation (pp. 315–338). Chichester: Wiley.
Chrobak, M., Szymacha, T., & Krawczyk, A., (1990). A data structure useful for finding Hamiltonian cycles.

Theoretical Computer Science, 71, 419–424.
Cirasella, J., Johnson, D. S., McGeoch, L. A., & Zhang, W. (2001). The asymmetric traveling salesman

problem: algorithms, instance generators and tests. In Proceedings of the algorithm engineering and
experimentation, third international workshop, ALENEX 2001 (pp. 32–59).

Cornuéjols, G., Nemhauser, G. H., & Wolsey, L. (1990). The uncapacitated facility location problem. In
P. Mirchandani & R. Francis (Eds.), Discrete location theory (pp. 119–171). New York: Wiley.

Dill, K. A. (1985). Theory for the folding and stability of globular proteins. Biochemistry, 24(6), 1501–
1509.

Dorndorf, U., & Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing, 6, 141–153.
Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum k-trees. Operations Re-

search, 42(4), 626–642.
Fredman, M. L., Johnson, D. S., McGeoch, L. A., & Ostheimer, G. (1995). Data structures for traveling

salesman. Journal of Algorithms, 18, 432–479.
Funke, B., Grünert, T., & Irnich, S. (2005). A note on single alternating cycle neighborhoods for the TSP.

Journal of Heuristics, 11, 135–146.
Gamboa, D., Rego, C., & Glover, F. (2005). Data structures and ejection chains for solving large-scale trav-

eling salesman problems. European Journal of Operational Research, 160, 154–171.
Gamboa, D., Rego, C., & Glover, F. (2006a). Implementation analysis of efficient heuristic algorithms for the

traveling salesman problem. Computers and Operations Research, 33, 1161–1179.
Gamboa, D., Osterman, C., Rego, C., & Glover, F. (2006b). An experimental evaluation of ejection chain

algorithms for the traveling salesman problem. School of Business Administration, University of Mis-
sissippi, MS.

Gao, L. L., & Robinson, E. P. (1994). Uncapacitated facility location: general solution procedures and com-
putational experience. European Journal of Operational Research, 76, 410–427.

Gavish, B. (1982). Topological design of centralized computer networks: formulations and algorithms. Net-
works, 12, 355–377.

Gavish, B. (1991). Topological design telecommunications networks—local access design methods. Annals
of Operations Research, 33, 17–71.

Glover, F. (1991). Multilevel tabu search and embedded search neighborhoods for the traveling salesman
problem. Leeds School of Business, University of Colorado, Boulder, CO.

Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems. In
Computer science and operations research (pp. 449–509).

Glover, F. (1996). Ejection chains, reference structures and alternating path methods for traveling salesman
problems. Discrete Applied Mathematics, 65, 223–253.

Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao, E. Lutton, E. Ronald,
M. Schoenauer, & D. Snyers (Eds.), Lecture notes in computer science: Vol. 1363. Artificial evolution
(pp. 3–51). Heidelberg: Springer.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.
Glover, F., & Rego, C. (2006). Ejection chain and filter-and-fan methods in combinatorial optimization. 4OR:

A Quarterly Journal of Operations Research, 4(4), 263–296.

Ann Oper Res

Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2005). A hybrid genetic algorithm for the job shop
scheduling problem. European Journal of Operational Research, 167, 77–95.

Grabowski, J., & Wodecki, M. (2005). A very fast tabu search algorithm for job shop problem. In C. Rego &
B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution: tabu search and scatter search
(pp. 191–211). Boston: Kluwer Academic.

Greistorfer, P., & Rego, C. (2006). A simple filter-and-fan approach to the facility location problem. Comput-
ers and Operations Research, 33(9), 2590–2601.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman heuristic. Euro-
pean Journal of Operational Research, 126, 106–130.

Johnson, D. S., & McGeoch, L. A. ((1997). The traveling salesman problem: a case study in local optimiza-
tion. In E.H.L. Aarts & J.K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 215–310).
Wiley: New York.

Johnson, D. S., McGeoch, L. A., Glover, F., & Rego, C. (2000). 8th DIMACS implementation challenge: the
traveling salesman problem. http://www.research.att.com/~dsj/chtsp/.

Kanellakis, P. C., & Papadimitriou, C. H. (1980). Local search for the asymmetric traveling salesman prob-
lem. Operations Research, 28, 1086–1099.

