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Abstract


The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover (1965, 1971) has been specialized to multidimensional knapsack problems in Osorio et al. (2002). We show how this specialized exploitation can be strengthened to give better results. This outcome results by a series of observations based on surrogate constraint duality and properties of nested inequalities. The consequences of these observations are illustrated by numerical examples to provide insights into uses of surrogate constraints and nested inequalities that can be useful in a variety of problem settings.
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1. Introduction

A general integer programming (IP) problem consists of optimizing (Minimizing or Maximizing) a linear function subject to linear inequality and / or equality constraints, where all of the variables are required to be integral. An IP problem (which we assume is to be maximized) can be expressed as follows:

Maximize

x0 = cx

Subject to
Aix ( A0i
for i ( M = {1, 2, …, m} 

(IP)


0 ( xj ( Uj
for j ( N = {1, 2, …, n}




xj integer
for j ( N .

The variable x0 identifies the objective function value of a feasible solution x defined by n decision variables xj for j ( N.  The vector c ( Rn denotes the cost vector and the vector A0 denotes the right-hand side of m linear constraints Aix ( A0i for i ( M. No special structure is assumed for the input matrices c(1 x n), A(m x n), A0(m x 1), b(n x 1). The parameter Uj refer to an upper bound on the integer variable xj . 

Problem (IP) reduces to the binary integer program (01-IP) when all integer variables must equal 0 or 1 (i.e. Uj = 1, for all j ( N). The zero-one multi-dimensional knapsack (MDK) is also a subproblem of many general integer programs where the components of the data matrices c, A and A0 are given non-negative integers. In the following, without loss of generality, we consider the case of the zero-one multi-dimensional knapsack. Letting e denote a vector with all components equal to 1, the zero-one multi-dimensional knapsack (MDK) problem can be expressed as follows

(MDK)

Maximize
x0 = cx







(1-a)
 Ax  A0 






(1-b)

0  x ( e






(1-c)

x  {0, 1}n.






(1-d)

The foregoing MDK formulation, where A and A0 are non-negative, can model many combinatorial optimization problems, including capital budgeting, cargo loading, cutting-stock problems, and a variety of others (see Fréville (2004), Fréville and Hanafi (2005)).  MDK also arises as a subproblem in solving many other combinatorial optimization problems. Complexity results have not yet definitively identified the level of difficulty of these problems, but empirical findings suggest that the computational resources required to solve certain MDK problem instances can grow exponentially with the size of problem. 

The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover (1965, 1971) has been specialized to multidimensional knapsack problems in Osorio et al. (2002). In this paper, we show how this specialized exploitation can be strengthened to give better results. This outcome results by a series of observations based on surrogate constraint duality and properties of nested inequalities. The consequences of these observations are illustrated by numerical examples to provide insights into uses of surrogate constraints and nested inequalities that can be useful in a variety of problem settings. Recently Osorio and Gómez (2004) proposed cutting analysis for MDK.

2. Mixed Surrogate constraint

Bounding procedures that compute lower and upper bounds on the optimum x0 value are useful for solving MDK.  Upper bounds are provided by relaxation or duality techniques.  Lower bounds are generally provided by heuristic and/or metaheuristic procedures using restriction techniques. 
Most commercial Branch-and-Bound (B&B) procedures use the LP-relaxation to compute the bound function. Formally, the LP-relaxation of MDK, denoted by LP-MDK, where all variables are allowed to be continuous, can be defined as follows :

LP-MDK
maximize{ x0 = c : Ax  A0 and 0  x( e}
Bounds derived from other relaxations can sometimes be generated more readily than those obtained from LP, and in certain cases can be stronger than the LP bounds. In particular, Lagrangean relaxation, surrogate relaxation and composite relaxation, are often used to obtain such upper bounds. Lagrangean strategies have been shown to provide an effective tool for solving integer programming problems (see, for example, Geoffrion (1974) and Fischer (1981). The Lagrangean relaxation absorbs a set of constraints into the objective function.

Surrogate constraint methods, which we focus on here, have been embedded in a variety of mathematical programming applications over the past thirty years. The surrogate relaxation, introduced by Glover (1965), replaces sum of the original constraints by a single new one, called a surrogate constraint. A surrogate relaxation S(() of MDK, where ( ( Rm is a vector of “mutipliers” satisfying ( ( 0, is defined as :

S(()
max{ x0 = cx : x  {0, 1}n and

dx  d0}







(2)


where d  =  (A and d0  =  (A0.
We assume the surrogate constraint (2) does not include weighted combinations of the upper or lower bounds on the problem variables. The surrogate dual (S), defined as follows, yields the strongest surrogate constraint 

(S) min{S(() : ( ( 0}

This dual in general yields stronger bounds for combinatorial optimization problems than the Lagrangian dual. The most widely used search methods for solving a surrogate dual problem are based on the properties of the corresponding relaxation function S((). Greenberg and Pierskalla (1970) showed that the surrogate function S(() is a quasi-convex function of the multiplier (, and it is a discontinuous piecewise linear function for the MDK problem. This property assures that any local optimum for the surrogate function is also a global optimum. 

In the following, the term simple bounding constraint refers to a constraint that imposes a lower or upper bound on a variable (such as xj ≥ 0 or xj ≤ 1). The term component constraint refers to a constraint that receives a nonzero weight in forming a surrogate constraint. An inequality or, more generally, a system of inequalities will be said to be strengthened (or made stronger) if the new system yields a set of feasible solutions contained within the set of feasible solutions to the original system. 

