
MIC 2009: The VIII Metaheuristics International Conference id-1

Neighborhood Combination for Unconstrained Binary Quadratic
Programming

Zhipeng Lü∗ Fred Glover† Jin-Kao Hao‡

∗†‡LERIA, Université d’Angers
2 boulevard Lavoisier, 49045 Angers, France

lu@info.univ-angers.fr hao@info.univ-angers.fr

†1OptTek Systems, Inc.
1919 Seventh Street Boulder, CO 80302, USA

glover@opttek.com

Abstract

Using the Unconstrained Binary Quadratic Programming (UBQP) problem as a case study,
we present an experimental analysis of neighborhood combinations for local search based meta-
heuristic algorithms. In this work, we use one-flip and two-flip moves and investigate combined
neighborhoods with these two moves within two metaheuristic algorithms. The goal of the
analysis is to help understand why and how some neighborhoods can be favorably combined to
increase their search power.

1 Introduction

Neighborhood search or local search is known to be a highly effective metaheuristic framework
for solving a large number of constraint satisfaction and optimization problems. One of the most
important features of local search is the definition of its neighborhood. The behavior of local search
depends strongly on the characteristics of the neighborhood relation. Using the Unconstrained
Binary Quadratic Programming (UBQP) problem as a case study, we present in this work an
experimental analysis of neighborhoods.

The unconstrained binary quadratic programming problem may be written as:

UBQP: Maximize xo = xQx′

x binary

where Q is an n× n matrix of constants and x is an n-vector of binary (zero-one) variables.

The formulation UBQP is notable for its ability to represent a wide range of important problems,
including those from social psychology ([10]), financial analysis ([14, 18]), computer aided design

Hamburg, Germany, July 13–16, 2009



id-2 MIC 2009: The VIII Metaheuristics International Conference

([13]), traffic management ([4, 20]), machine scheduling ([1]), cellular radio channel allocation ([3])
and molecular conformation ([19]). Moreover, many combinatorial optimization problems pertaining
to graphs are known to be susceptible to formulation by the UBQP problem. A review of additional
applications and formulations can be found in [12].

In order to study the search capability of different neighborhood combinations, we are interested
in two well-known moves, namely one-flip and two-flip moves, and investigate the performance of
two metaheuristic algorithms on different neighborhood combinations using these two basic moves.
Computational results show that certain combinations are superior to others. Using three criteria for
neighborhood evaluation, we perform further analysis to explain why and how some neighborhoods
can be combined to enhance the search.

The remaining part of this paper is organized as follows. In Section 2, the two neighborhood
moves and their fast evaluations are described. Sections 3 and 4 are dedicated to several neigh-
borhood combinations and local search based algorithms respectively. In Section 5, we present our
computational results on different algorithm-neighborhood combinations. Finally in Section 6, we
discuss three criteria used for neighborhood evaluation and draw conclusions.

2 Neighborhood Moves and Fast Evaluation

2.1 One-flip move

The one-flip move complements (flips) a chosen binary variable by subtracting its current value
from 1. One-flip is widely used in local search algorithms for binary problems such as UBQP,
multi-dimensional knapsack, covering and satisfiability problems.

Let N = {1, . . . , n} denote the index set for components of the x vector. We preprocess the
matrix Q to put it in lower triangular form by redefining (if necessary) qij = qij + qji for i > j,
which is implicitly accompanied by setting qji = 0 (though these 0 entries above the main diagonal
are not stored or accessed). Let ∆xi be the move value of flipping the variable xi, and let q(i,j) be
a shorthand for denoting qij if i > j and qji if j > i. Then each move value can be calculated in
linear time using the formula:

∆xi = (1− 2xi)(qii +
∑

j∈N,j 6=i,xj=1

q(i,j)) (1)

For large problem instances, it is imperative to be able to rapidly determine the effect of a move
on the objective function xo. For this purpose, we employ a fast incremental evaluation technique
first introduced by Glover et al [7] and enhanced by Glover and Hao [5] to exploit an improved
representation and to take advantage of sparse data - a characteristic of many real world problems.
The procedure maintains a data structure that stores the move value (change in xo) for each possible
move, and employs a streamlined calculation for updating this data structure after each iteration.

Moreover, it is not necessary to recalculate all the move values after a move. Instead, one needs
just to update a subset of move values affected by the move. More precisely, it is possible to update
the move values upon flipping a variable xi by performing the following abbreviated calculation:

Hamburg, Germany, July 13–16, 2009



MIC 2009: The VIII Metaheuristics International Conference id-3

1. ∆xi = −∆xi

2. For each j ∈ N , j 6= i,
if xj = xi, then ∆xj = ∆xj + q(i,j)

if xj = 1− xi, then ∆xj = ∆xj − q(i,j)

where xi represents xi’s value before being flipped.

