A Path Relinking Approach
for the Multi-Resource
Generalized Quadratic Assignment Problem

Mutsunori Yagiura', Akira Komiya?, Kenya Kojima2, Koji Nonobe?, Hiroshi
Nagamochi?, Toshihide Ibaraki?, and Fred Glover®

! Graduate School of Information Science, Nagoya University, Nagoya, Japan,
yagiura@nagoya-u. jp
% Graduate School of Informatics, Kyoto University, Kyoto, Japan,
nag@i.kyoto-u.ac.jp
3 Faculty of Engineering and Design, Hosei University, Tokyo, Japan,
nonobe@hosei.ac. jp
4 School of Science and Technology, Kwansei Gakuin University, Sanda, Japan,
ibaraki@ksc.kwansei.ac. jp
% Leeds School of Business, University of Colorado, Boulder, USA,
fred.glover@colorado.edu

Abstract. We consider the multi-resource generalized quadratic assign-
ment problem (MR-GQAP), which has many applications in various
fields such as production scheduling, and constitutes a natural gener-
alization of the generalized quadratic assignment problem (GQAP) and
the multi-resource generalized assignment problem (MRGAP). We pro-
pose a new algorithm PR-CS for this problem that proves highly effec-
tive. PR-CS features a path relinking approach, which is a mechanism
for generating new solutions by combining two or more reference solu-
tions. It also features an ejection chain approach, which is embedded in a
neighborhood construction to create more complex and powerful moves.
Computational comparisons on benchmark instances show that PR-CS
is more effective than existing algorithms for GQAP, and is competitive
with existing methods for MRGAP, demonstrating the power of PR-CS
for handling these special instances of MR-GQAP without incorporating
special tailoring to exploit these instances.

1 Introduction

We cousider the multi-resource generalized quadratic assignment problem (MR-
GQAP), which is a natural generalization of the generalized quadratic assignment
problem (GQAP) [1,8] and the multi-resource generalized assignment problem
(MRGAP) [2,13]. For this problem, we are given n jobs, m agents, assignment
costs of jobs, a cost matrix between jobs, a cost matrix between agents, and
coefficients for resource constraints. The objective of MR-GQAP is to find a
minimum cost assignment of jobs to agents subject to cardinality constraints
and multi-resource constraints for each agent, where the following two types of

costs are considered: One is individual cost associated with each assignment,
and the other is mutual cost associated with a pair of assignments. MR-GQAP
is NP-hard because both MRGAP and GQAP are NP-hard. MR-GQAP is very
general and includes such problems as the graph coloring problem, a special case
of the channel assignment problem, and so forth. MR-GQAP is also motivated
by some problems emerging from real-world applications such as production
scheduling problems in steal industry. It also includes the quadratic assignment
problem (QAP) as a special case of GQAP, and the generalized assignment prob-
lem (GAP) as a special case of MRGAP.

For GQAP, Lee and Ma [8] proposed linearization approaches and a branch-
and-bound algorithm, and Cordeau et al. [1] have recently proposed a sophis-
ticated memetic algorithm. For MRGAP, Gavish and Pirkul [2] proposed a
branch-and-bound algorithm and two simple Lagrangian heuristics, and Yagiura
et al. [13] devised a very large-scale neighborhood search algorithm. Nonlinear
variants are also discussed, e.g., in [11]. For more restricted special cases such
as GAP and QAP, much effort has been devoted to develop efficient exact and
heuristic algorithms. To the best of our knowledge, however, not much has been
done for GQAP and MRGAP in spite of their practical importance.

In this paper, we propose a heuristic algorithm PR-CS (path relinking with
chained shift neighborhood) for MR-GQAP. PR-CS features a path relinking ap-
proach, which provides an evolutionary mechanism for generating new solutions
by combining two or more reference solutions. The idea of path relinking was
proposed by Glover [3,4], and some of its basic aspects were also introduced
in an earlier paper by Ibaraki et al. [6]. For more about the general principles
of the path relinking approach, see e.g., [7,9]. PR-CS also features the idea of
ejection chains [5], which is embedded in a neighborhood construction to cre-
ate more complex and powerful moves. We call the resulting neighborhood the
chained shift neighborhood, which generalizes standard shift and swap neighbor-
hoods. The problem of judging the existence of a feasible solution for MR-GQAP
is NP-complete. We therefore allow our search to visit infeasible solutions that
may violate resource constraints as well, and evaluate the amount of the viola-
tion as penalty. The performance of the algorithm crucially depends on penalty
weights, and hence we incorporate an adaptive mechanism for controlling them
to maintain a balance between visiting feasible and infeasible regions.

We conduct computational experiments to observe the effectiveness of each
component of the above mentioned methodologies, and to confirm that their com-
bination provides a successful framework for algorithm design. We test PR-CS
on MR-GQAP instances generated by us, and on benchmark instances of GQAP
and MRGAP. We first compare PR-CS with a basic algorithm (without path re-
linking mechanism) using only the shift and swap neighborhoods, and observe
the effectiveness of the path relinking approach and the chained shift neighbor-
hood. We then compare PR-CS with existing algorithms for GQAP and MRGAP,
which are specially tailored to these specific problems, and a general solver for
the constraint satisfaction problem. The computational results of PR-CS are
quite promising considering its generality.