The term xo constraint (or objective function constraint) refers to a constraint of the form  xo ≥ xo* + ε,  where xo* = cx* is the xo value for the best feasible solution x* currently known, and ε is a chosen tolerance for approximating the inequality xo > xo* (which may permissibly equal the greatest common divisor of the cj coefficients when c is an integer vector) . 

The term mixed surrogate constraint refers to a surrogate constraint created by combining a given surrogate constraint (2) (called the component surrogate constraint) with an objective function constraint . To create the mixed surrogate constraint, we write the associated objective function constraint as a “≤” constraint to give it the same orientation as the surrogate constraint (2).

–cx ≤ –cx* – ε 








(3)

Consequently, by weighting (2) by ( and (3) by (, the mixed surrogate constraint is :

(x ≤ (o









(4)

with ( = (d – (c and (o = (d0 –((cx* + ε).


We begin with an exceedingly straightforward observation that nevertheless has important consequences.

Observation 1. Surrogate constraints can be made stronger by excluding simple bounding constraints as component constraints. 

This observation is an immediate consequence of the fact that the bounds on the variables are directly exploited by the methods that extract information from surrogate constraints, and hence folding such bounds into the constraints themselves creates an unnecessary degree of relaxation. Similarly, any constraints that are exploited in conjunction with surrogate constraints should not be included as component constraints. In the present context, therefore, Observation 1 can be extended to exclude nested inequalities as component constraints – except where a set of such inequalities is different from the one being exploited in connection with the surrogate constraint in a particular instance.

Moreover, note also that the surrogate relaxation that includes bounding constraints as component constraints is a surrogate relaxation of the one that excludes these bounding constraints. In general, suppose we define

(P)
max{ x0 = cx : Ax ( A0,  Bx ( B0, x ( X}
S(u)
max{ x0 = cx : uAx ( uA0,  Bx ( B0, x ( X}
S(v)
max{ x0 = cx : Ax ( A0,  vBx ( vB0, x ( X}
S(u,v)
max{ x0 = cx : uAx + vBx ( uA0 + vB0, x ( X}

Then the problems S(u), S(v) and S(u,v) are surrogate relaxations of P and S(u, v) is a surrogate relaxation of the problems S(u) and S(v). Defining S(u*) = min{S(u) : u ( 0},  S(v*) = min{S(v) : v ( 0} and S = min{ S(u,v) : u,v ( 0}, then we have S(u*) ( S(u*,v)  for all v ( 0, S(v*) ( S(u,v*)  for all u ( 0, and max(S(u*), S(v*)) ( S.

Illustration of Observation 1. 

The LP relaxation of the surrogate problem S(() is 

LP-S (()
max
{x0 = cx : dx  d0 and 0 x e







We order the variables in descending bang-per-buck order, i.e., in descending order of the ratios of the objective function coefficients to the surrogate constraint coefficients. Then the solution to the LP relaxation of the surrogate problem occurs by sequentially setting the variables equal to 1, until reaching the point where the residual portion of the surrogate constraint RHS compels a fractional or 0 value to be assigned to the next variable (or where no more variables remain). More formally, the variables are ordered according the ratio rj = 
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 of the LP relaxation of the surrogate problem LP-S (() is obtained explicitly by
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for j = j*+1, …, n, where j* = min{j:
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The resulting objective function value is xo = c
[image: image7.wmf]x

, giving an upper bound on the optimum xo value for 0-1 solutions. In addition, suppose we have a feasible solution x* to the original problem. The objective function value, cx*, is a lower bound on the optimum xo value. This solution is of course feasible for the surrogate constraint (2). To create the mixed surrogate constraint which combines (2) and (3), we choose the weight for (2) that is the same weight it receives in the LP dual solution to the surrogate relaxation (knapsack) problem S((). This weight is identified by pivoting on the variable in the surrogate constraint that received a fractional value in the LP solution.  (In the absence of any variables with fractional values, the pivot can be on the last variable that receives a unit value or the first variable that receives a 0 value.) Let, xj* be the variable giving the pivot element, and thus the dual weight is rj*. This weight is the bank-for-buck ratio for xj*, and it is also the multiple of (2) that would be subtracted from the objective function by a pivot operation to create the updated objective function. The coefficients of the resulting updated objective function are the negative of the reduced costs. Consequently, we weight (2) by rj* and add the result to (3) to create the mixed surrogate constraint (x ≤ (o with

( = rj*d – c and (o = rj*d0 – cx*.





(4’)

In fact, in the preceding calculation, if the surrogate constraint (2) had been obtained by weighting the original problem constraints by their associated dual values in the LP relaxation of this problem, then the surrogate constraint would already be a multiple of rj* times the version of the constraint depicted as (4). Then it would not be necessary to identify the dual weight for (2) by a pivot calculation, since the weight would automatically be 1 (i.e., the “dual LP form” of (2) would simply be added to (3) to give (4)). 

By our preceding comments, the coefficients of the mixed surrogate constraint (4) are the same as the reduced costs in the LP solution. In accordance with the usual application of the bounded variable simplex method, a negative reduced cost identifies a variable that must be set equal to its upper bound to identify the LP solution.  If, in contrast to the prescription of Observation 1, we had included weights for the simple bounding inequalities, the mixed surrogate constraint (4) would have 0 coefficients for each of the variables that appears with a negative reduced cost. Such an outcome creates a loss of useful information for bounding the variables, and also for generating nested inequality constraints from the surrogate constraint.


To put the mixed constraint (4) into the standard non-negative coefficient format, we set yj = 1 – xj to complement the appropriate variables. More precisely, let (-, (+ denote the associated vectors defined by - (+j = max{(j, 0}, (-j = min{(j, 0}. The mixed constraint (4) can be disaggregated as follows

(x = (-x + (+x = (-(e – y) + (+x ≤ (o







We can also complement the variables even though it has a 0 coefficient, for example the variables that are set equal to 1 in the knapsack LP solution, giving

-(-y +  (+x ≤ (o - (-e







(5)

This complementation does not uncover additional implications at this point, but it proves relevant to other more advanced analysis, as will subsequently be shown. 

