EXPLOITING NESTED INEQUALITIES AND SURROGATE CONSTRAINTS

Saïd Hanafi† Fred Glover*
†Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines,

UMR CNRS 8530, Groupe Recherche Opérationnelle et Informatique,

Université de Valenciennes et du Hainaut-Cambrésis,

Le Mont Houy, 59313 Valenciennes Cedex France

said.hanafi@univ-valenciennes.fr
* Leeds School of Business, University of Colorado

Boulder, CO 80309-0419

fred.glover@colorado.edu
Mars 1, 2006
Abstract

The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover (1965, 1971) has been specialized to multidimensional knapsack problems in Osorio et al. (2002). We show how this specialized exploitation can be strengthened to give better results. This outcome results by a series of observations based on surrogate constraint duality and properties of nested inequalities. The consequences of these observations are illustrated by numerical examples to provide insights into uses of surrogate constraints and nested inequalities that can be useful in a variety of problem settings.

Keywords: Integer Programming, Nested Cuts, Multidimensional Knapsack Problem, Surrogate Constraints.

1. Introduction

A general integer programming (IP) problem consists of optimizing (Minimizing or Maximizing) a linear function subject to linear inequality and / or equality constraints, where all of the variables are required to be integral. An IP problem (which we assume is to be maximized) can be expressed as follows:

Maximize

x0 = cx

Subject to
Aix (A0i
for i (M = {1, 2, …, m}

(IP)

0 (xj (Uj
for j (N = {1, 2, …, n}

xj integer
for j (N .

The variable x0 identifies the objective function value of a feasible solution x defined by n decision variables xj for j (N. The vector c (Rn denotes the cost vector and the vector A0 denotes the right-hand side of m linear constraints Aix (A0i for i (M. No special structure is assumed for the input matrices c(1 x n), A(m x n), A0(m x 1), b(n x 1). The parameter Uj refer to an upper bound on the integer variable xj .

Problem (IP) reduces to the binary integer program (01-IP) when all integer variables must equal 0 or 1 (i.e. Uj = 1, for all j (N). The zero-one multi-dimensional knapsack (MDK) is also a subproblem of many general integer programs where the components of the data matrices c, A and A0 are given non-negative integers. In the following, without loss of generality, we consider the case of the zero-one multi-dimensional knapsack. Letting e denote a vector with all components equal to 1, the zero-one multi-dimensional knapsack (MDK) problem can be expressed as follows

(MDK)

Maximize
x0 = cx

(1-a)
 Ax  A0

(1-b)

0  x (e

(1-c)

x  {0, 1}n.

(1-d)

The foregoing MDK formulation, where A and A0 are non-negative, can model many combinatorial optimization problems, including capital budgeting, cargo loading, cutting-stock problems, and a variety of others (see Fréville (2004), Fréville and Hanafi (2005)). MDK also arises as a subproblem in solving many other combinatorial optimization problems. Complexity results have not yet definitively identified the level of difficulty of these problems, but empirical findings suggest that the computational resources required to solve certain MDK problem instances can grow exponentially with the size of problem.

The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover (1965, 1971) has been specialized to multidimensional knapsack problems in Osorio et al. (2002). In this paper, we show how this specialized exploitation can be strengthened to give better results. This outcome results by a series of observations based on surrogate constraint duality and properties of nested inequalities. The consequences of these observations are illustrated by numerical examples to provide insights into uses of surrogate constraints and nested inequalities that can be useful in a variety of problem settings. Recently Osorio and Gómez (2004) proposed cutting analysis for MDK.

2. Mixed Surrogate constraint

Bounding procedures that compute lower and upper bounds on the optimum x0 value are useful for solving MDK. Upper bounds are provided by relaxation or duality techniques. Lower bounds are generally provided by heuristic and/or metaheuristic procedures using restriction techniques.
Most commercial Branch-and-Bound (B&B) procedures use the LP-relaxation to compute the bound function. Formally, the LP-relaxation of MDK, denoted by LP-MDK, where all variables are allowed to be continuous, can be defined as follows :

LP-MDK
maximize{ x0 = c : Ax  A0 and 0  x(e}
Bounds derived from other relaxations can sometimes be generated more readily than those obtained from LP, and in certain cases can be stronger than the LP bounds. In particular, Lagrangean relaxation, surrogate relaxation and composite relaxation, are often used to obtain such upper bounds. Lagrangean strategies have been shown to provide an effective tool for solving integer programming problems (see, for example, Geoffrion (1974) and Fischer (1981). The Lagrangean relaxation absorbs a set of constraints into the objective function.

Surrogate constraint methods, which we focus on here, have been embedded in a variety of mathematical programming applications over the past thirty years. The surrogate relaxation, introduced by Glover (1965), replaces sum of the original constraints by a single new one, called a surrogate constraint. A surrogate relaxation S(() of MDK, where ((Rm is a vector of “mutipliers” satisfying ((0, is defined as :

S(()
max{ x0 = cx : x  {0, 1}n and

dx  d0}

(2)

where d = (A and d0 = (A0.
We assume the surrogate constraint (2) does not include weighted combinations of the upper or lower bounds on the problem variables. The surrogate dual (S), defined as follows, yields the strongest surrogate constraint

(S) min{S(() : ((0}

This dual in general yields stronger bounds for combinatorial optimization problems than the Lagrangian dual. The most widely used search methods for solving a surrogate dual problem are based on the properties of the corresponding relaxation function S((). Greenberg and Pierskalla (1970) showed that the surrogate function S(() is a quasi-convex function of the multiplier (, and it is a discontinuous piecewise linear function for the MDK problem. This property assures that any local optimum for the surrogate function is also a global optimum.

In the following, the term simple bounding constraint refers to a constraint that imposes a lower or upper bound on a variable (such as xj ≥ 0 or xj ≤ 1). The term component constraint refers to a constraint that receives a nonzero weight in forming a surrogate constraint. An inequality or, more generally, a system of inequalities will be said to be strengthened (or made stronger) if the new system yields a set of feasible solutions contained within the set of feasible solutions to the original system.

The term xo constraint (or objective function constraint) refers to a constraint of the form xo ≥ xo* + ε, where xo* = cx* is the xo value for the best feasible solution x* currently known, and ε is a chosen tolerance for approximating the inequality xo > xo* (which may permissibly equal the greatest common divisor of the cj coefficients when c is an integer vector) .

The term mixed surrogate constraint refers to a surrogate constraint created by combining a given surrogate constraint (2) (called the component surrogate constraint) with an objective function constraint . To create the mixed surrogate constraint, we write the associated objective function constraint as a “≤” constraint to give it the same orientation as the surrogate constraint (2).

–cx ≤ –cx* – ε

(3)

Consequently, by weighting (2) by (and (3) by (, the mixed surrogate constraint is :

(x ≤ (o

(4)

with (= (d – (c and (o = (d0 –((cx* + ε).

