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Summary. In recent years the unconstrained quadratic binary program (UQP) has
emerged as a unified framework for modeling and solving a wide variety of combi-
natorial optimization problems. This tutorial gives an introduction to this evolving
area. The methodology is illustrated by several examples and substantial computa-
tional experience demonstrating the viability and robustness of the approach.

1 Introduction

The unconstrained quadratic binary program (UQP) has a lengthy history as
an interesting and challenging combinatorial problem. Simple in its appear-
ance, the model is given by

UQP : Opt xQx

where x is an n-vector of binary variables and Q is an n-by-n symmetric ma-
trix of constants. Published accounts of this model go back at least as far
as the sixties (see for instance Hammer and Rudeanu [HR68]) with appli-
cations reported in such diverse areas as spin glasses [DDJMRR95, GJR88],
machine scheduling [AKA94], the prediction of epileptic seizures [ISSP00],
solving satisfiability problems [BH02, BP89, HR68, HJ90], and determining
maximum cliques [BH02, PR92, PX94]. The application potential of UQP is
much greater than might be imagined, due to the re-formulation possibilities
afforded by the use of quadratic infeasibility penalties as an alternative to
imposing constraints in an explicit manner. In fact, any linear or quadratic
discrete (deterministic) problem with linear constraints in bounded integer
variables can in principle be re-cast into the form of UQP via the use of

? Earlier versions of this material appear in references [KGAR04a, KGAR04b]
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such penalties. This process of re-formulating a given combinatorial problem
into an instance of UQP is easy to carry out, enabling UQP to serve as a
common model form for a widely diverse set of combinatorial models. This
common modeling framework, coupled with recently reported advances in so-
lution methods for UQP, help to make the model a viable alternative to more
traditional combinatorial optimization models as illustrated in the sections
that follow.

1.1 Re-casting Into the Unified Framework

For certain types of constraints, equivalent quadratic penalty representations
are known in advance making it easy to embody the constraints within the
UQP objective function. For instance, let xi and xjbe binary variables and
consider the constraint(3)

xi + xj ≤ 1 (1)

which precludes setting both variables to one simultaneously. A quadratic
infeasibility penalty that imposes the same condition on xi and xj is:

Pxixj (2)

where P is a large positive scalar. This penalty function evidently is positive
when both variables are set to one (i.e., when (1) is violated), and other-
wise the function is equal to zero. For a minimization problem then, adding
the penalty function to the objective function is an alternative equivalent to
imposing the constraint of (1) in the traditional manner.

In the context of our transformations involving UQP, we say that a penalty
function is a valid infeasible penalty (VIP) if it is zero for feasible solutions
and otherwise positive. Including quadratic VIPs in the objective function for
each constraint in the original model yields a transformed model in the form
of UQP. VIPs for several commonly encountered constraints are given below
(where x and y are binary variables and P is a large positive scalar):

Classical Equivalent
Constraint Penalty (VIP)

x+ y ≤ 1 P (xy)

x+ y ≥ 1 P (1− x− y + xy)

x+ y = 1 P (1− x− y + 2xy)

x ≤ y P (x− xy)

(3) The degree-2 constraints of this form commonly appear in optimization problems
pertaining to graphs as described in [BH02, PR92, PX94]. As we’ll see later in this
paper, however, their application extends far beyond classical graph problems.
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The penalty term in each case is zero if the associated constraint is violated,
and otherwise is positive. These penalties, then, can be directly employed as an
alternative to explicitly introducing the original constraints. For other more
general constraints, however, VIPs are not known in advance and need to
be “discovered.” A simple procedure for finding an appropriate VIP for any
linear constraint is given in section 1.3. Before moving on to this more general
case, however, we give a complete illustration of the re-casting process by
considering the set packing problem.

1.2 Set Packing

Set packing problems (SPP) are important in the field of combinatorial opti-
mization due to their application potential and their computational challenge.

The standard formulation for SPP is:

SPP: max

n∑

j=1

wjxj

s.t.

n∑

j=1

aijxj ≤ 1 for i = 1, ...,m

x binary

where the aij are 0/1 coefficients and the wj are positive weights. The num-
ber of constraints m is determined by the application, and generally may be
very large. Many important applications of SPP have been reported in the
literature, and an extensive survey of set packing and related models may be
found in Vemuganti [Vem98]. The recent paper by Delorme, Gandibleax, and
Rodriguez [DGR04] reports applications in railway infrastructure design, ship
scheduling, resource constrained project scheduling, and the ground holding
problem. Applications in combinatorial auctions and forestry are reported by
Pekec and Rothkopf [PR03] and Ronnqvist [Ron03], respectively. Other ap-
plications, particularly as part of larger models, are found throughout the
literature.