The mixed surrogate constraint (5) is the customary “variable fixing inequality” for zero-one problems.  The variable xj is fixed to 0 if the corresponding coefficient (+j is greater than the value (o - (-e and the variable xj is fixed to 1 if the absolute value of the coefficient (-j is greater than the value (o - (-e.  Evidently, the ability to use this inequality to fix xj variables to 1 (by fixing the associated yj variables to 0) would not be possible if the simple bounding constraints had been included as component constraints. Still more critically, Observation 1 affects the generation of nested inequalities – both by reference to the mixed surrogate constraint (5) and by reference to its component surrogate constraint (2). This has a bearing on our next observation.

Example A:

Consider the following surrogate relaxation of a zero-one MDK :

Max  40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 32x7 + 16x8 + 27x9 +  9x10


(A1)
  5x1 +   7x2 +   4x3 +   6x4 +   8x5 +   6x6 +   8x7 +   4x8 +   9x9 +  3x10   ≤  33

(A2)

   xj  {0, 1}
for j = 1, …, 10.








The LP surrogate solution in this case is

x1 = x2 = x3 = x4 = x5 = 1,  x6 = ½,  x7 = x8 = x9  = x10 = 0.

The resulting objective function value is xo = 204, giving an upper bound on the optimum xo value for 0-1 solutions. In addition, suppose we have a feasible solution to the original problem given by 

x1 = x2 = x3 = x4 = x5 = x10 = 1, all other variables 0.

The objective function value, xo = 198, is a lower bound on the optimum xo value, and the associated objective function constraint, to compel xo to be better than 198, is given by

40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 32x7 + 16x8 + 27x9 +  9x10 ≥ 199

(A3)

We write the foregoing inequality as a “≤ constraint” to give it the same orientation as the surrogate constraint (A2).

–40x1 – 49x2 – 24x3 – 36x4 – 40x5 – 30x6 – 32x7 – 16x8 –  27x9 –  9x10 ≤ –199
(A3’)

The mixed surrogate constraint combines (A2) and (A3’).

The weight for (A2) is identified by pivoting on the variable in the surrogate constraint that received a fractional value in the LP solution.  Thus, x6  is the variable giving the pivot element, and the dual weight is 5. Consequently, we weight (A2) by 5 and add the result to (A3’) to create the mixed surrogate constraint:

– 15x1 – 14x2 – 4x3 – 6x4 +  0x5 +   0x6 +   8x7 +   4x8 +  18x9 +  6x10  ≤  – 34
(A4)


To put (A4) into the standard non-negative coefficient format, we set yj = 1 – xj to complement the appropriate variables, giving

15y1 + 14y2 + 4y3 + 6y4 +  0y5 +   0x6 +   8x7 +   4x8 +  18x9 +  6x10  ≤  5

(A5)

We have complemented x5 even though it has a 0 coefficient because it is one of the variables set equal to 1 in the knapsack LP solution.

Example B:

Consider the example of Osorio et al. with 15 variables and 4 knapsack constraints whose data are presented in the Table 1.
	j
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	

	cj
	36
	83
	59
	71
	43
	67
	23
	52
	93
	25
	67
	89
	60
	47
	64
	A0

	Aj1
	7
	19
	30
	22
	30
	44
	11
	21
	35
	14
	29
	18
	3
	36
	42
	87

	Aj2
	3
	5
	7
	35
	24
	31
	25
	37
	35
	25
	40
	21
	7
	17
	22
	75

	Aj3
	20
	33
	17
	45
	12
	21
	20
	2
	7
	17
	21
	11
	11
	9
	21
	65

	Aj4
	15
	17
	9
	11
	5
	5
	12
	21
	17
	10
	5
	13
	9
	7
	13
	55


Table 1 : Data set of example B

The optimal value of the LP-relaxation of this problem is equal to 335.62 and an optimal dual vector is

u*(LP) = (335.62, 0.66, 0.52, 0.62, 2.78)

An optimal solution of this LP-relaxation and an initial feasible solution, denoted by 
[image: image8.wmf]x

 and x* respectively, are given below with their associated cost :


[image: image9.wmf]x

 = (0, 0.72, 0.49, 0, 0, 0, 0, 0, 0.89, 0, 0.22, 1, 1, 0, 0)
c
[image: image10.wmf]x

 = 335.62

x* = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0)


cx* = 301.

The reduced cost vector ( in the LP solution, which corresponds to the coefficients of the mixed surrogate constraint (4) is 

( = (24.41, 0, 0, 20.47, 10.65, 5.11, 43.21, 40.89, 0, 35.73, 0, -23.13, -22.44, 10.62, 24.36)

If we had included weights for the simple bounding inequalities as in Osorio et al., the mixed surrogate constraint (4) would have 0 coefficients for each of the variables that appears with a negative reduced cost.

3. Valid inequalities

Valid inequalities are potentially useful in solving (mixed) integer programs, and are often derived from knapsack constraints. The well-known “covering inequalities,” for example, which are based on simple knapsack constraint implications, have been used extensively in the literature.   Knapsack constraints are also a key modeling structure in constraint programming. Crowder, Johnson, and Padberg (1983) used a thorough understanding of individual knapsacks to solve general integer programs.  