We begin with an exceedingly straightforward observation that nevertheless has important consequences.

Observation 1. Surrogate constraints can be made stronger by excluding simple bounding constraints as component constraints.

This observation is an immediate consequence of the fact that the bounds on the variables are directly exploited by the methods that extract information from surrogate constraints, and hence folding such bounds into the constraints themselves creates an unnecessary degree of relaxation. Similarly, any constraints that are exploited in conjunction with surrogate constraints should not be included as component constraints. In the present context, therefore, Observation 1 can be extended to exclude nested inequalities as component constraints – except where a set of such inequalities is different from the one being exploited in connection with the surrogate constraint in a particular instance.

Moreover, note also that the surrogate relaxation that includes bounding constraints as component constraints is a surrogate relaxation of the one that excludes these bounding constraints. In general, suppose we define

(P)
max{ x0 = cx : Ax (A0, Bx (B0, x (X}
S(u)
max{ x0 = cx : uAx (uA0, Bx (B0, x (X}
S(v)
max{ x0 = cx : Ax (A0, vBx (vB0, x (X}
S(u,v)
max{ x0 = cx : uAx + vBx (uA0 + vB0, x (X}

Then the problems S(u), S(v) and S(u,v) are surrogate relaxations of P and S(u, v) is a surrogate relaxation of the problems S(u) and S(v). Defining S(u*) = min{S(u) : u (0}, S(v*) = min{S(v) : v (0} and S = min{ S(u,v) : u,v (0}, then we have S(u*) (S(u*,v) for all v (0, S(v*) (S(u,v*) for all u (0, and max(S(u*), S(v*)) (S.

Illustration of Observation 1.

The LP relaxation of the surrogate problem S(() is

LP-S (()
max
{x0 = cx : dx  d0 and 0 x e

We order the variables in descending bang-per-buck order, i.e., in descending order of the ratios of the objective function coefficients to the surrogate constraint coefficients. Then the solution to the LP relaxation of the surrogate problem occurs by sequentially setting the variables equal to 1, until reaching the point where the residual portion of the surrogate constraint RHS compels a fractional or 0 value to be assigned to the next variable (or where no more variables remain). More formally, the variables are ordered according the ratio rj =
[image: image1.wmf]1

1

+

+

³

j

j

j

j

d

c

d

c

. An optimal solution
[image: image2.wmf]x

 of the LP relaxation of the surrogate problem LP-S (() is obtained explicitly by

[image: image3.wmf]1

=

j

x

 for j = 1, …, j*-1,
[image: image4.wmf]*

1

*

1

0

*

j

j

k

k

j

d

d

d

x

å

-

=

-

=

,
[image: image5.wmf]0

=

j

x

for j = j*+1, …, n, where j* = min{j:
[image: image6.wmf]å

=

-

j

k

k

d

d

1

0

)

(0}.
The resulting objective function value is xo = c
[image: image7.wmf]x

, giving an upper bound on the optimum xo value for 0-1 solutions. In addition, suppose we have a feasible solution x* to the original problem. The objective function value, cx*, is a lower bound on the optimum xo value. This solution is of course feasible for the surrogate constraint (2). To create the mixed surrogate constraint which combines (2) and (3), we choose the weight for (2) that is the same weight it receives in the LP dual solution to the surrogate relaxation (knapsack) problem S((). This weight is identified by pivoting on the variable in the surrogate constraint that received a fractional value in the LP solution. (In the absence of any variables with fractional values, the pivot can be on the last variable that receives a unit value or the first variable that receives a 0 value.) Let, xj* be the variable giving the pivot element, and thus the dual weight is rj*. This weight is the bank-for-buck ratio for xj*, and it is also the multiple of (2) that would be subtracted from the objective function by a pivot operation to create the updated objective function. The coefficients of the resulting updated objective function are the negative of the reduced costs. Consequently, we weight (2) by rj* and add the result to (3) to create the mixed surrogate constraint (x ≤ (o with

(= rj*d – c and (o = rj*d0 – cx*.

(4’)

In fact, in the preceding calculation, if the surrogate constraint (2) had been obtained by weighting the original problem constraints by their associated dual values in the LP relaxation of this problem, then the surrogate constraint would already be a multiple of rj* times the version of the constraint depicted as (4). Then it would not be necessary to identify the dual weight for (2) by a pivot calculation, since the weight would automatically be 1 (i.e., the “dual LP form” of (2) would simply be added to (3) to give (4)).

By our preceding comments, the coefficients of the mixed surrogate constraint (4) are the same as the reduced costs in the LP solution. In accordance with the usual application of the bounded variable simplex method, a negative reduced cost identifies a variable that must be set equal to its upper bound to identify the LP solution. If, in contrast to the prescription of Observation 1, we had included weights for the simple bounding inequalities, the mixed surrogate constraint (4) would have 0 coefficients for each of the variables that appears with a negative reduced cost. Such an outcome creates a loss of useful information for bounding the variables, and also for generating nested inequality constraints from the surrogate constraint.

To put the mixed constraint (4) into the standard non-negative coefficient format, we set yj = 1 – xj to complement the appropriate variables. More precisely, let (-, (+ denote the associated vectors defined by - (+j = max{(j, 0}, (-j = min{(j, 0}. The mixed constraint (4) can be disaggregated as follows

(x = (-x + (+x = (-(e – y) + (+x ≤ (o

We can also complement the variables even though it has a 0 coefficient, for example the variables that are set equal to 1 in the knapsack LP solution, giving

-(-y + (+x ≤ (o - (-e

(5)

This complementation does not uncover additional implications at this point, but it proves relevant to other more advanced analysis, as will subsequently be shown.

The mixed surrogate constraint (5) is the customary “variable fixing inequality” for zero-one problems. The variable xj is fixed to 0 if the corresponding coefficient (+j is greater than the value (o - (-e and the variable xj is fixed to 1 if the absolute value of the coefficient (-j is greater than the value (o - (-e. Evidently, the ability to use this inequality to fix xj variables to 1 (by fixing the associated yj variables to 0) would not be possible if the simple bounding constraints had been included as component constraints. Still more critically, Observation 1 affects the generation of nested inequalities – both by reference to the mixed surrogate constraint (5) and by reference to its component surrogate constraint (2). This has a bearing on our next observation.

Example A:

Consider the following surrogate relaxation of a zero-one MDK :

Max 40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 32x7 + 16x8 + 27x9 + 9x10

(A1)
 5x1 + 7x2 + 4x3 + 6x4 + 8x5 + 6x6 + 8x7 + 4x8 + 9x9 + 3x10 ≤ 33

(A2)

 xj  {0, 1}
for j = 1, …, 10.