Since SPP is known to be NP-hard, exact methods generally cannot be
relied upon to generate good solutions in a timely manner. In particular, the
linear programming relaxation does not provide good bounds for these diffi-
cult problems. Nonetheless, considerable work has been devoted to improving
exact methods for SPP with innovations in branch & cut methods based on
polyhedral facets as described in Padberg [Pad73] and the extensive work of
Cornuejolos [Cor95]. Despite these advances, however, SPP remains resistant
to exact methods and, in general, it is necessary to employ heuristic methods
to obtain solutions of reasonably decent quality within a reasonable amount
of time. This is particularly true for problem instances with a large number
of variables that are neither loosely nor tightly constrained.
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Recasting SPP into the form of xQx:
The structure of the constraints in SPP enables quadratic VIPs to be easily

constructed for each constraint simply by summing all products of constraint
variables taken two at a time. To illustrate, consider the constraint

x1 + x2 + x3 ≤ 1

Such a constraint can be replaced by the quadratic penalty function

P (x1x2 + x1x3 + x2x3)

where P is a positive scalar. Clearly this quadratic penalty function is zero
for feasible solutions and positive otherwise. Similarly, the general packing (or
GUB) constraint

n∑

j=1

xj ≤ 1

can be replaced by the penalty function

P (

n−1∑

i=1

xi

n∑

j=i+1

xj).

By subtracting such penalty functions from the objective function of a
maximization problem, we have a model in the general, unified form of xQx.
Note that this reformulation is accomplished without introducing new vari-
ables. This procedure is illustrated by the following two examples:

Example 1: Find binary variables that solve:

SPP: maxx1 + x2 + x3 + x4

s.t.
x1 + x3 + x4 ≤ 1
x1 + x2 ≤ 1

Representing the scalar penalty P by 2M, the equivalent unconstrained
problem is:

max x1 + x2 + x3 + x4 − 2Mx1x3 − 2Mx1x4 − 2Mx3x4 − 2Mx1x2

which can be re-written as

max (x1 x2 x3 x4)







1 −M −M −M
−M 1 0 0
−M 0 1 −M
−M 0 −M 1













x1

x2

x3

x4







⇒ max xQx
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where Q, as shown above, is a square, symmetric matrix. All the problems
characteristics of SPP are embedded into the Q matrix.

Example 2: (Schrage [Sch97]):

max

22∑

j=1

xj

s.t.

x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 1
x1 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≤ 1
x2 + x8 + x15 + x16 + x17 + x18 ≤ 1
x3 + x9 + x15 + x19 + x20 + x21 ≤ 1
x4 + x10 + x16 + x19 + x22 ≤ 1
x5 + x11 + x17 + x20 + x21 + x22 ≤ 1
x6 + x12 + x13 + x18 + x20 + x22 ≤ 1
x7 + x12 + x14 + x18 + x21 + x22 ≤ 1
x13 + x14 + x21 ≤ 1

The Q matrix for equivalent transformed model (maxxQx), with M arbi-
trarily chosen to be 8, is given by:








































1 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 0 0 0 0 0 0 0 0
−8 1 −8 −8 −8 −8 −8 −8 0 0 0 0 0 0 −8 −8 −8 −8 0 0 0 0
−8 −8 1 −8 −8 −8 −8 0 −8 0 0 0 0 0 −8 0 0 0 −8 −8 −8 0
−8 −8 −8 1 −8 −8 −8 0 0 −8 0 0 0 0 0 −8 0 0 −8 0 0 −8
−8 −8 −8 −8 1 −8 −8 0 0 0 −8 0 0 0 0 0 −8 0 0 −8 −8 −8
−8 −8 −8 −8 −8 1 −8 0 0 0 0 −8 −8 0 0 0 0 −8 0 −8 0 −8
−8 −8 −8 −8 −8 −8 1 0 0 0 0 −8 0 −8 0 0 0 −8 0 0 −8 −8
−8 −8 0 0 0 0 0 1 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 0 0 0 0
−8 0 −8 0 0 0 0 −8 1 −8 −8 −8 −8 −8 −8 0 0 0 −8 −8 −8 0
−8 0 0 −8 0 0 0 −8 −8 1 −8 −8 −8 −8 0 −8 0 0 −8 0 0 −8
−8 0 0 0 −8 0 0 −8 −8 −8 1 −8 −8 −8 0 0 −8 0 0 −8 −8 −8
−8 0 0 0 0 −8 −8 −8 −8 −8 −8 1 −8 −8 0 0 0 −8 0 −8 −8 −8
−8 0 0 0 0 −8 0 −8 −8 −8 −8 −8 1 −8 0 0 0 −8 0 −8 −8 −8
−8 0 0 0 0 0 −8 −8 −8 −8 −8 −8 −8 1 0 0 0 −8 0 0 −8 −8

0 −8 −8 0 0 0 0 −8 −8 0 0 0 0 0 1 −8 −8 −8 −8 −8 −8 0
0 −8 0 −8 0 0 0 −8 0 −8 0 0 0 0 −8 1 −8 −8 −8 0 0 −8
0 −8 0 0 −8 0 0 −8 0 0 −8 0 0 0 −8 −8 1 −8 0 −8 −8 −8
0 −8 0 0 0 −8 −8 −8 0 0 0 −8 −8 −8 −8 −8 −8 1 0 −8 −8 −8
0 0 −8 −8 0 0 0 0 −8 −8 0 0 0 0 −8 −8 0 0 1 −8 −8 −8
0 0 −8 0 −8 −8 0 0 −8 0 −8 −8 −8 0 −8 0 −8 −8 −8 1 −8 −8
0 0 −8 0 −8 0 −8 0 −8 0 −8 −8 −8 −8 −8 0 −8 −8 −8 −8 1 −8
0 0 0 −8 −8 −8 −8 0 0 −8 −8 −8 −8 −8 0 −8 −8 −8 −8 −8 −8 1








































Solving(4) this instance of xQx gives an optimal solution with an objective
function value of 4 and x7 = x13 = x17 = x19 = 1, all other variables equal to
zero.

