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Abstract

The unconstrained quadratic binary program (UQP) is proving to be a successful modeling and solution framework for
a variety of combinatorial optimization problems. Experience reported in the literature with several problem classes has
demonstrated that this approach works surprisingly well in terms of solution quality and computational times, often rival-
ing and sometimes surpassing more traditional methods. In this paper we report on the application of UQP to the max-
imum edge-weighted clique problem. Computational experience is reported illustrating the attractiveness of the approach.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the tenets of combinatorial optimization is
that given a choice, linear representations are pre-
ferred to nonlinear model forms. This preference
for linearity is well entrenched in the conventional
wisdom of both the theory and practice of combina-
torial optimization and in fact has served the optimi-
zation community well over the years. Modern
solution approaches like branch and cut and other
methods designed to take full advantage of linearity
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have proven to be successful in practice, further
underscoring the wisdom of the ‘‘linear choice’’. Lin-
ear representations also facilitate theoretical work
aimed at understanding polyhedral (and other)
properties of certain problems.

Opting for linearity may not, however, be the best
choice from a computational point of view in all
cases. This is particularly true for certain combinato-
rial problems that appear in their most natural form
as nonlinear models but are ‘‘linearized’’ to enable
the use of well-known solution methods designed
for linear models. Successes with recent advances
in metaheuristics and other solution approaches
applicable to nonlinear models are calling the uni-
versality of the tenet of linearity into question. In
this paper, we illustrate this notion by examining
.
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the maximum edge-weighted clique problem, a well-
known NP-hard problem. As detailed in several
recent articles, this problem is typically solved in
its linear form even though its most natural formula-
tion is nonlinear.

In the sections below we give the natural, nonlin-
ear formulation for the maximum edge-weighted
clique problem followed by the linear version com-
monly appearing in the literature. We then comment
on the metaheuristic procedure we use to solve the
problem followed by some computational experi-
ence comparing our approach with recently pub-
lished results. We conclude with a brief summary
and some final remarks.

2. Problem definition

The maximum edge-weighted clique problem
(MEWCP) can be defined as follows: Given a com-
plete graph G = (V,E) with n nodes and unrestricted
edge weights cij, find a subclique of G with b or fewer
nodes such that the sum of the weights in the subc-
lique is maximized. Since a given edge weight is
included in the sum only if the associated pair of
nodes is in the subclique, a natural, nonlinear formu-
lation of this problem is

Quadratic model : max
Xn�1

i¼1

Xn

j¼iþ1

cijxixj

s:t:
Xn

j¼1

xj 6 b;

xi 2 f0; 1g;

where xj equals 1 if node j is in the subclique; else xj

equals 0. This formulation is equivalent to that con-
sidered by Mehrotra (1997). We note that this mod-
el is of the form of the unconstrained quadratic
binary program (UQP)

UQP : max xQx

x binary

with the addition of a single cardinality constraint.
This observation motivates the use of efficient meta-
heuristic methods for solving UQP to be applied to
the problem considered here. The attractiveness of
this approach is illustrated in Section 4 of this paper.

While the above model appears to be a natural
representation of the problem, several solution
methods proposed in the literature for solving
MEWCP are based not on the quadratic model
but instead on an equivalent linearization of the
form (see for instance (Macambira and de Souza,
2000)):

Linear model: max
X
i;j;i<j

cijyij

s:t: yij6 xi 8ði;jÞ 2E; i< j

yij6 xj 8ði;jÞ 2E; i< j

xiþ xj� yij6 1 8ði;jÞ 2E; i< j
X

j2V�fig
yij�ðb�1Þxi6 0 8i2 V

yij;xi 2 f0;1g;

where xj is defined as in quadratic model above and
yij equals 1 if edge (i, j) is in the subclique; else yij

equals zero.
Note that the quadratic model is strictly a node-

based model consisting of n variables and a single
constraint. The linear model, which is obtained
from the quadratic model via standard procedures
for linearizing a quadratic function in binary vari-
ables, is both node and edge-based, consisting of
n + n(n � 1)/2 variables and n + 3n(n � 1)/2 con-
straints. Thus, the linear model, while amenable to
solution strategies designed for linear models, is
much larger than the quadratic model. The differ-
ences in size and structure between the two equiva-
lent models make a significant difference in the ease
with which they can be solved. We illustrate this in
the sections below.

