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Abstract: Satisfiability (SAT) and Max-SAT problems have been the object of 
considerable research effort over the past few decades. They remain a very 
important research area today due to their computational challenge and 
application importance. In this paper we investigate the use of penalty 
functions to recast SAT problems into the modelling framework offered by the 
unconstrained quadratic binary program. Computational experience is 
presented, illustrating how promising this approach is for Max 2-Sat problems. 
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1 Introduction 

The importance of Max-Sat problems is well established in the literature on 
combinatorial optimisation and NP-hard problems. Scores of papers exist describing both 
applications and a variety of solution approaches ranging from methods grounded in  
AI methodologies to those emerging out of mathematical programming origins.  
An excellent survey giving an overview of both applications and solution methods in 
given by Du et al. (1997). A rich source of more recent papers and general information 
regarding activities of the SAT research community can be found at 
http://www.satlive.org. 
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A common feature of contemporary methods for solving Max-Sat problems is that 
they are specially crafted to take advantage of the underlying problem structure. That is, 
they are designed for the single purpose of solving one or more classes of  
Max-Sat problems, employing tailored tactics intended to exploit the specific 
mathematical structure generated by the logical relationships of satisfiability. Notable 
examples of such special purpose methods are provided by the recently published works 
of Lardeux et al. (2004), Smyth et al. (2003) and Yagiura and Ibaraki (2001). The use of 
special purpose methods for particular problem classes is well entrenched in the 
combinatorial optimisation community at large and has been generally reinforced by the 
attractive performance that typically results from such approaches. 

In recent years however, considerable experience has demonstrated that a common 
modelling framework, given by the unconstrained quadratic program (UQP), can be 
employed to successfully model and solve a wide variety of combinatorial optimisation 
problems. UQP is simply defined by: 

UQP: opt xt Qx 

where x is a vector of binary decision variables, Q is a symmetric n-by-n matrix and  
opt is shorthand for optimise; i.e., for minimise or maximise. The success of this 
approach, as surveyed in the paper by Kochenberger et al. (2004), serves notice that the 
general purpose framework offered by UQP can indeed compete with, and sometimes 
surpass in performance, methods that are tailored to exploit specific problem structure. 
Our purpose in this paper is to illustrate how this approach can be effectively employed 
to model and solve certain Max-Sat problems. 

The transformation from a given mathematical structure into the unified framework 
of UQP is accomplished by imposing quadratic infeasibility penalties as an alternative to 
the explicit imposition of the original problem constraints. This approach can, in 
principle, be applied to any problem having linear constraints, bounded integer variables, 
and a linear or quadratic objective function. In this regard, we refer to a penalty function, 
g(x) as being a valid infeasibility penalty (VIP) if g(x) is zero when x is feasible and 
positive otherwise. For models with linear constraints, it is always possible to find 
quadratic VIPs and associated penalties P (positive for minimisation and negative for 
maximisation) such that the original xQx function can be replaced by xQx + Pg(x), 
yielding a new unconstrained quadratic objective in which g(x) = 0 at optimality, if and 
only if the original problem has a feasible solution. Thus, the transformed problem (that 
takes g(x) into the objective function) can itself be expressed in the same form as UQP, 
and can be solved by methods designed for this latter problem. 

Generally, VIPs and associated penalties P will not be known and will have to be 
discovered. Such discovery is straightforward as outlined in Hammer and Rudeanu 
(1968), Hansen (1979), Hansen and Jaumard (1990), Hansen, et al. (1993), and 
Kochenberger, et al. (2004). For certain problem classes, however, VIPs are known in 
advance, making the recasting into the form of UQP even easier. The Max 2-Sat 
problem, as we demonstrate in the section below, is of this nature, and additionally has 
the convenient property that the value of P can be selected to equal one. We point out 
that the modelling approach we employ here was first proposed, via a slightly different 
development, by Hammer and Rudeanu (1968) and more recently in Hansen and Jaumard 
(1990) and Boros and Hammer (2002). These authors, however, did not undertake to 
offer compelling evidence that their modelling device could be a computationally viable 
foundation for solving Max 2-Sat problems. Here we re-visit the approach with the goal 
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of providing the computational experience needed to establish it as a viable alternative to 
solving Max 2-Sat problems by modern, special purpose methods, and to highlight yet 
another example of the robustness afforded by the UQP unified modelling framework. 