The LP surrogate solution in this case is

x1 = x2 = x3 = x4 = x5 = 1, x6 = ½, x7 = x8 = x9 = x10 = 0.

The resulting objective function value is xo = 204, giving an upper bound on the optimum xo value for 0-1 solutions. In addition, suppose we have a feasible solution to the original problem given by

x1 = x2 = x3 = x4 = x5 = x10 = 1, all other variables 0.

The objective function value, xo = 198, is a lower bound on the optimum xo value, and the associated objective function constraint, to compel xo to be better than 198, is given by

40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 32x7 + 16x8 + 27x9 + 9x10 ≥ 199

(A3)

We write the foregoing inequality as a “≤ constraint” to give it the same orientation as the surrogate constraint (A2).

–40x1 – 49x2 – 24x3 – 36x4 – 40x5 – 30x6 – 32x7 – 16x8 – 27x9 – 9x10 ≤ –199
(A3’)

The mixed surrogate constraint combines (A2) and (A3’).

The weight for (A2) is identified by pivoting on the variable in the surrogate constraint that received a fractional value in the LP solution. Thus, x6 is the variable giving the pivot element, and the dual weight is 5. Consequently, we weight (A2) by 5 and add the result to (A3’) to create the mixed surrogate constraint:

– 15x1 – 14x2 – 4x3 – 6x4 + 0x5 + 0x6 + 8x7 + 4x8 + 18x9 + 6x10 ≤ – 34
(A4)

To put (A4) into the standard non-negative coefficient format, we set yj = 1 – xj to complement the appropriate variables, giving

15y1 + 14y2 + 4y3 + 6y4 + 0y5 + 0x6 + 8x7 + 4x8 + 18x9 + 6x10 ≤ 5

(A5)

We have complemented x5 even though it has a 0 coefficient because it is one of the variables set equal to 1 in the knapsack LP solution.

Example B:

Consider the example of Osorio et al. with 15 variables and 4 knapsack constraints whose data are presented in the Table 1.
	j
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	

	cj
	36
	83
	59
	71
	43
	67
	23
	52
	93
	25
	67
	89
	60
	47
	64
	A0

	Aj1
	7
	19
	30
	22
	30
	44
	11
	21
	35
	14
	29
	18
	3
	36
	42
	87

	Aj2
	3
	5
	7
	35
	24
	31
	25
	37
	35
	25
	40
	21
	7
	17
	22
	75

	Aj3
	20
	33
	17
	45
	12
	21
	20
	2
	7
	17
	21
	11
	11
	9
	21
	65

	Aj4
	15
	17
	9
	11
	5
	5
	12
	21
	17
	10
	5
	13
	9
	7
	13
	55

Table 1 : Data set of example B

The optimal value of the LP-relaxation of this problem is equal to 335.62 and an optimal dual vector is

u*(LP) = (335.62, 0.66, 0.52, 0.62, 2.78)

An optimal solution of this LP-relaxation and an initial feasible solution, denoted by
[image: image8.wmf]x

 and x* respectively, are given below with their associated cost :

[image: image9.wmf]x

 = (0, 0.72, 0.49, 0, 0, 0, 0, 0, 0.89, 0, 0.22, 1, 1, 0, 0)
c
[image: image10.wmf]x

 = 335.62

x* = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0)

cx* = 301.

The reduced cost vector (in the LP solution, which corresponds to the coefficients of the mixed surrogate constraint (4) is

(= (24.41, 0, 0, 20.47, 10.65, 5.11, 43.21, 40.89, 0, 35.73, 0, -23.13, -22.44, 10.62, 24.36)

If we had included weights for the simple bounding inequalities as in Osorio et al., the mixed surrogate constraint (4) would have 0 coefficients for each of the variables that appears with a negative reduced cost.

3. Valid inequalities

Valid inequalities are potentially useful in solving (mixed) integer programs, and are often derived from knapsack constraints. The well-known “covering inequalities,” for example, which are based on simple knapsack constraint implications, have been used extensively in the literature. Knapsack constraints are also a key modeling structure in constraint programming. Crowder, Johnson, and Padberg (1983) used a thorough understanding of individual knapsacks to solve general integer programs.

In general, we may regard the knapsack problem as a special case of the MKP where m = 1. Let
 N ={1, ..., n} and assume that the right-hand side a0 and the vectors c and a are non-negative integer. The knapsack problem (KP) can be formulated as follows

(KP)
Maximize{ x0 = cx subject to ax  a0 and x  {0, 1}n}

We call a set C a cover or a dependent set with respect to N if
[image: image11.wmf]0

a

a

C

j

j

>

å

Î

. A cover C is minimal if
[image: image12.wmf]0

a

a

S

j

j

£

å

Î

 for all subsets S (C. If we choose all elements from the cover C, it is clear that the following knapsack cover inequality
[image: image13.wmf]1

-

£

å

Î

C

x

C

j

j

 is valid (Glover (1971), Balas (1975), Hammer et al. (1975) and Wolsey (1975)).

It is easy to identify the rule to generate the upper bound on the sum of all variables, we simply sum the coefficients of the vector a, proceeding from the smallest aj to the largest. Suppose the coefficients of the knapsack constraint ax  a0 are already ordered that way, i.e.,

a1 ≤ a2 ≤ … ≤ an.

(6-a)

Let (k =
[image: image14.wmf]å

=

k

j

j

a

1

 = (k-1 + ak, starting from (1 = a1. Then we keep adding coefficients until reaching a point where (k ≤ ao and (k+1 > ao. This is exactly the same rule that would be used if all coefficients were non-negative, simply by complementing the variables, and evidently implies that the upper bound on the sum of all variables is given by

ex =
[image: image15.wmf]å

Î

N

j

j

x

 ≤ k = max{j : (j ≤ ao}.

(6-b)

Cover Cut Procedure : // upper bound on sum of all variables

Input : knapsack constraint ax ≤ a0
Output : cover constraint ex ≤ k
Step 1: Sort the coefficients of the knapsack constraint such that aj ≤ aj+1. for j = 1 to n-1.

Step 2: Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj. Generate the cut ex ≤ k.

Consequently, in our example (A), where N = {1, …, 10}, the value of k is 8, and hence the inequality bounding the sum of all variables is

ex ≤ 8.

Another very straightforward observation is useful to illustrate connections between continuous and integer solutions that support the forgoing derivations.

Observation 2. The upper bound k on the sum of all variables is equal to the optimum value of the following knapsack problem

(KP)
max{ x0 = ex subject to ax  a0 and x  {0, 1}n}

and this value derives by rounding the LP solution to the continuous version of (KP).

Illustration of Observation 2.

Consider the LP relaxation (LP-KP) obtained from (KP) by removing the integrality constraints on the variables :

LP-KP
max{x0 = ex subject to ax  a0 and 0 x e.

