
J Heuristics (2007) 13: 505–541
DOI 10.1007/s10732-007-9029-z

Infeasible/feasible search trajectories and directional
rounding in integer programming

Fred Glover

Received: 17 March 2005 / Revised: 6 June 2006 /
Accepted: 22 August 2006 / Published online: 10 May 2007
© Springer Science+Business Media, LLC 2007

Abstract The notion that strategies in non-linear and combinatorial optimization can
benefit by purposefully and systematically navigating between feasible and infeasi-
ble space has been around for many years, but still is sometimes dismissed as having
little relevance for creating more effective methods. To reinforce the case on behalf of
approaches that endorse infeasible/feasible search trajectories, it is possible to formu-
late simple theorems disclosing useful properties of such trajectories in the context
of integer programming. These results motivate a closer examination of integer pro-
gramming search processes based on directional rounding processes, including a spe-
cial variant called conditional directional rounding. From these foundations a variety
of new strategies emerge for exploiting connections between feasible and infeasible
space.

Keywords Integer programming · Feasibility · Search trajectories ·
Adaptive memory

1 Introduction

A search strategy called strategic oscillation that shares its origins with tabu search
(TS) consists in following an organized process of moving back and forth across a
particular boundary or collection of boundaries commonly used to orient a search,
such as boundaries demarcating stages of construction or neighborhoods or func-
tional values. (See Glover 1977 and Glover and Laguna 1997, Chaps. 4 and 10.) One
of the most common types of boundaries used in strategic oscillation is the bound-
ary between feasible and infeasible regions, which is crossed in both directions as
a means of exploiting different criteria for evaluating moves, according to which of

F. Glover (�)
University of Colorado, Boulder, CO 80309-0419, USA
e-mail: fred.glover@colorado.edu

506 F. Glover

the regions is being visited and whether the search is approaching or receding from
the boundary. The relevance of inducing boundary crossing has also recently been
emphasized by Gendreau (2004).

In integer linear programming (ILP) there is a natural geometric motivation for
an oscillation about the feasibility boundary. This can be summarized by three basic
theorems about the ability to generate paths from a selected integer starting point
to an optimal solution. The ideas underlying these results are highly intuitive, yet
they pose provocative questions. More significantly, they motivate new strategies for
ILP problems, embodying a synthesis of concepts from evolutionary and adaptive
memory methods based on a process called directional rounding and, in particular,
a variant called conditional directional rounding.

2 Basic results

We write the ILP problem in the form

[ILP] Maximize xo = cx: Ax ≤ b, x ≥ 0 and integer.

The associated linear programming relaxation that drops the integer requirement on x

will be denoted by [LP].
Let P(x1, x2) denote a directed path from an integer point x1 to a second integer

point x2, generated by steps that change the value of just one variable at a time by +1
or −1. For convenience the path P = P(x1, x2) will also be treated as a collection of
the integer points that compose it. Attention is restricted to paths that are simple, i.e.,
that do not visit any point x ∈ P more than once.

We define the length L(P) of P = P(x1, x2) to be the number of steps taken
to reach x2 from x1, hence the number of integer vectors encountered on the path,
excluding x1. We identify the feasible region for the relaxed problem [LP] to be
the set of points F = {x: Ax ≤ b, x ≥ 0}, and denote its boundary by B(F). We also
assume that F is bounded, i.e., x ∈ F implies there is a finite U such that U ≥ x(≥ 0).

Denote the Euclidean (L2 norm) distance between two points x and x′, not neces-
sarily integer, by d(x, x′), and define D(x) = Min(d(x, x′): x′ ∈ B(F)), identifying
the shortest Euclidean distance from x to B(F). Finally, let D(P) = Max(D(x),

x ∈ P), thus identifying the greatest distance D(x) of any integer point on P to the
boundary of the feasible region.

As a point of reference, we let D0 represent the Euclidean distance of the point
x = (0,0, . . . ,0) from the point x = (1,1, . . . ,1), hence D0 = n.5 where n denotes
the dimension of x. When we speak of rounding a solution x, we refer to a vector
produced by rounding each fractional (non-integer) component xj of x to one of its
adjacent integer values. For the results below, we assume that [ILP] has at least one
feasible integer solution. Justification of the theorems and an expanded discussion of
their implications is provided in the Appendix.

Theorem 1 (Infeasible trajectory theorem) Let x0 be any non-integer point on B(F)

and let x1 be an integer point in infeasible space obtained by some rounding of x0.
Then there exists a path P = P(x1, x2) to an optimal solution x2 of [ILP], where
D(P) ≤ D0 and each x ∈ P except for x = x2 also lies in the infeasible space.

Infeasible/feasible search trajectories and directional rounding 507

The assumption that P is simple implies it does not cross over itself, but it can
cross over the feasible boundary, jumping from one side of F to the other. A con-
spicuous and noteworthy feature of this theorem is the asymmetric roles it assigns
to feasibility and infeasibility, as attested by the observation that there is no similar
theorem about a path that lies within feasible space. Clearly, if the path starts from
a feasible point, there may be no way to stay feasible at each step and generate a
trajectory to an optimal solution.

The inequality D(P) ≤ D0 gives a relatively loose bound on the distance of P

from the feasible boundary and tighter bounds under various conditions are clearly
possible. Certainly there are ways to round x0 to be closer to B(F) than a distance
of D0, but it is less easy to identify what these may be under the assumption that x1

is infeasible. More interestingly, the fact that the distance to B(F) from the next-to-
the-last point on P is at most 1, and the distance to B(F) from the point immediately
preceding is at most 2, and so on, invites speculation about conditions that may afford
a stronger statement about the behavior of a “boundary hugging” path. It is also of
interest to ask whether a path P can be generated whose distance from B(F) follows
some pattern of alternating monotonicity, although it is easy to demonstrate that the
path cannot be assured to grow closer to B(F) on every step.

The preceding theorem is not our ultimate concern, however. In the spirit of strate-
gic oscillation, there is no reason to forego moving into the feasible space by wait-
ing until the last moment to cross the feasibility boundary. In this regard, we can
state a stronger result. Define D∗ = D0/2, identifying the Euclidean distance of
the point x = (.5, .5, . . . , .5) from the point x = (0,0, . . . ,0) (or equivalently from
the point x = (1,1, . . . ,1)). Note that if x′ is the integer neighbor of an arbitrary
point x obtained by nearest integer rounding, then d(x, x′) ≤ D∗, and it follows that
D(x1) ≤ D∗ if x1 results by a nearest integer neighbor rounding of a point x0 on the
boundary of F .

Theorem 2 (Boundary hugging infeasible/feasible trajectory theorem) Let x0 be any
non-integer point on B(F) and let x1 be an integer point in feasible or infeasible
space obtained by any rounding of x0 that yields D(x1) ≤ D∗. Then there exists a
path P = P(x1, x2) to an optimal solution x2 of [ILP] such that D(x) ≤ D∗ for each
x ∈ P . In addition, such a path can be identified for which L(P) ≤ L(P ′) for every
path P ′ generated by Theorem 1.

The concluding remark of the preceding result says that the shortest path by Theo-
rem 2 is shorter (or no longer) than the shortest path generated by Theorem 1. Again,
a stronger result about the distance of points on P from B(P) would be interesting
to identify.

However, this theorem is still not as encompassing as might be desired. A better
result for search purposes can evidently be stated as:

Theorem 3 (Relaxed infeasible/feasible trajectory theorem—boundary hugging from
the infeasible side) Let x0 be any non-integer point on B(F) and let x1 be an inte-
ger point in feasible or infeasible space obtained by any rounding of x0 that yields
D(x1) ≤ D∗. Then there exists a path P = P(x1, x2) to an optimal solution x2 of

508 F. Glover

[ILP] such that D(x) ≤ D∗ for each x ∈ P that lies in the infeasible region. More-
over, such a path can be identified that satisfies L(P) ≤ L(P ′′) for every path P ′′
generated by Theorem 2.

There are some subtleties about the trajectories identified in these theorems that
deserve closer attention. For example, I suspect the paths for Theorems 2 and 3 can
be structured so that they always cross from infeasible space to feasible space when
such a move is available, while still maintaining their stated properties and without
increasing the length of a shortest path. However, such a claim would require some
added sophistication to establish. Another question would be whether such properties
are shared by a path that always proceeds to a local optimum in the feasible space,
before crossing into infeasible space. Most likely such a “piece-wise locally optimal”
trajectory would at least be compatible with identifying a path of shortest length.
A related question that springs to mind is whether the foregoing properties are com-
patible with the situation where P is directionally (component-wise) monotonic, i.e.,
where the value of any given variable is non-decreasing or non-increasing throughout
successive points in the path.

Apart from a quest for such refinements, the preceding results provide an added
rationale for a search process that does not hesitate to cross the boundary between
feasible and infeasible space. However, it would be unsatisfying to stop here, with-
out considering possible mechanisms for generating such search paths, to provide
algorithms for locating feasible and optimal ILP solutions.

3 Algorithms

We confront the challenge of generating a “good” path P leading to an optimal so-
lution by adopting a design that repeatedly passes in and out of feasible continuous
space, and uses the geometry of this space to seek feasible integer solutions. Simul-
taneously, we use information derived from integer points that are not feasible to
determine new ways to access the feasible region, creating an oscillation across the
boundaries both of LP feasibility and integer feasibility. As integer feasible solutions
are found, the search for optimality is additionally guided by imposing inequalities
that constrain F more tightly.

3.1 Directional rounding

A natural way to generate trajectories that are influenced by the geometry of the
feasible space is to employ the idea of directional rounding (Glover 1995; Glover
and Laguna 1997; Lokketangen et al. 2000). We examine the fundamental ideas from
a slightly different perspective here than adopted in other developments, as a basis
for introducing additional strategies that have not previously been joined with these
ideas.

3.1.1 Basic concepts

Directional rounding operates on two points, an initiating point x0 and a focal
point x′, to generate a resultant integer point x′′. We assume the inequalities defining

Infeasible/feasible search trajectories and directional rounding 509

F imply integer bounds for each xj given by Uj ≥ xj ≥ Lj , where Uj can be ∞ if no
finite bound is implied. (The lower bound Lj is included as being possibly different
from 0, because we will later be concerned with augmenting the inequalities defining
F to incorporate more restrictive bounds.) Relative to a selected focal point x′, let vj

and vj + 1 denote integer values that bracket the value of x′
j , taking vj = x′

j if x′
j

is integer. Then we define L′
j = Max(Lj , vj) and U ′

j = Min(Uj , vj + 1). (Hence L′
j

and U ′
j are the same as the integers vj and vj + 1 adjacent to x′

j unless x′
j violates

one of its bounds.) Based on these definitions, the resultant integer point x′′ created
by directional rounding is given by x′′

j = L′
j if x′

j ≥ x0
j and x′′

j = U ′
j otherwise.

In the typical case, x0 is taken to be an optimal extreme point solution to [LP], and
the focal point x′ is selected as a point on a (half) ray of the LP cone whose vertex is
at x0. Assuming that [LP] is solved by an extreme point method, the ray can be deter-
mined by taking a convex combination of the updated LP columns corresponding to
the current non-basic variables. Denoting the resulting convex combination as the col-
umn vector D, the ray can be represented as the set of points {x = x0 + Du: u ≥ 0},
where u is a scalar. (A special case for generating D, where the LP basis represen-
tation of x0 is primal degenerate, is discussed in Sect. 5.) We normally assume x0 is
not integer feasible, or else it would be optimal for [ILP] and there would be no need
to search for an optimal solution.

Any selected focal point x′ on the ray given by {x = x0 + Du: u ≥ 0} is feasi-
ble relative to the inequalities of F that define x0 as an extreme point solution. All
points x′ on the ray will produce resultant directionally rounded points x′′ whose
components x′′

j successively increase or successively decrease (depending on j) as
u increases, subject to bounding x′′

j by Uj or Lj . Consequently, all possible integer
solutions x′′ produced by directional rounding relative to points on the ray can be
identified, in sequence, starting from an integer point adjacent to x0, by a simple se-
ries of calculations that give the breakpoint values of u at which the value of some
L′

j or U ′
j will change (Glover and Laguna 1997).

3.1.2 Edges and centers

A key motive for directional rounding is that every feasible integer point lies on some
ray within the LP cone. In the 0–1 case, every focal point x′ on such a ray will
cause x0 to directionally round to the same resultant point x′′, which is the targeted
integer feasible point (that is, the 0–1 point that the ray intersects). For general integer
variables, every point on a segment of the ray will directionally round to the targeted
point. Moreover, there is a collection of rays defining a sub-cone within the LP cone
that will similarly contain segments having this property.