Lengauer, T. (1993). Algorithmic research problems in molecular bioinformatics. In Proceedings of the
second israel symposium on theory of computing systems, ISTCS 1993 (pp. 177–192), Natanya,
Israel.

Lesh, N., Mitzenmacher, M., & Whitesides, S. (2003). A complete and effective move set for simple pro-
tein folding. In Proceedings of the 7th annual international conference on research in computational
molecular biology (RECOMB). ACM Press, New York (pp. 188–195).

Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling salesman problem. Opera-
tions Research, 21, 498–516.

Mathew, F., & Rego, C. (2006). Recent advances in heuristic algorithms for the capacitated minimum span-
ning tree problem. In Proceedings of the 37th annual meeting of decision sciences institute (DSI)
(pp. 31021–31026).

Nowichi, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management
Science, 42(6), 797–813.

Osterman, C., & Rego, C. (2003). The satellite list and new data structures for symmetric traveling salesman
problems. School of Business Administration, University of Mississippi, MS.

Patterson, R., Pirkul, H., & Rolland, E. (1999). Memory adaptive reasoning for solving the capacitated mini-
mum spanning tree problem. Journal of Heuristics, 5, 159–180.

Pinedo, M. L. (2006). Series in operations research and financial engineering. Planning and scheduling in
manufacturing and services. Berlin: Springer.

Rego, C. (1998a). Relaxed tours and path ejections for the traveling salesman problem. European Journal of
Operational Research, 106, 522–538.

Rego, C. (1998b) A subpath ejection method for the vehicle routing problem. Management Science, 44(10),
1447–1459.

Rego, C. (2001). Node ejection chains for the vehicle routing problem: sequential and parallel algorithms.
Parallel Computing, 27, 201–222.

Rego, C., & Duarte, R. (2009). A filter fan approach to the job shop scheduling problem. European Journal
of Operational Research, 194(3), 650–662.

Rego, C., & Glover, F. (2002). Local search and metaheuristics for the traveling salesman problem. In
G. Gutin & A. Punnen (Eds.), The traveling salesman problem and its variations (pp. 309–368). Boston:
Kluwer Academic.

Rego, C., & Mathew, F. (2009). A filter-and-fan algorithm for the capacitated minimum spanning tree. School
of Business Administration, University of Mississippi, MS.

Rego, C., Glover, F., & Gamboa, D. (2006). A doubly-rooted stem-and-cycle ejection chain algorithm for
asymmetric traveling salesman problems. School of Business Administration, University of Mississippi,
MS.

Rego, C., Li, H., & Glover, F. (2009a, to appear). A filter-and-fan approach to the 2D lattice model of the
protein folding problem. Annals of Operation Research.

Rego, C., James, T., & Glover, F. (2009b, to appear). An ejection chain algorithm for the quadratic assignment
problem. Networks.

Richards, F. M. (1991). The protein folding problem. Scientific American, 264(1), 54–60.
Rochat, Y., & Taillard, E. (1995). Probabilistic intensification and diversification in local search for vehicle

routing. Journal of Heuristics, 1, 147–167.
Sabuncuoglu, I., & Bayiz, M. (1999). Job shop scheduling with beam search. European Journal of Opera-

tional Research, 118, 390–412.

http://www.research.att.com/~dsj/chtsp/

Ann Oper Res

Sharaiha, Y. M., Gendreau, M., Laporte, G., & Osman, I. H. (1997). A tabu search algorithm for the capaci-
tated shortest spanning tree problem. Networks, 29, 161–171.

Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23, 661–
673.

Yagiura, M., Ibaraki, T., & Glover, F. (2004). An ejection chain approach for the generalized assignment
problem. INFORMS Journal on Computing, 16(2), 133–151.

	Ejection chain and filter-and-fan methods in combinatorial optimization
	Abstract
	Introduction
	Filter and fan
	The filter and fan search
	Refinements for higher levels of adaptive memory constructions

	Ejection chains
	Filter-and-fan applications
	Facility location
	Protein folding
	Job shop scheduling
	Capacitated minimum spanning tree

	Ejection chain applications
	Traveling salesman
	Subpath ejection chains for the TSP
	The symmetric TSP
	The asymmetric TSP
	Advances on data structures for large STSPs

	Vehicle routing
	Node-based ejection chains for the VRP
	Subpath ejection chains for the VRP

	Crew scheduling
	Quadratic assignment

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