In general, we may regard the knapsack problem as a special case of the MKP where m = 1. Let
 N ={1, ..., n} and assume that the right-hand side a0 and the vectors c and a are non-negative integer. The knapsack problem (KP) can be formulated as follows

(KP)
Maximize{ x0 = cx subject to ax  a0 and x  {0, 1}n}

We call a set C a cover or a dependent set with respect to N if 
[image: image11.wmf]0
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 for all subsets S ( C. If we choose all elements from the cover C, it is clear that the following knapsack cover inequality 
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 is valid (Glover (1971), Balas (1975), Hammer et al. (1975) and Wolsey (1975)).

It is easy to identify the rule to generate the upper bound on the sum of all variables, we simply sum the coefficients of the vector a, proceeding from the smallest aj to the largest.  Suppose the coefficients of the knapsack constraint ax  a0 are already ordered that way, i.e., 

a1 ≤ a2 ≤ … ≤ an. 





(6-a)

Let (k = 
[image: image14.wmf]å
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 = (k-1 + ak, starting from (1 = a1. Then we keep adding coefficients until reaching a point where (k ≤ ao and (k+1 > ao. This is exactly the same rule that would be used if all coefficients were non-negative, simply by complementing the variables, and evidently implies that the upper bound on the sum of all variables is given by

ex = 
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 ≤ k = max{j : (j ≤ ao}.



(6-b)

Cover Cut Procedure :  // upper bound on sum of all variables 

Input   : knapsack constraint ax ≤  a0
Output : cover constraint  ex ≤  k
Step 1: Sort the coefficients of the knapsack constraint such that aj ≤ aj+1. for j = 1 to n-1.

Step 2: Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj. Generate the cut ex  ≤ k.

Consequently, in our example (A), where N = {1, …, 10}, the value of k is 8, and hence the inequality bounding the sum of all variables is 

ex ≤ 8.

Another very straightforward  observation is useful to illustrate connections between continuous and integer solutions that support the forgoing derivations.

Observation 2. The upper bound k on the sum of all variables is equal to the optimum value of the following knapsack problem 

(KP)
max{ x0 = ex subject to ax  a0 and x  {0, 1}n}

and this value derives by rounding the LP solution to the continuous version of (KP).

Illustration of Observation 2. 

Consider the LP relaxation (LP-KP) obtained from (KP) by removing the integrality constraints on the variables : 

LP-KP
max{x0 = ex subject to ax  a0 and 0 x e.

Assume the variables are ordered in descending order of the ratios of the objective function coefficients to the knapsack constraint coefficients, i.e. so that
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(6-c).

Observe that the sort (6-c) is equivalent to the sort (6-a). Hence an optimal solution of the problem LP-KP occurs by sequentially setting the variables equal to 1, until reaching the point where the residual portion of the knapsack constraint RHS compels a fractional or 0 value to be assigned to the next variable (or where no more variables remain). More formally, an optimal solution 
[image: image17.wmf]x

 of the LP relaxation LP-KP is obtained explictly by
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for j = j*+1, …, n, where j* = max{j : (j ≤ ao} 
The objective function value of the LP-relaxation LP-KP is a upper bound on the optimum value of the knapsack problem, i.e. v(KP) ( e
[image: image21.wmf]x

, where v(KP) is the optimal value of the knapsack problem (KP). Since all the objective function coefficients are integer, the following constraint is also valid

v(KP) ( 
[image: image22.wmf]ë
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(6-d)
The optimum solution 
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 of the LP relaxation problem LP-KP has at most one fractional variable 
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 = ex* = k. Thus from (6-d) we have v(KP) = k.

4. Additional Valid Inequalities

We now examine considerations that are no less fundamental, but that are perhaps less immediate.

Observation 3. Consider a system consisting of a set of problem constraints and a mixed surrogate constraint, together with its components, augmented by a set of nested inequalities generated from the mixed surrogate constraint. Then additional strengthening of the system can be obtained by incorporating two additional sets of nested inequalities generated by reference to the components of the mixed surrogate constraint (i.e., where one is derived from the component surrogate constraint and one is derived from the xo constraint). 

Observation 3 results from the fact that the two additional sets of nested inequalities can create nesting sequences that differ from each other and that also differ from the sequence produced by the mixed surrogate constraint. Moreover, the two nested inequality sets “pull in opposite directions.” Thus, for example, in the multi-dimensional knapsack problem the objective function constraint generates “≥” nested inequalities while the surrogate constraint generates “≤” nested inequalities. The mixed surrogate constraint generates inequalities that are implicitly a mix of the implications of the other inequalities.

Illustration of Observation 3.

The relevance of Observation 3 is quickly illustrated by the fact that the surrogate constraint (A2) and the objective function constraint (A3) respectively imply ex ≤ 6 and ex ≥ 6, while the mixed constraint (A4) implies 3 ≤ ex ≤ 7. Hence, the inequalities ex ≤ 6 and ex ≥ 6, members of the nested inequalities from each of the component constraints, dominate the associated inequality 3 ≤ ex ≤ 7 obtained from the system for the mixed surrogate constraint. (This is true even though our illustration uses the stronger form of (A4) that results by applying Observation 1. If Observation 1 were not applied, (A4) would not have implied ex ≥ 3.) 


Moreover, if we had not been fortunate enough to know a very good feasible solution to the problem (which gives the good lower bound for xo used in this example), the mixed constraint would be still weaker, while the surrogate constraint (A2) would be unaffected. For example, suppose the best feasible solution known was the one that sets x1 to x5 = 1, and the remaining variables to 0. (This is the one that results by rounding down the fractional variable in the LP solution.) Then the RHS for (A4) would be –26, and thus the mixed surrogate constraint would only yield 2 ≤ ex ≤ 8, whereas the surrogate constraint (A2) and the objective function constraint (A3) would respectively yield ex ≤ 6 and ex ≥ 4. Given that the nested inequalities provide a primary source of improvement for solving hard problems, these differences are noteworthy.