For these reasons, it is useful to consider edges that consist of the intersection of
rays with the feasible LP region, i.e., line intervals of the form [x0, xB], where xB

is the point on the ray that lies farthest from x0 within the feasible region, hence
lies on the boundary B = B(F). If the feasible region is unbounded and the ray is
infinite, we arbitrarily restrict xB to lie at some finite distance from x0. Every point
on [x0, xB] is LP feasible, and disregarding the unbounded case, all points outside the
interval [x0, xB] are infeasible. The point xB is easy to identify, by a calculation that
identifies the largest value of the scalar u such that the point x = x0 + Du satisfies
the problem constraints.

510 F. Glover

Intuitively it seems reasonable that the center xc of an edge [x0, xB], which lies
more fully “inside” F than other points on the edge, is a good candidate for a focal
point x′ that is likely to round to a feasible integer solution. Intuition can be mis-
leading, of course, and in the case of 0–1 problems it is easy to see that all points on
[x0, xB] directionally round to the same 0–1 solution for u > 0, since by x = x0 +Du

if a component Dj of D is positive xj will directionally round to 1 and if it is negative
xj will round to 0. (A point can also directionally round not just to a single solution
but to a set of solutions in the case where Dj = 0, since then xj = x0

j and both direc-
tions of rounding are equally admissible. In such cases it is useful to let the values of
Dj in other rays create a weighted vote for the sign of Dj in the vector D under con-
sideration.) But centers retain their intuitive merit for more general integer variables,
and for additional kinds of rounding, such as nearest neighbor rounding and condi-
tional directional rounding as treated in Sect. 2.2. They also serve as a foundation for
creating new edges to probe the search space.

3.1.3 Derived edges and centers

The idea of directional rounding originated as a way of exploiting the evolutionary
scatter search approach, which comes from the same source as strategic oscillation.
In its initial form, scatter search employs linear combinations of points to generate
weighted centers of sub-regions, and compounds these by generating weighted cen-
ters of centers, and so forth, accompanied by a generalized rounding process to assign
integer values to integer variables (Glover 1977). Directional rounding emerged to
meet the goal of identifying a simple version of rounding that has useful properties.

From the scatter search perspective, it is natural to take advantage of centers of
edges to create derived edges and centers. We illustrate such a process in the diagram
of Fig. 1, which may be conceived to represent a 2-dimensional cross section of a
feasible LP region in n-space. In this diagram, xB1 and xB2 are two boundary points
generated by extensions of rays from x0 to create edges [x0, xB1] and [x0, xB2]. (The
three points x0, xB1 and xB2 therefore determine the two dimensions from which the
cross-section shown in Fig. 1 is derived. Unlike x0, the other corner points of this fig-
ure will not in general correspond to extreme points of F .) Upon identifying centers
xc1 and xc2 of these two edges, a line x = xc1 + (xc2 − xc1)u is constructed through
these centers. A new derived edge [xBc1, xBc2] is then obtained by minimizing and
maximizing u, subject to keeping x within F , to identify the boundary points xBc1

and xBc2. This derived edge is shown in Fig. 1 as the dotted line passing through the
centers xc1 and xc2.

Continuing the process at this second level, the next step is to locate the center xd

of this derived edge, and to create a ray x = x0 + (xd − x0)u from x0 through xd ,
thus identifying the new boundary point xBd (obtained by maximizing u subject to
keeping x within F) and creating a second derived edge [x0, xBd], also shown as a
dotted line.

Additional derived edges [x0, xBc1] and [x0, xBc2] that may be of interest are
likewise shown in Fig. 1. The centers xc1, xc2 and xd created by this process are
natural candidates for focal points for both directional and nearest neighbor rounding,
and centers of other edges indicated may also be considered. Refinements of this type
of construction are examined in Sects. 3 and 5.

Infeasible/feasible search trajectories and directional rounding 511

Fig. 1

3.1.4 A first approach

We examine two main approaches for exploiting these ideas. The first approach, fol-
lowing, is a basis for creating a first integer point x1 on a path P , or more generally,
a set of such first points to be examined sequentially or in parallel. This procedure is
then embedded in the second approach described subsequently.

Approach 1

1. Generate convex combinations of the non-basic columns associated with the so-
lution of [LP], to produce a collection of D vectors and associated line segments
[x0, xB] to serve as the source of focal points x′ for directional rounding. Incor-
porate centers and derived edges as an additional source of focal points.

2. Identify one or more candidate focal points from each chosen line segment, by
selecting centers or by selecting among points sampled on the line segment.

3. Select a subset of focal points x′ for directional rounding from the collection of
candidate points identified in Step 2 and place the resultant points x′′ in a set X′′.

Within Step 2, the points examined on the line segment may be obtained by com-
puting the breakpoint values of the implicit parameter u that yield distinct integer
solutions, or more simply by sampling p points from the segment at intervals 1/p,
2/p, 3/p, . . . , along its length. The choice criterion within Step 2 for selecting among
focal points can be based on using an evaluation that favors points that are closer to

512 F. Glover

being integer, breaking ties in favor of larger x0 values. An alternative is to combine
Steps 2 and 3 by immediately identifying the x′′ point associated with each x′ exam-
ined in Step 2, and evaluating x′′ based on an LP infeasibility measure and on its xo
value, to produce the set X′′. As previously noted, nearest neighbor vectors may also
be considered among the candidates for possible inclusion in X′′.

Considerations for creating D When forming the vector D as a convex combination
of updated non-basic columns derived from the current LP basis representation, it
is useful to differentiate columns associated with non-basic slack variables for the
inequalities defining F from the columns associated with non-basic variables that are
components of x. The reason for this stems from the fact that non-basic x variables
automatically receive integer-values as components of x0, and a number of these
may continue to receive these integer values in a feasible or optimal solution. Thus,
in the interest of a parsimonious search process, we begin by focusing on variables
xj that receive fractional values by the assignment xj = x0

j . This is facilitated by
starting with rays, and hence edges, defined relative to a D vector that is generated
by assigning 0 weights to most of the non-basic columns associated with integer
variables, allowing positive weights to be assigned only to columns associated with
non-basic slack variables and to a relatively small number of columns associated with
non-basic x variables, such as a subset of x variables having smallest reduced costs.
Non-basic slack variables for inequalities of the form xj ≤ Uj or xj ≥ Lj , for Uj

and Lj integer, are treated in the same manner as x variables, since they directly
yield integer values for the x variables when non-basic.

Such an approach has an additional advantage of reducing the amount of com-
putation to generate D, particularly for problems involving large numbers of integer
variables, many of which are likely to be non-basic. It is essential to allow for some
non-basic x variables to be considered in generating D, as in the extreme case where
Ax ≤ b embodies a collection of equality constraints for which no slack variables
exist.

This approach evidently runs the risk of excluding consideration of non-basic x

variables that will in fact receive positive values in an optimal solution. Refinements
that combat such a potential deficiency are discussed in Sects. 4 and 5. The risk of
excluding consideration of appropriate non-basic variables will also be offset by the
second of the two main approaches, described next.

3.2 Conditional directional rounding

The idea of generalized rounding in scatter search includes reference to conditional
(staged) procedures for applying a rounding process. In the present case we consider
a conditional process within the setting of directional rounding, utilizing the all-at-
once rounding process of Approach 1 as a means for generating integer trial solutions
and also as a foundation for selecting variables, one at a time, to be subjected to di-
rectional rounding. Evidently, it is appropriate to take account of conditional relation-
ships known from the problem structure even in the application of Approach 1, as in
the presence of 0–1 multiple choice constraints where rounding a particular variable
upward to 1 implies that all other variables in the same multiple choice set should be
rounded down to 0. We assume that such structure-based forms of conditionality are

Infeasible/feasible search trajectories and directional rounding 513

already embodied in the generation of points x′′ as candidates to include in the set X′′
in Approach 1.

From a broader perspective, however, we now consider a one-at-a-time process
that generates more complete information about the consequences of rounding a se-
lected variable in a chosen direction by the common approach of taking advantage of
LP relaxations. Consequently, we examine a step-wise process where each iteration
of generating the vector x′′ induces the current rounding of a particular fractional
variable xj by means of a branching inequality that is adjoined to the [LP] problem.
In this manner, implications of the selected rounding operation are generated by the
solution of [LP], and are taken into account by re-optimizing the current LP problem
before again invoking the directional rounding process of Approach 1. In turn, the
new application of Approach 1 after each re-optimization (or after a chosen number
of steps of re-optimization) gives a basis for creating additional all-at-once candidates
x′′ for X′′, which are used in the choice rules for selecting the next variable to round
by means of a branching inequality.

This conditional rounding approach gives an indirect way to modify the vec-
tors D used in directional rounding, based on information from the resultant integer
points x′′. Such a mechanism also changes the point x0 relative to which D is defined,
as a result of the change in [LP] produced by the addition of branching inequalities.

3.2.1 Flexible branching

Rather than use branching inequalities in the manner commonly employed in branch
and bound, we propose to manage them by the more flexible design employed in tabu
branching (see, e.g., Glover and Laguna 1997, Chap. 6). To facilitate this process, we
identify a simple scheme to track implications that result in compulsory branches at
various stages of the search.

Branches that are freely chosen during the search will be called independent
branches, and branches that are compulsory (such as those used to fix the values
of variables in 0–1 problems) will be called dependent branches. We assume that
compulsory branches identified by pre-processing are permanently included among
the constraints defining F , and hence are eliminated from consideration as a source
of dependent branches.

Branches generated in unbroken succession that are all independent or all depen-
dent are treated as a set of branches, without any implied ordering of the elements of
the set. The branch generation process is then viewed as composing an alternating se-
quence of these independent and dependent branch sets. Each independent and depen-
dent set of branches generated in this sequence receives a dependency marker, start-
ing by assigning a marker of 0 to members of the first set of independent branches.
When a new set of dependent branches is generated, the dependency marker is incre-
mented by 1, and all members of the dependent set therefore receive a marker whose
value is 1 larger than received by members of the preceding independent set. No
change is made to the marker when a new set of independent branches is produced,
and hence members of this set receive the same dependency marker as the members
of the preceding dependent set. All dependent branches having a dependency marker
larger than that of a given independent branch are said to be downstream of the in-
dependent branch. Similarly, all independent branches having a marker smaller than
that of a given dependent branch are said to be upstream of the dependent branch.

514 F. Glover

To make use of these conventions, we define a branch to be binding under the
following conditions: (a) relative to an optimal (primal feasible) LP basis, the slack
variable for the branch is non-basic with a positive reduced cost; (b) relative to a dual
feasible LP basis that discloses the absence of a feasible solution, the slack variable is
non-basic with a positive coefficient in an updated equation that signals infeasibility,
or else is basic in this equation (and hence is assigned a negative value). A branch is
defined to be non-binding if neither of these conditions holds. (Condition (b) will be
used later on only to identify binding variables, and it is unnecessary to generate all
equations identifying such variables.) Then the branching mechanism we employ is
governed by two stipulations:

(S1) Whenever an independent branch is reversed (replaced by its complementary
branch), all downstream dependent branches are dropped, thus removing their
inequalities from the set defining the current instance of [LP].

(S2) Whenever an independent branch becomes non-binding in an optimal LP so-
lution the branch is dropped, and all dependent branches downstream of this
inequality are re-labeled with a dependency marker that is 1 greater than the
marker of the independent branch most recently introduced.

The second of the foregoing stipulations places the re-labeled dependent branches
in the same set as those dependent branches that are immediately identified after
introducing the latest independent branch. The result may cause some independent
sets to merge into the same set, and the re-labeling can maintain the property that all
members of a common independent set are the same by the following simple device.
Identify the marker value m of the independent branch that is reversed and then re-
assign this value to the markers of all independent branches having markers greater
than m. Upon doing this, the remainder of stipulation (S2) reduces to specifying that
the markers of all dependent branches having marker values greater than m will be
assigned a value equal to m + 1. On the other hand, the stipulations for processing
the markers result in the same outcome if the rule for assigning markers is changed
to specify that each branch, at the time of its execution, is assigned a marker that is
1 larger than the largest currently existing marker, and each re-labeled dependency
marker similarly is assigned a new value 1 greater than the largest preceding marker.
This does not create an implicit ordering among members of the same dependent or
independent set, but the use of distinct marker values may be useful for other types
of bookkeeping operations.