Assume the variables are ordered in descending order of the ratios of the objective function coefficients to the knapsack constraint coefficients, i.e. so that

[image: image16.wmf]n

a

a

a

1

...

1

1

2

1

³

³

³

(6-c).

Observe that the sort (6-c) is equivalent to the sort (6-a). Hence an optimal solution of the problem LP-KP occurs by sequentially setting the variables equal to 1, until reaching the point where the residual portion of the knapsack constraint RHS compels a fractional or 0 value to be assigned to the next variable (or where no more variables remain). More formally, an optimal solution
[image: image17.wmf]x

 of the LP relaxation LP-KP is obtained explictly by

[image: image18.wmf]1

=

j

x

 for j = 1, …, j*-1,
[image: image19.wmf]*

1

*

0

*

j

j

j

a

a

x

-

-

=

d

,
[image: image20.wmf]0

=

j

x

for j = j*+1, …, n, where j* = max{j : (j ≤ ao}
The objective function value of the LP-relaxation LP-KP is a upper bound on the optimum value of the knapsack problem, i.e. v(KP) (e
[image: image21.wmf]x

, where v(KP) is the optimal value of the knapsack problem (KP). Since all the objective function coefficients are integer, the following constraint is also valid

v(KP) (
[image: image22.wmf]ë

û

x

e

(6-d)
The optimum solution
[image: image23.wmf]x

 of the LP relaxation problem LP-KP has at most one fractional variable
[image: image24.wmf]*

j

x

, so by setting this variable to zero, we obtain a feasible solution x* of the knapsack problem (KP) such that ex* = j* - 1. It is clear that
[image: image25.wmf]ë

û

x

e

 = ex* = k. Thus from (6-d) we have v(KP) = k.

4. Additional Valid Inequalities

We now examine considerations that are no less fundamental, but that are perhaps less immediate.

Observation 3. Consider a system consisting of a set of problem constraints and a mixed surrogate constraint, together with its components, augmented by a set of nested inequalities generated from the mixed surrogate constraint. Then additional strengthening of the system can be obtained by incorporating two additional sets of nested inequalities generated by reference to the components of the mixed surrogate constraint (i.e., where one is derived from the component surrogate constraint and one is derived from the xo constraint).

Observation 3 results from the fact that the two additional sets of nested inequalities can create nesting sequences that differ from each other and that also differ from the sequence produced by the mixed surrogate constraint. Moreover, the two nested inequality sets “pull in opposite directions.” Thus, for example, in the multi-dimensional knapsack problem the objective function constraint generates “≥” nested inequalities while the surrogate constraint generates “≤” nested inequalities. The mixed surrogate constraint generates inequalities that are implicitly a mix of the implications of the other inequalities.

Illustration of Observation 3.

The relevance of Observation 3 is quickly illustrated by the fact that the surrogate constraint (A2) and the objective function constraint (A3) respectively imply ex ≤ 6 and ex ≥ 6, while the mixed constraint (A4) implies 3 ≤ ex ≤ 7. Hence, the inequalities ex ≤ 6 and ex ≥ 6, members of the nested inequalities from each of the component constraints, dominate the associated inequality 3 ≤ ex ≤ 7 obtained from the system for the mixed surrogate constraint. (This is true even though our illustration uses the stronger form of (A4) that results by applying Observation 1. If Observation 1 were not applied, (A4) would not have implied ex ≥ 3.)

Moreover, if we had not been fortunate enough to know a very good feasible solution to the problem (which gives the good lower bound for xo used in this example), the mixed constraint would be still weaker, while the surrogate constraint (A2) would be unaffected. For example, suppose the best feasible solution known was the one that sets x1 to x5 = 1, and the remaining variables to 0. (This is the one that results by rounding down the fractional variable in the LP solution.) Then the RHS for (A4) would be –26, and thus the mixed surrogate constraint would only yield 2 ≤ ex ≤ 8, whereas the surrogate constraint (A2) and the objective function constraint (A3) would respectively yield ex ≤ 6 and ex ≥ 4. Given that the nested inequalities provide a primary source of improvement for solving hard problems, these differences are noteworthy.

Consider the two binary integer programs (BP+) and (BP-) which consist of maximizing and minimizing respectively the sum of the variables subject to two constraints, where one is the component surrogate constraint and one is the objective function constraint. The problems (BP+) and (BP-) are stated as follows:
(BP+)

max{ x0 = ex : ax (a0, cx (c0, x ({0, 1}n}
(BP-)

min{ x0 = ex : ax (a0, cx (c0, x ({0, 1}n}.
The mixed surrogate constraint, as previously indicated, is a surrogate constraint created by combining a given surrogate constraint with an objective function constraint. After rewriting the objective function constraint as a “≤” constraint to give it the same orientation as the surrogate constraint, and after choosing non-negative weights (and (for the two constraints, we obtain the following surrogate relaxation problems :

(S+((, ())

max{ x0 = ex : (ax - (cx ((a0 - (c0, x ({0, 1}n}

(S-((, ())

min{ x0 = ex : (ax - (cx ((a0 - (c0, x ({0, 1}n}

As the surrogate functions v(S+((, ()) and v(S-((, ()) are homogeneous functions over R2+, we can restrict the search domain over a compact set, for example, by using the norm L1, the surrogate functions to be considered are v(S+((, (1-()) and v(S-((, (1-()) for (([0, 1]. Moreover, since the surrogate function v(S+((, ()) is a quasi-convex function, thus for any (([0, 1], we have v(S+((, (1-())  max{v(S+(1, 0)), v(S+(0, 1))} where

S+(1, 0)
max{ x0 = ex : ax (a0, x ({0, 1}n} and S+(0, 1) max{ x0 = ex : cx (c0, x ({0, 1}n}.

The surrogate function v(S-((, ()) is a quasi-concave function, so we have

min{v(S-(1, 0), v(S-(0, 1))} v(S-((, (1-()), for any (([0, 1].

In summary, for (([0, 1], we have

min{v(S-(1, 0), v(S-(0, 1))} v(S-((, (1-()) v(BP-)  ex
and

ex  v(BP+)  v(S+((, (1-())  max{v(S+(1, 0), v(S+(0, 1))}.

The above illustration shows the relevance of Observation 3. One way to improve the bounds on the sum of the variables is to solve the corresponding duals of the above relaxations. More precisely we have

v(S-) v(BP-)  ex  v(BP+)  v(S+)

where

(S+) min{ v(S+((, (1-()): (([0, 1]} and (S-) min{ v(S-((, (1-()): (([0, 1]}.

To solve these dual problems we can use one of the algorithms proposed by Glover (1965), Karwan-Rardin (1984), Freville-Plateau (1993), Hanafi (1993). For the multi-dimensional knapsack (MDK) problem where the right-hand sides a0 and c0 and the vectors a and c are non-negative, in spite of the trivial optimal solutions 0 and e for the surrogate problems S-(1, 0) and S+(0, 1), (i.e. v(S-(1, 0) = 0.0 = 0 and v(S+(0, 1)) = e•e = n), we do not necessarily have v(BP+) equals to v(S+(1, 0)).