2.2 Two-flip move

In the case of a two-flip neighborhood, we are interested in the change in xo that results by flipping
2 variables, xk and xj , and will refer to this change by δkj . It is convenient to think of the two-flip
process as a combination of two single one-flip moves, and we can derive δkj using the one-flip move
values ∆xk and ∆xj as follows (supposing k > j):

δkj = ∆xk + ∆xj + θkj Qkj (2)

where θkj = 1 if xk = xj and θkj = −1 otherwise.

After a two-flip move is performed, we execute an efficient update of the two-flip delta array δ
that is affected by this move. Accompanying this, we introduce additional data structures to speed
up the process of identifying the best two-flip move for the next iteration. See [6] for more details.
In the following, we respectively denote the neighborhoods with one-flip and two-flip moves as N1

and N2.

3 Neighborhood Combinations

In order to increase the search capability of single neighborhoods, it has become a popular practice
to combine two or more different neighborhoods, especially when those neighborhoods have quite
different characteristics. There are several ways to combine different neighborhoods [11]. In this
paper we focus on two of them: neighborhood union and token-ring search [17].

There are two forms of neighborhood union: strong neighborhood union and selective neighbor-
hood union. For strong neighborhood union, denoted by N1tN2, the algorithm picks each move
(according to the algorithm’s selection criteria) from all the N1 and N2 moves. For selective neigh-
borhood union, denoted by N1∪N2, the search algorithm selects one of the two neighborhoods to be
used at each iteration, choosing the neighborhood N1 with a predefined probability p and choosing
N2 with probability 1-p. An algorithm using only N1 or N2 is of course a special case of an algorithm
using N1∪N2 where p is set to be 1 and 0 respectively.

In token-ring search, the neighborhoods are alternated, applying the currently selected neigh-
borhood without interruption, starting from the local optimum of the previous neighborhood, until
no improvement is possible. More precisely, the search procedure uses one neighborhood until a
best local optimum is determined, subject to time or iteration limits imposed on the search (For
metaheuristic searches, this may not be the first local optimum encountered). Then the method
switches to the other neighborhood, starting from this local optimum, and continues the search

Hamburg, Germany, July 13–16, 2009



id-4 MIC 2009: The VIII Metaheuristics International Conference

in the same fashion. The search comes back to the first neighborhood at the end of the second
neighborhood exploration, repeating this process until no improvement is possible. The token-ring
search of two neighborhoods can be denoted as N1→N2 (starting from N1) or N2→N1 (starting
from N2) [17].

4 Metaheuristic Algorithms

For the purpose of studying the different neighborhoods and their combinations, we implement two
metaheuristic algorithms, Tabu Search (TS) [8] and Iterated Local Search (ILS) [15].

Within TS, a tabu list is introduced to forbid revisiting a solution previously visited. In our
implementation, each time a variable xi is flipped, this variable enters into the tabu list (an n-vector)
and cannot be flipped for the next tt iterations (tt is the “tabu tenure”). For the current study, we
set tt = C + rand(10) where C is a given constant and rand(10) takes a random value from 1 to 10.

Our TS procedure uses a token ring search (denoted N1→N2 for our two neighborhood case),
by starting the TS procedure with neighborhood N1. When the search ends with its best local
optimum, we restart TS from this solution, but using the other neighborhood N2. Starting again
from N1, using the local optimum found by N2, this process is repeated until no improvement is
possible, at which point we say that a TS phase is achieved. The application of TS to a single
neighborhood stops when the best solution cannot be improved within a given number θ of moves
and we call this number the improvement cutoff of TS. In this paper, we set θ = 10, 000 for all
experiments.

Our ILS algorithm takes the standard steepest descent (SD) algorithm as its local search proce-
dure and employs the so-called Critical Element-Guided Perturbation (CEGP) strategy to jump out
of the local optima trap [16]. This perturbation operator is composed of three steps: 1) Scoring:
assign a score to each variable; 2) Selection: choose a certain number of highly-scored variables
(critical elements); 3) Perturbing: randomly perturb the solution using the chosen critical elements.

Similar to the TS procedure, when ILS uses the token-ring search of two neighborhoods (N1→N2),
the SD algorithm alternates between N1 and N2 by starting with N1. Interested readers are referred
to [9] for more details about the CEGP-based ILS algorithm for UBQP.