Taken together, stipulations (S1) and (S2) provide a means to allow dependency
implications to be respected without having to rely on a tree search memory structure
and to abide by the limitations such a structure imposes on the search. Stipulation
(S2) is not essential for 0–1 problems, but it is useful for maintaining an emphasis
on influential branches. In addition to these two primary stipulations, we identify two
supplementary stipulations in Sect. 4.2 that yield interesting properties for the result-
ing branching options, including the property that a particular restricted application
of the resulting rules will produce the same choices provided by branch-and-bound,
hence producing a search structure that includes branch-and-bound as a special case.

To complete the preliminaries for describing Approach 2, let x∗ denote the best
integer feasible solution currently found and let x∗

o = cx∗ identify the associated ob-
jective function value, where x∗

o = −∞ until a feasible integer solution is identified.

Infeasible/feasible search trajectories and directional rounding 515

We assume the problem [LP] incorporates the inequality xo ≥ x∗
o + ε, for a small

value of ε, to render an integer solution infeasible if it does not improve upon x∗.

Approach 2

1. Apply Approach 1 to produce a set X′′ of integer trial points x′′.
2. Relative to the solution x0 of the current instance of [LP], let J 0 = {j : x0

j is

fractional}, and for each j ∈ J 0, define V (j) = {v: x′′
j = v, x′′ ∈ X′′}, thus identi-

fying the set of integer values v received by xj over the solutions in X′′. Then let
v∗(j) = Max(v: v ∈ V (j)), and select h = arg max(v∗(j): j ∈ J 0), identifying
the index h for the variable that yields the largest v∗(j) value.

3. Impose an independent branching inequality for xh as follows:

xh ≥ v∗(h) if v∗(h) > x0
h,

xh ≤ v∗(h) if v∗(h) < x0
h.

4. Re-optimize the resulting problem [LP] and impose any compulsory branches that
may result (repeating the re-optimization as new compulsory branches are intro-
duced).

5. If [LP] has no feasible solution, go to Step 6. If the LP solution x0 is integer
feasible (and hence qualifies as a new best solution x∗), update x∗

o to render this
solution infeasible and likewise go to Step 6. Otherwise, drop any independent
branches that become non-binding and return to Step 1 to generate new candidate
integer vectors by Approach 1 relative to the current x0 and its associated LP cone.

6. Select an independent branching inequality that is binding in the currently opti-
mal LP basis or in the dual feasible basis that identifies infeasibility. Reverse the
inequality (i.e., replacing xh ≥ v∗(h) by xh ≤ v∗(h) − 1 or replacing xh ≤ v∗(h)

by xh ≥ v∗(h) + 1), and drop all downstream dependent branching inequalities.
Then re-optimize the resulting [LP] problem, and return to Step 4.

The method may terminate either in Step 1 or in Step 4 after a chosen number of
iterations. To control computational effort, it is generally prudent to limit the number
of points included in the set X′′ identified in Step 1.

Although we will not go into detail here about alternatives for using adaptive mem-
ory to guide the foregoing process, we observe that a simple procedure for using such
memory is to modify the definition of v∗(j) in Step 2 by reference to recency and
frequency information to penalize or encourage choices in the usual manner of tabu
search. Additional observations about the use of adaptive memory are made in Sect. 5.

4 Preliminary refinements

There are several refinements of Approaches 1 and 2 of the preceding section that
provide opportunities to improve their performance. We identify a few preliminary
refinements in this section before progressing to an “outside-in” method for searching
the space that complements the directional orientation of Approach 2, Later we then
examine additional, more advanced refinements.

516 F. Glover

4.1 Choice criteria for branching

(a) A simple alternative for implementing Step 2 of Approach 2 replaces the set V (j)

by creating two “counters” N+(j) and N−(j), respectively giving the number of
solutions x′′ ∈ X′′ such that x′′

j > x0
j and such that x′′

j < x0
j . Then select a variable

xh for branching by defining h = arg max(| |N+(j)| − |N−(j)| |: j ∈ J 0). Finally,
v∗(h) is re-defined to be the “rounded up” value of x0

h if |N+(h)| > |N−(h)| and the
“rounded down” value of x0

h otherwise.
Auxiliary criteria for selecting the branching variable xh in this step can be based

on weighting the solutions x′′ ∈ X′′ according to an infeasibility measure, so that co-
ordinates of solutions with a greater infeasibility are given a smaller count in defining
the sets N+(j) and N−(j) than those of solutions with a smaller infeasibility mea-
sure. Adaptive memory guidance is implemented in this case by using recency and
frequency memory to modify these counts.

(b) A somewhat different criterion for selecting the branching variable xh can be
based on incorporating additional information from Approach 1. To do this a mem-
ory is maintained that identifies the smallest positive values of u for which the edge
extension x = x0 +Du assigns an integer value to each fractional-valued variable xj ,
j ∈ J 0. Variables that receive integer values on the edge extension for smaller values
of u may be tentatively viewed as those whose integer requirements are more easily
satisfied.

By this interpretation, the choice of xh may be biased in favor of variables that
more often fall in the “easily satisfied” category on the assumption that accurate
branching directions can be more readily identified for these variables, and once the
associated branches are introduced, the branching process will cause other variables
likewise to enter the “easily satisfied” category. Alternatively, it may be speculated
that handling the “harder to satisfy” variables first may cause the problem to collapse
and yield a residual problem that is easier to solve, in which case these variables
should be given higher priority to be selected for generating branches. If the truth lies
somewhere between these two extremes, a criterion aimed at choosing xh to be in a
category of “not too hard and not too easy to satisfy” may be preferable. Evidently,
this is a situation where empirical research should provide useful insights.

(c) To accelerate the conditional rounding approach, it is possible to use a form
of aggregate conditional rounding that rounds several variables simultaneously rather
than one-at-a-time. If the information from the all-at-once directional rounding of
Approach 1 discloses the existence of a subset of variables xj , j ∈ J , such that xj

takes a value x′′
j that is uniformly greater or uniformly smaller than x0

j in a signifi-
cant number of directionally rounded vectors x′′, then a brazen branching (|J |-at-a-
time rounding) step can be employed that imposes branches to establish the indicated
rounding direction for each variable in the subset.

A more stringent application of such a rule would require that the vectors x′′ yield-
ing a uniform rounding direction for xj are the same for all j ∈ J . Such a rule can
also be employed with nearest neighbor rounding.

4.2 Supplementary stipulations to manage the branching operations

In addition to the stipulations (S1) and (S2) for managing branching operations, two
others may be useful for structuring the search in certain applications:

Infeasible/feasible search trajectories and directional rounding 517

(S3) when an independent branch is reversed, re-label it as a dependent branch and
give it a dependency marker 1 larger than that of the largest current independent
marker;

(S4) independent branches that are non-binding may be retained in Step 5 of Ap-
proach 2 (in contrast to the current rule that derives from (S2)), subject to re-
taining the rule of Step 6 that requires an independent branch to be binding in
order to be chosen for reversal.

Although stipulation (S3) slightly decreases flexibility of the method, it provides a
compensating ability to avoid certain types of unwanted repetitions without the need
for a more complex memory structure. This stipulation does not require stipulation
(S4) to accompany it, but (S4) does require the accompaniment of (S3). When (S3)
and (S4) are employed together, the rules of Approach 2 include the rules of a back-
tracking branch-and-bound procedure as a restricted special instance.

The connection that causes these stipulations to provide a more general frame-
work than ordinary branch-and-bound is not immediately evident, and requires some
elucidation, because branch-and-bound methods for integer programming make no
reference to selecting branches that are binding at those junctures where they return
to a previous node of a search tree. However, the tree structure itself implies that such
a selection rule is employed when branches are enforced by solving LP relaxations.
When (S4) is added to (S3), Approach 2 permits non-binding branches to be retained
on condition of obeying such a selection rule regarding binding branches, although
without having to accept the restrictions of a tree structure.

To see the relevance of the rule requiring that reversed branches must be bind-
ing, other than the obvious motivation that such a rule limits attention to an influen-
tial subset of branches, consider the case where a variable xj progressively receives
tighter lower and upper bounds by branching, for example, L1

j < L2
j < · · · < Lr

j , and
U1

j > U2
j > · · · > Us

j (subject to Us
j ≥ Lr

j), where the branches may have been ex-
ecuted by interleaving the successive Lj and Uj bounds in any manner. Then it is
evident that the branch for one of the two final bounds Lr

j or Us
j must be reversed

before reversing earlier branches. It is also clear that this relationship is connected to
the fact that these latter branches render their predecessors non-binding. (Additional
subtleties are introduced by the role of dependent branches, and the need to integrate
(S3) with (S4).)

More generally, apart from the need to structure a search to heed such relation-
ships when currently non-binding branches are retained, each time a fractional vari-
able is chosen as the source of a branch in ordinary branch-and-bound, the branch
will become binding in the resulting re-optimized LP solution. (To be strictly accu-
rate, this statement must allow for primal degenerate cases where the reduced cost
for the branching slack variable may be 0 instead of strictly positive. In this sense
our definition of “binding” that focuses on the non-degenerate case is more limiting
than necessary, though it favors reversing branches that have a greater impact.) By
the same token, when the tree search approach requires the associated node to be
re-visited prior to its predecessors, it is assured that the branch chosen to be reversed
is binding. This applies even to a non-backtracking form of tree search, such as one
based on the best bound rule, since the recovery of an earlier node excludes subse-
quent branches from consideration, and hence the last active branch that leads to this

518 F. Glover

node is the one subject to change, and this branch is binding relative to the conditions
inherited by this node.

Among non-backtracking tree searches, we may note that a branch-and-bound
procedure based on a best bound rule partially resembles a classical intensification
approach in tabu search, which returns to promising regions to search them more
thoroughly. However, in the present setting, as in customary applications of tabu
search, such an intensification approach would retain a record only of highest quality
solutions and the branch structures that engendered them, rather than keeping track
of all potentially unexamined alternatives, in analogy to the best bound rule. The
fathoming of LP optima based on an xo bound occurs in both processes, but an inten-
sification strategy within Approach 2 would reasonably keep track only of solutions
that assign integer values to a significant number of the integer variables. Disregard-
ing the proximity to integer feasibility by a best bound rule, as such a rule is applied
in branch-and-bound, can generate distorted evaluations of solution quality at var-
ious nodes of the search tree. The structure of Approach 2, and of tabu branching
generally, makes it possible to maintain the search in regions that are substantially
closer to integer feasibility than achieved at most nodes of a branch-and-bound tree,
while providing access to non-tree moves that leapfrog over intermediate tree search
steps, corresponding to a process that jumps from a leaf node or near-leaf node of
one tree to a similar node in a tree of a different structure. (These connections and
the rationale behind them are discussed in Glover and Laguna (1997).) In the present
case, the incorporation of the stipulations (S3) and (S4) makes it possible to adopt a
tree search organization as closely as desired, while still offering a framework that
embraces more flexible choices.

4.3 Further exploitation of derived edges and centers

The directional rounding framework makes it possible to get additional mileage out
of the edges [x0, xB] generated. The process of identifying centers and derived edges
illustrated earlier in Fig. 1 can also be used to modify edges previously generated,
to replace them by others that may be suitable for creating points that are more dis-
persed throughout the space. This edge modification and replacement approach can
be illustrated by taking the diagram of Fig. 1 as a starting point. Once the initial de-
rived edge [xBc1, xBc2] is identified, together with its center xd , we may replace the
other two points xc1 and xc2 on this edge by new points that are more dispersed in
relation to xd . As shown in Fig. 2, below, this can be done by identifying the centers
xd1 and xd2 of the two half-edges [xd, xBc1] and [xd, xBc2]. Then the candidates for
focal points can be taken as xd , xd1 and xd2 rather than xd , xc1 and xc2, or as the
union of these possibilities.

In the general case, derived centers can be generated at various levels from con-
vex combinations of midpoints of derived edges, or of x0 and the boundary points
constituting the endpoints of these edges. Convex combinations that weight points
according to their distance from x0 and according to their objective function values
give a strategic bias to a search for feasibility and optimality. The accumulation of
new centers should normally be limited to points that are separated by some mini-
mum distance from current members of the collection.