We conclude this section by summarizing some of the key points about
the procedure illustrated above:

1. In the manner illustrated, any SPP problem can be re-cast into an equiv-
alent instance of UQP.

(4) All instances of UQP solved in this tutorial were solved using the tabu search
method described in [GKAA99, GKA98].



108 Gary A. Kochenberger and Fred Glover

2. This reformulation is accomplished without the introduction of new vari-
ables.

3. It is always possible to choose the scalar penalty sufficiently large so that
the solution to xQx is feasible for SPP. At optimality the two problems are
equivalent in the sense that they have the same set of optimal solutions.

4. For “weighted” instances of SPP, the weights, wj , show up on the main
diagonal of Q.

We subsequently describe the outcome of using this and other types of
problem reformulations as a means for solving a variety of optimization mod-
els.

1.3 Accommodating General Linear Constraints

The preceding section illustrated how to re-cast a constrained problem into
the form of UQP when the VIPs were known in advance. In this section we
indicate how to proceed in the more general case when VIPs are not known
in advance. We take as our starting point the general constrained problem

minx0 = xQx
s.t. Ax = b, x binary

(3)

This model accommodates both quadratic and linear objective functions
since the linear case results when Q is a diagonal matrix (observing that
x2
j = xj when xj is a 0-1 variable). Problems with inequality constraints

can also be put into this form by representing their bounded slack variables
by a binary expansion. These constrained quadratic optimization models are
converted into equivalent UQP models by adding a quadratic infeasibility
penalty function to the objective function in place of explicitly imposing the
constraints Ax = b.

Specifically, for a positive scalar P, we have

x0 = xQx+ P (Ax− b)t (Ax− b) = xQx+ xDx+ c = xQ̂x+ c (4)

where the matrix D and the additive constant c result directly from the ma-
trix multiplication indicated. Dropping the additive constant, the equivalent
unconstrained version of our constrained problem becomes

UQP(PEN): minxQ̂x, x binary (5)

From a theoretical standpoint, a suitable choice of the penalty scalar P can
always be chosen so that the optimal solution to UQP(PEN) is the optimal
solution to the original constrained problem. Remarkably, as we later demon-
strate, it is often easy to find such a suitable value in practice as well.

We refer to the preceding general transformation that takes us from (3)
through (4) to (5) as transformation #1. This approach along with related
material can be found in [BH02, Han79, HJM93]. This is the general procedure
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that could in principle be employed to transform any problem in the form of
(7) into an equivalent instance of UQP. As indicated earlier in section 1.1, VIPs
are known in advance for certain simple constraints and when such constraints
are encountered it is usually preferred to use the known VIP directly rather
than applying transformation #1. One special constraint in particular

xj + xk ≤ 1

appears in many important applications and as indicated in section 1.1 can be
handled by a VIP of the form Pxjxk. Due to the importance of this constraint
and its frequency of occurrence in applications, we refer to this special case
as transformation # 2. The use of these two transformations is illustrated
in the next section by considering two classical problems in combinatorial
optimization.

2 Further Illustrative Examples

Before highlighting some of the problem classes we have successfully solved
using the foregoing transformation approaches, we give two small examples
from classical NP-hard problem settings to provide additional concrete illus-
trations.

Example 1: Set Partitioning.
The classical set partitioning problem is found in applications that range

from vehicle routing to crew scheduling [Jos02, MBRB99]. As an illustration,
consider the following small example:

minx0 = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6

subject to

x1 + x3 + x6 = 1
x2 + x3 + x5 + x6 = 1
x3 + x4 + x5 = 1
x1 + x2 + x4 + x6 = 1

and x binary. Applying Transformation 1 with P =10 gives the equivalent
UQP model:

UQP(PEN) : minxQ̂x, x binary

where the additive constant, c, is 40 and

Q̂ =











−17 10 10 10 0 20
10 −18 10 10 10 20
10 10 −29 10 20 20
10 10 10 −19 10 10
0 10 20 10 −17 10

20 20 20 10 10 −28










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Solving UQP(PEN) we obtain an optimal solution x1 = x5 = 1 (all other
variables equal to 0) for which x0 = 6. In the straightforward application of
Transformation 1 to this example, the replacement of the original problem
formulation by the UQP(PEN) model did not involve the introduction of new
variables. In many applications, Transformation 1 and Transformation 2 can
be used in concert to produce an equivalent UQP model, as demonstrated
next.