Example C:

Consider the following surrogate relaxation of a zero-one MDK :

(BP+)
max
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

s.t.
 x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10 ≤ 12

2x1 + 2x2 + 2x3 + 2x4 + 10x5 + 10x6 + 10x7 + 10x8 + 10x9 + 10x10 (21

xj  {0, 1}
for j = 1, …, 10.

We have v(BP+) = 3, v(S+(1, 0)) = 4 and v(S+(0, 1)) = 10.

5. Nested Valid Inequalities

Valid inequalities are called Nested Cuts when two inequalities overlap in their unit coefficients only if the nonzero coefficients of one are contained in the other. More precisely, let Nk, k = 1, …, K, denote a collection of distinct nonempty subsets of N, the subsets Nk are called nested sets if they satisfy the property

For all k, k’ ({1, …, K}, (k (k’ and Nk(Nk’ (() ((Nk(Nk’ or Nk’ (Nk).

Let N be the index set of variables in the constraint ax  a0. As noted, the cover cut procedure generates the valid inequality
[image: image26.wmf]å

Î

N

j

j

x

 ≤ max{j :
[image: image27.wmf]å

Î

N

j

j

a

≤ ao}. For each subset N’ of N, we consider the constraint a’x  a0 where the component a’j = aj, if j in N’ and 0 otherwise. By using this constraint we can generate new valid inequalities corresponding to upper bounds on sums of variables in N’. The valid inequalities on partial sums of variables in Nk are called nested inequalities if the subsets Nk are nested subsets.

Let Xk = (Xkl, Xk2, ..., Xkn) denote a zero-one characteristic vector associated with the subset Nk, which is defined by Xkj = 1 if j is in Nk, 0 otherwise. The nested property is equivalent to specifying that variables Xk satisfy:

For all p, q in N, (p (q and XpXq (1 ((Xp (Xq or Xq (Xp).

5.1. Contiguous Inequalities

The simple types of nested inequalities where each is strictly “contained in” the next member of the progression, are called contiguous cuts. Specifically, the contiguous cuts with associated subsets Nk, k = 1, …, K, , satisfy the property N1(N2… (Nk.

Observation 4. It is possible to take account of dominance considerations by a simple check applied to consecutive contiguous cuts to reduce the collection of nested cuts generated.
Illustration of Observation 4.

Let N be the index set of variables in the source constraint ax  a0. Two sets N and N’ are called adjacent sets if they differ only by a single element, i.e. N’ = N + {j°}. Define the vector a’ so that a’j = aj for j (j° and a’j° = 0, and consider the corresponding constraint a’x  a0. Note that this latter constraint is a relaxation of the source constraint and the non-negativity constraint. According to Observation 2 if the coefficients are already ordered so that a1 ≤ a2 ≤ … ≤ an, we have:

[image: image28.wmf]å

Î

N

j

j

x

 ≤ k = max{j : (j =
[image: image29.wmf]å

=

j

i

i

a

1

≤ ao}.

(7-a)

[image: image30.wmf]å

Î

'

N

j

j

x

 ≤ k’ = max{j : (’j =
[image: image31.wmf]å

=

j

i

i

a

1

'

≤ ao}.

(7-b)

It is easy to show that if k < j° then (’j = (j for j ≤ k, then the constraint (7-a) dominates the constraint (7-b). Otherwise (i.e. j° ≤ k), if the condition ((k+1 - aj° ≤ a0) is satisfied then we have (’k+1 ≤ ao and (’k+2 > ao so the constraint (7-b) again dominates the constraint (7-a). In the case ((k+1 - aj° > a0) we have (’k ≤ ao and (’k+1 > ao which imply that
[image: image32.wmf]å

Î

'

N

j

j

x

 ≤ k – 1. This latter constraint (7-b) combined with the upper bound on xj° imply the constraint (7-a). This proves that only one of two adjacent nested cuts need be kept.

Osorio et al. (2002) propose an algorithm as a special case of an approach of Glover (1971) for generating contiguous cuts Nk = {k, k+1, …, n} for a 0-1 inequality ax ≥ a0. It is assumed, that the coefficients are already ordered so that a1 ≥ a2 ≥ …≥ an.

Contiguous Nested Cuts Procedure:

Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj;

Let k = 1; k_last = 0;

For j = 1 to n do

if ((n - a0 < (j - (k-1){

while ((n - a0 < (j - (k)

k++;

if (k > k_last){

generate the cut
[image: image33.wmf]k

x

j

i

i

³

å

=

1

k_last = k;

}

}

Using the dominance between two consecutive contiguous cuts, we propose the following procedure. In this procedure we introduce a new variable called j_last to generate only the non dominate cuts.
Improved Contiguous Nested Cuts Procedure:

Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj;

Let k = 1; k_last = 0;
j_last =-1;

For j = 1 to n do

if ((n - a0 < (j - (k-1){

while ((n - a0 < (j - (k)

k++;

if (k > k_last){

if (j_last +1<j) generate the cut
[image: image34.wmf]k

x

j

i

i

³

å

=

1

;

k_last = k;
j_last = j;

}

}
Example D:

Consider the following knapsack constraint :

95x1 + 92x2 + 87x3 + 80x4 + 78x5 + 72x6 + 61x7 + 54x8 + 52x9 + 30x10 (467.

The Contiguous Nested Cuts Procedure generates the following 6 cuts :

x1 + x2 + x3 (1

x1 + x2 + x3 + x4 (2

x1 + x2 + x3 + x4 + x5 (3

x1 + x2 + x3 + x4 + x5 + x6 + x7 (4

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 (5

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 (6

Our Improved Contiguous Nested Cuts Procedure generates only two non-dominated cuts.

x1 + x2 + x3 (1

x1 + x2 + x3 + x4 + x5 + x6 + x7 (4

The Figure 1 shows the progression of the number of nested cuts generated by the two procedures as a function of the number of variables. The coefficients of the source constraint are generated randomly by taking a0 = ((ae with (close to 0.5.

[image: image35.wmf]0

500

1000

1500

2000

2500

3000

n

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of variables

Number of cuts

Osario et al.

New

Figure 1 : Comparison of the two procedures for generating nested cuts
5.2. Mixed Nested Inequalities

Observation 5. Different nested inequalities are produced by using different forms of the mixed surrogate constraint, where different sets of coefficients are selected to be negative. Moreover, the nested inequalities generated directly from the form of the mixed surrogate that does not complement the problem variables includes all of those generated in the Osorio et al. paper, plus additional nested inequalities, thus producing a system that dominates the system previously obtained. Finally, this expanded system can be generated with the same computer code used to generate the previous smaller system.