Consider the two binary integer programs (BP+) and (BP-) which consist of maximizing and minimizing respectively the sum of the variables subject to two constraints, where one is the component surrogate constraint and one is the objective function constraint. The problems (BP+) and (BP-) are stated as follows:
(BP+)

max{ x0 = ex : ax ( a0,  cx ( c0, x ( {0, 1}n}
(BP-)

min{ x0 = ex : ax ( a0,  cx ( c0, x ( {0, 1}n}.
The mixed surrogate constraint, as previously indicated, is a surrogate constraint created by combining a given surrogate constraint with an objective function constraint. After rewriting the objective function constraint as a “≤” constraint to give it the same orientation as the surrogate constraint, and after choosing non-negative weights ( and ( for the two constraints, we obtain the following surrogate relaxation problems :

(S+((, ())

max{ x0 = ex : (ax - (cx ( (a0 - (c0, x ( {0, 1}n}

(S-((, ())

min{ x0 = ex : (ax - (cx ( (a0 - (c0, x ( {0, 1}n}

As the surrogate functions v(S+((, ()) and v(S-((, ()) are homogeneous functions over R2+, we can restrict the search domain over a compact set, for example, by using the norm L1, the surrogate functions to be considered are v(S+((, (1-()) and v(S-((, (1-()) for ( ( [0, 1]. Moreover, since the surrogate function v(S+((, ()) is a quasi-convex function, thus for any ( ( [0, 1], we have v(S+((, (1-())  max{v(S+(1, 0)), v(S+(0, 1))} where 

S+(1, 0)
max{ x0 = ex : ax ( a0, x ( {0, 1}n} and S+(0, 1) max{ x0 = ex : cx ( c0, x ( {0, 1}n}.

The surrogate function v(S-((, ()) is a quasi-concave function, so we have

min{v(S-(1, 0), v(S-(0, 1))} v(S-((, (1-()), for any ( ( [0, 1]. 

In summary, for ( ( [0, 1], we have

min{v(S-(1, 0), v(S-(0, 1))} v(S-((, (1-()) v(BP-)  ex
and

ex  v(BP+)  v(S+((, (1-())  max{v(S+(1, 0), v(S+(0, 1))}.

The above illustration shows the relevance of Observation 3. One way to improve the bounds on the sum of the variables is to solve the corresponding duals of the above relaxations. More precisely we have

v(S-) v(BP-)  ex  v(BP+)  v(S+)

where 

(S+) min{ v(S+((, (1-()): ( ( [0, 1]} and (S-) min{ v(S-((, (1-()): ( ( [0, 1]}.

To solve these dual problems we can use one of the algorithms proposed by Glover (1965), Karwan-Rardin (1984), Freville-Plateau (1993), Hanafi (1993). For the multi-dimensional knapsack (MDK) problem where the right-hand sides a0 and c0 and the vectors a and c are non-negative, in spite of the trivial optimal solutions 0 and e for the surrogate problems S-(1, 0) and S+(0, 1), (i.e. v(S-(1, 0) = 0.0 = 0 and v(S+(0, 1)) = e•e = n), we do not necessarily have v(BP+) equals to v(S+(1, 0)).

Example C:

Consider the following surrogate relaxation of a zero-one MDK :

(BP+)
max
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10






s.t.
  x1 + 2x2 + 3x3 + 4x4 +   5x5 +   6x6 +   7x7 +   8x8 +   9x9 + 10x10  ≤ 12

2x1 + 2x2 + 2x3 + 2x4 + 10x5 + 10x6 + 10x7 + 10x8 + 10x9 + 10x10  ( 21

xj  {0, 1}
for j = 1, …, 10.







We have v(BP+) = 3, v(S+(1, 0)) = 4 and v(S+(0, 1)) = 10.

5. Nested Valid Inequalities

Valid inequalities are called Nested Cuts when two inequalities overlap in their unit coefficients only if the nonzero coefficients of one are contained in the other. More precisely, let Nk, k = 1, …, K, denote a collection of distinct nonempty subsets of N,  the subsets Nk are called nested sets if they satisfy the property 

For all k, k’ ( {1, …, K}, (k ( k’ and Nk(Nk’ (() ( (Nk(Nk’ or Nk’ ( Nk).

Let N be the index set of variables in the constraint ax  a0. As noted, the cover cut procedure  generates the valid inequality 
[image: image26.wmf]å

Î

N

j

j

x

 ≤ max{j : 
[image: image27.wmf]å

Î

N

j

j

a

≤ ao}. For each subset N’ of N, we consider the constraint a’x  a0 where the component a’j = aj, if j in N’ and 0 otherwise. By using this constraint we can generate new valid inequalities corresponding to upper bounds on sums of variables in N’. The valid inequalities on partial sums of variables in Nk are called nested inequalities if the subsets Nk are nested subsets.

Let Xk = (Xkl, Xk2, ..., Xkn) denote a zero-one characteristic vector associated with the subset Nk, which is defined by Xkj = 1 if j is in Nk, 0 otherwise. The nested property is equivalent to specifying that variables Xk satisfy:

For all p, q in N,  (p ( q and XpXq (1 ( (Xp ( Xq or Xq ( Xp).

5.1. Contiguous Inequalities

The simple types of nested inequalities where each is strictly “contained in” the next member of the progression, are called contiguous cuts. Specifically, the contiguous cuts with associated subsets Nk, k = 1, …, K, , satisfy the property N1(N2… ( Nk. 