Example 2: The K-Coloring Problem:
Vertex coloring problems seek to assign colors to nodes of a graph in such

a way that adjacent nodes receive different colors. The K-coloring problem
attempts to find such a coloring using exactly K colors. A wide range of
applications, ranging from frequency assignment problems to printed circuit
board design problems can be represented by the K-coloring model.

These problems can be modeled as satisfiability problems using the assign-
ment variables as follows:

Let xij be 1 if node i is assigned color j, and 0 otherwise.
Since each node must be colored, we have

K∑

j=1

xij = 1 i = 1, ..., n (6)

where n is the number of nodes in the graph. A feasible coloring, in which
adjacent nodes are assigned different colors, is assured by imposing the con-
straints

xip + xjp ≤ 1 p = 1, ...,K (7)

for all adjacent nodes (i,j) in the graph.
This problem can be re-cast into the form of UQP by using Transformation

1 on the assignment constraints of (6) and Transformation 2 on the adjacency
constraints of (7). No new variables are required. Since the model of (6) and
(7) has no explicit objective function, any positive value for the penalty P will
do. The following example gives a concrete illustration of the re-formulation
process.

Consider the graph given in Figure 1 and assume we want find a feasible
coloring of the nodes using 3 colors.

Our satisfiablity problem is that of finding a solution to:

xi1 + xi2 + xi3 = 1 i = 1, 5 (8)

xip + xjp ≤ 1 p = 1, 3 (9)

(for all adjacent nodes i and j)

In this traditional form, the model has 15 variables and 26 constraints. To
recast this problem into the form of UQP, we use Transformation 1 on the
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Fig. 1. Example of a graph for the K-Coloring Problem.

equations of (8) and Transformation 2 on the inequalities of (9). Arbitrarily
choosing the penalty P to be 4, we get the equivalent problem:

UQP(Pen) : minxQ̂x

where the Q̂ matrix is:

Q̂ =





























−4 4 4 4 0 0 0 0 0 0 0 0 4 0 0
4 −4 4 0 4 0 0 0 0 0 0 0 0 4 0
4 4 −4 0 0 4 0 0 0 0 0 0 0 0 4
4 0 0 −4 4 4 4 0 0 4 0 0 4 0 0
0 4 0 4 −4 4 0 4 0 0 4 0 0 4 0
0 0 4 4 4 −4 0 0 4 0 0 4 0 0 4
0 0 0 4 0 0 −4 4 4 4 0 0 0 0 0
0 0 0 0 4 0 4 −4 4 0 4 0 0 0 0
0 0 0 0 0 4 4 4 −4 0 0 4 0 0 0
0 0 0 4 0 0 4 0 0 −4 4 4 4 0 0
0 0 0 0 4 0 0 4 0 4 −4 4 0 4 0
0 0 0 0 0 4 0 0 4 4 4 −4 0 0 4
4 0 0 4 0 0 0 0 0 4 0 0 −4 4 4
0 4 0 0 4 0 0 0 0 0 4 0 4 −4 4
0 0 4 0 0 4 0 0 0 0 0 4 4 4 −4





























Solving this unconstrained model, xQ̂x, yields the feasible coloring:

x11, x22, x33, x41, x53 = 1 all other xij = 0

This approach to coloring problems has proven to be very effective for a
wide variety of coloring instances from the literature. Later in this paper we
present some computational results for several standard K-coloring problems.
An extensive presentation of the xQx approach to a variety of coloring prob-
lems, including a generalization of the K-coloring problem considered here, is
given in Kochenberger, Glover, Alidaee and Rego [KGAR02].
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3 Solving UQP

Employing the UQP unified framework to solve combinatorial problems re-
quires the availability of a solution method for xQx. The recent literature
reports major advances in such methods involving modern metaheuristic
methodologies. The reader is referred to references [AHA98, AAK99, Bea99,
BS94, BHS89, CS94, GARK02, GKAA99, GKA98, KTN00, Lau70, LAL97,
MF99, Pau95, PR90] for a description of some of the more successful meth-
ods. The pursuit of further advances in solution methods for xQx remains an
active research arena.

In the work reported here, we used a basic tabu search method due
to Glover, Kochenberger, and Alidaee [GL97, GKAA99, GKA98]. A brief
overview of the approach is given below. For complete details the reader is
referred to the aforementioned reference.

Our TS method for UQP is centered around the use of strategic oscillation,
which constitutes one of the primary strategies of tabu search. The method
alternates between constructive phases that progressively set variables to 1
(whose steps we call “add moves”) and destructive phases that progressively
set variables to 0 (whose steps we call “drops moves”). To control the under-
lying search process, we use a memory structure that is updated at critical
events, identified by conditions that generate a subclass of locally optimal so-
lutions. Solutions corresponding to critical events are called critical solutions.

A parameter span is used to indicate the amplitude of oscillation about
a critical event. We begin with span equal to 1 and gradually increase it to
some limiting value. For each value of span, a series of alternating constructive
and destructive phases is executed before progressing to the next value. At
the limiting point, span is gradually decreased, allowing again for a series of
alternating constructive and destructive phases. When span reaches a value of
1, a complete span cycle has been completed and the next cycle is launched.
The search process is typically allowed to run for a pre-set number of span
cycles.