2 Transforming MAX 2-Sat into UQP 

To motivate the replacement of constraints with penalties and to provide a basis for a 
comparison later in the paper with CPLEX, we first present a standard 0/1 linear 
programming formulation for the Max-Sat problem. We take as a given, a collection of m 
clauses in CNF form involving logical variables x1, x2, …, xn. The SAT problem is to 
determine whether or not there exists a truth assignment for the logical variables such 
that all clauses are simultaneously satisfied. Failing this, we want to find the truth 
assignment that satisfies the maximum number of clauses. If we introduce for each clause 
j an additional binary variable yj that takes the value one if the clause is satisfied and zero 
otherwise, we get the general IP model for the SAT and Max-Sat problem: 

0 1
_ : max m

jj
SAT IP y y

=
= ∑  (1) 

subject to  

1,
j j

i i j
i P i N

x x y j m
∈ ∈

+ ≥ =∑ ∑  (2) 

where the index sets Pj and Nj represent positive and negative (complemented) literals 
that appear in clause j. When solving this model results in assigning values of one to all y 
variables, we have a solution to the SAT problem. Barring this, we have a solution to the 
Max-Sat problem. Thus the above model represents both the SAT and Max-Sat problem 
and the model specialises in the natural way for the 2-Sat case where each clause 
(constraint) contains exactly two literals. 

Transforming SAT_IP for the Max 2-Sat case into UQP can be accomplished without 
introducing the y variables by means of the following observation. For 2-Sat problems, 
clauses can have 0, 1, or 2 negations. Each case gives rise to a standard linear inequality 
and in turn, an associated valid infeasibility penalty, g(x) as shown below: 

The three possibilities are: 
• No negations: 

Classical constraint: xi + xj ≥ 1 

g(x): (1 – xi – xj + xixj) 
• One negation: 

Classical constraint: 1i jx x+ ≥  

g(x): (xj – xixj) 
• Two negations:  

Classical constraint: 1i jx x+ ≥  

g(x): (xixj). 
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By examining the truth table for xi and xj it is easy to verify that the quadratic penalty 
function listed for each case is in fact a VIP. 

The approach then is to sum the penalties to produce the unconstrained quadratic 
program: 

0
1

_ : min ( )
m

t
i

i
SAT UQP x g x C x Qx

=

= = +∑  (3) 

where g(x)i is the quadratic penalty associated with clause i and C is the additive constant 
that results from summing the various penalty functions. Note that an attractive feature of 
this model is that the size of SAT_UQP is independent of the number of clauses in the 
problem. That is, a Max 2-Sat instance with 100 variables and 100 clauses yields the 
same sized instance of SAT_UQP as a Max 2-Sat instance with 100 variables and 5000 
clauses. Note also that in an optimal solution to SAT_UQP, x0 = 0 implies we have a 
solution to the 2-Sat problem while x0 > 0 implies we have a solution to the Max 2-Sat 
problem in which x0 clauses are not satisfied. 

Example: (due to Hansen and Jaumard (1990)) 

Consider the Max 2-SAT example given below with 4 variables and 12 clauses. To the 
right of each clause we have placed the associated quadratic VIP. 

Clause #Clause Quadratic penalty 

1 1 2x x∨  (1 – x1 – x2 + x1x2) 

2 1 2x x∨  (x2 – x1x2) 

3 1 2x x∨  (x1 – x1x2) 

4 1 2x x∨  (x1x2) 

5 1 3x x∨  (x1 – x1x3) 

6 2 3x x∨  (x1x3) 

7 2 3x x∨  (x3 – x2x3) 

8 2 4x x∨  (1 – x2 – x4 + x2x4) 

9 2 3x x∨  (x2 – x2x3) 

10 2 3x x∨  (x2x3) 

11 3 4x x∨  (1 – x3 – x4 + x3x4) 

12 3 4x x∨  (x3x4) 

Summing the penalties yields: 

SAT_UPQ min x0 = 3 + x1 – 2x4 – x2x3 + x2x4 + 2x3x4 

or, 

min x0 = 3 + xtQx 
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where the matrix Q is given by 

1 0 0 0
0 0 0.5 0.5
0 0.5 0 1
0 0.5 1 2

 
 − 
 −
 −  

 

Note that the SAT_UQP representation of this Max 2-Sat instance is an unconstrained 
quadratic model in four variables while the equivalent SAT_IP representation of  
equation (1) and equation (2) results in a model with 16 variables and 12 constraints. 
Solving this unconstrained quadratic binary program yields the solution x0 = 1 at 
x1 = x2 = x3 = 0, x4 = 1, meaning 11 of the 12 clauses are satisfied. 