2 Formulation

Given n jobs J = {1,2,...,n} and m agents I = {1,2,...,m}, we undertake to
determine a minimum cost assignment of each job to exactly one agent under
cardinality constraints and multi-resource constraints for each agent, where s
resources K = {1,2,...,s} are considered. In this problem, for i,i' € I, j,j' € J,
and k € K, the following data are given as the input:

cij: the cost of processing job j at agent i,

uj;: the cost coefficient between jobs j and j,

wy;: the cost coefficient between agents ¢ and 7',

aiji: the amount of resource k£ consumed by job j if it is assigned to agent ¢,
b;: the upper bound of resource k available at agent 1,

tYB: the upper bound on the number of jobs assigned to agent i,

t-B: the lower bound on the number of jobs assigned to agent i.

Assigning a job j to an agent ¢ incurs a cost of ¢;; and consumes an amount a;;i
of each resource k € K, whereas the total amount of the resource k available
at agent 7 is b;;. Moreover, for any pair of jobs j,j', assigning jobs j and j’ to
agents i and ' respectively incurs a cost of f(uj;,w;;), where f : R* = R is a
given function. Throughout the paper, we assume a;jx > 0 and b;; > 0 for all
i€l,je Jand k € K. An assignment is a mapping o: J — I, where o(j) =i
means that job j is assigned to agent i. Let

Ji={jeJ|o(j) =i}, Viel,

which is the set of jobs assigned to agent i in assignment o. Then the problem
we consider in this paper is formally described as follows:

minimize cost(o) = an(j)yj + Z f (ujj/,wa(j)a(j,)) (1)
jeJ jg'ed
subject to B < |J7| < VB, Viel (2)
> aiji < bir, Vie I and Vk € K. (3)
jeJe

We mainly consider the case with f(u,w) = uw, and call the problem the multi-
resource generalized quadratic assignment problem (MR-GQAP). We call (2) the
cardinality constraints and (3) the resource constraints. This problem includes
GQAP as its special case with f(u,w) = uw, s = 1, t+B = 0,tY® = n for all
i€ anda;j1 =ayj forallé,i’ € I and j € J. MRGAP is a special case of MR-
GQAP with f(u,w) = 0and t*8 = 0,tY® = n for all i € I. QAP is a special case
of GQAP with a;;7 = 1 for all 4 and j (hence resource constraints can also be
described as cardinality constraints), and GAP is a special case of MRGAP with
s = 1. Note that GQAP does not include GAP because the resource constraint
of GQAP must satisfy a;;1 = ayj1 for all i,i' € I and j € J. MR-GQAP is
NP-hard in the strong sense, and the (supposedly) simpler problem of judging
the existence of a feasible solution for GAP is NP-complete, since the partition
problem can be reduced to GAP with m = 2.

3 Algorithm

Our algorithm PR-CS is based on local search, where the initial solutions of local
search are generated by path relinking. We describe its basic components in the
following subsections.

3.1 Local Search, Search Space and Neighborhood

Local search starts from an initial solution o, and repeatedly replaces the current
solution o with a better solution o' in its neighborhood N (o) until no better
solution is found in the neighborhood. The resulting solution is called locally
optimal. Shift and swap neighborhoods, denoted Ngnife and Ngwap respectively,
are often used in local search methods for assignment type problems, where
Napiee (0) is the set of solutions obtainable from o by changing the assignment of
one job, and Ngwap(0) is the set of solutions obtainable from o by exchanging the
assignments of two jobs. The sizes of these neighborhoods are O(mn) and O(n?),
respectively. In addition to these standard neighborhoods, our algorithm uses a
chained shift neighborhood, which consists of solutions obtainable by certain
sequences of shift moves. The chained shift neighborhood Nepain(0) is the set of
solutions ¢’ obtainable from o by changing the assignments of I (I =2,3,...,n)
arbitrary jobs ji, ja,...,Ji simultaneously so that

o' (jr) =0(jr-1), r=2,3,...,1
o'(j1) = o(ji)-

In other words, for r = 2,3,...,1, job j, is shifted from agent o(j,) to agent
o(jr—1) after ejecting job j._1, and then the cycle is closed by assigning job
J1 to agent o(j;). The length of a chained shift move is the number [of jobs
shifted in the move. This is based on the idea of ejection chains by Glover [5].
Since the size of such a neighborhood can become exponential in [, we carefully
limit its size by utilizing ejection trees to be explained in Section 3.3. Since
| Nsnitt] < |Nswap| < |[Nehain| usually holds, Ngwap is searched only if Ngpise does
not contain an improving solution, and Nghain is searched only if Ngpigt U Nswap
does not contain an improving solution.