Information stored at critical events is used to influence the search process
by penalizing potentially attractive add moves (during a constructive phase)
and inducing drop moves (during a destructive phase) associated with assign-
ments of values to variables in recent critical solutions. Cumulative critical
event information is used to introduce a subtle long term bias into the search
process by means of additional penalties and inducements similar to those
discussed above. Other standard elements of tabu search such as short and
long term memory structures are also included.

4 Applications

To date several important classes of combinatorial problems have been suc-
cessfully modeled and solved by employing the unified framework. Our results
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with the unified framework applied to these problems have been uniformly at-
tractive in terms of both solution quality and computation times. While our
solution method is designed for the completely general form of UQP, without
any specialization to take advantage of particular types of problems refor-
mulated in this general representation, our outcomes have typically proved
competitive with or even superior to those of specialized methods designed
for the specific problem structure at hand. Our broad base of experience with
UQP as a modeling and solution framework includes a substantial range of
problem classes including:

Quadratic Assignment Problems
Capital Budgeting Problems
Multiple Knapsack Problems
Task Allocation Problems (distributed computer systems)
Maximum Diversity Problems
P-Median Problems
Asymmetric Assignment Problems
Symmetric Assignment Problems
Side Constrained Assignment Problems
Quadratic Knapsack Problems
Constraint Satisfaction Problems (CSPs)
Set Partitioning Problems
Fixed Charge Warehouse Location Problems
Maximum Clique Problems
Maximum Independent Set Problems
Maximum Cut Problems
Graph Coloring Problems
Graph Partitioning Problems
Number Partitioning Problems
Linear Ordering Problems
Number Partitioning Problems.
Additional test problems representing a variety of other applications

(which do not have “well-known” names) have also been reformulated and
solved via UQP. In the section below we report specific computational experi-
ence with some of the problem classes listed above Additional applications are
discussed by Boris and Hammer [BH91] and Lewis, Alidaee and Kochenberger
[LAK04].

5 Illustrative Computational Experience

Sections 1 and 2 of this paper presented small examples intended to illustrate
the mechanics of the transformation process. Here, we highlight our compu-
tational experience with several well-known problem classes. In each case, we
specify the standard problem formulation, comment on the transformation(s)
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used to recast the problem into the form of UQP, and summarize our compu-
tation experience.

It is not our objective here to provide a comprehensive comparison with
the best known methods for the problem classes considered below. Rather,
our purpose in this section is to provide additional validation of the potential
merits of this unified approach. Nonetheless, the results shown below are very
attractive and motivate such head-to-head comparisons in future studies.

5.1 Warehouse Location: (Single source, Uncapacitated)

Zero/One formulation:

min
m∑

i=1

n∑

j=1

cijxij +
m∑

i=1

fiyi

m∑

i=1

xij = 1 j = 1, . . . , n

xij ≤ yi ∀ (i, j)
x, y binary

Recast as xQx:

• Complement the y variables (to enable the use of transformation # 2)
• Use both transformations
• No new variables required

Computational Experience:

• Total number of Problems Solved: 4

# variables m n # TS cycles Soln Time (sec) Soln Optimal?

55 5 10 20 < 1 sec Yes

210 10 20 50 < 5 *

410 10 40 100 < 30 *

820 20 40 100 < 120 *

* Optimal Solutions not known.

Remarks:
Transformation # 1 was used for the assignment constraints and trans-

formation #2, once the “y” variables were complemented, was used for the
variable upper bound constraints. No new variables were required. The prob-
lems were randomly generated with cij = U(50, 100) and fi = U(100, 200).
Each instance was recast as xQx using a penalty, P, equal to 200. Our tabu
search heuristic was allowed to run for a fixed number of oscillation cycles as
shown above, with the largest problem taking less than 2 minutes on a Pen-
tium 400 PC. In each case feasible solutions were easily found. Moreover, the
solution found for the first problem proved to be optimal. Optimal solutions
to the other problems are not known.
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5.2 Constraint Satisifiability problems (CSPs):

Zero/One formulation:

Ax = b aij ∈ {−1, 0, 1}
bi = 1 or 2

Recast as xQx:

• Transformation #1
• No additional variables

Computational Experience:

• Total number of Problems Solved: 26

#
variables

#
rows

#
problems

Soln
Time

Soln
Feasible

20 6 3 < 1 sec Yes

50 10 3 < 3 sec Yes

100 30 10 < 15 sec Yes

500 50 5 1 – 2 min Yes

1000 100 5 4 – 5 min Yes

Remarks:
Transformation # 1, with P taken to be 2, was used to develop the equiv-

alent xQx model for each of these problems. No new variables were required.
In all, a total of 26 random problem instances were solved by letting our tabu
search heuristic run until the objective function was equal to zero, implying
a feasible (and in this case, optimal) solution. Feasible solutions were quickly
found in each case, with solutions for the largest instances found, on average,
in roughly 4-5 minutes on a Pentium 200 PC. The smaller problems took only
a few seconds.