Observation 4. It is possible to take account of dominance considerations by a simple check applied to consecutive contiguous cuts to reduce the collection of nested cuts generated. 
Illustration of Observation 4.

Let N be the index set of variables in the source constraint ax  a0. Two sets N and N’ are called adjacent sets if they differ only by a single element, i.e. N’ = N + {j°}. Define the vector a’ so that a’j = aj for j ( j° and a’j° = 0, and consider the corresponding constraint a’x  a0. Note that this latter constraint is a relaxation of the source constraint and the non-negativity constraint. According to Observation 2 if the coefficients are already ordered so that a1 ≤ a2 ≤ … ≤ an, we have:
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(7-a)
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(7-b)

It is easy to show that if k < j° then (’j = (j for j ≤ k, then the constraint (7-a) dominates the constraint (7-b). Otherwise (i.e. j° ≤ k), if the condition ((k+1 - aj° ≤  a0) is satisfied then we have (’k+1 ≤ ao and (’k+2 > ao so the constraint (7-b) again dominates the constraint (7-a). In the case ((k+1 - aj° >  a0)  we have (’k ≤ ao and (’k+1 > ao which imply that 
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 ≤ k – 1. This latter constraint (7-b) combined with the upper bound on xj° imply the constraint (7-a). This proves that only one of two adjacent nested cuts need be kept.

Osorio et al. (2002) propose an algorithm as a special case of an approach of Glover (1971) for generating contiguous cuts Nk = {k, k+1, …, n} for a 0-1 inequality ax ≥ a0. It is assumed, that the coefficients are already ordered so that a1 ≥ a2 ≥ …≥ an. 

Contiguous Nested Cuts Procedure:

Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj;

Let k = 1; k_last = 0;

For j = 1 to n do


if ((n - a0 < (j - (k-1){

while ((n - a0 < (j - (k)

k++;

if (k > k_last){


generate the cut 
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k_last = k;

}

}


Using the dominance between two consecutive contiguous cuts, we propose the following procedure. In this procedure we introduce a new variable called j_last to generate only the non dominate cuts. 
Improved Contiguous Nested Cuts Procedure:

Let (0 = 0 and for j = 1 to n do (j = (j-1 + aj;

Let k = 1; k_last = 0;
j_last =-1;

For j = 1 to n do


if ((n - a0 < (j - (k-1){

while ((n - a0 < (j - (k)

k++;

if (k > k_last){


if (j_last +1<j) generate the cut 
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;


k_last = k; 
j_last = j;

}

}
Example D:

Consider the following knapsack constraint :

95x1 + 92x2 + 87x3 + 80x4 + 78x5 + 72x6 + 61x7 + 54x8 + 52x9 + 30x10 ( 467.

The Contiguous Nested Cuts Procedure generates the following 6 cuts :

x1 + x2 + x3 ( 1

x1 + x2 + x3 + x4 ( 2

x1 + x2 + x3 + x4 + x5 ( 3

x1 + x2 + x3 + x4 + x5 + x6 + x7 ( 4

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ( 5

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 ( 6

Our Improved Contiguous Nested Cuts Procedure generates only two non-dominated cuts.

x1 + x2 + x3 ( 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 ( 4

The Figure 1 shows the progression of the number of nested cuts generated by the two procedures as a function of the number of variables. The coefficients of the source constraint are generated randomly by taking a0 = ((ae  with ( close to 0.5. 
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Figure 1 : Comparison of the two procedures for generating nested cuts
5.2. Mixed Nested Inequalities

Observation 5.  Different nested inequalities are produced by using different forms of the mixed surrogate constraint, where different sets of coefficients are selected to be negative. Moreover, the nested inequalities generated directly from the form of the mixed surrogate that does not complement the problem variables includes all of those generated in the Osorio et al. paper, plus additional nested inequalities, thus producing a system that dominates the system previously obtained.  Finally, this expanded system can be generated with the same computer code used to generate the previous smaller system.

Observation 5 is important for the harder problems where the nested inequalities are the major contribution to improving the solution process.

Illustration of Observation 5.

We show that the nested sum inequalities obtained from the mixed surrogate constraint in the form that has both negative and positive coefficients include all of those generated in Osorio et al., and also include others.

Write the mixed surrogate constraint that includes the negative coefficients in the form

∑ (jxj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o

where N* is the index set for the negative coefficients. The previous approach replaced the coefficients j: j ε N* with 0's to generate nested inequalities from the source inequality

∑ (0xj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o*                                         (8-a)

where o* = o – ∑ (j: j ε N*). 

The first nested inequality from this ≤ source inequality is an "overall inequality" 

∑ (xj: j ε N) ≤ RHS(N).

The new nested inequalities that are omitted in Osorio et al. (2002) are those that involve partial sums over j ε N* of the following form

∑ (xj: j ε N*(1)) ≥  RHS(1)

∑ (xj: j ε N*(2)) ≥  RHS(2)

 

∑ (xj: j ε N*(3)) ≥  RHS(3)

 

∑ (xj: j ε N*(4)) ≥  RHS(4)

       


etc.

Here N*(1) = N*, and in turn N*(2) removes the index for the smallest absolute value coefficient  associated with N*(1), then N*(3) removes the index for the smallest absolute value coefficient  associated with N*(2), and so on.

It is easy to identify the rule to generate these nested inequalities directly, but they can also be generated using the rule already applied to generate nested inequalities from the ≤ source inequality, simply by complementing the variables. The first step begins with the source

∑ (jxj: j ε N)  ≤ o


                                                      

which is implied by the original mixed surrogate constraint. Then we complement the variables (yj = 1 – xj) for j ε N* to obtain the modified source

∑ (j*yj: j ε N*)  +  ∑ (jxj: j ε N – N*) ≤ o*                                         (8-b)

where j* =  – j > 0  and, as before,  o* = o – ∑ (j: j ε N*).