Observation 5 is important for the harder problems where the nested inequalities are the major contribution to improving the solution process.

Illustration of Observation 5.

We show that the nested sum inequalities obtained from the mixed surrogate constraint in the form that has both negative and positive coefficients include all of those generated in Osorio et al., and also include others.

Write the mixed surrogate constraint that includes the negative coefficients in the form

∑ (jxj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o

where N* is the index set for the negative coefficients. The previous approach replaced the coefficients j: j ε N* with 0's to generate nested inequalities from the source inequality

∑ (0xj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o* (8-a)

where o* = o – ∑ (j: j ε N*).

The first nested inequality from this ≤ source inequality is an "overall inequality"

∑ (xj: j ε N) ≤ RHS(N).

The new nested inequalities that are omitted in Osorio et al. (2002) are those that involve partial sums over j ε N* of the following form

∑ (xj: j ε N*(1)) ≥ RHS(1)

∑ (xj: j ε N*(2)) ≥ RHS(2)

∑ (xj: j ε N*(3)) ≥ RHS(3)

∑ (xj: j ε N*(4)) ≥ RHS(4)

etc.

Here N*(1) = N*, and in turn N*(2) removes the index for the smallest absolute value coefficient associated with N*(1), then N*(3) removes the index for the smallest absolute value coefficient associated with N*(2), and so on.

It is easy to identify the rule to generate these nested inequalities directly, but they can also be generated using the rule already applied to generate nested inequalities from the ≤ source inequality, simply by complementing the variables. The first step begins with the source

∑ (jxj: j ε N) ≤ o

which is implied by the original mixed surrogate constraint. Then we complement the variables (yj = 1 – xj) for j ε N* to obtain the modified source

∑ (j*yj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o* (8-b)

where j* = – j > 0 and, as before, o* = o – ∑ (j: j ε N*).

This inequality can also be obtained from the source inequality (8-a) used in Osorio et al. that drops the negative coefficients. Recall that this inequality is

∑ (0xj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o** (8-c)

Hence in the example (A), where o* = o – ∑ (j: j ε N*). = – 5 – (– 11) = 6, the inequality (8-a) is given by

 0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ 6.
(8-d)

It is easy to see that the upper bound on the sum of all variables is exactly the same as given above. In that the present case this inequality dominates all other nested inequalities from the source (8-a) used in Osorio et al. until reaching the subsets of variables whose coefficients are positive – i.e., in (8-d) it dominates all nested inequalities until reaching those whose index sets are {8, 9, 10}, {9, 10} and {10}. (It dominates the inequality over the indexes {7,8,9,10} because this has the same right hand side k as the bound on all the variables.) It is naturally important to include this inequality on the sum of all variables among the nested inequalities, although it is not in general true that the inequality will dominate a string of successive inequalities as in the present example

Inequalities missing from the earlier implementation:

To generate the ≥ inequalities that are missing from the Osorio et al. implementation, we start from the source inequality (8-d), and consider only the negative coefficients. Thus (8-d) and (1-c) or (1-d) imply the following constraint

(-(e – x) ≥ (-e - (o

(8-e)
Clearly this inequality is implied by (8-e), and it is the “missing part” of the Osorio et al. development.

The new inequalities that are also missing from the Osorio et al. implementation, can be obtained directly from the source inequality (8-d), where we consider negative and positive coefficients. Recall that both inequalities (8-c) and (8-e) are derived from (8-d), and that (8-d) is stronger than (8-c) or (8-e).

General Nested Cuts:

Assume that the vectors (- and (+ can be decomposed as follows: (- = (1- + (2- and (+ = (1+ + (2+. Then the source inequality (4) can be rewritten as

(1-x + (2-x + (1+x + (2+x ≤ (o

This latter constraint can in turn be rewritten as:

-(1-(e – x) + (2-x + (1+x + (2+x ≤ (o - (1-e

(8-f)
From the inequality (8-f) we can derive different new relaxations of this constraint combined with the original constraint such as (1-c) or (1-d). This combination can provide the following source constraints

(2-x + (+x ≤ (o - (1-e

(8-g)
(2-x + (1+x ≤ (o - (1-e

(8-h)

(-x + (1+x ≤ (o

(8-i)
Remarks :

1) In the constraints (8-g:i) we can interchange (1- with (2- and/or (1+ with (2+.

2) Osario et al. considered only the case (8-g) with (2- = 0.

Example B:

To give a numerical example, we start with the mixed inequality, in the form of (4):

– 4x1 – 3x2 – 2x3 – 2x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ – 5

(B1)

The inequality (8-c), which drops the negative coefficients, is given by

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ 6.

(B2)

It is easy to see that the ≤ nested inequalities that have already been generated from the source (B2) in the Osorio et al. implementation, are

x9 + x10 ≤ 1

(B3a)

x7 + x8 + x9 + x10 ≤ 2

(B3b)

The “missing part” of the Osorio et al. development are the ≥ nested inequalities derived from (8-e), which corresponds to the following inequality

4x1 + 3x2 + 2x3 + 2x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 + 0x10 ≥ 5

(B4)

Using the preceding procedure with the source constraint (B4) gives rise to the inequalities

x1 + x2 ≥ 1

(B5a)

x1 + x2 + x3 + x4 ≥ 2

(B5b)

The new ≤ and ≥ nested inequalities are derived directly from the source (B1) by complementing the variables with negative coefficients, to give

x1 ≥ x10

(B6a)

x1 ≥ x9 + x10

(B6b)

x1 + x2 + x4 ≥ 1 + x9 + x10

(B6c)

x1 + x2 + x3 + x4 ≥ 2 + x9 + x10

(B6d)

x1 + x2 + x3 + x4 ≥ 1 + x7 + x8 + x9 + x10

(B6e)

Note that the inequalities (B3a) and (B5b) are implied by the inequalities (B6b) and (B6d) respectively. We also observe that the nested inequalities (B6) can dominate both of the nested constraints (B3) and (B5) if all the coefficients of the source constraint (4) are different, since, after complementation, several variables in the transformed source constraint have the same coefficient. To illustrate, in order to use the procedure directly, we transform the source constraint (B1) into a ≥ constraint with only positive coefficients as follows :

4x1 + 3x2 + 2x3 + 2x4 + 0x5 + 0x6 + 2(1 - x7) + 2(1 - x8) + 3(1 - x9) + 4(1 - x10) ≥ 16

(B1)

Considering all the orderings of the variables having the same coefficients, we can also generate the new nested constraints:

x1 + x2 ≥ 1 + x10

(B6f)

x1 + x2 + x3 ≥ 1 + x9 + x10

(B6g)

x1 + x2 + x3 + (1 - x7) ≥ 1 + x9 + x10

(B6h)

x1 + x2 + x3 + (1 – x8) ≥ 1 + x9 + x10

(B6i)

x1 + x2 + x3 + (1 - x7) ≥ 1 + x7 + x8 + x9 + x10

(B6j)

x1 + x2 + x3 + (1 – x8) ≥ 1 + x7 + x8 + x9 + x10

(B6k)

The collection of the nested constraints (B6) dominates the nested constraints (B3) and (B5).