5.3 Quadratic Knapsack Problems

Zero/One Formulation:

max xQx
s.t. Ax ≤ b, x binary

Recast as xQx:

• Add slack variables
• Use transformation #1

Computational Experience:

• Total number of Problems Solved: 53
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# Variables # constraints # problems Soln times Optimal Solns?

10,20 30 1 24 < 2 sec 23 proven opt

40,100,500 1 20 4, 9, 240 sec *

20 2,4 8 < 4 sec All opt

50 5 1 < 16 sec *

* Optimal Solutions not Known

Remarks:
For this class of problems, a total of 53 random problems were solved.

The problem instances ranged in size from 10 to 500 variables and 1 to 5
constraints. The largest of these problems are much larger (in terms of both
variable and constraint count) than previously reported in the literature. In-
stances were constructed with qij = U(−25, 25), aij = U(1, 10), and bi chosen
to be a fraction of the sum of the aijfor a given row. Slack variables (in binary
expansion form) allowing for a maximum slack activity of 31 were added to
each row to produce equality constraints and transformation # 1 was then
used to produce the equivalent xQx representation. The variable counts given
in the table above portray the original problems and do not include these
slack variables.

The value of the penalty P used to achieve an equivalent xQx represen-
tation was heuristically incremented as needed in order to achieve feasible
solutions for the larger instances solved. For the largest of the problems, n =
500, xQx was first generated with P = 150. Solving this model gave a solution
that was infeasible with respect to the original problem. P was then raised to
1500 and a new xQx instance was formed whose solution was feasible. P =
1500 was then used in the transformation of each of the other (smaller) prob-
lems and in each case the solutions generated proved to be feasible. Moreover,
the solutions obtained for the 23 of the 24 problems of size n = 30 or less
proved to be optimal. Each problem was allowed to run for 100 TS cycles.
The largest of the problems required 4 minutes on a Pentium 200 PC; all
others were solved in less than 16 seconds with the smallest problems taking
less than 2 seconds.

Many of the smaller problems (n = 30 or less) were solved again with
a much smaller value of the penalty. P = 50 was large enough to produce
optimal solutions to the n = 10 and n = 20 variable problems and P = 250
was large enough for the n = 30 problems. Computational times, as expected,
remained very small, showing no apparent relationship to the penalty value.

5.4 Maximum Diversity

Zero/One Formulation:
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max
n∑

i=1

n∑

j=1

qij xi xj

s.t.
n∑

i=1

xi = m

Recast as xQx:

• Transformation #1
• No new variables

Computational Experience:

• Total number of Problems Solved: 25

# vars (n) M # TS cycles Soln Time Solns Opt?

100 10, 15, 20, 25, 30 20 2 sec (each) *

300 30, 45, 60, 75, 90 50 15 sec (each) *

500 50, 75, 100, 125, 150 100 58 sec (each) *

1000 100, 150, 200, 250, 300 100 194 sec (each) *

2000 200, 300, 400, 500, 600 200 16 min (each) *

* Optimal solutions not known

Remarks:
For this class of problems we solved a total of 25 random instances of sizes

ranging from 100 to 2000 variables. For each size, five different values of “m”
were considered as shown in the table above. For all problems, the qijvalues
were chosen from U(-50,50). Transformation #1 was used with P = 2n. Our
tabu search heuristic was run for a fixed number of cycles, terminating in
each case with a feasible solution. Optimal solutions for these problems are
not known. However, we have also solved much smaller problems for which
optimal solutions are known and in each such case our approach was successful
in finding the optimal solution. All runs were made on a Pentium 200 PC.

Prior to this paper, the largest instances reported in the literature were of
size n = 100. Our results greatly expand the state of the art and illustrate a
solution capability much beyond that reported by others.

5.5 Set Partitioning

Zero/One Formulation:

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = 1 i = 1, ...,m

x binary

Recast as xQx:
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• Transformation #1
• No additional variables

Computational Experience:

• Total number of Problems Solved: 18

n M # TS cycles # problems Soln time Soln Feas∗

80 10 20 5 3 sec Yes

100 10 20 5 9 sec Yes

400 40 50 5 220 sec Yes

800 80 100 3 5 min Yes

* Optimal Solutions not known

Remarks:
For this class of problems, we solved a total of 18 random instances or

sizes ranging from 80 variables and 10 constraints to 800 variables and 80
constraints. The problems varied in density from .1 to .3 and in each case
the cjvalues were chosen from U(10,100). Transformation #1 was used to
convert to xQx with P = max cjvalue for each problem. Our Tabu Search
heuristic was run for fixed number of cycles as shown in the table above.
While optimal solutions are not known, feasible solutions were quickly found
for each problem with the largest of the problems being solved in less than 5
minutes on a Pentium 200 PC.