3. Solving MEWCP

While MEWCP is NP-hard, considerable pro-
gress has been made in recent years in designing
and testing exact methods intended to solve the lin-
ear model. Three recent articles standout as repre-
sentative of these advances. Macambira and de
Souza (2000) report on a branch and cut algorithm
based on extensions of earlier work by Boros and
Hammer (1993) and the work by Mehrotra (1997).
They report computational experience with a set
of test problems that have become a standard test
bed for other researchers in the area. Hunting
et al. (2001) report on a Lagrangian Relaxation
approach that combines standard Lagrangian meth-
ods with cutting planes yielding a new approach to
MEWCP. Finally, Sorensen (2004) reports on a
new branch and cut method based on new classes
of facet defining inequalities for the associated
b-clique polytope. The later two papers report
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computational experience with the same problems
introduced by Macambira and de Souza.

3.1. Tabu search heuristic for quadratic model

We solve instances of MEWCP directly in the
nonlinear form of the quadratic model by applying
a tabu search (TS) heuristic designed for the general,
unconstrained binary quadratic programs (UQP).
This approach, as indicated below, implicitly
enforces the cardinality constraint and thus can be
directly applied to MEWCP.1 An overview of our
method, which proved to be very successful on stan-
dard MEWCP test problems, is given below:

Our TS method for UQP is centered around the
use of strategic oscillation, which constitutes one
of the primary strategies of tabu search. The method
alternates between constructive phases that progres-
sively set variables to 1 (whose steps we call ‘‘add
moves’’) and destructive phases that progressively
set variables to 0 (whose steps we call ‘‘drops
moves’’). To control the underlying search process,
we use a memory structure that is updated at critical

events, identified by conditions that represent locally
optimal solutions that restrict the number of vari-
ables currently set to 1 to satisfy the cardinality con-
dition

Pn
j¼1xj 6 b

� �
. Solutions corresponding to

critical events are called critical solutions. Addi-
tional moves on either side of a critical event, which
degrade the critical solution and which may violate
the cardinality constraint, are executed as part of
the strategic oscillation employed.

A parameter span is used to indicate the ampli-
tude of oscillation about a critical event. We begin
with span equal to 1 and gradually increase it to
some limiting value. For each value of span, a series
of alternating constructive and destructive phases is
executed before progressing to the next value. At the
limiting point, span is gradually decreased, allowing
again for a series of alternating constructive and
destructive phases. When span reaches a value of
1, a complete span cycle has been completed and
the next cycle is launched. The search process is typ-
ically allowed to run for a pre-set number of span
1 Note, however, that the cardinality constraint found in the
quadratic model could be brought into the Q matrix by replacing
the constraint by a quadratic infeasibility penalty, yielding an
equivalent unconstrained version of the quadratic model. In turn,
this unconstrained version of the quadratic model could be solved
by any solution method designed for the unconstrained binary
quadratic program.
cycles and the best solution found during this search
process is then reported.

Information stored at critical events is used to
influence the search process by penalizing poten-
tially attractive add moves (during a constructive
phase) and inducing drop moves (during a destruc-
tive phase) associated with assignments of values to
variables in recent critical solutions. Cumulative
critical event information is used to introduce a sub-
tle long term bias into the search process by means
of additional penalties and inducements similar to
those discussed above. Other standard elements of
tabu search such as short and long term memory
structures are also included. A detailed explanation
of this method us given in Glover et al. (1998) and
Glover et al. (1999).