Infeasible/feasible search trajectories and directional rounding 519

Fig. 2

A key question will be whether the creation of derived edges and centers is more
effective than undertaking to create a larger number of D vectors initially, and focus-
ing just on the points lying on the edges associated with these vectors. The answer
will depend on the ingenuity of the strategies that are applied in each case, but the
use of derived edges and centers affords useful intuition to guide the creation of such
strategies.

4.4 Mixed directional rounding

Given that nearest neighbor rounding has an element of intuitive support, it appears
relevant to consider a form of rounding that combines features of nearest neighbor
rounding with those of directional rounding. The following approach, which we call
mixed directional rounding, has this character. For a given focal point x′ on a ray
from x0, the basic idea is to perform nearest neighbor rounding on all components
x′
j of x′ that are relatively close to the associated values x0

j of x0, and to perform
directional rounding relative to remaining components of x′. The rationale is that
components x′

j that move farther away from the associated x0
j values are more likely

to give a valid indication that the rounding should indeed be made in their direction.
Thus, we select a threshold T and specify that x′

j should be rounded to its nearest

neighbor if |x′
j −x0

j | < T , and that x′
j should be directionally rounded (relative to x0

j)
otherwise.

The determination of T , and the distance from x0 that the focal point x′ is selected
to lie, should be interrelated. In particular, in one variant we propose that x′ be located

520 F. Glover

far enough along the ray from x0 so that a chosen fraction f of the fractional variables
in the solution x = x0 have attained an integer value, or have gone beyond an in-
teger value, in the resulting vector. (Examples that come to mind are f = .2, .3, .5
or .7.) But another variant derives from the intuitive argument that nearest neighbor
rounding should in most cases be done in relation to components of x0 rather than
components of x′, which will occur if x′ is taken close enough to x0 on the ray.
These two different versions can be reconciled by a merged rule that first identifies
which components x′

j of x′ will constitute the chosen fraction that are directionally

rounded, and then selects x′ to be close to x0, so that a component x′
j chosen to be di-

rectionally rounded will be transformed into a nearest neighbor of x0
j in a directional

sense, while each remaining components will be transformed into a nearest neigh-
bor of x0

j without regard for direction. A simpler rule that adheres to the use of T

as initially specified would likewise choose x′ close to x0, but would select T based
on the fraction of variables that are directionally rounded, rather than pre-specifying
the identity of variables to be directionally rounded based on the somewhat different
criterion that these variables will attain or pass beyond an integer value if x′ were to
be located farther out along the ray.

4.5 Diversification by reference sets

A useful way to take further advantage of the connections to scatter search is to make
use of a reference set R consisting of points that are preferred candidates to launch
new searches. For increased generality, we consider the optimization problem

P(x): Maximize f (x) subject to x ∈ X.

The objective function f (x) may be nonlinear and X may be defined by feasibility
requirements that derive from nonlinear constraints and compel only some, but not
necessarily all, of the components of x to be integer. We continue to suppose that
F is a convex feasible region capable of being expressed by linear programming
constraints, and will assume that x ∈ F is a relaxation of the requirement x ∈ X

(hence X ⊆ F). We desire to generate the reference set R by populating it with chosen
elements of F , or more precisely, with chosen elements of a subset F ′ of F , whose
members x′ ∈ F ′ have been generated to provide candidate points to initiate future
phases of search. Since the requirement x ∈ X may be somewhat stringent, as where
it may be difficult to find integer feasible solutions to discrete problems, we allow x′
to be evaluated by reference to a penalty function f ∗(x) that is the same as f (x) for
x ∈ X, but that yields f ∗(x) < f (x) for solutions x /∈ X. In addition, we allow for
the possibility that not all elements x′ have been fully evaluated as potential solutions
to P(x) (by computing f ∗(x′) and implicitly testing whether x′ ∈ X), since this may
involve time consuming operations in the general case. However, it can be important
to restrict F ′ to points exhibiting a certain minimum quality level, and hence we
assume that points that have not been subjected to a full evaluation have nevertheless
been evaluated by a fast screening criterion to provide an approximate determination
of their quality. Thus, in particular, in the integer programming context points chosen
for inclusion in F ′ may come from derived edges and centers as discussed in Sect. 2
and (3.3), and may be supplemented by sampling processes in order to assure that F ′

Infeasible/feasible search trajectories and directional rounding 521

covers an appropriately dispersed portion of F . Subsequent sections give additional
ways to generate points that usefully qualify for inclusion in F ′.

As a foundation for periodically generating a reference set R that constitutes a
diverse collection of points drawn from F ′, we begin with a starting set of points
R = Ro, and then select successive points of F ′ so that each new one to be added
to R is chosen to maximize its minimum distance from all points belonging to the
current set R.1 The process is initiated by selecting Ro to be a small set of points that
have been fully evaluated in past searches and that we desire to be included within
R as a foundation for launching new searches. (Scatter search applications verify the
merit of including one or a few of the best points previously found when generating
reference sets for diversification.) The rule for building R also makes reference to
an exclusion set Eo consisting of points that we desire to permanently exclude from
membership in R, and more generally, whose proximate neighbors we also seek to
exclude.

Diversification rule to build a new reference set R

1. Begin with R = Ro, and set F ′ := F ′ − Ro.
2. Select x′ ∈ F ′ by the rule: x′ = arg max(min(d(x′, x): x ∈ R ∪ Eo)), and let R :=

R ∪ {x′}, F ′ := F ′ − {x′}.
3. Repeat Step 2 until R contains a specified number (or composition) of points.

As evidenced in Step 2, each new point x′ is chosen to maximize its minimum
distance not only from points previously included in R, but also from points belong-
ing to the exclusion set Eo. The distance measure d(x′, x) used in this step is not
necessarily Euclidean (in contrast to the stipulation in Sect. 1), and we emphasize the
importance of scaling or otherwise weighting the variables so that distances along
particular dimensions do not inappropriately dominate or skew the measure.

Determination of Eo The issue of determining the exclusion set Eo rests on iden-
tifying subsets of points generated and evaluated during the search history that we
loosely categorize as follows: G = a set of “good” points (e.g., local optima, or local
optima satisfying a certain quality threshold), B = a set of “bad” points, M = a set
of “mediocre” points. These sets need not constitute all points of their respective cat-
egories encountered during previous search, but rather may constitute representative
sets, as by taking centers of clusters, or using other forms of representation to keep
the sizes G, B and M within reasonable limits. (The set G will typically be defined
to admit only a small number of points in any case, but the number of “bad” and
“mediocre” points in F ′ may be much larger.)

Thus, in brief, we may identify evident alternatives for defining Eo to consist of
(1) Eo = B; (2) Eo = B ∪ G; (3) Eo = B ∪ G ∪ M ; and so forth. Some diversifica-
tion approaches in the literature effectively operate by re-starting the search at points
distant from elements of G, analogous to selecting Eo = G,2 but presumably if G is
included in Eo then it is appropriate to include at least B or M in addition.

1The original version of this rule, as proposed in Glover and Laguna (1993), contains additional compo-
nents to break ties among elements that lie the same max(min) distance from points in R.
2These re-starting approaches use a different organization than considered here and do not make use of
the max (min) rule.

522 F. Glover

A diversification strategy that makes use of R may be augmented by an approach
that continues to avoid regions containing points of B (and even M) after R has been
generated to launch a new search. A tabu reference set TR can be used to enforce this
continued avoidance in either of two straightforward ways: (i) using a coded hash
vector, so that any solution that is a candidate to be visited can be translated into this
code, and then avoided if the code matches the code of a solution in TR; (ii) defining
a region that surrounds each point in TR, and then designating these regions tabu.
(Approaches based on defining “tabu regions” are discussed in Glover (1994).)

Parallelization Finally, we observe that R (and TR) have natural uses within paral-
lelization methods. As already noted, the processes of Approaches 1 and 2 in Sect. 2
can be carried out in parallel. In addition, the generation of the reference set R can
serve as a centralized operation for periodically assembling information from subor-
dinate methods, and using this information to compose the current sets F ′, Ro and
Eo (as by updating information previously used to compose these sets).

Parallel exploitation of R

1. Assign each element of the set R to a different search process, to be carried out in
parallel.

2. Each search generates candidate points to compose the sets F ′, Ro and Eo, and
after a selected number of iteration passes these points to a master process.

3. The master process produces the sets F ′, Ro and Eo, and generates a new R. Then
Step 1 is repeated, until a global termination criterion (such as an iteration limit)
is reached.

We additionally observe that the construction of R can be based on rules other
than the max (min) rule. For example, drawing further on scatter search ideas, R can
be populated by generating linear combinations of elements in F ′. If F ′ is built from
edge extensions to include points beyond those spanned by the best points previously
encountered, then the scatter search procedure can restrict attention to using convex
combinations (having the advantage of yielding new points that lie in feasible convex
regions if the parents from F ′ lie is such regions).

5 A complementary (outside-in) strategy

We turn to considering a strategy that embodies a somewhat different perspective
than that of previous sections. The process of conditional directional branching,
as exploited in Approach 2 of Sect. 2.2, may be viewed as an alternating “inside-
out/outside-in” procedure, where directional rounding by Approach 1 moves from x0

within the feasible region to points x′′ that may lie outside F , followed by branching
that returns to generate a new x0. However, each new wave progresses forward from
a new x0, which anchors the process on the inside-out portion of the strategy. We now
focus on a complementary approach that draws upon ideas of parametric branch and
bound and parametric tabu search (Glover, 1978, 2006), and of a related feasibility
net approach (Fischetti et al. 2006).

Infeasible/feasible search trajectories and directional rounding 523

In adaptation to the present setting, the approach may be sketched in overview as
follows. Upon generating the set of points X′′ in Step 1 of Approach 2, instead of
immediately proceeding to Step 2 of Approach 2 to branch from the current LP op-
timal vertex, the method selects a point x′′ ∈ X′′ (which will be infeasible relative to
the current F that includes the objective function constraint), and works its way from
the infeasible region back to LP feasibility. The guiding criterion for thus reaching a
point of F is determined not by original the objective function xo = cx, but by a tar-
geting objective function uo = dx that is oriented to make x′′ a preferred solution. In
particular, d is defined relative to x′′ so that x′′ would be optimal if it were LP feasi-
ble. The resulting optimal LP vertex, which we denote by x̃, is an LP proxy for x′′,
which is a close to x′′ as possible according the measurement of distance provided
by the objective function uo. To achieve an appropriate proximity between the solu-
tions, and to cause x̃ to yield useful information about how x′′ should be modified,
we additionally modify the feasible region F by introducing provisional bounds by
reference to x′′.

Finally, relative to the new point x̃, we perform directional rounding to identify
additional points x′′ as candidates to belong to X′′. Edges and centers are generated
exactly as specified earlier by reference to x0, except that the search extends rays
into F from different directions when the extreme points are generated from the uo
objective rather than the xo objective. Additionally, post-optimality analysis of the
LP solution x̃ discloses information about how x′′ may be improved for inclusion
in X′′. The process may then return directly to Approach 2, to initiate a branching
step as previously described, or may select another element x′′ from X′′ to re-iterate
the outside-in approach.

5.1 Details of the outside-in procedure

Starting from a current LP vertex x0 and a selected point x′′ ∈ X′′, we augment the
constraints of F to include the following inequalities:

xj ≤ x′′
j if x0

j < x′′
j ,

xj ≥ x′′
j if x0

j > x′′
j .

The tied case, for x0
j = x′′

j , is resolved by choosing xj ≤ x′′
j or xj ≥ x′′

j according
to whether x′′

j is closer to Uj or 0, respectively. This case can also be resolved by
reference to most frequently encountered values for xj or by reference to penalty cal-
culations for imposing xj ≤ x′′

j or xj ≥ x′′
j . Ties that remain can be broken arbitrarily.

This modification of F , which is redundant for a 0–1 variable xj , assures that x0

remains feasible relative to the new region defined by F , and hence that this region
is non-empty. Let N = {1, . . . , n} denote the index set for x, and let N(+) and N(−)

respectively be the subsets of N associated with the inequalities xj ≤ x′′
j and xj ≥ x′′

j .
We choose the vector d , to create the targeting objective “Maximize uo = dx,” by
stipulating that

dj > 0 if j ∈ N(+),

dj < 0 if j ∈ N(−).

524 F. Glover

In the simplest case, we may choose each dj to be 1 or −1, or we may bias its value to
reflect an influence by the coefficient cj (e.g., by adding or subtracting some positive
quantity from cj). We denote the LP problem based on d and the inequalities xj ≤ x′′

j

and xj ≥ x′′
j by LP(d, x′′).