5.6 Vertex Coloring

Zero/One Formulation:

min
nc∑

j=1

yj

s.t.
nc∑

j=1

xij = 1 i = 1, . . . , nv

xik + xjk ≤ 1 for each edge (i, j) and color k
xik ≤ yk for each vertex i and each color k
x, y binary

where:
nc = Maximum number of colors allowed
nv = number of vertices in graph

Recast as xQx:

• complement y variables
• Transformation # 1 for first constraints
• Transformation #2 for last two sets
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• No additional variables

Computational Experience:

• Total number of Problems Solved: 9

ID # nodes # edges nc # xQx variables Soln Time xQx solution Opt Solution

Jean col 80 254 12 972 < 2 min 10 10

David col 87 406 12 1056 < 2 min 11 11

Huck col 74 301 14 1050 < 2 min 11 11

Mycie13 col 11 20 8 96 < 1 min 4 4

Mycie14 col 23 71 10 240 < 1 min 5 5

Mycie15 col 47 236 10 480 < 1 min 6 6

Mycie16 col 95 755 10 960 < 2 min 7 7

Queen5 5 col 25 160 10 260 < 1 min 5 5

Queen6 6 col 36 290 10 370 < 2 min 8 7

Remarks:
In section 2 we presented a small example of a 3-coloring problem. Here

we consider a generalization of the vertex coloring problem where we want to
find a coloring with the minimum number of colors rather than finding one
with a given number of colors.

For this class of problems, we solved 9 standard problems from the litera-
ture, which can be found at http://mat.gsia.cmu.edu/COLOR/instances.html.

The conversion to xQx was achieved by using transformation # 1 on the
first set of constraints and, after complementing the “y” variables, using trans-
formation # 2 on the last two sets of constraints. In each case, the penalty P
was taken to be 20. Note that no new variables are required.

Optimal solutions were found in 8 of the 9 cases. We were off by one color
for problem Queen6 6. The solution times for the largest problem was slightly
less than 2 minutes on a Pentium 200 PC.

5.7 Maximum Clique (Max Independent Set)

Given a graph, G, and its complement graph:

G = (V,E), Ḡ = (V, Ē)

Zero/One Formulation:

max
n∑

j=1

xj

s.t.
xi + xj ≤ 1 ∀ (i, j) ∈ Ē

Recast as xQx:
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• Transformation #2
• No additional variables

Computational Experience: (Max Clique)

• Total number of Problems Solved: 33

ID # nodes # instances xQx solns Soln Time Solns Optimal?

P-hat 300 300 3 8, 25, 36 < 2 sec Yes

P-hat 500 500 3 9, 36, 50 < 2 sec Yes

P-hat 700 700 3 11, 44, 62 < 4 sec Yes

P-hat 1000 1000 3 10, 46, 68 < 15 sec Yes

P-hat 1500 1500 3 12, 65, 94 < 6 min Yes

C-fat 200 200 3 12, 24, 58 < 1 sec Yes

C-fat 500 500 3 14, 26, 64 < 1 sec Yes

Brock 200 200 4 21,12,15,17 < 4 sec Yes

Brock 400 400 4 27,29,31,33 7 min Yes

Brock 800 800 4 23,24,25,26 32 min Yes

Remarks:
For this class of problems we solved 33 standard test problems from the

literature.
These problems can be found at ftp://dimacs.rutgers.edu/pub/challenge.

The conversion to xQx was achieved by using transformation # 2, taking the
penalty P to be 2 in each case. No new variables are required.

Optimal solutions were found for all 33 problems. With few exceptions,
these optimal solutions were found in only a few seconds by our tabu search
method on a Pentium 333 PC. As noted in the table above, Brock 400, Brock
800 and P-hat 1500-1 took somewhat longer, requiring 6, 7 and 32 minutes
respectively.

5.8 Comments on Computational Experience

The computational experience reported above is intended to demonstrate the
viability and utility of the reformulation approach. We have successfully ap-
plied this approach to many other problem classes as well. While our inten-
tion is to disclose the general applicability of the unified modeling and solution
methodology, and not to provide a comprehensive comparison of this approach
with the best known methods at this time, we nonetheless emphasize that re-
sults presented in section 5 clearly establish that the reformulation approach
not only works across a wide array of problem classes but works very well.
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The test bed we used in this section, 168 problems in all, is a combina-
tion of new, randomly generated problems and widely used problems from
the literature. Optimal solutions are known for 100 of the 168 problems. For
each problem class, the instances considered are representative of the prob-
lems considered by other researchers. In some cases, most notably for the
maximum diversity and quadratic knapsack problems, we considered problem
instances much larger than previously addressed in the literature. In all cases,
our method was able to quickly find feasible solutions. For the problems where
optimal solutions are known, our method matched the optimal solution in 99
of the 100 instances. This performance lends support to the expectation that
the solutions obtained for the other problems, where optimal solutions are
not known, are of very high quality as well. Solution times for our approach
across the board are very small.

6 Special Transformations

Transformation # 1 can in principle be used to transform any linear constraint
in bounded integer variables into a quadratic penalty term and in fact this
transformation is the general workhorse of this recasting approach. However,
its use with general inequalities requires the introduction of additional vari-
ables and thus alternative transformations not requiring additional variables
should be employed where possible. As we have indicated in the examples
and computational outcomes given above, it is often possible to use a mix-
ture of transformations in the same problem, constructing penalties with an
eye toward avoiding the introduction of new variables where circumstances
permit.