This inequality can also be obtained from the source inequality (8-a) used in Osorio et al. that drops the negative coefficients. Recall that this inequality is

∑ (0xj: j ε N*) + ∑ (jxj: j ε N – N*) ≤ o**                                         (8-c)                                        

Hence in the example (A), where o* = o – ∑ (j: j ε N*). = – 5  – (– 11)  = 6, the inequality (8-a) is given by

      0x1 +  0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ 6.                           
(8-d)

It is easy to see that the upper bound on the sum of all variables is exactly the same as given above. In that the present case this inequality dominates all other nested inequalities from the source (8-a) used in Osorio et al. until reaching the subsets of variables whose coefficients are positive – i.e., in (8-d) it dominates all nested inequalities until reaching those whose index sets are {8, 9, 10}, {9, 10} and {10}. (It dominates the inequality over the indexes {7,8,9,10} because this has the same right hand side k as the bound on all the variables.)  It is naturally important to include this inequality on the sum of all variables among the nested inequalities, although it is not in general true that the inequality will dominate a string of successive inequalities as in the present example

Inequalities missing from the earlier implementation:

To generate the ≥ inequalities that are missing from the Osorio et al. implementation, we start from the source inequality (8-d), and consider only the negative coefficients.  Thus (8-d) and (1-c) or (1-d) imply the following constraint 

(-(e – x) ≥ (-e - (o







(8-e)
Clearly this inequality is implied by (8-e), and it is the “missing part” of the Osorio et al. development.

The new inequalities that are also missing from the Osorio et al. implementation, can be obtained directly from the source inequality (8-d), where we consider negative and positive coefficients. Recall that both inequalities (8-c) and (8-e) are derived from (8-d), and that (8-d) is stronger than (8-c) or (8-e).

General Nested Cuts:

Assume that the vectors (- and (+ can be decomposed as follows: (- = (1- + (2- and (+ = (1+ + (2+. Then the source inequality (4) can be rewritten as 

(1-x + (2-x + (1+x + (2+x ≤ (o







This latter constraint can in turn be rewritten as: 

-(1-(e – x) + (2-x + (1+x + (2+x ≤ (o - (1-e




(8-f)
From the inequality (8-f) we can derive different new relaxations of this constraint combined with the original constraint such as (1-c) or (1-d). This combination can provide the following source constraints 

(2-x + (+x ≤ (o - (1-e




(8-g)
(2-x + (1+x ≤ (o - (1-e




(8-h)

(-x + (1+x ≤ (o





(8-i)
Remarks : 

1) In the constraints (8-g:i)  we can interchange (1- with (2- and/or  (1+ with (2+.

2) Osario et al. considered only the case (8-g) with (2- = 0.

Example B:

To give a numerical example, we start with the mixed inequality, in the form of (4):

– 4x1 – 3x2 – 2x3 – 2x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ – 5

(B1)

The inequality (8-c), which drops the negative coefficients, is given by

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 2x7 + 2x8 + 3x9 + 4x10 ≤ 6.

(B2)

It is easy to see that the ≤ nested inequalities that have already been generated from the source (B2) in the Osorio et al. implementation, are

x9 + x10 ≤ 1








(B3a)

x7 + x8 + x9 + x10 ≤ 2







(B3b)

The “missing part” of the Osorio et al. development are the ≥ nested inequalities derived from (8-e), which corresponds to the following inequality

4x1 + 3x2 + 2x3 + 2x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 + 0x10 ≥ 5

(B4)

Using the preceding procedure with the source constraint (B4) gives rise to the inequalities

x1 + x2 ≥ 1








(B5a)

x1 + x2 + x3 + x4 ≥ 2







(B5b)

The new ≤ and ≥ nested inequalities are derived directly from the source (B1) by complementing the variables with negative coefficients, to give

x1 ≥ x10









(B6a)

x1 ≥ x9 + x10








(B6b)

x1 + x2 + x4 ≥ 1 + x9 + x10






(B6c)

x1 + x2 + x3 + x4 ≥ 2 + x9 + x10






(B6d)

x1 + x2 + x3 + x4 ≥ 1 + x7 + x8 + x9 + x10




(B6e)

Note that the inequalities (B3a) and (B5b) are implied by the inequalities (B6b) and (B6d) respectively. We also observe that the nested inequalities (B6) can dominate both of the nested constraints (B3) and (B5) if all the coefficients of the source constraint (4) are different, since, after complementation, several variables in the transformed source constraint have the same coefficient. To illustrate, in order to use the procedure directly, we transform the source constraint (B1) into a ≥ constraint with only positive coefficients as follows :

4x1 + 3x2 + 2x3 + 2x4 + 0x5 + 0x6 + 2(1 - x7) + 2(1 - x8) + 3(1 - x9) + 4(1 - x10) ≥ 16

(B1)

Considering all the orderings of the variables having the same coefficients, we can also generate the new nested constraints:

x1 + x2 ≥ 1 + x10







(B6f)

x1 + x2 + x3 ≥ 1 + x9 + x10






(B6g)

x1 + x2 + x3 + (1 - x7) ≥ 1 + x9 + x10





(B6h)

x1 + x2 + x3 + (1 – x8) ≥ 1 + x9 + x10





(B6i)

x1 + x2 + x3 + (1 - x7) ≥ 1 + x7 + x8 + x9 + x10




(B6j)

x1 + x2 + x3 + (1 – x8) ≥ 1 + x7 + x8 + x9 + x10




(B6k)