The foregoing construction guarantees that the solution x̃ to LP(d, x′′) would be
the same as the target solution x′′ if x′′ were LP feasible. Since this is not the case,
and hence x̃
= x′′, we adopt a strategy from parametric tabu search (Glover 1994)
that identifies and exploits resisting variables, i.e., variables that fail to achieve the
assignment xj = x′′

j . Resisting variables are candidates to be assigned values different
from those in the solution x′′, thus suggesting that a subset of these variables that
exhibit the greatest resistance may preferably be rounded to values different from
their x′′

j targets.
Resistance may be measured in several ways. The simplest is to define the resis-

tance of xj as |x̃j − x′′
j |, the amount by which the assignment xj = x̃j deviates from

the targeted x′′
j value. Generally better is to weight the values |x̃j − x′′

j | according
to scale factors, and especially according to the frequency that a variable resists a
particular target value (at various levels of resistance) throughout a history of solv-
ing associated LP problems. This history can be usefully supplemented by identify-
ing additional local resistances using the strategy of modifying the d vector while
maintaining its stipulated sign conditions. This approach can then identify additional
optimal solutions x̃ that resist the assignment x = x′′, and the different degrees of
resistance by various xj variables in these solutions. Particularly relevant is the case
where some variables cease to be resisting in some of these solutions.

Since the only change that occurs in LP(d, x′′) in this approach is to modify its
objective function, the solutions x̃ can be obtained by post-optimizing with the primal
simplex method. In fact, post-optimality analysis can be used to identify exactly the
extreme points adjacent to a given x̃ that will become optimal by admissible changes
in d , and the resistances at these points can be determined at once without the effort
of a full pivot step to reach such points. This provides a fast way to expand the infor-
mation available about resistance frequencies, and may be accompanied by pivoting
to one or more adjacent solutions to repeat the process.

Three special considerations should be noted regarding the handling of resistances
in general. First, if the reduced cost for the slack variable of the inequality xj ≤ x′′

j or
xj ≥ x′′

j in an optimal basis for LP(d, x′′) is small (close to 0), then this also indicates
that the solution resists assigning xj the value x′′

j ; we call this quasi-resistance. This
reference to reduced costs is motivated by the fact that ordinary resistance, where xj

differs from x′′
j , occurs when the reduced cost is 0. Consequently, quasi-resistance

should be taken into account in identifying variables that should be rounded differ-
ently, and in tracking the history of variables that resist particular bounds.

Second, a slack variable whose reduced cost is greater than or equal to |dj | iden-
tifies a situation where the associated inequality xj ≤ x′′

j or xj ≥ x′′
j is subordinate

to the other targeting inequalities, in the sense that the solution to LP(d, x′′) would
assign xj = x′′

j even if dj = 0. In particular, if the reduced cost is greater than |dj |
then xj may be considered an anti-resisting variable, because it not only accepts its
target value, but tries to go beyond this value in the direction away from x0

j . This is
an important consideration, because by permitting an anti-resisting variable to move

Infeasible/feasible search trajectories and directional rounding 525

in the direction it prefers (by allowing x′′
j to increase or decrease accordingly), other

variables that are currently resisting may become non-resisting, or less strongly re-
sisting. This phenomenon can occur, for example, where an attempt to round one
variable up compels another to also move upward. If the latter is blocked by its upper
bound the first variable may appear to resist its targeted value, when in fact it is the
bound on the second variable that prevents the target from being achieved. In the case
of 0–1 variables, the bound on the second variable can not be changed to allow it to
move farther, but in such a situation the resistance of the first variable may be de-
ceptive, in that some other resisting variable may be the key to allowing it to change.
Strategies to uncover such dependencies among resisting and anti-resisting variables
can be highly relevant to identifying better target solutions.

Third, it is appropriate to account for fact that, relative to the space of integer so-
lutions, and in particular relative to the inequalities added to F that define LP(d, x′′),
the integer point that is most centrally located in the cone spanned by these inequali-
ties is the complement of x′′ whose coordinates are given by

xj = x′′
j − 1 if j ∈ N(+),

xj = x′′
j + 1 if j ∈ N(−).

In the case of 0–1 variables, this definition is equivalent to the one that defines the
complement to be given by setting xj = 1 − x′′

j for each j ∈ N .
Just as we are motivated to extend edges into central regions to increase the like-

lihood of finding feasible integer solutions by directional rounding, we are motivated
to examine the indicated complement point in the region determined by the inequal-
ities added to yield LP(d, x′′). However, still more relevant is to examine a semi-
complement of x′′ whose coordinates differ from the preceding complement by re-
taining the integer value assignment of variables that receive the same value in both
x0 and x′′; that is, the point that differs from the complement by stipulating that

xj = x′′
j if x0

j = x′′
j .

Accordingly, within the context of the outside-in approach, when the problem
LP(d, x′′) is created, we also examine the semi-complement of x′′ for feasibility,
and we may likewise evaluate it as a candidate to be included within the set X′′. Of
course, semi-complements can be treated in this fashion independent of the outside-
in approach. In Sect. 5 we will consider additional mechanisms for isolating points
that are centrally located relative to useful criteria, and that deserve to be examined
for feasibility and possible membership in X′′.

As previously observed, upon solving the problem LP(d, x′′), the outside-in ap-
proach may now continue by generating directionally rounded points, and associated
edges and centers, relative to the solution x̃ for LP(d, x′′) in the same manner that
such elements are generated relative to x0. That is, each new x̃ is treated “as if” it
were x0, to produce yet another x̃. We note that edges rooted at x̃ extend into the
space F from a different direction than from the point(s) x0, thereby allowing the
space to be searched in a different manner than in the approach described in preced-
ing sections. The generation of such edges results in the creation of new points x′′ to
be considered for inclusion in X′′ (and as candidates for target points for the iterated

526 F. Glover

outside-in process), and after a chosen number of iterations, the method may be orga-
nized to return to the branching process of Approach 2. Alternatively, upon solving
LP(d, x′′), the current target solution x′′ can be directly modified by accounting for
resisting and anti-resisting variables, thereby producing a changed target solution that
can be a basis for iterating the process. The latter approach more nearly resembles
that of parametric tabu search, and can readily be controlled by TS memory.

5.2 Illustration of the outside-in procedure

A graphical illustration of the outside-in approach is given in Fig. 3. In this case, the
problem is a 0–1 problem, whose relevant integer points are restricted to vertices of
the unit cube: (0,0), (1,0), (1,1) and (0,1). Among these only the point (0,1) lies
within the feasible region. The initial LP solution x0 appears in the lower left corner.
As is true of all 0–1 problems, each focal point on the ray leading from x0 (shown as
the dotted line meeting x0 in Fig. 3) will round directionally to the same point, which
in this case is the infeasible point x′′ = (1,1), depicted as x′′(A) in the diagram. We

Fig. 3

Infeasible/feasible search trajectories and directional rounding 527

do not bother to show the center of the edge produced by the dotted line, but note that
it may be recorded for use as in previous examples.

The targeting problem LP(x′′, d) associated with the point (1,1), given that
x0
j < x′′

j for j = 1,2, is created by adding the inequalities x1 ≤ 1 and x2 ≤ 1 to the
original LP problem. Such inequalities do not need to be explicitly introduced since
they are already included in the 0–1 problem formulation. The semi-complement of
(1,1) (which in this case is simply the 0–1 complement) is (0,0), and is infeasible.
By the rules for generating the vector d for the problem LP(x′′, d), the components
d1 and d2 should be positive, and we can choose d1 = d2 = 1 to create the targeting
objective “Maximize uo = x1 + x2.” Graphically, in two dimensions all acceptable
objective functions that target a given x′′ can be pictured as having slopes (when
passing through x′′) that range between the two coordinate lines defining x′′, with-
out extending into the interior of the unit cube. The objective function hyperplane
when d1 and d2 both have an absolute value of 1 is the one whose slope is exactly
in the middle of this range, creating 45° angles with the coordinate hyperplanes. (In
general, an objective function optimized at any given vertex can be visualized as a
hyperplane containing the vertex that does not cut into the cone that defines the ver-
tex.) Consequently, the resulting optimal solution x̃ to the targeting problem appears
as the rightmost point of F illustrated in the diagram, which is labeled x̃(1).

Both x1 and x2 are resisting variables in the solution x = x̃(1) since neither
achieves its targeted value of 1. Using the simplest way to generate additional lo-
cal resistances, which consists of examining adjacent extreme points that qualify as
optimal for other d vectors defined by reference to the same target x′′, we observe
that the solution x = x̃(2) also belongs to the set of optima that target x′′(A). In this
case, x1 resists its targeted value of 1 even more strongly, but x2 no longer exhibits a
resistance to its targeted value. If this limited preliminary history is used to modify x′′
for the purpose of creating an alternative trial solution, the repeated resistance of x1

to the value 1 leads to changing x′′
1 from 1 to 0, which produces the feasible solution

x = (0,1).
At this point, the method may proceed to Step 2 of Approach 2 to perform one or

more iterations of its branching process, to resume the outside-in approach at some
selected future iteration by intervening at the point where the method would pass from
Step 1 to Step 2. We continue the illustration of the outside-in approach, however, by
first examining the option of treating x̃ in the same way as x0. Among the two x̃ so-
lutions identified thus far, we choose x̃(1) as a basis for illustration, and create a ray
leading from it as shown by the dotted line meeting x̃(1) in Fig. 3. Directional round-
ing by reference to focal points on this line yields the infeasible point x′′ = (0,0),
already encountered as the semi-complement of the previous x′′ = x′′(A), but not
yet used to generate a targeting problem LP(x′′, d). The creation of such a targeting
problem would lead to a solution x̃ that is the same as the original LP solution x0,
and the approach would now loop. This provides a natural juncture to proceed to the
branching process at Step 2 of Approach 2, unless the outside-in procedure is guided
by TS memory, in which case the approach can continue by altering components of
subsequent directionally rounded solutions to avoid repetition.

The other option for continuing from the solution x̃ = x̃(1), is to establish a new
targeting solution x′′ based on the identity of the current resisting variables rather

528 F. Glover

than identifying the next targeting solution by extending a ray from x̃ and using di-
rectional rounding. To provide greater scope for the illustration, we do not use the
information already generated about the relevance of setting x1 to 0 to influence the
determination of resistances. At the point x = x̃(1), the variable x2 has the greatest
resistance (measured in terms of its distance from its target value of 1), and if we
modify the targeted value for this variable, we get the point x′′ = (1,0), denoted as
x′′(B) in Fig. 3. This point is infeasible, but its semi-complement is the point (0,1),
which again takes us to the unique feasible integer solution of this example.

To generate the next problem LP(d, x′′), the vector d must be selected so that
d1 > 0 and d2 < 0, and again we make the simplest choice by selecting d1 = 1 and
d2 = −1. The solution to the resulting LP(d, x′′) is exactly the same point x = x̃(1)

obtained as a solution when targeting x′′(A) instead of x′′(B). This outcome can be
identified without having to perform any iterations to solve LP(d, x′′). Specifically,
the primal simplex method can be used to post-optimize, since the optimal solution
to a given instance of LP(d, x′′) is a feasible extreme point for the next instance.
Consequently, the fact that x̃ = x̃(1) remains optimal for this new targeting problem
will be determined instantly.

The next step of determining additional local resistances by the device of exam-
ining adjacent extreme points (while targeting the same solution x′′(B)) leads to the
solution x = x̃(3) in Fig. 3. If the approach of identifying resisting variables is ac-
companied by the strategy of extending rays for directional rounding, the outcome of
the latter procedure at this juncture would yield (almost certainly) the feasible point
x = (0,1) once more.

Relative to the targeting solution x′′(B), the resisting variables in x̃(1) are the
same as those in x̃(3). That is, in both solutions, x1 resists its targeted value of 1,
which is the same target it had relative to x′′(A), while x2 resists its targeted value
of 0, which differs from its target relative to x′′(A). This outcome expands the his-
torical information about resistances, increasing the tally of x1’s resistance to the
value 1, and hence reinforcing the presumed merit of investigating the assignment
x1 = 0. Also, given that x2 has now on two occasions resisted the value 0, but has
only once resisted the value 1 (and has once accepted that value), we may be mo-
tivated to examine the assignment x2 = 1. This once more leads us to the desired
solution x = (0,1).