This basic implementation has been employed to
solve a wide variety of combinatorial problems,
some appearing naturally in the form of UQP and
many others re-cast into the unified framework of
UQP via the use of quadratic infeasibility penalties
(see, for instance, Kochenberger et al., 2004a,b).
We note that other heuristic approaches have
recently been reported in the literature for a
restricted version of MEWCP where all edge weights
are required to be positive. (See Macambira, 2003
and Macambira and de Meneses, 1998.) These
methods are not applicable to the general case of
MEWCP considered here nor have comparisons
been given by their authors with the methods consid-
ered here for solving the linear version of MEWCP.
For these reasons, they are not considered further in
this paper.

4. Computational experience

Our basic tabu search heuristic was used to solve
a set of standard test problems originally appearing
the paper by Macambira and de Souza (2000). Spe-
cifically, we solved the 30 test problems having both
positive and negative edge weights. The results of
our algorithm (denoted by TS/UQP) and those of
Macambira and de Souza (M&d), Hunting, Faigle
and Kern (HFK) and Sorensen are given in Table 1.

The first two columns of the table give the prob-
lem identification and the known optimal solution
for each problem. The next four columns give the
computational times required for the four methods
being considered. The times (seconds) given for
M&d, HFK and Sorensen are taken directly from
their respective papers. The times reported for our
UQP approach were obtained by running our heu-



Table 1
Test problems with unrestricted edge weights from Macambira and de Souza

ID Optimal X0 M&d time (seconds)a HFK time (seconds)b Sorensen time (seconds)c TS/UQP time (seconds)d

Grafo 40.1 70,348 12,481 14,079 223 <1
40.2 45,404 2219 1857 68 <1
40.3 34,091 1298 1129 64 <1
40.4 27,758 4759 2548 84 <1
40.5 27,967 477 2785 44 <1

Grafo 42.1 81,633 18,754 14,841 269 <1
42.2 46,828 5569 4159 193 <1
42.3 36,689 1119 2130 84 <1
42.4 35,987 66 534 58 <1
42.5 35,460 707 1800 59 <1

Grafo 44.1 90,620 20,388 27,445 347 <1
44.2 56,960 4201 3329 195 <1
44.3 40,697 1277 2142 151 <1
44.4 32,601 14,388 4208 169 <1
44.5 29,407 2633 1502 129 <1

Grafo 45.1 102,295 16,111 NA 252 <1
45.2 55,103 11,021 NA 353 <1
45.3 43,914 637 NA 84 <1
45.4 33,990 7549 NA 140 <1
45.5 30,974 9397 NA 237 <1

Grafo 46.1 99,550 19,276 10,348 383 <1
46.2 58,361 5988 4579 358 <1
46.3 43,915 7323 5418 242 <1
46.4 32,698 20,632 10,185 344 <1
46.5 31,000 1693 2350 144 <1

Grafo 48.1 113,478 63,603 55,917 800 <1
48.2 61,768 33,527 36,963 840 <1
48.3 45,941 6625 3277 290 <1
48.4 36,903 2781 2257 206 <1
48.5 31,351 24,048 4505 307 <1

a SUN SPARC 1000 (Specific processor type not specified by authors).
b HP9000/735(125 MHz).
c Win95 on 350 MHz PC (Specific processor type not specified by authors).
d Intel Pentium 4 1.96 GHz.
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ristic on a 1.96 GHz PC for an arbitrary limit of 50
SPAN cycles. Note that all methods found optimal
solutions for all problems.2

A comparison of the computational times for the
various methods must be done with all the usual
caveats because the authors have used different
machines. Additional care must also be exercised
because our TS/UQP approach is heuristic in nature
while the first three approaches are exact methods.
Sorensen, making adjustments for the relative speed
of the computers used, concludes that the time per-
formance of M&d and HFK are roughly equivalent
2 Hunting, Faigle and Kern did not report results for the 45
node problems.
and that his method (on a 350 MHz PC) shows
improvement over that of M&d by a factor of
10. M&d and Sorensen did not report their proces-
sor type, and thus it is impossible to make precise
timing comparisons with their results. However,
by using the standard SPEC benchmark (http://
www.specbench.org/osg/cpu20000) we can con-
clude that the computer we used to produce our
results is approximately three times faster than the
computer used by HFK.