The collection of the nested constraints (B6) dominates the nested constraints (B3) and (B5).
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		750		322		0		179		0		0.5559006211

		800		344		0.01		194		0		0.5639534884

		850		368		0		205		0		0.5570652174

		900		380		0		223		0.01		0.5868421053

		950		407		0.01		219		0		0.5380835381

		1000		430		0		236		0		0.5488372093

		1050		455		0		258		0		0.567032967

		1100		474		0.01		264		0		0.5569620253

		1150		496		0		269		0		0.5423387097

		1200		509		0.01		286		0		0.5618860511

		1250		530		0		295		0		0.5566037736

		1300		568		0		312		0.01		0.5492957746

		1350		574		0		326		0		0.5679442509

		1400		600		0.01		345		0		0.575

		1450		627		0		346		0		0.5518341308

		1500		639		0		371		0		0.5805946792

		1550		665		0		369		0		0.554887218

		1600		688		0		394		0.01		0.5726744186

		1650		702		0		399		0		0.5683760684

		1700		726		0		418		0.01		0.5757575758

		1750		750		0		414		0.01		0.552

		1800		781		0		435		0.01		0.556978233

		1850		792		0		452		0.01		0.5707070707

		1900		802		0.01		457		0.01		0.5698254364

		1950		844		0.01		470		0		0.5568720379

		2000		847		0.01		484		0		0.5714285714

		2050		867		0.01		499		0.01		0.5755478662

		2100		898		0.01		508		0.01		0.565701559

		2150		930		0.01		517		0.01		0.5559139785

		2200		947		0.01		534		0.01		0.5638859556

		2250		962		0.01		544		0.01		0.5654885655

		2300		978		0		558		0.01		0.5705521472

		2350		1012		0.01		562		0.01		0.5553359684

		2400		1031		0.01		579		0.01		0.5615906887

		2450		1039		0.01		600		0.01		0.5774783446

		2500		1073		0.01		591		0.01		0.5507921715

		2550		1094		0.01		612		0.01		0.5594149909

		2600		1109		0.01		622		0.01		0.5608656447

		2650		1141		0.01		649		0.01		0.5687992989

		2700		1157		0.02		662		0.01		0.5721694036

		2750		1169		0.01		673		0.01		0.5757057314

		2800		1200		0.01		667		0.02		0.5558333333

		2850		1215		0.01		662		0.02		0.5448559671

		2900		1240		0.01		706		0.01		0.5693548387

		2950		1269		0.01		717		0.02		0.5650118203

		3000		1270		0.01		720		0.02		0.5669291339

		3050		1300		0.01		740		0.02		0.5692307692

		3100		1325		0.01		749		0.02		0.5652830189

		3150		1342		0.02		756		0.01		0.563338301

		3200		1369		0.02		772		0.02		0.5639152666

		3250		1381		0.01		781		0.02		0.565532223

		3300		1415		0.01		810		0.02		0.5724381625

		3350		1422		0.02		819		0.02		0.5759493671

		3400		1445		0.01		811		0.02		0.5612456747

		3450		1477		0.021		826		0.02		0.5592417062

		3500		1503		0.02		846		0.02		0.5628742515

		3550		1528		0.02		869		0.02		0.5687172775

		3600		1533		0.02		861		0.02		0.5616438356

		3650		1578		0.02		870		0.02		0.5513307985

		3700		1583		0.02		885		0.02		0.5590650663

		3750		1603		0.02		921		0.02		0.574547723

		3800		1632		0.02		923		0.02		0.5655637255

		3850		1640		0.03		913		0.02		0.5567073171

		3900		1666		0.02		953		0.03		0.5720288115

		3950		1697		0.02		970		0.02		0.5715969358

		4000		1713		0.03		967		0.02		0.5645067134

		4050		1727		0.02		976		0.03		0.5651418645

		4100		1746		0.03		1013		0.02		0.5801832761

		4150		1769		0.02		1014		0.03		0.5732052007

		4200		1800		0.03		1005		0.03		0.5583333333

		4250		1800		0.02		1030		0.03		0.5722222222

		4300		1844		0.03		1038		0.03		0.5629067245

		4350		1867		0.03		1047		0.03		0.5607927156

		4400		1900		0.03		1058		0.03		0.5568421053

		4450		1883		0.03		1112		0.03		0.5905469995

		4500		1914		0.03		1072		0.03		0.5600835946

		4550		1957		0.03		1092		0.03		0.5579969341

		4600		1950		0.03		1117		0.03		0.5728205128

		4650		1995		0.03		1133		0.03		0.5679197995

		4700		2031		0.04		1136		0.03		0.5593303791

		4750		2032		0.03		1139		0.041		0.5605314961

		4800		2046		0.03		1181		0.04		0.5772238514

		4850		2084		0.03		1157		0.04		0.5551823417

		4900		2100		0.04		1161		0.03		0.5528571429

		4950		2107		0.04		1187		0.03		0.5633602278

		5000		2143		0.04		1204		0.04		0.5618292114

		5050		2175		0.03		1218		0.04		0.56

		5100		2179		0.04		1241		0.04		0.5695273061

		5150		2211		0.04		1238		0.04		0.5599276346

		5200		2242		0.04		1258		0.04		0.5611061552

		5250		2262		0.04		1274		0.04		0.5632183908

		5300		2253		0.04		1279		0.04		0.5676875277

		5350		2287		0.05		1327		0.04		0.5802361172

		5400		2301		0.04		1315		0.04		0.5714906562

		5450		2324		0.04		1323		0.04		0.5692771084

		5500		2391		0.05		1315		0.04		0.5499790882
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