We emphasize that in higher dimensions relative frequencies will normally require
a larger set of trials before their differences become meaningful. Similarly, in general
it should be emphasized that our illustration based on a two-dimensional example,
while constructed to show some of the interesting situations that can arise in exe-
cuting an outside-in procedure, must necessarily fall short in conveying the types of
outcomes that can occur in higher dimensions.

One additional feature of the outside-in approach for the general case deserves
to be mentioned. The variables xj that are non-basic in the original LP basis yield-
ing x0, and which become basic at positive values in the various solutions x̃, identify
variables whose columns Dj are good candidates for receiving positive weights to
produce the vector D for directional rounding relative to x0. Again, frequency mea-
sures are useful for selecting more promising candidates.

Infeasible/feasible search trajectories and directional rounding 529

6 Additional refinements

We now consider additional strategies for identifying variables whose columns
should be used to generate D, and elaborate other elements that can be exploited
throughout the execution of Approach 2 and the complementary outside-in process.
These include special ways to take advantage of memory, and advanced procedures
for generating edges and centers, to be exploited by the processes of the preceding
sections.

6.1 Marrying the outside-in approach with adjacent extreme point search

Within the context of the outside-in approach, we have already noted the potential
value of examining adjacent extreme points, or a path of successive adjacent extreme
points, to identify local resistances relative to a given targeting solution. By extension,
we also observed that the history of resistances can be relevant to identifying values
to be assigned to the variables. In this vein, the outside-in procedure and its resistance
information are well-suited to be combined with a memory-based adjacent extreme
point search procedure for 0–1 problems (see, e.g., Lokketangen and Glover 1995;
Eckstein and Nediak 2001). The information concerning resistances can particularly
be used to modify the choice rules of the adjacent extreme point search. The structure
of the feasible region in Fig. 3 hints at the usefulness of such a modification. An
adjacent extreme point method that starts at the initial LP point x0 might already find
itself at a local optimum, relative to reasonable rules for evaluating improvement.
Drawing upon the outside-in approach as an avenue for continuing, and also as a
means of identifying resistances, could add flexibility to an adjacent extreme point
process and provide information for improving its evaluations of points to be visited
next. At the same time, in reverse, the exploitation of periodic adjacent extreme point
trajectories could prove useful for augmenting the outside-in procedure.

6.2 Frequency-based conditional memory and provisional inequalities

Frequency-based memory as used in tabu search is relevant not only to resistance
measures, but is also appropriate for use in connection with the conditional directed
rounding process in Approach 2. Within this setting, frequency-based memory can
be given a useful conditional form. As previously observed, the use of branching
operations in conditional directional rounding provides a way to combat the limitation
of moving variables simultaneously in certain directions. The potential defect in all-
at-once rounding is that the movement of a variable in a particular direction may exert
an influence through the problem constraints that should drive another variable in a
direction contrary to the prescription of an all-at-once rounding process.

Maintaining a frequency memory of conditional changes can provide a supple-
ment to the branching approach of conditional directed rounding, by offering a way
to analyze and anticipate consequences of certain rounding options before making
recourse to the more computationally intensive effort of introducing branching oper-
ations. This frequency-based conditional memory may be structured as follows.

Let Change(j) denote a frequency memory for the integer variable xj that counts
the number of occurrences of primal feasible LP solutions (new x0 solutions) gener-
ated by branching in which xj achieved an integer value that differed from the value

530 F. Glover

assigned to xj in the preceding LP solution. (In the setting of neighborhood search,
Change(j) may be viewed as counting the number of times a variable or a solution
attribute changed to receive an admissible value as such values are defined relative
to moves performed in the neighborhood space.) Accompanying this, two frequency
records Same(j, k) and Differ(j, k) are maintained that give the number of times
among those in which xj changed to receive an integer value (causing Change(j)

to be incremented) that the variable xk changed in the same direction as xj and in
opposite direction from xj , respectively. It is not necessary that xk receive an integer
value by its change. These frequency records can then be a basis for a fast condi-
tional rounding operation, where a high conditional frequency compels correspond-
ing changes to be made in the rounding process.

More complete and more useful information results by keeping expanded fre-
quency records Up(j) and Down(j), identifying how many times xj increased
or decreased to reach an integer value, accompanied by records UpUp(j, k),
UpDown(j, k), DownUp(j, k), DownDown(j, k), identifying the number of times
when both xj and xk increased together, when xj increased but xk decreased, and
so forth, in each case limiting consideration to the case where xj attained an integer
value. (If attention is further restricted to the case where xk receives an integer value,
then DownUp(j, k) can be omitted, since it would be the same as UpDown(k, j).)

Variations on these records can be used to create different types of analysis of con-
ditional assignments. For example, a useful alternative is to treat values of variables
as if they are integer when they lie within a chosen distance of being integer. In this
case, the direction of movement that resulted in these values may be considered less
important than residing at these values, i.e., within a specified proximity of being in-
teger. Records produced in this fashion that disclose highly consistent relationships
can form the basis for aggregate (brazen branching) rules as discussed in (1c).

In the setting of 0–1 problems, the arrays could use the names “One” and “Zero” in
place of “Up” and “Down” (i.e., OneOne(j, k), OneZero(j, k), etc.), to identify when
xj and xk have received various combinations of assignments in the same solutions.

This type of memory can be used to generate provisional inequalities to help
guide the search process, according to relationships that are strongly compatible
with the frequencies recorded in the arrays. For example, if One(j) = OneZero(j, k)

for some set of variables xk , k ∈ K , then one may adjoin the provisional inequal-
ity xj + ∑

(xk: k ∈ K) ≤ 1. After using this inequality for some period to fo-
cus the search, then one may instead adjoin the complementary inequality xj +∑

(xk: k ∈ K) ≥ 2 to seek different solutions. Similarly, if there is a set K such
that Zero(j) = ZeroZero(j, k) for k ∈ K , then one may adjoin the provisional in-
equality xj ≥ ∑

(xk: k ∈ K), followed after a period by introducing instead the com-
plementary inequality

∑
(xk: k ∈ K) − xj ≥ 1. Relationships suggesting the merit

of a variety of other types of provisional inequalities, such as
∑

(xk: k ∈ K) ≥ p or∑
(xk: k ∈ K) ≤ q , can also readily be identified. It is not necessary that the condi-

tional frequency memory support such inequalities as invariably as suggested by the
preceding examples, since the purpose of provisional inequalities is to take advantage
of tendencies rather than invariant conditions to constrain the search in various ways
for chosen periods of time. The introduction of such inequalities and their comple-
ments can be managed by a TS adaptive memory process, as in the case of managing
the branching inequalities within Approach 2.

Infeasible/feasible search trajectories and directional rounding 531

Frequency-based conditional memory can also be used to identify coordinated
movements of variables, where variables in certain subsets move in consistent di-
rections relative to each other. Again, attention need not be restricted to invariant
behavior, but may be permitted to embrace patterns that occur with a specified fre-
quency. The outcomes of such an analysis can be used not only for creating provi-
sional inequalities, but also for creating a supplementary directional rounding process
within Approach 1, where additional candidates for X′′ are produced by modifying
the rounding process to reflect the coordinated movements.

For problems too large to permit all variables to be tracked by frequency-based
conditional memory in the manner indicated, attention can be focused on a subset
of critical variables. The records that underlie this memory require an initial period
of computational effort to build, but then can be used without resorting to further
updating except at selected intervals. Also, as in TS intensification processes, it may
be more important to maintain such memory relative to subsets of good solutions, by
evaluations that permit infeasible (although nearly feasible) solutions to be admitted
to such subsets, than to maintain the memory relative to a somewhat larger collection
of solutions that include less attractive members.

6.3 Model embedded memory from inequalities

Inequalities can be added to F not only in a provisional fashion as discussed in
Sect. 5.2, but also in an irrevocable (globally applicable) fashion based on identi-
fying implications directly generated by solving LP problems during the branching
process. The role of these latter inequalities is to eliminate portions of the feasible re-
gion previously examined and determined to be unproductive, and may be viewed as
providing a form of model embedded memory to supplement the use of other forms
of adaptive memory.

These inequalities can be produced as follows. When a current set of branches
results in an infeasible [LP] problem, or yields a feasible integer solution that is
to be excluded from future consideration, the first step is to remove all dependent
branches, together with all independent branches that are currently non-binding, and
then identify the remaining set of independent branches, which we represent in the
form xj ≥ vj , j ∈ J+ and xj ≤ vj , j ∈ J−. This remaining collection of branches is
then rendered infeasible for the problem [LP] by adding to F the inequality

∑
((vj − xj): j ∈ J+) +

∑
((xj − vj): j ∈ J−) ≥ 1. (A)

The inequality (A) can also be used to exploit dependency relationships. If any
member of a collection of dependent branches is complemented, it will similarly re-
sult in a system that violates feasibility or a bound on xo. Consequently, we represent
a dependent branch in the form xj ≤ vj − 1 or xj ≥ vj + 1, causing its complemen-
tary branch to acquire the form xj ≥ vj or xj ≤ vj , respectively. This complement of
the dependent branch may then be included with its upstream independent branches
to yield an inequality that has precisely the form of (A). All members of a set of de-
pendent branches can be incorporated simultaneously into (A) in this manner, but the
outcome is stronger if each dependent branch appears by itself in a separate instance
of (A).

532 F. Glover

Variants of this inequality, without making reference to independent and depen-
dent branches in the manner employed here, have been previously proposed for pro-
ducing 0–1 “short hot starts” for branch and bound (Spielberg and Guignard 2000;
Guignard and Spielberg 2003) and for selecting subsets of variables to hold fixed in
adaptive memory projection methods (Glover 2005).

6.4 Handling primal degeneracy

A special case for generating D as a convex combination of non-basic columns of
the LP basis representation of x0 occurs where the basis representation is primal
degenerate, as a result of the fact that x0 is the intersection of more than the minimum
number of hyperplanes needed to define an extreme point of F . In this situation some
of the non-basic variables will typically not be associated with extreme rays of the LP
cone, but rather will correspond to rays that extend into infeasible space for positive
values of their associated non-basic variables.

To determine all of the true extreme rays of the LP cone requires the execution
of degenerate pivots to identify alternative basis representations of x0. A simpler
alternative is to choose non-basic columns to generate D by first selecting columns
whose rays do not begin by extending into infeasible space, or that create infeasibility
only for a few constraints, offsetting these latter choices by selecting other columns
that are feasible for these constraints. Computationally, this can be done by noting
that a ray that extends into feasible space is one whose column has non-negative
coefficients in the positions where the LP representation is primal degenerate (i.e., the
“updated column of constants” has a 0 coefficient). Likewise, a negative coefficient in
one of these positions identifies a constraint that is violated when the ray is extended.
The vector D can then can be generated in two steps, first by creating a vector D1

as a convex combination of the columns for rays that extend into feasible space. The
second step then creates a convex combination of D1 with the other columns, subject
to giving a sufficient weight to D1 to yield a non-negative coefficient for each primal
degenerate position in the final D vector.

In situations where it proves difficult to produce D vectors that exhibit the prop-
erties indicated, it is still possible to use a collection of D vectors generated with-
out reference such refinements to provide line segments for directional rounding, and
hence to provide points x′′ to be checked for ILP feasibility and to underlie the choice
rules embedded in Approach 2.

6.5 Identifying non-basic columns to receive positive weights

A particularly important issue is that of selecting an appropriate set of non-basic
columns to receive positive weights in convex combinations that define D vectors.
The significance of this issue derives from the fact that there may be many x vari-
ables that are non-basic, yet only a small subset of them should be positive in an
optimal solution. Yet if columns for other non-basic variables are used to generate D,
these columns will create rays that move in the wrong direction from x0, and in par-
ticular will produce directionally rounded solutions that assign positive values to each
of the associated “incorrect” x variables. A limited number of errors may not create
an adverse effect, because in Approach 2 we are interested in the implied movement

Infeasible/feasible search trajectories and directional rounding 533

only of the fractional variables, which are basic, and the directionally rounded solu-
tions may still give useful clues about the directions that the fractional basic variables
should move. This holds particularly for the type of choice rule used in Step 2 of the
method (and in the variant described in (1) above) that selects a fractional variable
for branching that exhibits the greatest consistency in the direction it moves.