References

A. Fréville and S. Hanafi, (2005), “The Multidimensional 0-1 Knapsack Problem – Bounds and Computational Aspects”, Annals of Operations Research, Volume 139, Number 1, pp. 195-227 (33).
A. Fréville and G. Plateau (1993), (An exact search for the solution of the surrogate dual of the 0-1 bidimensional knapsack problem(, European Journal of Operational Research, 68, 413-421.

A. Fréville (2004), (The Multidimensional 0-1 Knapsack Problem : an overview(, invited review, European Journal of Operational Research, 155, 1-21.

B. Gavish and H. Pirkul, (1985). “Efficient Algorithms for Solving Multiconstraint Zero-One Knapsack Problems to Optimality,” Mathematical Programming 31, pp. 78-105.

A. Geoffrion (1969). “An Improved Implicit Enumeration Approach for Integer Programming,” Operations Research 17, pp. 437-454.

F. Glover (1965). “A Multiphase-dual Algorithm for the Zero-one Integer Programming Problem,” Operations Research 13, pp. 879-919.

F. Glover (1968). “Surrogate Constraints,” Operations Research 16, pp. 741-749.

F. Glover (1971)., “Flows in Arborescences,” Management Science 17, pp. 568-586.

S. Hanafi (1993), (Contribution à la résolution de problèmes duaux de grande taille en optimisation combinatoire(, PhD thesis, University of Valenciennes, France.

J. N. Hooker (1994). “Logic-based methods for optimization”, in A. Borning, ed., Principles and Practice of Constraint Programming, Lecture Notes in Computer Science 874, pp. 336-349.

J. N. Hooker and M.A. Osorio (1999). “Mixed Logical/Linear Programming,” Discrete Applied Mathematics 96-97 pp. 395-442.

M. H. Karwan and R.L. Rardin (1979). “Some relationships between Lagrangean and surrogate duality in integer programming,” Mathematical Programming 17 pp. 230-334.

M.H. Karwan and R.L. Rardin (1984), (Surrogate dual multiplier search procedures in integer programming(, Operations Research, 32, 52-69.

S. Martello and P. Toth (1990). Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons.

M.A. Osorio, F. Glover and P. Hammer (2002). “Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions,” Annals of Operations Research, 117, pp. 71-93.
M.A. Osorio, E. Gómez, (2004). "Cutting Analysis for MKP". Proceedings of the
Fifth Mexican International Conference on Computer Science. Edited by Ricardo
Baeza-Yates, J. Luis Marroquín and Edgar Chávez. IEEE Computer Society. IEEE,
pp. 298-303. ISBN: 0-7695-2160-6.
Balas, E. Facets of the Knapsack Polytope. Mathematical Programming, Vol. 8, 146-164.
Wolsey, L.A., 1975. Faces for a Linear Inequality in 0-1 Variables. Mathematical Programming, Vol. 8, 165-178.
Hammer, P.L., Johnson, E.L., Peled, U. N., 1975. Facets of Regular 0-1 Polytopes. Mathematical Programming, Vol. 8, 179-206.

PAGE
22

_1160456177.unknown

_1160920375.unknown

_1172494676.unknown

_1173552896.unknown

_1173552968.unknown

_1176660704.unknown

_1176660906.unknown

_1176660881.unknown

_1173552947.unknown

_1172813430.unknown

_1172821347.xls
Graph1

		n		n

		50		50

		100		100

		150		150

		200		200

		250		250

		300		300

		350		350

		400		400

		450		450

		500		500

		550		550

		600		600

		650		650

		700		700

		750		750

		800		800

		850		850

		900		900

		950		950

		1000		1000

		1050		1050

		1100		1100

		1150		1150

		1200		1200

		1250		1250

		1300		1300

		1350		1350

		1400		1400

		1450		1450

		1500		1500

		1550		1550

		1600		1600

		1650		1650

		1700		1700

		1750		1750

		1800		1800

		1850		1850

		1900		1900

		1950		1950

		2000		2000

		2050		2050

		2100		2100

		2150		2150

		2200		2200

		2250		2250

		2300		2300

		2350		2350

		2400		2400

		2450		2450

		2500		2500

		2550		2550

		2600		2600

		2650		2650

		2700		2700

		2750		2750

		2800		2800

		2850		2850

		2900		2900

		2950		2950

		3000		3000

		3050		3050

		3100		3100

		3150		3150

		3200		3200

		3250		3250

		3300		3300

		3350		3350

		3400		3400

		3450		3450

		3500		3500

		3550		3550

		3600		3600

		3650		3650

		3700		3700

		3750		3750

		3800		3800

		3850		3850

		3900		3900

		3950		3950

		4000		4000

		4050		4050

		4100		4100

		4150		4150

		4200		4200

		4250		4250

		4300		4300

		4350		4350

		4400		4400

		4450		4450

		4500		4500

		4550		4550

		4600		4600

		4650		4650

		4700		4700

		4750		4750

		4800		4800

		4850		4850

		4900		4900

		4950		4950

		5000		5000

		5050		5050

		5100		5100

		5150		5150

		5200		5200

		5250		5250

		5300		5300

		5350		5350

		5400		5400

		5450		5450

		5500		5500

Osario et al.