Whatever reasonable adjustments that might be
made regarding comparable speeds of various com-
puters, it is clear from Table 1 that the computation
times for our approach to these test problems is very
attractive. Our TS/UQP approach easily identified
the optimal solution for each of the 30 problems

http://www.specbench.org/osg/cpu20000
http://www.specbench.org/osg/cpu20000
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by a search process conducted over an arbitrary
limit of 50 SPAN cycles. The test problems consid-
ered here, corresponding to graphs with fewer than
50 nodes, are considered to be very small by UQP
standards and the 50 SPAN cycles were executed
in less than 1 second for each problem.

It is interesting to note that most of the time con-
sumed by the LP-based methods applied to the linear
model was spent on solving the initial LP relax-
ations. In fact for the two branch and cut methods
(M&d and Sorensen), each of the 30 problems were
optimally solved at the root node and no branching
was required. Moreover, the Lagrangian/Cut
method of HFK required very few branches to solve
these problems. As noted in Section 1, the linear
model has many variables and constraints compared
to the quadratic model and even for small instances
like those considered here, the linear model gener-
ates large LPs that are time consuming to solve.

The approach by Sorensen appears to give the
best performance of the three exact methods consid-
ered here. It is expected, however, that this
approach (and indeed all the methods applied to
the linear model) would degrade sharply in perfor-
mance due to LP (and other) difficulties for larger
problem instances. In contrast to this, the quadratic
model scales nicely enabling much larger instances
to be efficiently solved. For example, we have solved
instances of MEWCP for graphs with n = 2000
nodes in just a few minutes with our UQP heuristic.
Problems of this size yield instances of the linear
model with roughly 6,000,000 constraints, ruling
out the use of this representation while posing no
problem at all for the quadratic model and our heu-
ristic approach.

5. Summary and conclusions

In this paper, we have focused on the attractive-
ness of solving MEWCP directly in its nonlinear
form rather than the more common approach of
constructing and solving the equivalent but larger
linear model. Modern metaheuristic methods, like
critical event tabu search, enable the nonlinear ver-
sion of MEWCP to be quickly solved. Even for
small graphs as found in the available test bed, the
computational advantage of the nonlinear model
over the linear model is apparent. For instances of
MEWCP defined on larger graphs, the attractive-
ness of the nonlinear model is even more pro-
nounced. In fact, the linear representation of
MEWCP may simply be unsolvable for even modest
sized graphs (few hundred nodes) while the nonlin-
ear model, approached by metaheuristic methods,
can readily be applied to problems with several
thousand nodes.

Adopting the nonlinear representation enables
the state of the art in solving MEWCP to leap from
problems with less than 100 nodes (according to the
current literature) to those with several thousand
nodes. As noted in recent papers (see for instance
(Alidaee et al., 2005, 2006; Kochenberger et al.,
2005a, 2004a,b, 2005b), the model UQP has proven
to function efficiently and effectively as a unified
framework for modeling and solving a wide variety
of combinatorial optimization problems. In the con-
text of other problem classes, we have solved
instances of UQP with more than 50,000 variables,
which means we could conceivably solve the nonlin-
ear version of MEWCP for graphs with more than
50,000 nodes. As part of our future work, we plan
to report on larger instances of MEWCP as well as
a more detailed comparison with other heuristic
methods. Our main objective here was to present
the UQP approach for modeling and solving
MEWCP and to illustrate its attractiveness by solv-
ing publicly available test problems.
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