Consequently, we propose to step outside the directional rounding process to
gather additional relevant information by creating a feedback loop from the branching
operations to identify a promising set of non-basic columns for generating D. This is
another natural application for frequency-based memory, by examining the effect of
tentatively introducing several different branching operations at each step, and keep-
ing track of the non-basic variables that are most often driven positive because of
these operations. The “higher frequency positive value” non-basic variables become
candidates for determining the collection that should play a role in generating D vec-
tors. A limit may be set on the number of pivots allowed for dual re-optimization
when tracing the consequences of a branching step, in the case where a new primal
feasible solution is not obtained at once.

If both members of a pair of complementary branches drive a non-basic variable
to be positive, then that is a compelling endorsement for giving the variable a role in
creating D vectors. In general, branches can be rated according to a selected criterion
of desirability, and this rating can in turn provide a bias to the frequency measure used
to evaluate the resulting non-basic variables that become positive. After a chosen
number of iterations of Approach 2, the approach can then be re-started, this time
choosing to generate D vectors based on the recorded frequency information obtained
during the branching steps.

A closely related option is to perform a look-ahead analysis before implementing
Step 1 of Approach 2. In this case, the branching operations are performed and eval-
uated by a criterion separate from the one that derives from relying on information
from Approach 1. The resulting frequency records are used to generate D vectors
at once, more strictly limiting the number of options examined and the number of
iterations performed in the branching process. Approach 1 can also be used to aid
in the evaluation of branches to carry out such a procedure, though at some risk of
generating candidates for creating D vectors that confirm its original choices of such
candidates. The look-ahead analysis can be re-iterated after various branches are for-
mally selected and imposed within Approach 2, to aid the determination of D vectors
not only relative to the original x0 solution but also relative to new LP solutions
produced by branching. In this case the number of branching operations examined
and executed during look-ahead steps may be more tightly curtailed to further reduce
overall computational effort.

This type of approach merges conveniently with the use of frequency-based con-
ditional memory discussed in Sect. 6.2 above, by giving a platform for generating
and exploiting such memory.

6.6 Advanced determination of derived centers and edges

A more advanced procedure can be used to generate centers of sub-regions, which
avoids the potential inconvenience caused by primal degeneracy and also has other
advantages. The basis of this approach is to use linear programming to identify a ray

534 F. Glover

from x0 that is strategically constructed to pass through a central portion of the feasi-
ble region. We draw on the fact that x0 will remain optimal for any objective function
that assigns non-negative reduced costs to the current non-basic variables. A “bal-
anced” objective function of this type results by giving each non-basic variable the
same positive reduced cost, which we arbitrarily take to be 1. The balanced objective
can then be interpreted as that of minimizing the sum of these non-basic variables.
(Other positive reduced costs can be used to achieve various definitions of balance,
as by choosing the costs based on scaling the current non-basic columns.)

Replacing the balanced objective by a “counter-balanced” objective, which con-
sists maximizing rather than minimizing the sum of these non-basic variables (de-
fined by reference to reduced costs of −1 instead of 1), we obtain a boundary point,
or more precisely an extreme point, that we call a projected opposite of x0. The pro-
jected opposite point, which we denote as the boundary point xBo, can be found by
re-optimizing with the primal simplex method, starting directly from the basis that
yields x0 (or from any other primal feasible basis, upon updating the objective ap-
propriately). Upon finding xBo we have an edge [x0, xBo] whose midpoint xco is a
candidate for being centrally located within F .

The foregoing process can be extended to generate additional rays to traverse a
central part of the space, and hence to generate additional associated edges and cen-
ters. One way to do this is to keep a record, as the primal simplex method moves
from x0 to xBo, that identifies an extreme point solution x# encountered approxi-
mately “half-way” through the trajectory, such as a solution for which roughly half
of the reduced costs become non-negative. (Several plausible candidates for x# can
be saved and a best choice can be identified after reaching xB#.) The balanced ob-
jective function for x# that consists of assigning values of 1 to each of its reduced
costs can also be recorded. Upon reaching the projected opposite xBo for x0, the bal-
anced objective function for x# is updated and replaced by its negative, yielding the
corresponding counter-balanced objective for this point. The primal simplex method
can then continue from xBo to find the new boundary point xB# that represents the
projected opposite of x#.

The centers xco and xc# of the edges [x0, xBo] and [x#, xB#] can thus be identi-
fied, yielding candidates for focal points, and a new line passing through xco and xc#

can be constructed to identify the intersecting points xB#o and xBo# with the bound-
ary of F , to produce a further edge [xB#o, xBo#] whose center likewise provides a
candidate for a focal point.

Before describing how to turn this process into an iterated method for generating
additional points and projected opposites, an illustration of the approach at the present
stage is shown in Fig. 4. Here, starting from x0 at the base of the diagram, a counter-
balanced objective causes the primal simplex method to locate the projected opposite
point xBo shown at the top of the diagram. We suppose that the route followed by
the simplex algorithm to locate xBo travels through extreme points on the left side of
the diagram, which will enable the method to identify and record a “half-way” point
such as the point x# indicated in the diagram. Upon reaching xBo, the appropriate
counter-balanced objective for x# is activated, and the method proceeds from xBo

to locate the projected opposite xB# of x#, shown at the right of the diagram. The
edges [x0, xBo] and [x#, xB#] are generated, as shown by the crossing bold lines
within the feasible region F , together with their centers xco and xc#. Joining these

Infeasible/feasible search trajectories and directional rounding 535

Fig. 4

last two points by a line gives rise to the edge [xBco, xBc#], depicted by the dotted
line within F , whose center is denoted xd . The center points xco, xc# and xd can be
included among candidates for focal points for directional rounding.

Unlike the situation illustrated earlier in Figs. 1 and 2, the situation portrayed
in Fig. 4 will not normally involve a 2-dimensional cross section of n-space, and
hence the 2-dimensional representation is somewhat deceptive. In general, assuming
the extreme points of F are not co-planar, the edges [x0, xBo] and [x#, xB#] will
typically not lie in the same plane but will rather describe a 3-dimensional space, and
hence the edge [xBco, xBc#] will extend through this space as well. However, even a
2-dimensional representation can disclose the fact that more than one extreme point
can map into the same projected opposite, as in Fig. 4 where both of the two left-
most extreme points in the diagram map into the same point xB# on the right. This
condition also implies that the mapping is not symmetric; i.e., the projected opposite
of a projected opposite may not be the original point.

The process illustrated in Fig. 4 can be extended to generate additional points and
their projected opposites in a similar manner. We mention two variants. In the first,
the method records a “next” x# extreme point, x#1, that is estimated to be “half-way”
along the path from xBo to xB# (assuming an intermediate point exists on this path).
The balanced objective for x#1 can then be updated upon reaching the point xB#, and
the process continues, similarly finding a point x#2 en route to finding the projected
opposite xB#1 of x#1, and so forth. In the second variant, several x# points can be
identified at various intervals along the original path from x0 to its projected opposite,
and the projected opposites for each of these can be determined in succession after
finding the projected opposite for x0.

Once the edges [x#, xB#] joining such points x# and their projected opposites xB#

are generated, their midpoints xc# together with the center xco can be weighted in
various combinations to produce derived centers of associated sub-regions, or these

536 F. Glover

midpoints can all be combined together to produce a candidate for a single global
center. (Alternatively, convex combinations can be applied directly to the points x0,
xBo and the sets of points x# and xB#.) The derived centers as well as the edge
midpoints can be used to guide the creation of D vectors from the original x0, noting
that the D vector for a given point x′ can be given simply by D = x′ − x0.

These D vectors based on derived centers can also be used to combine with D

vectors that are instead generated by a simpler approach of forming convex combina-
tions of LP non-basic columns associated with x0. The process of deriving projected
opposite points can of course be applied iteratively within Approach 2 by reference
to new x0 points obtained at selected stages of the branching processes.

6.7 Derived edges and centers from semi-counter-balanced objectives

The linear programming procedure of Sect. 6.6 for creating derived edges and centers
can be modified to produce points that lie within special sub-regions of the feasible
space, anticipating that it may be of value to give attention to certain regions that may
not “centrally located.” The modification consists of replacing the counter-balanced
objective function by an alternative objective designed to keep a fairly significant
portion of current non-basic x variables at a 0 value, following the motivation in-
dicated in Sects. 2.1 and 5.3. (Recall that in all such processes, non-basic variables
that assign bounds to x variables are to be treated in the same way as x variables.)
The resulting objective, which we call a semi-counter-balanced objective, arises by
giving the selected non-basic variables a reduced cost of 1, while giving remaining
non-basic variables a reduced cost of −1 as in the ordinary counter-balanced objec-
tive. The point obtained by optimizing the semi-counter-balanced objective will be
called a projected semi-opposite point.

A useful feature of creating a semi-counter-balanced objective is that the process
of re-optimizing can yield useful information about the subset of x variables assigned
a reduced cost of 1. Such a coefficient in the objective function exerts an influence
on the associated variable that would keep the variable non-basic and hence equal to
0 if the problem constraints were sufficiently relaxed. Consequently, we term such
a variable that instead receives a positive value in the resulting LP solution to be a
resisting variable, since it moves in a direction counter to that encouraged by its pos-
itive reduced cost. By their “preference” for a positive value assignment, resisting
variables provide attractive candidates to be included among the non-basic variables
associated with x0 whose columns define D. It may be noted that the influence of
resisting variables will also automatically be reflected in creating convex combina-
tions of the semi-opposite LP extreme point in which these variables receive positive
values.

A semi-counter-balanced objective can be further modified to yield semi-opposite
points that lie in regions more likely to be favored by the original objective func-
tion. Specifically, instead of composing the objective function coefficients to consist
of 1 and −1, the positive coefficients can be biased according to the sizes of the re-
duced costs of the original objective function xo = cx, and the negative coefficients
of the semi-counter-balanced objective can be inversely biased according to the sizes
of these reduced costs. The identification of mappings of the original reduced costs

Infeasible/feasible search trajectories and directional rounding 537

that produce more effective form of a semi-counter-balanced objective provides an
interesting area of empirical research.

In many settings, it can be desirable to create a variation of the foregoing approach
that reduces the amount of computation involved. A straightforward way to do this
is to employ a truncated re-optimization, in which a limit is imposed on the number
of simplex pivots allowed for re-optimizing a semi-counter-balanced objective. Such
an approach can take advantage of its reduced computational requirements by mak-
ing use of different choices for creating a semi-counter-balanced objective relative
to the same current LP optimum x0. The outcome of subjecting each of the selected
objectives to a certain limited number of re-optimization pivots will produce a collec-
tion of “moderately nearby” proxies for the semi-opposite points associated with x0.
Since each proxy constitutes an extreme point xBo it provides an edge [x0, xBo] and
a center xco that can be treated in the manner previously indicated. The selected vari-
ation in the structure of these several semi-counter-balanced objective functions can
replace the variation sought by tracking intermediate x# solutions and re-optimizing
to find their semi-opposite points.

Such a process provides usefully exploitable information in a manner similar to
that provided by re-optimization without truncation. Non-basic variables that receive
positive reduced costs in the semi-counter-balanced objective, and that emerge as
more strongly resisting as a result of receiving larger positive values (or larger positive
values in relation to their positive reduced cost coefficients) likewise are appropriate
candidates for taking part in identifying desirable D vectors or for directly creating
convex combinations to identify focal points as a foundation for directional rounding.

An interesting variant would be to apply a truncated version of an interior point
method to generate semi-opposite points, since by such an approach these points
would more nearly correspond to centers than extreme points. The advantages of
such an approach are partially countered by the disadvantages of relinquishing access
to the type of exploitable information described in the preceding paragraph, though
perhaps another form of exploitable information might be produced in compensation.

One other way to reduce computation, which lacks some of the appealing at-
tributes of the preceding uses of linear programming, but requires less computation
overall is to generate a very small number of proxy semi-opposite points (perhaps
only one or two), accompanied by extending the iteration limit for the truncated solu-
tion procedure, hence causing the proxies to be somewhat closer to the actual semi-
opposite points. Then, a small number of derived centers produced by combining the
midpoints xco of resulting edges [x0, xBo] are generated, and for each of these a small
number of mutually orthogonal rays are constructed. These rays are then extended to
the boundary of F to generate new edges, whose midpoints can be used to continue
the process.

The attractive feature of being computationally less expensive than using the sim-
plex method to find new proxies for semi-opposite points may be offset, however, by
the ability of linear programming to locate better points and to extract more useful in-
formation. If the constraints defining the feasible region include a number of equality
constraints, for example, it may be difficult to find directions for the rays that per-
mit non-degenerate extensions, whereas the use of linear programming avoids such
potential difficulties.