New

Number of variables

Number of cuts

0

21

12

45

25

66

35

84

46

109

59

130

65

147

86

169

108

201

106

216

122

241

128

254

147

282

153

303

166

322

179

344

194

368

205

380

223

407

219

430

236

455

258

474

264

496

269

509

286

530

295

568

312

574

326

600

345

627

346

639

371

665

369

688

394

702

399

726

418

750

414

781

435

792

452

802

457

844

470

847

484

867

499

898

508

930

517

947

534

962

544

978

558

1012

562

1031

579

1039

600

1073

591

1094

612

1109

622

1141

649

1157

662

1169

673

1200

667

1215

662

1240

706

1269

717

1270

720

1300

740

1325

749

1342

756

1369

772

1381

781

1415

810

1422

819

1445

811

1477

826

1503

846

1528

869

1533

861

1578

870

1583

885

1603

921

1632

923

1640

913

1666

953

1697

970

1713

967

1727

976

1746

1013

1769

1014

1800

1005

1800

1030

1844

1038

1867

1047

1900

1058

1883

1112

1914

1072

1957

1092

1950

1117

1995

1133

2031

1136

2032

1139

2046

1181

2084

1157

2100

1161

2107

1187

2143

1204

2175

1218

2179

1241

2211

1238

2242

1258

2262

1274

2253

1279

2287

1327

2301

1315

2324

1323

2391

1315

Testg

		n				CPU		nc(Hanafi)		CPU		secondes

		50		21		0		12		0		0.5714285714

		100		45		0		25		0		0.5555555556

		150		66		0		35		0		0.5303030303

		200		84		0.01		46		0		0.5476190476

		250		109		0		59		0		0.5412844037

		300		130		0		65		0		0.5

		350		147		0		86		0		0.5850340136

		400		169		0.01		108		0		0.6390532544

		450		201		0		106		0		0.5273631841

		500		216		0		122		0		0.5648148148

		550		241		0		128		0		0.531120332

		600		254		0		147		0		0.5787401575

		650		282		0		153		0		0.5425531915

		700		303		0		166		0		0.5478547855

		750		322		0		179		0		0.5559006211

		800		344		0.01		194		0		0.5639534884

		850		368		0		205		0		0.5570652174

		900		380		0		223		0.01		0.5868421053

		950		407		0.01		219		0		0.5380835381

		1000		430		0		236		0		0.5488372093

		1050		455		0		258		0		0.567032967

		1100		474		0.01		264		0		0.5569620253

		1150		496		0		269		0		0.5423387097

		1200		509		0.01		286		0		0.5618860511

		1250		530		0		295		0		0.5566037736

		1300		568		0		312		0.01		0.5492957746

		1350		574		0		326		0		0.5679442509

		1400		600		0.01		345		0		0.575

		1450		627		0		346		0		0.5518341308

		1500		639		0		371		0		0.5805946792

		1550		665		0		369		0		0.554887218

		1600		688		0		394		0.01		0.5726744186

		1650		702		0		399		0		0.5683760684

		1700		726		0		418		0.01		0.5757575758

		1750		750		0		414		0.01		0.552

		1800		781		0		435		0.01		0.556978233

		1850		792		0		452		0.01		0.5707070707

		1900		802		0.01		457		0.01		0.5698254364

		1950		844		0.01		470		0		0.5568720379

		2000		847		0.01		484		0		0.5714285714

		2050		867		0.01		499		0.01		0.5755478662

		2100		898		0.01		508		0.01		0.565701559

		2150		930		0.01		517		0.01		0.5559139785

		2200		947		0.01		534		0.01		0.5638859556

		2250		962		0.01		544		0.01		0.5654885655

		2300		978		0		558		0.01		0.5705521472

		2350		1012		0.01		562		0.01		0.5553359684

		2400		1031		0.01		579		0.01		0.5615906887

		2450		1039		0.01		600		0.01		0.5774783446

		2500		1073		0.01		591		0.01		0.5507921715

		2550		1094		0.01		612		0.01		0.5594149909

		2600		1109		0.01		622		0.01		0.5608656447

		2650		1141		0.01		649		0.01		0.5687992989

		2700		1157		0.02		662		0.01		0.5721694036

		2750		1169		0.01		673		0.01		0.5757057314

		2800		1200		0.01		667		0.02		0.5558333333

		2850		1215		0.01		662		0.02		0.5448559671

		2900		1240		0.01		706		0.01		0.5693548387

		2950		1269		0.01		717		0.02		0.5650118203

		3000		1270		0.01		720		0.02		0.5669291339

		3050		1300		0.01		740		0.02		0.5692307692

		3100		1325		0.01		749		0.02		0.5652830189

		3150		1342		0.02		756		0.01		0.563338301

		3200		1369		0.02		772		0.02		0.5639152666

		3250		1381		0.01		781		0.02		0.565532223

		3300		1415		0.01		810		0.02		0.5724381625

		3350		1422		0.02		819		0.02		0.5759493671

		3400		1445		0.01		811		0.02		0.5612456747

		3450		1477		0.021		826		0.02		0.5592417062

		3500		1503		0.02		846		0.02		0.5628742515

		3550		1528		0.02		869		0.02		0.5687172775

		3600		1533		0.02		861		0.02		0.5616438356

		3650		1578		0.02		870		0.02		0.5513307985

		3700		1583		0.02		885		0.02		0.5590650663

		3750		1603		0.02		921		0.02		0.574547723

		3800		1632		0.02		923		0.02		0.5655637255

		3850		1640		0.03		913		0.02		0.5567073171

		3900		1666		0.02		953		0.03		0.5720288115

		3950		1697		0.02		970		0.02		0.5715969358

		4000		1713		0.03		967		0.02		0.5645067134

		4050		1727		0.02		976		0.03		0.5651418645

		4100		1746		0.03		1013		0.02		0.5801832761

		4150		1769		0.02		1014		0.03		0.5732052007

		4200		1800		0.03		1005		0.03		0.5583333333

		4250		1800		0.02		1030		0.03		0.5722222222

		4300		1844		0.03		1038		0.03		0.5629067245

		4350		1867		0.03		1047		0.03		0.5607927156

		4400		1900		0.03		1058		0.03		0.5568421053

		4450		1883		0.03		1112		0.03		0.5905469995

		4500		1914		0.03		1072		0.03		0.5600835946

		4550		1957		0.03		1092		0.03		0.5579969341

		4600		1950		0.03		1117		0.03		0.5728205128

		4650		1995		0.03		1133		0.03		0.5679197995

		4700		2031		0.04		1136		0.03		0.5593303791

		4750		2032		0.03		1139		0.041		0.5605314961

		4800		2046		0.03		1181		0.04		0.5772238514

		4850		2084		0.03		1157		0.04		0.5551823417

		4900		2100		0.04		1161		0.03		0.5528571429

		4950		2107		0.04		1187		0.03		0.5633602278

		5000		2143		0.04		1204		0.04		0.5618292114

		5050		2175		0.03		1218		0.04		0.56

		5100		2179		0.04		1241		0.04		0.5695273061

		5150		2211		0.04		1238		0.04		0.5599276346

		5200		2242		0.04		1258		0.04		0.5611061552

		5250		2262		0.04		1274		0.04		0.5632183908

		5300		2253		0.04		1279		0.04		0.5676875277

		5350		2287		0.05		1327		0.04		0.5802361172

		5400		2301		0.04		1315		0.04		0.5714906562

		5450		2324		0.04		1323		0.04		0.5692771084

		5500		2391		0.05		1315		0.04		0.5499790882

												0.5629104526

Testg

		

nc(Hanafi)

Number of variables

Number of cuts

		

Osario et al.

New

Number of variables

Number of cuts

_1160921396.unknown

_1160920383.unknown

_1160845354.unknown

_1160845491.unknown

_1160844598.unknown

_1160453715.unknown

_1160453925.unknown

_1160454362.unknown

_1160453799.unknown

_1112371009.unknown

_1112809608.unknown

_1089742673.unknown

_1089742635.unknown