The search space of our local search is the set of assignments o that satisfy
the cardinality constraints (2), but may violate the resource constraints (3). Note
that it is easy to judge the existence of an assignment o that satisfies (2): There
exists a o satisfying (2) if and only if

Yot <<y " (4)

i€l i€l

In the rest of this paper, we assume (4) without loss of generality. In the shift
neighborhood, we only evaluate solutions satisfying (2). Note that all solu-
tions in the swap and chained shift neighborhoods satisfy (2) if the current
solution satisfies (2). The search space is connected if both shift and swap

neighborhoods are used; i.e., for any two solutions ¢ and ¢’ that satisfy (2),
there exists a sequence ¢ = 0¢,01,...,0p = o' such that o, satisfies (2) and
Or € Nshirt(0r—1) U Nywap(0r—1) holds for all r = 1,2,...,0". As the search may
visit the infeasible region, we evaluate solutions by an objective function penal-
ized by infeasibility:

peost(o) = cost(o) + Z aikpir (J (5)

i€l
kEK

where

pik(S) = max < 0, Zaijk — bk
jes
for i € I, k € K and a subset S C J of the jobs. The parameters a;; (> 0)
are adaptively controlled during the search by using the rules similar to those
in [12]. The basic idea is simple and intuitively explained as follows: The weights
are updated whenever a locally optimal solution is found, and are increased
slightly if no feasible solution is found during the last call to local search, and
are decreased otherwise (i.e., at least one feasible solution is found during the
search). We omit the details due to space limitation.

For convenience, we denote by LS-SS(o, incum) the local search with the
shift and swap neighborhoods that starts from a solution ¢, where it improves
the solution ¢ to a locally optimal solution and also updates the incumbent
solution Oipcum (i-e., the best feasible solution found by then) if it finds a better
feasible solution during the search.

3.2 An Efficient Implementation of Neighborhood Search

As it takes O(n? + ns + ms) time to calculate pcost (5) of one solution from
scratch, it takes O(mn® + mn?s + m?ns) time to calculate all the solutions in
the shift neighborhood, if we adopt a naive implementation. In this section,
we propose an efficient implementation of the shift neighborhood in which it
memorizes the changes of pcost induced by all shift operations in a table of size
O(mn). Below, we consider the cost changes and the resulting penalty incurred
by shifting job j from agent o(j) to agent 4. Let 45, 5;;', o, (5p+ be defined
as follows:

& == > AS (i weyein) + g we(),00))
J'eJ\{i}
Coi)i = F W5, Wa(s),00)s (6)
07 = Y {f g wigy) + Flugg,wain)} + cij + flugg,wi), (7)
JjeJ\{j}
o =~ Z Qg (j),k {pa(j)Jc(Jg(j)) = Poi) k(o) \{j})} ; (8)
keK

o = Z air{pir(J7 U{5}) — pix(J7)}- 9)

keK

We can decompose the operation of shifting a job j from agent o(j) to agent
i into two steps; we first remove job j from agent ¢(j) and insert it into agent
i. In this process, 07~ and 5;’ ~ represent the increases (actually, the decreases
times —1) of cost and penalty by the removal of job j from agent o(j), and
6f;r and (5fj+ represent the increases in the cost and penalty, respectively, by the
insertion of job j to agent i. We can calculate the values of §;~ and 5;}' in O(n)
time. If the amount of resource k € K used by agent i € I (i.e., EjeJ;’ Qijk)
at the current solution o is memorized in a table (this table can be prepared in
O((m+n)s) time), then 5;77 and (5fj+ can be calculated in O(s) time. It therefore
takes O(mn(n + s)) time to compute the table of 657,85, 67, and 55; for all
1 and j.

If the above table is given, the increase in pcost by shifting job j from agent

o(j) to agent i is given by
_ 5o — L sct 4 gt
0ij = 05 +0) +0;; + 0 (10)
(0i; < 0 means that we can get an improved solution by this shift operation),
which can be calculated in O(1) time. We can therefore calculate pcost of all the
solutions in the shift neighborhood in O(mn) time excluding the time to prepare
the table.

We then consider the computation time to renew the table when the current
solution is changed by a shift operation. Assume that job j' is shifted from
agent i’ to agent i", and let 45, 5;;', or, (5fj+ denote the values of &5, 5;;',
&, 6fj+ before the shift operation, respectively. For j # j', ;= and 65;“ after
the shift move are given by

857 =057 — Flugy, wo(sy,in) — FWjj, wir o (7))
+f(ujjr, woy,e) + fujg, wi o))

S5 =05 — flugjr,wir) — fujj, wird) + fugje, wizn) + fujej, wins),

and the computation time of this update for each pair of i and j is O(1). For the
remaining case (i.e., j = j'), we need to calculate 65, by (6), which takes O(n)
time, and 5;;,' = 3;",‘ holds for all i € I. Therefore it takes O(mn) time to renew
the table of 67 and 6f;r for all pairs of 7 and j.

For the table of 0¥~ and 5?, we calculate 0%~ according to (8) for all jobs
Jj € J such that o(j) =4 or o(j) = 4", and calculate 5fj+ according to (9) for all
j € Jand i€ {i,i"}. In this case, we do not need to renew the table for other
iand j (ie, 8] = 5;’7 holds if o(j) #4',i", and 55; = Sff holds for all j € J
if i #4',4"). Since the number of 5;77 and 55; requiring updates is O(n), and it
takes O(s) time for each update, it takes O(ns) time to renew 0%~ and 5;”]* for
all 7 and j.