538 F. Glover

6.8 Compounding and refining membership in the set X′′

Further exploitation of the connection between infeasible and feasible space arises by
taking advantage of derived edges and centers to reflect infeasible points of X′′ back
into the feasible region, and thereby produced additional derived edges and centers
as a foundation for generating new candidates to enter X′′.

Specifically, we may take any infeasible solution x′′ ∈ X′′ and join it by a line to a
chosen center (such as one selected to lie closest to x′′). The intersection of the line
with the boundary of F identifies the endpoints of a derived edge in the usual fashion,
whose elements can serve as focal points for directional rounding. In this case, x′′ or
a point half-way between x′′ and x0 can replace x0 as the initiating point for the
rounding. Clearly, more than one center can be chosen to be create a derived edge
by reference to x′′, either selecting centers by a similar or opposite criterion used to
select the first center. Likewise, it is not necessary to restrict x′′ to being infeasible
in order to apply this process, although the approach is likely to be more relevant for
cases where feasible solutions are harder to find.

When nearest neighbor rounding is added to directional rounding as a source of
candidates for membership in X′′, the following strategy may be employed. In addi-
tion to rounding from the center of the newly derived edge, the edge can be divided
into intervals (e.g., into 4ths or 8ths) and the points located at these intervals can be
subjected to nearest neighbor rounding. Alternatively, to save time, an interval point
that is closest to being integer-valued can be selected, according to an L0, L1 or L2
distance measure, and its nearest integer neighbor can then be tested for feasibility.

6.9 Additional foundations for branching

A refinement that is very easy to summarize, though no less important for that fact, in-
volves changing the nature of the branching operations used in conditional directional
rounding. Rather than to branch on components of x, an approach called straddle
branching makes it possible to identify new variables created as integer combinations
of these components, which provide an ability to make branching steps that eliminate
larger portions of the feasible region than branching on the x variables themselves
(Glover and Laguna 1997). Variables created by such a procedure can also be embed-
ded in the operation of directional rounding, to provide additional strategies for prob-
ing the search space. The ability to perform stronger branching steps in this manner
may likewise generate supplementary information that may improve the effectiveness
of other processes described above.

Finally, we observe that the procedures described here can be implemented in the
context of mixed integer programming, where some components of x are permitted
to have continuous values. In this setting, where only the integer components of x

are modified by directional rounding, the focal points and centers of derived edges
produced by various directional rounding strategies are all feasible in the continuous
sense (with possible exceptions noted in Sect. 6.7 for strategies that do not produce
projected opposite or semi-opposite points). Consequently, the resultant directionally
rounded points created by the mixed integer counterpart of Approach 1 can become
candidates for a completion operation, which holds the integer components constant
and solves the resulting LP problem to seek better values for the continuous variables.

Infeasible/feasible search trajectories and directional rounding 539

Preference may reasonably be given to selecting directionally rounded points for the
completion operation that satisfy, or very nearly satisfy, the constraints defining F .

Within the branching operations of Approach 2, completion operations are not
required, since the residual LP problems are automatically solved as the method pro-
gresses. Guidance criteria derived from applying Approach 1 continue to be relevant,
however, and the mechanisms for using adaptive memory likewise carry forward un-
changed.

7 Conclusions

The asymmetric geometries of feasible and infeasible space produce a fascinating
web of interlinking relationships, and motivate an approach for solving integer pro-
gramming problems that seeks to exploit such geometries by passing freely from one
space to the other.

An opportunity to navigate between infeasible and feasible space in a flexible man-
ner is made available through the medium of directional rounding, and particularly
through conditional directional rounding, which takes advantage of branching opera-
tions carried out in conjunction with guidance from the probing operations of all-at-
once rounding. The flexibility of this approach is amplified by embedding it within an
adaptive memory framework, which affords broader options than branch-and-bound
and yet can be organized to include ordinary branch-and-bound as a special case.

Additional processes for guiding the search are based on an associated outside-in
procedure and the identification of derived edges and centers as a way to discover
promising candidates for creating directionally rounded solutions. Adaptive memory
likewise proves useful in this context by the introduction of frequency-based memory
of resistances, and also by a conditional form of frequency-based memory that pro-
vides provisional inequalities for strategically constraining the search space. Inequal-
ities can also be employed to take advantage of the connections between independent
and dependent branches under explicit or implicit infeasibility conditions. Advanced
strategies for exploiting directional rounding processes are provided by alternative
uses of linear programming, employing counter-balanced and semi-counter-balanced
objective functions to explore the space, giving rise to additional derived edges and
centers as a source of focal points.

These procedures present a rich vein of strategic opportunities to be mined by
empirical research, affording a chance to improve our insights about the interlinking
geometries of feasible and infeasible space, and to find more effective ways to take
advantage of them.

Appendix: Expanded discussion and proof of theorems

To justify the theorems of Sect. 1 we first observe that an optimal solution x∗ exists
for which a unit change in a single variable will render x∗ infeasible. In particular, if
c is not the 0 vector, then a +1 change in any x∗

j such that cj > 0 and a −1 change in
any x∗

j such that cj < 0 will yield an infeasible solution, since the resulting solution
yields an improved xo value. If c is the 0 vector, then the bounded condition on F

540 F. Glover

allows c to be perturbed so that selected components of c are replaced by small (“ep-
silon value”) nonzero coefficients while assuring that at least one optimal solution x∗
remains optimal.

All three of the theorems can be established by reference to a special construction
that consists of a minimal collection of unit hypercubes that cover F , which we de-
note by C(F). It is easy to see that C(F) is also a minimum cover and, if F in not
degenerate (i.e., is n-dimensional), then C(F) is unique. Moreover, we can observe:
(1) every hypercube in C(F) must contain a point of F ; (2) the graph G(F) consist-
ing of the vertices and edges of the hypercubes composing C(F) is connected; and
(3) C(F) cannot contain any “holes,” which is to say that if x1 and x2 are points of
F that lie in two different hypercubes of C(F), then every point on the line segment
joining x1 and x2 must also lie in some hypercube of C(F). We also note that a
hypercube C of C(F) that contains a non-integer extreme point x0 of F cannot lie
entirely within F , i.e., at least one vertex of C must be infeasible, since otherwise x0

would be spanned by vertices of C that lie within F , contrary to the definition of an
extreme point. Finally, every point obtained by some rounding of a non-integer point
within F must lie on a vertex of some hypercube within C(F).

Let Z denote the set of all infeasible integer vectors, and consider by extension of
C(F) the minimal (infinite) collection of unit hypercubes C(Z) such that the union
of C(F) and C(Z) cover all of n-space. It is clear that the graph G(Z) consisting of
the vertices and edges C(Z) is connected, and hence there is a path starting from any
integer point in Z that lies entirely in Z and terminates in a point just one step (edge)
away from an optimal x∗.

More restrictively, Theorem 1 starts from a point x1 in Z (and hence G(Z)) ob-
tained by rounding a point x0 on the boundary B(F) of F . By our previous obser-
vations, x1 must lie on G(F) and hence on the intersection of G(F) and G(Z). If
we enlarge G(F) to a graph G∗(F) that includes vertices and edges of G(Z) such
that each new vertex lies within a distance D0 from B(F), we can skirt all points of
G(F) that may lie on F , and find a path satisfying the conditions of Theorem 1. In
fact, parts of C(F) and hence G(F) are superfluous, since as noted earlier a path can
follow edges that cut across portions of F in traversing from one infeasible point to
another, and hence it is not necessary to include reference to hypercubes that contain
the infeasible regions bypassed.

Apart from Theorem 1, there is no need to refer to G∗(F), since the graph G(F)

clearly contains the paths described in Theorems 2 and 3. We complete our discus-
sion of the theorems by justifying the assertion following Theorem 1 that the path
P cannot move progressively closer to B(F). Consider a feasible region that looks
like a long thin needle, whose “point” is an LP vertex x0 that lies close to x = 0, and
whose “shaft” passes close to x = e (the vector of all 1’s), to eventually include a sin-
gle integer solution x = ke for some positive integer value of k. Then by starting P

at the infeasible integer point x = 0, a shortest path to a feasible integer solution that
stays close to B(F) must necessarily grow progressively farther from B(F) for n/2
successive steps, but then can grow progressively closer for another n/2 steps, to lie
again within a unit distance of B(F). (A slight qualification applies if n is odd.) Then
the pattern repeats in successive waves until ultimately reaching the integer solution
x = ke. Multiple shortest paths exist, some of them lying farther from the feasible
region over parts of their trajectory.

Infeasible/feasible search trajectories and directional rounding 541

It may additionally be observed that starting with an LP solution x0 that has only
a small number of fractional components does not allow the theorems of Sect. 1 to
be strengthened by defining D or D∗ relative to the number of fractional variables,
or by stipulating the existence of a trajectory that approaches B(F) in a more nearly
monotonic manner. The preceding comments concerning a feasible region that con-
stitutes a “long thin needle” apply even if a single component of x0 is fractional.

We conclude by noting that feasible regions having such a character can be ex-
ploited by joining the ideas of this paper with a transformation of variables to create
a bounding form structure (Glover and Laguna 1997).

References

Eckstein, J., Nediak, M.: Pivot, cut, and dive: a heuristic for mixed 0–1 integer programming. RUTCOR
Research report RRR53-2001 (2001)

Fischetti, M., Glover, F., Lodi, A., Monaci, M.: Feasibility net. (2006, in preparation)
Gendreau, M.: On the importance of allowing infeasible moves in tabu search heuristics. In: INFORMS

National Meeting, Denver, 24–27 October 2004
Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166

(1977)
Glover, F.: Parametric branch and bound. Int. J. Manag. Sci. 6, 1–9 (1978)
Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Dis-

crete Appl. Math. 49, 231–255 (1994)
Glover, F.: Scatter search and star-paths: beyond the genetic metaphor. OR Spectr. 17, 125–137 (1995)
Glover, F.: Adaptive memory projection methods for integer programming. In: Rego, C., Alidaee, B. (eds.)

Metaheuristic Optimization via Memory and Evolution, pp. 425–440. Kluwer Academic, Dordrecht
(2005)

Glover, F.: Parametric tabu search for mixed integer programs. Comput. Oper. Res. 33(9), 2449–2494
(2006)

Glover, F., Laguna, M.: Tabu search. In: Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial
Problems, pp. 71–140. Blackwell Scientific, Oxford (1993),

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997)
Guignard, M., Spielberg, K.: Double contraction, double probing, short starts and BB-probing cuts for

mixed (0,1) programming. Wharton School report (2003)
Lokketangen, A., Glover, F.: Tabu search for zero-one mixed integer programming with advanced level

strategies and learning. Int. J. Oper. Quant. Manag. 1(2), 89–108 (1995)
Lokketangen, A., Woodruff, D.L., Glover, F.: Scatter search to generate diverse MIP solutions. In: M. La-

guna, J.L. Gonzalez-Velarde (eds.) OR Computing Tools for Modeling, Optimization and Simulation:
Interfaces in Computer Science and Operations Research, pp. 299–317 (2000)

Spielberg, K., Guignard, M.: A sequential (quasi) hot start method for BB (0,1) mixed integer program-
ming. In: Mathematical Programming Symposium, Atlanta, 2000

	Infeasible/feasible search trajectories and directional rounding in integer programming
	Abstract
	Introduction
	Basic results
	Algorithms
	Directional rounding
	Basic concepts
	Edges and centers
	Derived edges and centers
	A first approach
	Considerations for creating D

	Conditional directional rounding
	Flexible branching

	Preliminary refinements
	Choice criteria for branching
	Supplementary stipulations to manage the branching operations
	Further exploitation of derived edges and centers
	Mixed directional rounding
	Diversification by reference sets
	Diversification rule to build a new reference set R
	Determination of Eo
	Parallelization
	Parallel exploitation of R

	A complementary (outside-in) strategy
	Details of the outside-in procedure
	Illustration of the outside-in procedure

	Additional refinements
	Marrying the outside-in approach with adjacent extreme point search
	Frequency-based conditional memory and provisional inequalities
	Model embedded memory from inequalities
	Handling primal degeneracy
	Identifying non-basic columns to receive positive weights
	Advanced determination of derived centers and edges
	Derived edges and centers from semi-counter-balanced objectives
	Compounding and refining membership in the set X''
	Additional foundations for branching

	Conclusions
	Appendix: Expanded discussion and proof of theorems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