3 Computational experience 

To test the attractiveness of the SAT_UQP approach to Max 2-Sat problems, we solved a 
variety of test problems from the literature along with some new instances that we 
randomly generated. 

3.1 New random problems 

In Table 1 and so on, we report the results which we obtained from our newly generated 
test problems. These problems range in size from instances with 100 variables and  
626 clauses to 1000 variables and 10,878 clauses. One instance had 500 variables and 
22,883 clauses. To provide a benchmark of comparison, we solved these problems both 
in form SAT_UQP and SAT_IP where there problems in the later representation were 
solved via CPLEX 8.0. In all cases presented in this paper, the SAT_UQP instances were 
solved by a straightforward Tabu search method as described in Glover et al. (1998) and  
Glover et al. (1999) and for which an overview is provided in the appendix to this paper. 
Each instance was allowed to run for an arbitrary limit of 50 SPAN cycles. (The notion 
of a SPAN cycle appears in several of the following sections and the reader not  
familiar with the Tabu search method we use may want to read the appendix before 
proceeding further) 

The first three columns of Table 1 and so on give the problem ID along with the 
number of variables and clauses. The next two columns pertain to results obtained from 
SAT_UQP where ‘# Viol’ is the number of violated or unsatisfied clauses and ‘time’ is 
run-time in seconds. The next four columns give the CPLEX results associated with the 
SAT_IP formulation where ‘# iters’ refers to LP interations, ‘# nodes’ refers to branch 
and bound nodes, and ‘time’ is run-time. All runs pertaining to SAT_UQP were carried 
out on a 1.7 GHz PC while the SAT_IP instances were run on a Sun Enterprise 3500 with 
two 400 MHz processors. 
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Table 1 New random problems 

SAT_UQP SAT_IP 
ID n # clauses # Viol Time  # Viol # iters # nodes Time 

2Sat 100a 100 626 53 1 sec 53 601598 21226 147 sec 
100b 100 795 98 1 sec 99 44 mil 1.7 mil 10 hrs 
100c  100 953 129 1 sec 130 78 mil 2.7 mil 10 hrs 
2Sat 200a 200 1891 232 3 sec 251 72 mil 3.2 mil 10 hrs 
200b 200 2067 284 3 sec 315 70 mil 2.7 mil 10 hrs 
200c 200 1699 219 3 sec 233 74 mil 3.5 mil 10 hrs 
2Sat 300a 300 5585 905 6 sec 1054 14 mil 1.2 mil 10 hrs 
300b 300 5590 915 6 sec 992 28 mil 0.9 mil 10 hrs 
300c 300 4791 717 6 sec  (NA)   
2Sat 400a 400 5762 888 10 sec 1043 10 mil 1.0 mil 10 hrs 
400b 400 6506 1012 10 sec 1248 9 mil 1.1 mil 10 hrs 
400c 400 6507 991 10 sec 1106 23 mil 1.1 mil 10 hrs 
2Sat 500a 500 5370 742 17 sec 964 10 mil 1.2 mil 10 hrs 
500b 500 5841 806 17 sec 1023 10 mil 1.0 mil 10 hrs 
500c 500 6304 907 17 sec 1104 11 mil 1.1 mil 10 hrs 
500d 500 22883 3566 17 sec  (NA)   
2Sat 1000a 1000 10878 1505 61 sec  (NA)   

Source: Available from the authors. 

CPLEX was allowed to run to completion or ten hours, which ever occurred first.  
As shown in Table 1, these problems, modelled via SAT_IP give rise to large and rather 
weak LP relaxations. As a result, CPLEX was only able to solve the first problem to 
completion. Due to size and other considerations, CPLEX results were not available for 
problems 300c, 500d, and 1000a. All others terminated via the ten hour limit with the 
results shown in the table. Note that our Tabu search heuristic, applied to SAT_UQP, 
found the optimal solution to the first problem and quickly found much better solutions 
than CPLEX for all other problems, the largest of which took 61 seconds to execute the 
arbitrary limit of 50 SPAN cycles. The times given in the table for SAT_UQP are for the 
entire 50 SPAN cycles. Many of the best solutions were found in early cycles in much 
shorter computation times. 

3.2 Publicly available problems (Borchers and Furman (1999)) 

Table 2 reports the results we obtained from applying SAT_UQP to a set of problems 
provided by Borchers and Furman (1999). These problems were reported in their paper 
where they presented their Max-Sat algorithm called ‘Maxsat’. The first three columns of 
Table 2 and so on give the size of the instances along with the best known solutions. 
Columns 4 and 5 give, respectively, the results and times for SAT_UQP and the final two 
columns give the results reported by Borchers and Furman obtained by their code 
Maxsat. As before, all instances of SAT_UQP were solved by our Tabu search method 
with each instance allowed to run for an arbitrary limit of 50 SPAN cycles. The results 
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reported for Maxsat were obtained on an IBM RS/6000-590. All times are in seconds 
unless noted otherwise in the table. 