The time to renew the table of Zjng a;jr, for all ¢ and k is O(s), because
we only need to calculate the changes at agents ¢’ and i”. In total, we can renew

the table of 05, &;, 8~ and ;" for all i and j and that of 3 - ayjy, for all
i in O(n(m + s)) time.

In conclusion, a shift move can be executed in O(n(m + s)) time once the
tables are initialized. Note that it takes O(nm(n+s)) time to initialize the tables
when an initial solution for local search is given or the penalty weights a;; are
changed. Although time for initializing the tables is larger than the computation
time needed for each move, we can usually ignore it because the number of moves
in a local search is much larger than the number of initialization of tables. For
many instances, s < m holds, and the computation time for a shift move becomes
O(mn), which is the same as the size of Ngnig. In such cases, we can evaluate
one solution in the shift neighborhood in O(1) amortized time.

Based on a similar idea, we can evaluate a solution in the swap neighborhood
in O(s) time using 05, 05",07 and 6fj+, and renew the tables in O(n(m + s))
time. (The details are omitted due to space limitation.) For many instances, s can
be considered as a fixed constant and m < n hold, and hence the computation

time for a move becomes O(n?), which is the same as the size of Ngyap-

3.3 Search in the Chained Shift Neighborhood

In this section, we briefly explain the idea of our algorithm for finding an im-
proved solution in the chained shift neighborhood using ejection trees. The ejec-
tion tree is a rooted tree, in which each vertex corresponds to a job, and the
path from the root to a vertex corresponds to a chained shift move.

We consider a set of n ejection trees T'(o,1),T(0,2),...,T(0,n) correspond-
ing to the current solution o. The root vertex of T'(o, j) corresponds to job j, and
other vertices correspond to other jobs. Let j(v) denote the job assigned to a ver-
tex v, and p(v) denote the parent of v with depth d,, > 1. Let j§ (= 7),47,- - -, j3,
denote the sequence of jobs in the path from the root to a vertex v in depth d,.
Then the chained shift move corresponding to this path is as follows:

(3}371)7 d:1727~-~;dv

where ¢’ is the new solution generated by the move. Let o, be the solution
obtained by the chained shift operation that corresponds to the path to v from
its root.

It is clear that we can generate all possible solutions in the chained shift
neighborhood by considering appropriate ejection trees; however, generating all
solutions in this neighborhood is not realistic. We therefore limit the search by
the following heuristic rules.

— The search is restricted to the vertices of depth < dmax (a parameter).

— In each depth d, we choose the vertices with the smallest [v/d] (v is a
parameter) values of A~ (v) among the set of vertices generated in depth
d (> 1), and generate only the descendants of the chosen vertices, where
A~ (v) is the difference in pcost between the current solution o and the

incomplete solution obtained by ejecting the assignment of the job j§ from
the solution o, .

In the experiment in Section 4, we set dyax = min{m,5} and v = 4.

We implement our algorithm so that it evaluates each solution o, in O(d,+s)
time, by using an idea similar to those in Section 3.2; however, its details are
quite complicated and are omitted. The whole computation time to search the
chained shift neighborhood is O(n?s + nm).

Even with such an elaborate implementation, the search in the chained shift
neighborhood is still expensive compared to the search in the shift and swap
neighborhoods. We therefore invoke the search in the chained shift neighborhood
only if the current solution o is locally optimal with respect to Ngnir and Ngwap,
and pcost(o) < 1.01cost(oineum) holds, where oipcum is the incumbent solution.
We denote by LS-CS(0, incum) the local search with the shift, swap and chained
shift neighborhoods that starts from a solution o (it receives the current solution
o and the incumbent solution oipcym and modifies them if possible).

3.4 Path Relinking and Reference Set

Path Relinking. We generate initial solutions for LS-SS and/or LS-CS by
a path relinking approach, which is a method to construct solutions from two
solutions. We define a path to be the set of solutions obtained by repeatedly
applying the shift operations from a solution to the other. If two solutions o4
and o9 are given, the path relinking gives a set of initial solutions S along the
path between o7 and os. Let J' be the set of jobs assigned to different agents
between o; and oy. To construct a path from o; to o9, in each step, we shift
a job j € J' such that d,,(;) ; (i.e., the increase in pcost calculated by (10)) is
minimum. In our algorithm, we apply local search to at most w solutions in the
path having small pcost, where w is a parameter. For a given pair of o7 and
09, our path relinking procedure, denoted PR(oq, 03), is formally described as
follows.

Procedure PR(oy, 02)

Step 1. Let o:=01, S:=0 and J' :={j € J | 01(j) # 02(j)}.

Step 2. Choose a job j € J' with minimum d,,(;),;, and let o(j) := o2(j).

Step 3. Let S := SU{o}, and remove j from J'. If |J'| > 2, return to Step 2;
otherwise proceed to Step 4.

Step 4. If | S| < w, output S, otherwise let S’ be the set of solutions in S with
w smallest values of pcost, and output S’.