5 Computational Comparison

In this Section, we show computational results of the aforementioned ILS and TS algorithms using
the following neighborhoods: N1 (one-flip), N2 (two-flip), N1tN2 (strong union), N1∪N2 (selective
union) with p = 0.5 and p = 0.8 and N1→N2 (token-ring). Experiments are carried out on the set
of the 10 largest instances with 2500 variables from ORLIB [2]. To make the comparison as fair as
possible, all the experiments use the same stopping conditions, i.e. the CPU timeout is set to be
150 seconds on our computer with 3.4GHz and 2GB Memory. Given the stochastic nature of our
TS and ILS algorithms, each problem instance is independently solved 25 times.

Table 1 shows the computational statistics of the ILS algorithm (N12 is a shorthand for denoting
N1∪N2). Columns 2 and 3 respectively give the density (dens) and the best known objective

Hamburg, Germany, July 13–16, 2009



MIC 2009: The VIII Metaheuristics International Conference id-5

Table 1: Results of the ILS algorithm on the 10 Beasley instances with size n=2500 from ORLIB
instance dens fbest solution gaps to fbest for ILS algorithm (fbest − f)

N1 N2 N1tN2 N12(p=0.5) N12(p=0.8) N1→N2

b2500.1 0.1 1515944 5115 8465 8326 8561 8639 4041
b2500.2 0.1 1471392 4984 5866 6482 6765 6356 3432
b2500.3 0.1 1414192 3994 6737 7591 8310 7906 3439
b2500.4 0.1 1507701 2073 5094 6204 6441 5196 2315
b2500.5 0.1 1491816 3903 5635 6358 7106 6598 2496
b2500.6 0.1 1469162 3955 5174 5847 6408 4330 2800
b2500.7 0.1 1479040 2229 7258 7561 7042 8202 4038
b2500.8 0.1 1484199 2305 4255 5264 1416 5309 1965
b2500.9 0.1 1482413 3940 4728 4687 6074 6864 2316
b2500.10 0.1 1483355 4707 3812 6827 9028 7723 3587
average 3720.5 5702.4 6514.7 6715.1 6712.3 3042.9

Table 2: Results of the TS algorithm on the 10 Beasley instances with size n=2500 from ORLIB
instance dens fbest gaps to fbest for TS algorithm (fbest − f)

N1 N2 N1tN2 N12(p=0.5) N12(p=0.8) N1→N2

b2500.1 0.1 1515944 0 440 1354 2338 1123 0
b2500.2 0.1 1471392 14 934 854 824 1445 12
b2500.3 0.1 1414192 0 1444 1845 1704 1646 0
b2500.4 0.1 1507701 0 341 235 150 248 0
b2500.5 0.1 1491816 0 891 594 236 1497 0
b2500.6 0.1 1469162 0 1976 1369 1145 1131 0
b2500.7 0.1 1479040 0 1370 1284 1784 706 0
b2500.8 0.1 1484199 4 497 467 650 568 0
b2500.9 0.1 1482413 0 421 503 430 638 0
b2500.10 0.1 1483355 0 1023 789 560 836 0
average 1.8 933.7 929.4 972.1.1 983.8 1.2

values (fbest). Columns 4 to 8 give the solution gap to the best solutions for each neighborhood
and neighborhood combination. For each instance, the solution gap in Table 1 is represented as
fbest − f , where f is the average objective value obtained by 25 independents runs. The overall
results, averaged over 10 instances, are presented in the last row.

From table 1, we observe that neighborhood N1 outperforms N2 in terms of solution quality
for these test problems. When comparing the four neighborhood combinations N1tN2, N1∪N2

with p = 0.5 and p = 0.8 as well as N1→N2 with each other, N1→N2 is superior to the three
neighborhood unions and it is also slightly better than N1. Contrary to our expectation, the
neighborhood unions N1∪N2 with p = 0.5 and p = 0.8 get the worst results among all these
neighborhoods and neighborhood combinations. For each pairwise of these neighborhoods, we
performed a 95% confidence t-test to compare their solution quality, leading to the following ranking
of the neighborhoods: N1→N2 > N1 > N2≈ N1 tN2 ≈ N12(p=0.5) ≈ N12(p=0.8).

Similarly, the computational results of our TS algorithm on the two neighborhoods and their
union and token-ring combinations are given in table 2. Once again, we performed a 95% confidence
t-test to compare different neighborhoods and observed that N1→N2 and N1 are superior to others in
terms of solution quality. These results coincide well with the results obtained by the ILS algorithm
and confirm the ranking given above: N1→N2 > N1 > N2≈ N1 tN2 ≈ N12(p=0.5) ≈ N12(p=0.8).