The most common example of such an alternative is transformation #2,
which accommodates a frequently encountered but very special class of in-
equalities. Section 1.1 listed a few additional special cases for which VIPs are
known. This list is by no means exhaustive. Many additional special cases,
either for single constraints or groups of constraints, are waiting to be discov-
ered. We illustrate the possibility of discovering important special cases by
considering the classical problem of linear ordering.

Linear Ordering:

The linear ordering problem is defined by an n-by-n matrix of weights
C = { cij} where the problem is to find a permutation, p, of columns (and
rows) such that the sum of the weights on the upper triangular matrix is
maximized. Such problems arise in a variety of settings (such as finding an
acyclic tournament of maximum weight, or the aggregate ordering of paired
observations) but are most often associated with the triangulation of input-
output matrices in economics where the data in question often refers to sectors.
This problem can be modeled utilizing the decision variable: xij = 1 if sector



122 Gary A. Kochenberger and Fred Glover

i goes before sector j in the permutation; 0 otherwise. Taking advantage of
the fact that xij + xji = 1 for all i and j, a standard integer programming
formulation for the problem is given by:

max
∑

i<j

cijxij +
∑

j<i

cij (1− xji)

s.t.
xij + xjk − xik ≤ 1 ∀ (i, j, k) : i < j < k
xij + xjk − xik ≥ 0 ∀ (i, j, k) : i < j < k
xij ∈ {0, 1} ∀ (i, j) : i < j

After introducing slack variables, this model could be recast into the form
of UQP by employing general transformation #1. However, the above con-
straints allow a special quadratic penalty not involving new variables that is
greatly preferable to the penalty derived from transformation # 1.

To see how this special penalty arises, note that for a particular set i <
j < k, the pair of constraints shown above allows 6 of the 8 possible solutions,
excluding only xij = 1, xjk = 1, xik = 0 and xij = 0, xjk = 0, xik = 1. It
is easy to see that an exact quadratic penalty that precludes these same two
solutions, while allowing the others, is given by:

P {xik + xijxjk − xijxik − xjkxik}
Thus, without introducing additional variables, this special penalty can be

used to easily transform the linear ordering problem into an equivalent UQP.
For a problem with n sectors, both the IP formulation and the equivalent
UQP model will have n(n− 1)/2 variables. This approach is illustrated below
by a small example.

Example:
Consider the 4 sector example with an initial permutation p = (1,2,3,4)

and matrix:






0 12 5 3
4 0 2 6
8 3 0 9

11 4 2 0







The IP formulation becomes:

max x0 = 32 + 8x12 − 3x13 − 8x14 − 1x23 + 2x24 + 7x34

s.t.
x12 + x23 − x13 ≤ 1 x12 + x23 − x13 ≥ 0
x12 + x24 − x14 ≤ 1 x12 + x24 − x14 ≥ 0
x13 + x34 − x14 ≤ 1 x13 + x34 − x14 ≥ 0
x23 + x34 − x24 ≤ 1 x23 + x34 − x24 ≥ 0

Representing P by 2M, the equivalent xQx model is given by the 6x6
matrix:
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Q =











8 M M −M −M 0
M −3− 2M M M 0 −M
M M −8− 4M 0 M M
−M M 0 −1 M −M
−M 0 M M −2− 2M M

0 −M M −M M 7











Choosing the penalty, M, to be 10 and solving the problem:

maxxQx

yields the value 15 with x12 and x34 = 1 for which the corresponding permu-
tation is p = (3, 4, 1, 2) and the (original) objective function value is 15 + 32
= 47.

7 Summary

In this tutorial we have demonstrated how a variety of disparate combi-
natorial problems can be solved by first re-casting them into the common
modeling framework of the unconstrained quadratic binary program. Once in
this unified form, the problems can be solved effectively by adaptive memory
tabu search metaheuristics or other recently developed solution approaches
for UQP.

Our findings challenge the conventional wisdom that places high priority
on preserving linearity and exploiting specific structure. Although the merits
of such a priority are well-founded in many cases, the UQP domain appears
to offer a partial exception. In forming UQP(PEN), we destroy any linear-
ity that the original problem may have exhibited. Moreover, any exploitable
structure that may have existed originally is “folded” into the Q̂ matrix, and
the general solution procedure we apply takes no advantage of it. Nonetheless,
our solution outcomes have been remarkably successful, yielding results that
rival the effectiveness of the best specialized methods.

This combined modeling/solution approach provides a unifying theme that
can be applied in principle to all linearly constrained quadratic and linear
programs in bounded integer variables, and our computational findings for a
broad spectrum of problem classes raises the possibility that similarly suc-
cessful results may be obtained for even wider ranges of problems.

As additional research is conducted to provide enhanced methods for solv-
ing the UQP model, the approach of recasting diverse problems into this
general framework will become even more attractive. At present, we are solv-
ing problems reformulated as UQP that have more than 50,000 variables in
the quadratic representation. On-going research will further expand our abil-
ity to solve instances of UQP, further establishing this approach as a unified
framework with noteworthy practical and theoretical merit.
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