Reference Set. We keep a set R of good solutions, and choose the two solutions
o1 and oy for path relinking from R. It is preferable to keep good solutions in
the reference set R to make path relinking more effective, while similar solutions
in R are not desirable from the view point of diversification. As candidates for
R, we test only locally optimal solutions obtained in the previous call to local
search.

We define the distance D between two solutions o; and oo to be the number
of jobs that are assigned to different agents; i.e.,

D(o1,02) = {j € J | 01(j) # o2(4)}| -

We keep R in such a way that the distance between any two solutions is at least
k (a parameter) for attaining diversification.

We now explain the rule for renewing the reference set R. Let o be the
locally optimal solution obtained in the previous local search, and ooy be a
solution with the maximum pcost in R. We consider the following two cases:
(1) All solutions in R have distances from o larger than or equal to &, and (2)
otherwise. In case (1), if |R| < ¢ (a parameter) holds, then we add o into R;
otherwise, if pcost(o) < pcost(oworst) holds, then we exchange o and oyorst, i-€.,
we let R := R\ {oworst } U {0}. In case (2), if pcost(c) < pcost(c') holds for all
o' € R such that distance between o and ¢’ is smaller than &, then we add o
into R, and remove all the solutions whose distance from ¢ is smaller than k.
The procedure to renew the reference set for a given locally optimal solution o,
denoted RNR(o, R, k), is summarized as follows.

Procedure RNR(o, R, k)

Step 1. If D(o,0') > k holds for all o' € R, go to Step 2; otherwise go to Step 3.

Step 2. If |R| < (, let 7 := +oc and A := §; otherwise let oworst be a solution
in R such that pcost(c') < pcost(oworst) for all o' € R, and then let 7 :=
peost(oworst) and A := {oworst }. Go to Step 4.

Step 3. Let A:= {0’ € R| D(0,0') < £}, and let onesy be a solution in A such
that pcost(c’) > pcost(opest) for all o’ € A. Then let T := pcost(opest) and
go to Step 4.

Step 4. If pcost(c) < 7, then let R:= R\ AU{o}.

3.5 The Whole Framework of the Algorithm

Our algorithm PR-CS basically applies LS-SS or LS-CS to solutions generated
by the path relinking method. Its details are summarized in this section.

At the beginning of the search, the reference set R is empty, and the size of
R may increase or decrease when procedure RNR is called. If |R| < ¢ holds and
the set of initial solutions generated by the previous call to the path relinking
is exhausted, then we apply the local search to randomly generated solutions
until |R| = ¢ holds, where the generated locally optimal solutions are added to
R according to the rule in Section 3.4.

We also adopt the following rules to realize intensification and diversification.
Let Rpest be the set of solutions in R with £ smallest values of pcost, where &
is a parameter. Then we choose o1 from Rpest (to intensify the search) and oo
from R both randomly. After choosing two solutions, we add random shifts to
o4 in 1% of jobs for diversification. Moreover, we increase the minimum distance
for renewing the reference set to 2« if the number of calls to local search (LS-SS
or LS-CS) after the last update of the incumbent solution is more than or equal
to 26 (6 is a parameter).

As the search in the chained shift neighborhood takes much time compared
to shift and swap neighborhoods, we invoke LS-CS only if the current penalty
weights are judged as appropriate,® and the number r of calls to local search
from the last update of the incumbent solution satisfies § < r < 26 or r > 46.
(Recall that we double the parameter k for procedure RNR for diversification
when r > 26 holds. When this rule applies, we first use LS-SS in its early stage,
i.e., when 26 < r < 46 holds.)

The whole framework of our algorithm is described as follows, where w, (, &
and k are parameters. In the computational experiments in Section 4, we set
w=2>5, (=10, & =3, 0 = 2{(w, and the initial value of x to 3. We stop the
search when a prespecified amount of time is spent.

Algorithm PR-CS

Phase 1 (Initialization)

Step 1. Let R:=0,S:=0, r:=0 and &' := &.

Step 2. Randomly generate a solution that satisfies (2) (recall that this is al-
ways possible by the assumption (4)), and apply a local search with the
shift and swap neighborhoods, where each solution ¢ is evaluated by the
total penalty excess D, oy Pik(J) breaking ties by cost(c). Let o be
the locally optimal solution obtained by the local search. If o is feasible, let
Oincum ‘= 0 (Tincum keeps the incumbent solution).

Step 3. Initialize the penalty weights.

Phase 2 (Construction of the reference set)

Step 4. Let o be a randomly generated solution that satisfies (2). If the cur-
rent penalty weights are appropriate, pcost(o) < 1.01cost(oincum) holds, and
0 < r < 26 or r > 46 holds, invoke LS-CS(0, 0incum); otherwise invoke LS-
SS(0, Oincum)- Let 7 := r+1. If r = 20, then let &’ := 2&. If oipcum is updated,
then let r := 0 and ' := k. Update the penalty weights.

Step 5. Invoke RNR(o, R, '). If the stopping criterion is satisfied, output the
best feasible solution ey found during the search and halt.

Phase 3 (Construction of the set of initial solutions)

Step 6. If |R| < ¢, go to Step 4; otherwise go to Step 7.