Table 2 Test problems 

n m 
Best known 

solution 
Sat_UQP 
solution 

Sat_UQP 
time 

Maxsat3 
time Maxsat solution 

50 100 4 4 <1 4 0.4 
50 150 8 8 <1 8 1.5 
50 200 16 16 <1 16 116.2 
50 250 22 22 <1 22 652.4 
50 300 32 32 <1 32 8,763 
50 350 41 41 <1 NA >12 hr 
50 400 45 45 <1 NA >12 hr 
50 450 63 63 <1 NA >12 hr 
50 500 66 66 <1 NA >12 hr 
100 200 5 5 <2 5 3.2 
100 300 15 15 <2 15 13,770 
100 400 29 29 <2 NA >12 hr 
100 500 44 44 <2 NA >12 hr 
100 600 ? 65 <2 NA >12 hr 
150 300 4 4 <3 4 4.1 
150 450 22 22 <3 NA >12 hr 
150 600 38 38 <3 NA >12 hr 

Source: Borchers and Furman (1999). 

Borchers and Furman reported results only for those instances where their algorithm 
terminated with a natural completion of the search process, stopping otherwise via a time 
limit of approximately 12 hours with no result reported. These test problems are 
relatively modest in size giving rise to small instances of SAT_UQP. As a result, our 
Tabu search method was able to quickly match the results reported by Borchers and 
Furman where they give results. For the other problems, we quickly found solutions 
which serve as best known but whose optimality have not been established. 

In viewing the results of Table 2 and so on, it is important to note that Maxsat is an 
exact method while the Tabu search method we apply to SAT_UQP is a heuristic 
procedure. Thus, one should compare the results and computation times with appropriate 
care, taking into account the burden of proving optimality. Nonetheless it is fair to 
conclude that the results obtained from the SAT_UQP approach to these test problems are 
very attractive. 

3.3 Publicly available problems (Smyth et al. (2003)) 

Table 3 and so on reports the results we obtained by applying SAT_UQP to a set of test 
problems provided by Smyth et al. (2003). These problems are part of an extensive 
repository of test problems, optimisers and other information pertaining to SAT that is 
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maintained at the University of British Columbia. The first three columns of the table 
give the problem ID along with the problem size. Column #4 gives the best known 
solutions (as provided by Smyth et al. (2003)). The next two columns give our results 
along with the time taken to achieve these results. 

Table 3 Test problems 

ID # Variables # Clauses Best known SAT_UQP Time (seconds) 

RND200.1000.01 200 1000 85 85 <3 
RND200.1000.02 200 1000 91 91 <3 
RND200.1000.03 200 1000 90 90 <3 
RND200.1000.04 200 1000 84 84 <3 
RND200.1000.05 200 1000 85 85 <3 
RND200.1000.06 200 1000 88 88 <3 
RND200.1000.07 200 1000 85 85 <3 
RND200.1000.08 200 1000 79 79 <3 
RND200.1000.09 200 1000 88 88 <3 
RND200.1000.010 200 1000 85 85 <3 
RND200.2000.01 200 2000 271 271 <3 
RND200.2000.02 200 2000 247 247 <3 
RND200.2000.03 200 2000 253 253 <3 
RND200.2000.04 200 2000 260 260 <3 
RND200.2000.05 200 2000 255 255 <3 
RND200.2000.06 200 2000 268 268 <3 
RND200.2000.07 200 2000 263 263 <3 
RND200.2000.08 200 2000 252 252 <3 
RND200.2000.09 200 2000 253 253 <3 
RND200.2000.01 200 2000 266 266 <3 

Source: Smyth et al. (2003). 