Hamburg, Germany, July 13–16, 2009



id-6 MIC 2009: The VIII Metaheuristics International Conference

6 Discussions

The foregoing computational results show that better outcomes are achieved with the token-ring
combination of one-flip and two-flip moves. Moreover, we observe that the simple one-flip based
neighborhood performs quite well. Some important questions remain.

1. These results are based on random instances. It would be interesting to know whether these
results would be confirmed on other types of problems. To this end, a sequel to this study
will carry out additional experiments using more diverse instances transformed from other
problems [12].

2. It would be useful to identify the conditions under which a particular neighborhood or a
neighborhood combination is preferable.

3. More importantly, it would be valuable to understand what causes a particular neighborhood
or neighborhood combination to be effective under given circumstances. For this purpose, we
will investigate the approach proposed in [17] which identifies several criteria to characterize
the search capacity of a neighborhood such as percentage of improving neighbors, improvement
strength and search steps.

4. It would be worthwhile to investigate other combinations of N1 and N2. For example, we
may select an N1 improving move that gives the best N2 move, leading to a “conditional”
combination.

We anticipate that answers to these issues will provide information that will be valuable for the
design of improved algorithms, and yield a foundation for similar analysis in related contexts.

Acknowledgement

The work is partially supported by a “Chaire d’excellence” from “Pays de la Loire” Region (France)
and regional MILES (2007-2009) and RaDaPop projects (2008-2011). We are grateful for comments
by the referees that have improved the exposition of the paper.

References

[1] B. Alidaee, G. Kochenberger and A. Ahmadian. 0-1 quadratic programming approach for the
optimal solution of two scheduling problems. International Journal of Systems Science, 25 (1994),
401-408.

[2] J.E. Beasley. Obtaining test problems via internet. Journal of Global Optimization, 8 (1996)
429-433.

[3] P. Chardaire and A. Sutter. A decomposition method for quadratic zero-one programming.
Management Science, 41(4) (1994) 704-712.

Hamburg, Germany, July 13–16, 2009



MIC 2009: The VIII Metaheuristics International Conference id-7

[4] G. Gallo, P. Hammer and B. Simeone. Quadratic knapsack problems. Mathematical Program-
ming, 12 (1980)132-149.

[5] F. Glover and J.K. Hao. Efficient evaluations for solving large 0-1 unconstrained quadratic
optimization problems. International Journal of Metaheuristics (2009) (To appear).

[6] F. Glover and J.K. Hao. Fast 2-flip move evaluations for binary unconstrained quadratic opti-
mization problems. Working paper, LERIA, Université d’Angers (2009).

[7] F. Glover, G.A. Kochenberger and B. Alidaee. Adaptive memory tabu search for binary
quadratic programs. Management Science, 44 (1998) 336-345.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic, Boston, 1997.

[9] F. Glover, Z. Lü and J. K. Hao. Diversification-driven Tabu Search for unconstrained binary
quadratic problems. Research Report, LERIA, Université d’Angers (2009).

[10] F. Harary. On the notion of balanced of a signed graph. Michigan Mathematical Journal, 2
(1953) 143-146.

[11] L. D. Gaspero, A. Schaerf, Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1) (2006) 65–89.

[12] G.A. Kochenberger, F. Glover, B. Alidaee and C. Rego. A unified modeling and solution
framework for combinatorial optimization problems. OR Spectrum, 26 (2004) 237-250.

[13] J. Krarup and A. Pruzan. Computer aided layout design. Mathematical Programming Study,
9 (1978) 75-94.

[14] D.J. Laughunn. Quadratic binary programming. Operations Research, 14 (1970) 454-461.

[15] H. R. Lourenco, O. Martin, T. Stützle, Iterated local search. Handbook of Meta-heuristics,
Springer-Verlag, Berlin Heidelberg, 2003.

[16] Z. Lü and J.K. Hao. A critical element-guided perturbation strategy for Iterated Local Search.
Cotta and P. Cowling (Eds.): EvoCOP 2009, Lecture Notes in Computer Science 5482 (2009)
1-12.

[17] Z. Lü, J. K. Hao and F. Glover. Neighborhood analysis: a case study on curriculum-based
course timetabling. Journal of Heuristics (2009) (To appear).

[18] R.D. McBride and J.S. Yormark. An implicit enumeration algorithm for quadratic integer
programming. Management Science, 26 (1980) 282-296.

[19] A.T. Phillips and J.B. Rosen. A quadratic assignment formulation of the molecular conforma-
tion problem. Journal of Global Optimization, 4 (1994) 229-241.

[20] C. Witsgall. Mathematical methods of site selection for electronic system (EMS). NBS Internal
Report. (1975).

Hamburg, Germany, July 13–16, 2009