Step 7. Let Rpest be the subset of R containing the solutions with ¢ smallest
values of pcost. Choose two solutions o and o2 (07 # 02) randomly, o from
Rpest and o5 from R.

Step 8. Apply random shifts to g, and let the new solution be o). Invoke
PR(o1, 04) and let S be its output.

Phase 4 (Improvement of solutions)

Step 9. Randomly choose a solution ¢ in S, and remove it from S. Then, if the
current penalty weights are appropriate, pcost(c) < 1.01cost(Gincum) holds,
and 0 <7 < 26 or r > 46 holds, invoke LS-CS(0, Gincum); otherwise invoke
LS-SS(0, Oincum)- Let r := r + 1. If r = 26, then let &' := 2k. If oipeum is
updated, then let r := 0 and k' := k. Update the penalty weights.

6 We judge the current penalty weights to be appropriate if the rule for incrementing
the penalty weights and that for decrementing them are both invoked ten times.

Step 10. Invoke RNR(o, R, '). If the stopping criterion is satisfied, output the
best feasible solution ojpcum found during the search and halt.
Step 11. If S # (), go to Step 9, otherwise go to Step 6.

4 Computational Experiments

We conducted computational experiments of our algorithm PR-CS for MR-
GQAP, and also compared the results with those of existing algorithms for
GQAP and MRGAP. PR-CS was coded in C++ language and run on an IBM
IntelliStation Z Pro (two Intel Xeon 3.2 GHz processors with 2 GB memory,
where the computation was done on a single processor). The instances used in
our experiments are available at our site.”

4.1 Multi-Resource Generalized Quadratic Assignment Problem

We generated test instances by adding quadratic costs to the benchmark in-
stances of GAP and MRGAP called types C, D and E (see [12, 13] for the details
of these types). For each instance, we added three different types of quadratic
costs, types 1, 2 and 3. For all the three types, we used f(u,v) = uv. In type 1,
we set u;; = 0 for all j and w;; = 0 for all ¢, and we generated wj; for all j # j'
and w;; for all ¢ # ' randomly. In type 2, the quadratic cost takes a positive
value only if two jobs are assigned to the same agent; i.e., u;j; =0 (1) if j = 5
(j # 7" and wyy = C (0) if ¢ = 4" (i #4') (C is a positive constant chosen
from [1, 20]). Type 3 is the cost that takes a positive value only if two jobs are
assigned to different agents; i.e., uj; =0 (1) if j = j' (j # j') and w; =0 (O)
ifi =14 (i #4') (C is a positive constant chosen from [1, 10]).

To see the effectiveness of path relinking and cyclic neighborhood, we com-
pare our algorithm PR-CS with the random multi-start local search (denoted
MLS) that repeatedly calls LS-SS from randomly generated solutions, and the
PR-CS algorithm without the chained shift neighborhood (denoted PR-SS). In
MLS, we incorporate the adaptive control mechanism of penalty weights, and
PR-SS is exactly the same as PR-CS except that it does not invoke LS-CS. We
also compare PR-CS with a general solver for the constraint satisfaction problem
by Nonobe and Ibaraki (denoted NI)[10]. We also tested CPLEX 9.0.0 (a general
mixed integer programming solver); however, it took too much time even to find
a feasible solution; e.g., CPLEX could not find a feasible solution for an instance
of n = 100 and m = 10 in one hour on a PC with Xeon 3.01 GHz.

PR-SS and MLS were also coded in C++ language and run on the same PC
as PR-CS. NI was run on a PC with Intel Pentium III 1 GHz and 1GB memory.
The time limits for MLS, PR-SS and PR-CS are 300 seconds, and that for NI is
1200 seconds. The number of runs of each algorithm for each instance is one.

Table 1 shows the costs obtained by the tested algorithms, where the column
“type” shows the type of the original GAP or MRGAP instance, the column