As in the case of the problems referenced earlier, we ran each instance of SAT_UQP for 
the problems of Table 3 and so on for a limit of 50 SPAN cycles. For each problem we 
were able to match the best known result by performing a run of less than three seconds 
on a 1.7 GHz PC. The times reported are for the entire 50 cycles although the best known 
solutions were found in nine or fewer cycles for each of the 20 problems. Consequently, 
the best known solutions were actually found in less than 1 second in each case. Times 
for individual problem instances are not available from the repository so that exact 
comparisons are not possible at this time. We should point out that the UBC repository 
has hundreds of test problems. We report here on the first ten problems from the two 
largest classes of Max 2-Sat instances that are made available. We also tested many of 
the smaller problems and for each case tried we quickly reproduced the best known 
solution. 
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3.4 Extensions to the 3-SAT case 

The same general approach taken here in formulating SAT_UQP for the Max 2-Sat 
problem can be followed to produce a penalty function approach for the 3-Sat and  
Max 3-Sat case. The difference is that for 3-Sat there are four possible clause types 
(rather that three), each with a classical constraint and a corresponding VIP. However, 
each VIP is a cubic function rather than a quadratic as in the case of the 2-Sat problem. 
Nonetheless these cubic functions can be reduced to quadratic functions by a reduction 
due to Boros and Hammer (2002), allowing 3-Sat problems to be handled, in principle, 
via the SAT_UQP model as well. This approach, however, involves the introduction of 
additional variables. We are currently investigating whether the method may nevertheless 
be computationally attractive, even if not to the same degree as its counterpart for the  
2-Sat case. 

4 Summary and conclusions 

In this paper we have demonstrated that the Max 2-Sat problem can be effectively 
modelled and solved by first recasting it as an unconstrained quadratic binary program 
(UQP). Performance comparisons with CPLEX 8.0 and with results reported in the 
literature for other methods confirm the attractiveness of the UQP approach. Across a 
sizeable set of test problems, this approach quickly reproduced best known solutions and 
in a number of Instances, established new best known solutions. 

The results presented here were obtained using a generic Tabu search method for 
solving SAT_UQP with no specialisation for the structure of the problems attempted. 
This is in marked contrast with most other methods in the literature that are specifically 
crafted for Max Sat problems. Many of the recently reported specialised methods for 
solving Max-Sat problems are very effective and efficient. Our intent here is not to take 
them on head to head. Rather, our main goal is to establish that a general purpose 
heuristic intended for the generic instance of UQP can produce high quality solutions to 
Max 2-Sat problems very quickly. How well this approach stacks up to the specialised 
methods will perhaps be resolved in future studies. We are satisfied at this point that in 
this study we have presented sufficient computational evidence to establish that the 
approach we are taking not only works but that it works quite well. 

We also point out that, while our illustrations are for the unweighted Max 2-Sat 
problem, it is straightforward to extend our approach to address the weighted version, in 
which each clause has a figure of merit (weight) indicating the relative desirability of 
satisfying that clause. Once cast in the form of UQP, the problem can be efficiently 
solved by modern metaheuristic solution methods for UQP. 

Perhaps the most important aspect of the present study is that its results are  
consistent with the competitive results obtained by the UQP approach to other 
combinatorial problems as well (see, for instance Kochenberger et al. (2004, 2005)), and 
Lewis et al. (2004)). Our performance for Max 2-Sat problems serves to further 
emphasise the viable, robust nature of UQP as a fruitful modelling and solution 
framework for certain combinatorial optimisation problems. As new and improved 
optimisers become available for solving UQP, this unified framework will become an 
increasingly attractive approach for rapidly finding high-quality solutions to such 
problems. 
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Appendix: Overview of our Tabu search method for solving UQP 

Our TS method for UQP is centred on the use of strategic oscillation, which constitutes 
one of the primary strategies of Tabu search. The variant of strategic oscillation we 
employ may be sketched in overview as follows. 
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The method alternates between constructive phases that progressively set variables to 
one (whose steps we call ‘add moves’) and destructive phases that progressively set 
variables to zero (whose steps we call ‘drops moves’). To control the underlying search 
process, we use a memory structure that is updated at critical events, identified by 
conditions that generate a subclass of locally optimal solutions. Solutions corresponding 
to critical events are called critical solutions. 

A parameter span is used to indicate the amplitude of oscillation about a critical 
event. We begin with span equal to one and gradually increase it to some limiting value. 
For each value of span, a series of alternating constructive and destructive phases is 
executed before progressing to the next value. At the limiting point, span is gradually 
decreased, allowing again for a series of alternating constructive and destructive phases. 
When span reaches a value of one, a complete span cycle has been completed and the 
next cycle is launched. 

Information stored at critical events is used to influence the search process by 
penalising potentially attractive add moves (during a constructive phase) and inducing 
drop moves (during a destructive phase) associated with assignments of values to 
variables in recent critical solutions. Cumulative critical event information is used to 
introduce a subtle long term bias into the search process by means of additional penalties 
and inducements similar to those discussed above. A complete description of the 
framework for the method is given in Glover et al. (1999). 