" URL of our site: http://www.al.cm.is.nagoya-u.ac.jp/ "yagiura/mrgqap/

Table 1. Comparison of four algorithms for instances of MR-GQAP

instance n m s type quadratic cost NI MLS PR-SS PR-CS
qc05501 50 51 C 1 15897 *15822 *15822 *15822
qc05502 50 51 C 2 *1315 *1315 *1315 *1315
qc05503 50 51 C 3 2849 *2846 *2846 *2846
qcl101001 100 10 1 C 1 41798 40430 *40320 *40320
qc101002 100 10 1 C 2 23290 23150 *23110 *23110
qcl01003 100 10 1 C 3 104950 103840 *103710 *103710
mqcl010041 100 10 4 C 1 24263 20182 *20127 20137
mqcl010042 100 10 4 C 2 10472 10458 *10452 *10452
mqcl1010043 100 10 4 C 3 89442 86066 *86060 *86060
qc102001 200 10 1 C 1 220452 214912 214094 *214028
qc102002 200 10 1 C 2 14379 14246 14224 *14222
qcl02003 200 10 1 C 3 75658 72690 *72215 *72215
mqcl1020041 200 10 4 C 1 62465 50833 50387 *50193
mqcl020042 200 10 4 C 2 14375 14263 14237 *14234
mqcl020043 200 10 4 C 3 76275 72631 72519 *72486
qd05501 50 5 1 D 1 38636 *38543 *38543 *38543
qd05502 50 51 D 2 24411 24420 *24309 *24309
qd05503 50 5 1 D 3 52770 52620 *52460 *52460
qd101001 100 10 1 D 1 43019 36686 36571 *36540
qd101002 100 10 1 D 2 8559 8328 8178 *8171
qd101003 100 10 1 D 3 15960 15390 *15048 15159
mqd1010041 100 10 4 D 1 23486 18653 *18593 *18593
mqd1010042 100 10 4 D 2 8617 8414 8231 *8228
mqd1010043 100 10 4 D 3 16077 15526 *15174 *15174
qd102001 200 10 1 D 1 269574 250141 243529 *243234
qd102002 200 10 1 D 2 25012 24036 23885 *23884
qd102003 200 10 1 D 3 84833 82215 79172 *79160
mqd1020041 200 10 4 D 1 60342 44220 *43766 *43766
mqd1020042 200 10 4 D 2 25058 24212 *23896 23897
mqd1020043 200 10 4 D 3 84707 79630 78968 *78962
qe05501 50 5 1 E 1 64434 *64148 *64148 *64148
qe05502 50 5 1 E 2 8691 *8635 *8635 *8635
qe05503 50 5 1 E 3 10320 *10309 *10309 *10309
qel01001 100 10 1 E 1 53054 49992 *49210 *49210
qel01002 100 10 1 E 2 30005 29859 29723 *29720
qel01003 100 10 1 E 3 30955 29866 *29541 29548
mqel010041 100 10 4 E 1 39774 36354 *35607 *35607
mqel010042 100 10 4 E 2 30359 30133 29799 *29787
mqel010043 100 10 4 E 3 31106 30139 29639 *29628
qel102001 200 10 1 E 1 324138 306782 303556 *303468
qe102002 200 10 1 E 2 64797 61426 61342 *61338
qe102003 200 10 1 E 3 146321 133018 *131261 131287
mqel020041 200 10 4 E 1 89056 79750 *78338 78357
mqel020042 200 10 4 E 2 64698 61809 61398 *61397
mqel020043 200 10 4 E 3 148245 132445 *131299 131304

Table 2. Comparison of MA and PR-CS for instances of GQAP

MA PR-CS

instance n m value time (s) value TTB (s) TL (s)
20-15-35 20 15 1471896 96 1471896 0.300 9
20-15-55 20 15 1723638 102 1723638 0.204 10
20-15-75 20 15 1953188 102 1953188 4.856 10
30-06-95 30 6 5160920 114 5160920 0.132 11
30-07-75 30 7 4383923 156 4383923 0.056 15
30-08-55 30 8 3501695 96 3501695 0.496 9
30-10-65 30 10 3620959 210 3620959 1.440 21
30-20-35 30 20 3379359 564 3379359 0.528 50
30-20-55 30 20 3593105 462 3593105 0.756 46
30-20-75 30 20 4050938 522 4050938 0.084 50
30-20-95 30 20 5710645 5232 5710645 511.024 520
35-15-35 35 15 4456670 456 4456670 0.348 45
35-15-556 35 15 4639128 384 4639128 0.492 38
35-15-75 35 15 6301723 396 6301723 26.150 39
35-15-95 35 15 6670264 864 6670264 31.326 50
40-07-75 40 7 7405793 180 7405793 0.308 18
40-09-95 40 9 7667719 1140 7667719 9.697 50
40-10-65 40 10 7265559 240 7265559 0.368 24
50-10-65 50 10 10513029 504 10513029 0.324 50
50-10-75 50 10 11217503 606 11217503 0.544 50
50-10-95 50 10 12845598 1254 12845598 0.276 50
CPU Sun 1.2 GHz Xeon 3.2 GHz

“quadratic cost” shows the type of the quadratic cost, and each ‘x’ mark indicates
the best objective value among the four algorithms in the table. For MR-GQAP,
the performance of PR-CS and PR-SS is much better than MLS and NI, and
that of PR-CS is slightly better than PR-SS.

4.2 Generalized Quadratic Assignment Problem

We tested benchmark instances of GQAP [1, 8], and compared PR-CS with the
memetic algorithm by Cordeau et al. (denoted MA)[1], which is specially tailored
for GQAP. We refer the results of MA reported in [1], in which MA was run on
a SUN workstation (1.2 GHz).®

For benchmark instances of Lee and Ma [8], both PR-CS and MA succeeded
in obtaining exact optimal solutions for all instances. The computation time of
PR-CS to obtain an optimal solution for each instance is less than 0.2 seconds,
while the computation time of MA ranges from 1 to 8 seconds. These instances

8 According to the SPEC site (http://www.spec.org/), the values of SPECint2000 are
around 700-722 for Sun workstations (1.2 GHz) and around 1289-1579 for Xeon (3.2
GHz). Hence the speed of the Xeon seems to be 2—-3 times faster than the Sun.

Table 3. Comparison with NI, TS and MLS for MRGAP instances

type NI TS PR-CS
C 0.140 0.060 0.052
D 2.118 0.885 0.992
E 1.682 0.358 0.464

are somewhat easy and CPLEX was able to solve all of them exactly in less than
10 seconds for two-thirds of the instances, in 10-60 seconds for the rest except
one instance, and with more than 200 seconds for one instance.

Table 2 shows the results for benchmark instances of Cordeau et al. [1]. The
column “time” shows the computation time of MA, the column “TL” shows
the time limit of PR-CS, the column “TTB” shows the time when the best
solutions were found and the columns “value” show the objective values of the
best solutions obtained by the algorithms. We set the time limit of PR-CS to
the smaller value of one tenth of the computation time of MA and 50 seconds,
except for instance 30-20-95 for which we set the time limit to one tenth of the
computation time of MA. These time limits are not longer than the time spent
by MA if the speed of computers are taken into consideration. From Table 2, we
can observe that the solution values obtained by the two algorithms are exactly
the same for all instances.

These results indicate that PR-CS is at least as good as MA. The computa-
tion times reported for MA are the time when it stopped, and hence it is not easy
to draw a decisive conclusion; however, PR-CS seems to spend less computation
time than MA.

4.3 Multi-Resource Generalized Assignment Problem

We test algorithm PR-CS on benchmark instances of MRGAP with up to 200
jobs, 20 agents and 8 resources, and compare its performance with NI and the
tabu search by Yagiura et al. (denoted TS)[13], which is specially tailored for
MRGAP. TS and NI for MRGAP were run on a workstation Sun Ultra 2 Model
2300 (300 MHz, 1 GB memory).? The time limits of NI and TS are 300 and 600
seconds for n = 100 and 200, respectively, and the time limits of PR-CS are 30
and 60 seconds for n = 100 and 200, respectively. The number of runs of each
algorithm for each instance is one.

Table 3 shows the average gap in % of the costs obtained by the algorithms
within the time limit from the lower bound reported in [13], where the average
was taken over 24 instances for each of types C, D and E. From the table,
we can observe that the performance of PR-CS is much better than NI, and
is competitive with TS. It is worth noting that the average gap of PR-CS is
slightly better than TS for type C instances. Considering its generality, these
competitive results are quite encouraging.

® We estimate that Xeon (3.2 GHz) is about 10 times faster than the Sun (300 MHz).

5 Conclusion

In this paper, we proposed a heuristic algorithm PR-CS for MR-GQAP, which
incorporated the path relinking and ejection chain components. Through com-
putational experiments on randomly generated instances of MR-GQAP, we con-
firmed that such algorithmic components are effective for improving the perfor-
mance of local search. We also observed that PR-CS is more efficient than general
purpose solvers developed for constraint satisfaction and mixed integer program-
ming problems. Computational results on benchmark instances of GQAP and
MRGAP, special cases of MR-GQAP, disclosed that PR-CS was highly efficient
in that its performance was competitive with (or sometimes even better than)
existing algorithms specially tailored for GQAP and MRGAP. Considering the
generality of our algorithm PR-CS, these results are quite satisfactory.

References

1. Cordeau, J., Gaudioso, M., Laporte, G., Moccia, L., A memetic heuristic for the
generalized quadratic assignment problem, INFORMS Journal on Computing 18
(2006) 433-443

2. Gavish, B., Pirkul, H., Algorithms for the multi-resource generalized assignment
problem, Management Science 37 (1991) 695-713

3. Glover, F., Genetic algorithms and scatter search: unsuspected potentials, Statistics
and Computing 4 (1994) 131-140

4. Glover, F., Tabu search for nonlinear and parametric optimization (with links to
genetic algorithms), Discrete Applied Mathematics 49 (1994) 231-255

5. Glover, F., Ejection chains, reference structures and alternating path methods for
traveling salesman problems, Research Report, University of Colorado, Boulder,
CO (abbreviated version published in Discrete Applied Mathematics 65 (1996)
223-253)

6. Ibaraki, T., Ohashi, T., Mine, H., A heuristic algorithm for mixed-integer program-
ming problems, Mathematical Programming Study 2 (1974) 115-136.

7. Laguna, M., Marti, R., Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers, Boston, 2003

8. Lee, C., Ma Z., The generalized quadratic assignment problem, Technical Re-
port. Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Ontario, Canada, 2003

9. Marti, R., Laguna, M., Glover, F., Principles of scatter search, European Journal
of Operational Research, 169 (2006) 359-372

10. Nonobe, K., Ibaraki, T., A tabu search approach to the CSP (constraint satisfaction
problem) as a general problem solver, European Journal of Operational Research
106 (1998) 599-623

11. Voss, S., Heuristics for nonlinear assignment problems, In: P.M. Pardalos,
L.S. Pitsoulis, eds., Nonlinear Assignment Problems, Kluwer Academic Publish-
ers, Dordrecht, 2000, 175-215.

12. Yagiura, M., Ibaraki, T., Glover, F., An ejection chain approach for the generalized
assignment problem, INFORMS Journal on Computing 16 (2004) 133-151

13. Yagiura, M., Iwasaki, S., Ibaraki, T., Glover, F., A very large-scale neighborhood
search algorithm for the multi-resource generalized assignment problem, Discrete
Optimization 1 (2004) 87-98

